1
|
Delzenne NM, Bindels LB, Neyrinck AM, Walter J. The gut microbiome and dietary fibres: implications in obesity, cardiometabolic diseases and cancer. Nat Rev Microbiol 2025; 23:225-238. [PMID: 39390291 DOI: 10.1038/s41579-024-01108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Dietary fibres constitute a heterogeneous class of nutrients that are key in the prevention of various chronic diseases. Most dietary fibres are fermented by the gut microbiome and may, thereby, modulate the gut microbial ecology and metabolism, impacting human health. Dietary fibres may influence the occurrence of specific bacterial taxa, with this effect varying between individuals. The effect of dietary fibres on microbial diversity is a matter of debate. Most intervention studies with dietary fibres in the context of obesity and related metabolic disorders reveal the need for an accurate assessment of the microbiome to better understand the variable response to dietary fibres. Epidemiological studies confirm that a high dietary fibre intake is strongly associated with a reduced occurrence of many types of cancer. However, there is a need to determine the impact of intervention with specific dietary fibres on cancer risk, therapy efficacy and toxicity, as well as in cancer cachexia. In this Review, we summarize the mechanisms by which the gut microbiome can mediate the physiological benefits of dietary fibres in the contexts of obesity, cardiometabolic diseases and cancer, their incidence being clearly linked to low dietary fibre intake.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Williamson G. Bioavailability of Food Polyphenols: Current State of Knowledge. Annu Rev Food Sci Technol 2025; 16:315-332. [PMID: 39899845 DOI: 10.1146/annurev-food-060721-023817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
(Poly)phenols, including flavonoids, phenolic acids, and tannins, are a diverse class of compounds found in plant-based foods and beverages. Their bioavailability has been extensively described and detailed metabolic pathways elucidated. Although some parent (poly)phenols are absorbed intact in the small intestine, most pass to the colon where they are extensively catabolized and their microbial products absorbed into the circulation. The sum of the metabolites absorbed can reach almost 100% in some cases and in some individuals. In recent years, there have been three major areas of advancement: (a) comprehensive and systematic reviews have brought together bioavailability data, including detailed metabolic pathways in humans, and quantitative estimates of absorption and excretion; (b) the action and importance of the gut microbiota in (poly)phenol metabolism have been better defined and our understanding of the important role of the microbiota in intra- and interindividual variation has greatly expanded; and (c) strategies to improve (poly)phenol bioavailability such as encapsulation employing various nanoformulations or cyclodextrins have been developed.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, Victorian Heart Institute, Monash University, Clayton, Victoria, Australia;
| |
Collapse
|
3
|
Raudenská M, Bugajová M, Kalfeřt D, Plzák J, Šubrt A, Tesařová P, Masařík M. The interplay between microbiome and host factors in pathogenesis and therapy of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189216. [PMID: 39542383 DOI: 10.1016/j.bbcan.2024.189216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Heterogeneous cancers that lack strong driver mutations with high penetrance, such as head and neck squamous cell carcinoma (HNSCC), present unique challenges to understanding their aetiology due to the complex interactions between genetics and environmental factors. The interplay between lifestyle factors (such as poor oral hygiene, smoking, or alcohol consumption), the oral and gut microbiome, and host genetics appears particularly important in the context of HNSCC. The complex interplay between the gut microbiota and cancer treatment outcomes has also received increasing attention in recent years. This review article describes the bidirectional communication between the host and the oral/gut microbiome, focusing on microbiome-derived metabolites and their impact on systemic immune responses and the modulation of the tumour microenvironment. In addition, we review the role of host lifestyle factors in shaping the composition of the oral/gut microbiota and its impact on cancer progression and therapy. Overall, this review highlights the rationality of considering the oral/gut microbiota as a critical determinant of cancer therapy outcomes and points to therapeutic opportunities offered by targeting the oral/gut microbiota in the management of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic
| | - Maria Bugajová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - David Kalfeřt
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Jan Plzák
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Adam Šubrt
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Petra Tesařová
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Institute of Pathophysiology, First Faculty of Medicine, Charles University, U Nemocnice 5, CZ-128 53 Prague, Czech Republic.
| |
Collapse
|
4
|
Murphy EJ, Fehrenbach GW, Abidin IZ, Buckley C, Montgomery T, Pogue R, Murray P, Major I, Rezoagli E. Polysaccharides-Naturally Occurring Immune Modulators. Polymers (Basel) 2023; 15:polym15102373. [PMID: 37242947 DOI: 10.3390/polym15102373] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The prevention of disease and infection requires immune systems that operate effectively. This is accomplished by the elimination of infections and abnormal cells. Immune or biological therapy treats disease by either stimulating or inhibiting the immune system, dependent upon the circumstances. In plants, animals, and microbes, polysaccharides are abundant biomacromolecules. Due to the intricacy of their structure, polysaccharides may interact with and impact the immune response; hence, they play a crucial role in the treatment of several human illnesses. There is an urgent need for the identification of natural biomolecules that may prevent infection and treat chronic disease. This article addresses some of the naturally occurring polysaccharides of known therapeutic potential that have already been identified. This article also discusses extraction methods and immunological modulatory capabilities.
Collapse
Affiliation(s)
- Emma J Murphy
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Gustavo Waltzer Fehrenbach
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ismin Zainol Abidin
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ciara Buckley
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Therese Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Robert Pogue
- Universidade Católica de Brasilia, QS 7 LOTE 1-Taguatinga, Brasília 71680-613, DF, Brazil
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
| | - Ian Major
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
5
|
Glucomannan as a Dietary Supplement for Treatment of Breast Cancer in a Mouse Model. Vaccines (Basel) 2022; 10:vaccines10101746. [PMID: 36298611 PMCID: PMC9608331 DOI: 10.3390/vaccines10101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Konjac glucomannan (KGM) is a water-soluble polysaccharide derived from the Amorphophallus’s tuber and, as herbal medicine has shown, can suppress tumor growth or improve health. However, there has been no investigation into the effects of KGM on breast tumor-bearing mice. Therefore, in two cohort experiments, we assessed the effect of glucomannan at daily doses of 2 and 4 mg for 28 days as a dietary supplement and also glucomannan in combination with tumor lysate vaccine as an adjuvant. Tumor volume was monitored twice weekly. In addition, TNF-α cytokines and granzyme B (Gr–B) release were measured with ELISA kits, and IL-2, IL-4, IL-17, and IFN-γ were used as an index for cytotoxic T lymphocyte activity. Moreover, TGF-β and Foxp3 gene expression were assessed in a real-time PCR test. The results show that glucomannan as a dietary supplement increased the IFN-γ cytokine and Th1 responses to suppress tumor growth. Glucomannan as a dietary supplement at the 4 mg dose increased the IL-4 cytokine response compared to control groups. In addition, cell lysate immunization with 2 or 4 mg of glucomannan suppressed tumor growth. As an adjuvant, glucomannan at both doses showed 41.53% and 52.10% tumor suppression compared with the PBS group. Furthermore, the administration of glucomannan as a dietary supplement or adjuvant reduced regulatory T cell response through decreasing TGF-β and Foxp3 gene expression in the tumor microenvironment. In conclusion, glucomannan as a dietary supplement or adjuvant enhanced the immune responses of tumor-bearing mice and decreased immune response suppression in the tumor milieu, making it a potentially excellent therapeutic agent for lowering breast tumor growth.
Collapse
|
6
|
Aanisah N, Wardhana YW, Chaerunisaa AY, Budiman A. Review on Modification of Glucomannan as an Excipient in Solid Dosage Forms. Polymers (Basel) 2022; 14:2550. [PMID: 35808596 PMCID: PMC9269564 DOI: 10.3390/polym14132550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/09/2023] Open
Abstract
Glucomannan (GM)-a polysaccharide generally extracted from the tuber of Amorphophallus konjac-has great potential as a filler-binder in direct compression, disintegrant in tablets, or gelling agent due to its strong hydrophilicity and extremely high viscosity. However, it has poor water resistance and low mechanical strength when used as an excipient in solid form. Several physical and chemical modifications have been carried out to improve these drawbacks. Chemical modification affects the characteristics of GM based on the DS. Carboxymethylation improves GM functionality by modifying its solubility and viscosity, which in turn allows it to bind water more efficiently and thus improve its elongation and gel homogeneity. Meanwhile, physical modification enhances functionality through combination with other excipients to improve mechanical properties and modify swelling ability and drug release from the matrix. This review discusses extraction of GM and its modification to enhance its applicability as an excipient in solid form. Modified GM is a novel excipient applicable in the pharmaceutical industry for direct compression, as a tablet disintegrant, a film-forming agent, and for encapsulation of macromolecular compounds or drug carriers for controlled release.
Collapse
Affiliation(s)
- Nuur Aanisah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.A.); (A.Y.C.); (A.B.)
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu 94118, Indonesia
| | - Yoga W. Wardhana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.A.); (A.Y.C.); (A.B.)
- Study Center Development of Pharmaceutical Preparations, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Anis Y. Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.A.); (A.Y.C.); (A.B.)
- Study Center Development of Pharmaceutical Preparations, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.A.); (A.Y.C.); (A.B.)
- Study Center Development of Pharmaceutical Preparations, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
7
|
Ristori S, Scavone F, Bartolozzi C, Giovannelli L. The comet assay for the evaluation of gut content genotoxicity: Use in human studies as an early biomarker of colon cancer risk. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503477. [PMID: 35649683 DOI: 10.1016/j.mrgentox.2022.503477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
This short narrative review describes the use of the comet assay to evaluate the formation of genotoxic compounds in the gut lumen in human studies. The fecal water genotoxicity assay is based on ability of the gut content to induce genotoxicity in a cellular model, employing the aqueous component of the feces (fecal water) as this is supposed to contain most of the reactive species and to convey them to the intestinal epithelium. This non-invasive and low-cost assay has been demonstrated to be associated with colon cancer risk in animal models, and although the final validation against human tumors is lacking, it is widely used as a colo-rectal cancer risk biomarker in human nutritional intervention studies. The contribution given to the field of nutrition and cancer by the FW genotoxicity assay is highlighted, particularly in conjunction with other risk biomarkers, to shed light on the complex relationship among diet, microbiota, individual subject characteristics and the formation of genotoxic compounds in the gut.
Collapse
Affiliation(s)
- Sara Ristori
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Francesca Scavone
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Chiara Bartolozzi
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Lisa Giovannelli
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
8
|
Dikeocha IJ, Al-Kabsi AM, Eid EEM, Hussin S, Alshawsh MA. Probiotics supplementation in patients with colorectal cancer: a systematic review of randomized controlled trials. Nutr Rev 2021; 80:22-49. [PMID: 34027974 DOI: 10.1093/nutrit/nuab006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CONTEXT Colorectal cancer (CRC) is a leading cause of cancer deaths. Recently, much attention has been given to the microbiome and probiotics as preventive and therapeutic approaches to CRC and the mechanisms involved. OBJECTIVES To interpret the findings of randomized controlled trials (RCTs) of probiotics relative to patients with CRC and to outline challenges of and future directions for using probiotics in the management and prevention of CRC. DATA SOURCES Web of Science, PubMed, ProQuest, Wile, y and Scopus databases were searched systematically from January 17-20, 2020, in accordance with PRISMA guidelines. STUDY SELECTION Primacy RCTs that reported the effects of administration to patients with CRC of a probiotic vs a placebo were eligible to be included. DATA EXTRACTION The studies were screened and selected independently by 2 authors on the basis of prespecified inclusion and exclusion criteria. The data extraction and risk-of-bias assessment were also performed independently by 2 authors. RESULTS A total of 23 RCTs were eligible for inclusion. Probiotics supplementation in patients with CRC improved their quality of life, enhanced gut microbiota diversity, reduced postoperative infection complications, and inhibited pro-inflammatory cytokine production. The use of certain probiotics in patients with CRC also reduced the side effects of chemotherapy, improved the outcomes of surgery, shortened hospital stays, and decreased the risk of death. Bifidobacteria and Lactobacillus were the common probiotics used across all studies. CONCLUSION Probiotics have beneficial effects in patients with CRC regardless of the stage of cancer. There is an opportunity for probiotics to be used in mainstream health care as a therapy in the fight against CRC, especially in early stages; however, larger clinical trialsof selected or a cocktail of probiotics are needed to confirm the efficacy, dosage, and interactions with chemotherapeutics agents. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020166865.
Collapse
Affiliation(s)
- Ifeoma Julieth Dikeocha
- I.J. Dikeocha, A.M. Al-Kabsi, and S. Hussin are with the Faculty of Medicine, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E.E.M. Eid is with the Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia. M.A. Alshawsh is with the Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abdelkodose Mohammed Al-Kabsi
- I.J. Dikeocha, A.M. Al-Kabsi, and S. Hussin are with the Faculty of Medicine, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E.E.M. Eid is with the Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia. M.A. Alshawsh is with the Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Eltayeb E M Eid
- I.J. Dikeocha, A.M. Al-Kabsi, and S. Hussin are with the Faculty of Medicine, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E.E.M. Eid is with the Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia. M.A. Alshawsh is with the Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Salasawati Hussin
- I.J. Dikeocha, A.M. Al-Kabsi, and S. Hussin are with the Faculty of Medicine, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E.E.M. Eid is with the Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia. M.A. Alshawsh is with the Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammed Abdullah Alshawsh
- I.J. Dikeocha, A.M. Al-Kabsi, and S. Hussin are with the Faculty of Medicine, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E.E.M. Eid is with the Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia. M.A. Alshawsh is with the Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutr Res Rev 2021; 35:161-180. [PMID: 33926590 DOI: 10.1017/s0954422421000081] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beneficial effects of probiotic, prebiotic and polyphenol-rich interventions on fasting lipid profiles have been reported, with changes in the gut microbiota composition believed to play an important role in lipid regulation. Primary bile acids, which are involved in the digestion of fats and cholesterol metabolism, can be converted by the gut microbiota to secondary bile acids, some species of which are less well reabsorbed and consequently may be excreted in the stool. This can lead to increased hepatic bile acid neo-synthesis, resulting in a net loss of circulating low-density lipoprotein. Bile acids may therefore provide a link between the gut microbiota and cardiovascular health. This narrative review presents an overview of bile acid metabolism and the role of probiotics, prebiotics and polyphenol-rich foods in modulating circulating cardiovascular disease (CVD) risk markers and bile acids. Although findings from human studies are inconsistent, there is growing evidence for associations between these dietary components and improved lipid CVD risk markers, attributed to modulation of the gut microbiota and bile acid metabolism. These include increased bile acid neo-synthesis, due to bile sequestering action, bile salt metabolising activity and effects of short-chain fatty acids generated through bacterial fermentation of fibres. Animal studies have demonstrated effects on the FXR/FGF-15 axis and hepatic genes involved in bile acid synthesis (CYP7A1) and cholesterol synthesis (SREBP and HMGR). Further human studies are needed to determine the relationship between diet and bile acid metabolism and whether circulating bile acids can be utilised as a potential CVD risk biomarker.
Collapse
|
10
|
Choudhuri I, Khanra K, Maity P, Patra A, Maity GN, Pati BR, Nag A, Mondal S, Bhattacharyya N. Structure and biological properties of exopolysaccharide isolated from Citrobacter freundii. Int J Biol Macromol 2020; 168:537-549. [PMID: 33316341 DOI: 10.1016/j.ijbiomac.2020.12.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/25/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the molecular characterization, antioxidant activity in vitro, cytotoxicity study of an exopolysaccharide isolated from Citrobacter freundii. Firstly, the culture conditions were standardized by the Design of experiments (DoE) based approach, and the final yield of thecrude exopolysaccharide was optimized at 2568 ± 169 mg L-1. One large fraction of exopolysaccharide was obtained from the culture filtrate by size exclusion chromatography and molecular characteristics were studied. A new mannose rich exopolysaccharide (Fraction-I) with average molecular weight ~ 1.34 × 105 Da was isolated. The sugar analysis showed the presence of mannose and glucose in a molar ratio of nearly 7:2 respectively. The structure of the repeating unit in the exopolysaccharide was determined through chemical and 1D/2D- NMR experiments as: Finally, the antioxidant activity, and the cytotoxicity of the exopolysaccharide were investigated and the relationship with molecular properties was discussed as well.
Collapse
Affiliation(s)
- Indranil Choudhuri
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Kalyani Khanra
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Prasenjit Maity
- Department of Chemistry, Sabang Sajanikanta Mahavidyalaya, Sabang, Paschim Midnapore, West Bengal PIN-721166, India
| | - Anutosh Patra
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Gajendra Nath Maity
- Department of Chemistry, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Bikas Ranjan Pati
- Dept. of Microbiology, Vidyasagar University, Medinipur, West Bengal PIN-721102, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru PIN-560029, India
| | - Soumitra Mondal
- Department of Chemistry, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India.
| | - Nandan Bhattacharyya
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India.
| |
Collapse
|
11
|
Zorraquín-Peña I, González de Llano D, Tamargo A, Moreno-Arribas MV, Bartolomé B. Moderate Wine Consumption Reduces Faecal Water Cytotoxicity in Healthy Volunteers. Nutrients 2020; 12:nu12092716. [PMID: 32899492 PMCID: PMC7551400 DOI: 10.3390/nu12092716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
There are some studies that suggest that moderate consumption of wine, as part of a healthy and balanced diet, has a favourable effect on intestinal health. This study evaluates the effect of moderate wine consumption on faecal water (FW) cytotoxicity as a parameter of gut health. To that end, faecal samples before and after a red wine intervention study (250 mL of wine/day, 4 weeks) in healthy volunteers (n = 8) and in a parallel control group (n = 3) were collected and assayed for in vitro FW cytotoxicity. Two reference compounds, phenol and p-cresol, were used for assessing the cytotoxicity assays using two colon epithelial cell lines (HT-29 and HCT 116) and different assay conditions (FW dilution and incubation time). For the two cell lines and all assay conditions, the means of percentage cell viability were higher (lower cytotoxicity) for samples collected after the red wine intervention than for those collected before, although significant (p < 0.05) differences were only found in certain assay conditions for both cell lines. Significant positive correlations between the percentage cell viability and the contents of some faecal metabolites (short-chain fatty acids (SCFA) and phenolic acids (PA)) were found for the more resistant cell line (HCT 116), suggesting that the reduction in FW cytotoxicity observed after moderate red wine consumption was related to the production of microbial-derived metabolites such as SCFA and PA, whose faecal contents have been shown to increase after wine consumption. FW cytotoxicity can be deemed as a holistic biomarker that involves diet, gut microbiota and host.
Collapse
|
12
|
Chen CM, Shih CK, Su YJ, Cheang KU, Lo SF, Li SC. Evaluation of white sweet potato tube-feeding formula in elderly diabetic patients: a randomized controlled trial. Nutr Metab (Lond) 2019; 16:70. [PMID: 31636690 PMCID: PMC6796455 DOI: 10.1186/s12986-019-0398-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/24/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Elderly people with type 2 diabetes mellitus (T2DM) have an increased risk of diabetes-related microvascular and macrovascular complications, thus diabetic patients with a functioning gastrointestinal tract but without sufficient oral intake require enteral nutrition (EN) formulas to control blood glucose. White sweet potato (WSP) was a kind of sweet potato could provide a healthy carbohydrate source to EN formula. The aim of this study was to examine at risk of malnutrition T2DM patients whether a WSP-EN would attenuate glucose response and elevate nutritional index compared to a standard polymeric formulas. METHODS In this randomized, parallel, placebo-controlled, pilot clinical trial to investigate the effects of EN with WSP on aged residents with T2DM in long-term care institutions. In total, 54 eligible participants were randomly assigned to either the non-WSP-EN or WSP-EN group. For 60 days, the WSP-EN group received a WSP formula through nasogastric tube via a stoma with a large-bore syringe. The participants received EN of standard polymeric formulas without WSP in the non-WSP-EN group. RESULTS The body weight, body mass index, Mini Nutritional Assessment score, and Geriatric Nutritional Risk Index were significantly higher in the WSP-EN group (p < 0.05). Moreover, the WSP-EN intervention reduced glycated hemoglobin levels (6.73% ± 1.47% vs. 6.40% ± 1.16%), but increased transferrin (223.06 ± 38.85 vs. 245.85 ± 46.08 mg/dL), high-density lipoprotein cholesterol (42.13 ± 10.56 vs. 44.25 ± 8.43 mg/dL), and vitamin A (2.45 ± 0.77 vs 2.74 ± 0.93 μM) levels (p < 0.05). In addition, there was no important side effects including gastrointestinal intolerance with prescribed doses in our WSP-EN treated patients when compared with control ones. CONCLUSIONS The results suggest WSP incorporated into enteral formulas can improve nutrition status and glycemic control in elderly diabetic patients. TRIAL REGISTRATION NCT02711839, registered 27 May 2015.
Collapse
Affiliation(s)
- Chiao-Ming Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih-Chien University, No.70, Dazhi St., Zhongshan Dist., Taipei City, 10462 Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
| | - Yi-Jing Su
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
| | - Kuan-Un Cheang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
| | - Shu-Fang Lo
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, 2 Min-Cheng Road, Chiayi, 60044 Taiwan
| | - Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, 2 Min-Cheng Road, Chiayi, 60044 Taiwan
| |
Collapse
|
13
|
Madrigal-Santillán E, Madrigal-Bujaidar E, Reyes-Arellano A, Morales-González JA, Álvarez-González I, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Calzada-Mendoza CC, Anguiano-Robledo L, Morales-González Á. Supramolecular complex formation, a possible antigenotoxic mechanism of glucomannan against aflatoxin B 1. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2019; 101:369-388. [DOI: 10.1080/02772248.2020.1715410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| | - Alicia Reyes-Arellano
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | | | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| | | | | | - Claudia C. Calzada-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Liliana Anguiano-Robledo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| |
Collapse
|
14
|
Li JY, Sun F, Zhou HF, Yang J, Huang C, Fan H. A Systematic Review Exploring the Anticancer Activity and Mechanisms of Glucomannan. Front Pharmacol 2019; 10:930. [PMID: 31507423 PMCID: PMC6715771 DOI: 10.3389/fphar.2019.00930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
Glucomannan, long recognized as the active ingredient of the traditional Chinese medicinal herb Konjac glucomannan, is a naturally occurring polysaccharide existing in certain plant species and fungi. Due to its special property to also serve as a dietary supplement, glucomannan has been widely applied in clinic to lower body weight and circulation cholesterol level and to treat constipation, diabetes, and arterial sclerosis. Besides the regulatory role engaged with gastroenterological and metabolic syndrome, recently, its therapeutic effect and the underlying mechanisms in treating cancerous diseases have been appreciated by mounting researches. The present review aims to emphasize the multifaceted aspects of how glucomannan exerts its anti-tumor function.
Collapse
Affiliation(s)
- Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Feng Zhou
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
So D, Whelan K, Rossi M, Morrison M, Holtmann G, Kelly JT, Shanahan ER, Staudacher HM, Campbell KL. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am J Clin Nutr 2018; 107:965-983. [PMID: 29757343 DOI: 10.1093/ajcn/nqy041] [Citation(s) in RCA: 425] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
Background Dysfunction of the gut microbiota is frequently reported as a manifestation of chronic diseases, and therefore presents as a modifiable risk factor in their development. Diet is a major regulator of the gut microbiota, and certain types of dietary fiber may modify bacterial numbers and metabolism, including short-chain fatty acid (SCFA) generation. Objective A systematic review and meta-analysis were undertaken to assess the effect of dietary fiber interventions on gut microbiota composition in healthy adults. Design A systematic search was conducted across MEDLINE, EMBASE, CENTRAL, and CINAHL for randomized controlled trials using culture and/or molecular microbiological techniques evaluating the effect of fiber intervention on gut microbiota composition in healthy adults. Meta-analyses via a random-effects model were performed on alpha diversity, prespecified bacterial abundances including Bifidobacterium and Lactobacillus spp., and fecal SCFA concentrations comparing dietary fiber interventions with placebo/low-fiber comparators. Results A total of 64 studies involving 2099 participants were included. Dietary fiber intervention resulted in higher abundance of Bifidobacterium spp. (standardized mean difference (SMD): 0.64; 95% CI: 0.42, 0.86; P < 0.00001) and Lactobacillus spp. (SMD: 0.22; 0.03, 0.41; P = 0.02) as well as fecal butyrate concentration (SMD: 0.24; 0.00, 0.47; P = 0.05) compared with placebo/low-fiber comparators. Subgroup analysis revealed that fructans and galacto-oligosaccharides led to significantly greater abundance of both Bifidobacterium spp. and Lactobacillus spp. compared with comparators (P < 0.00001 and P = 0.002, respectively). No differences in effect were found between fiber intervention and comparators for α-diversity, abundances of other prespecified bacteria, or other SCFA concentrations. Conclusions Dietary fiber intervention, particularly involving fructans and galacto-oligosaccharides, leads to higher fecal abundance of Bifidobacterium and Lactobacillus spp. but does not affect α-diversity. Further research is required to better understand the role of individual fiber types on the growth of microbes and the overall gut microbial community. This review was registered at PROSPERO as CRD42016053101.
Collapse
Affiliation(s)
- Daniel So
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College, London, United Kingdom
| | - Megan Rossi
- Department of Nutritional Sciences, King's College, London, United Kingdom
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Translational Research Institute.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Gerald Holtmann
- Faculty of Medicine, University of Queensland, Brisbane, Australia.,Department of Gastroenterology & Hepatology
| | - Jaimon T Kelly
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Erin R Shanahan
- The University of Queensland Diamantina Institute, Translational Research Institute.,Department of Gastroenterology & Hepatology
| | | | - Katrina L Campbell
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia.,Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
16
|
Bai J, Zhu Y, Dong Y. Modulation of gut microbiota and gut-generated metabolites by bitter melon results in improvement in the metabolic status in high fat diet-induced obese rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
17
|
Han S, Gao J, Zhou Q, Liu S, Wen C, Yang X. Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review. Cancer Manag Res 2018; 10:199-206. [PMID: 29440929 PMCID: PMC5798565 DOI: 10.2147/cmar.s153482] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer is one of the most common human malignant tumors. Recent research has shown that colorectal cancer is a dysbacteriosis-induced disease; however, the role of intestinal bacteria in colorectal cancer is unclear. This review explores the role of intestinal flora in colorectal cancer. In total, 57 articles were included after identification and screening. The pertinent literature on floral metabolites in colorectal cancer from three metabolic perspectives - including carbohydrate, lipid, and amino acid metabolism - was analyzed. An association network regarding the role of intestinal flora from a metabolic perspective was constructed by analyzing the previous literature to provide direction and insight for further research on intestinal flora in colorectal cancer.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Medical Oncology, Huzhou Central Hospital
| | - Jianlan Gao
- Department of Medical Oncology, Huzhou Central Hospital
| | - Qing Zhou
- Department of Critical Care Medicine, Huzhou Central Hospital
| | | | - Caixia Wen
- Medical College of Nursing, Huzhou University
| | - Xi Yang
- Department of Intervention and Radiotherapy, Huzhou Central Hospital, Huzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
18
|
Mundi M, Mikal KM, Ahmed OH, Sarbini SR. A review on the effects of prebiotics on cell toxicity and integrity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1326937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Morven Mundi
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| | - Kathleen Michelle Mikal
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| | - Osumanu Haruna Ahmed
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| |
Collapse
|
19
|
Gómez B, Míguez B, Yáñez R, Alonso JL. Manufacture and Properties of Glucomannans and Glucomannooligosaccharides Derived from Konjac and Other Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2019-2031. [PMID: 28248105 DOI: 10.1021/acs.jafc.6b05409] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glucomannans (GM) are polymers that can be found in natural resources, such as tubers, bulbs, roots, and both hard- and softwoods. In fact, mannan-based polysaccharides represent the largest hemicellulose fraction in softwoods. In addition to their structural functions and their role as energy reserve, they have been assessed for their healthy applications, including their role as new source of prebiotics. This paper summarizes the scientific literature regarding the manufacture and functional properties of GM and their hydrolysis products with a special focus on their prebiotic activity.
Collapse
Affiliation(s)
- Belén Gómez
- Chemical Engineering Department, Polytechnic Building, University of Vigo (Campus Ourense) , 32004 Ourense, Spain
- CITI , Avenida Galicia 2, Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
- CINBIO , University Campus, 36310 Vigo, Pontevedra, Spain
| | - Beatriz Míguez
- Chemical Engineering Department, Polytechnic Building, University of Vigo (Campus Ourense) , 32004 Ourense, Spain
- CITI , Avenida Galicia 2, Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
- CINBIO , University Campus, 36310 Vigo, Pontevedra, Spain
| | - Remedios Yáñez
- Chemical Engineering Department, Polytechnic Building, University of Vigo (Campus Ourense) , 32004 Ourense, Spain
- CITI , Avenida Galicia 2, Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
- CINBIO , University Campus, 36310 Vigo, Pontevedra, Spain
| | - José L Alonso
- Chemical Engineering Department, Polytechnic Building, University of Vigo (Campus Ourense) , 32004 Ourense, Spain
- CITI , Avenida Galicia 2, Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
- CINBIO , University Campus, 36310 Vigo, Pontevedra, Spain
| |
Collapse
|
20
|
Tester RF, Al-Ghazzewi FH. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3283-3291. [PMID: 26676961 DOI: 10.1002/jsfa.7571] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
The impact of ingesting glucomannans on health is not limited to colonic-focused fermentation into short-chain fatty acids (SCFAs), which might have some local health benefits; it also helps in treating disease states and enhancing the body's immune system, both within the gut and in/on other parts of the body. The local and systemic roles of hydrolysed glucomannans, especially konjac glucomannans, in the mouth, oesophagus, stomach, small intestine, large intestine, gut-associated lymphoid tissue (GALT), skin and vagina, are highlighted. Therapeutic applications are discussed. © 2015 Society of Chemical Industry.
Collapse
|
21
|
Suwannaporn P, Tester RF, Al-Ghazzewi FH, Artitdit P. Effect of short term administration of konjac glucomannan hydrolysates on adult blood lipid parameters and glucose concentrations. ACTA ACUST UNITED AC 2015. [DOI: 10.1108/nfs-02-2015-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
– This paper aims to evaluate the effect of depolymerised glucomannan in regulating blood lipid and glucose concentrations.
Design/methodology/approach
– Twenty adult volunteers were recruited. Blood samples were taken at Day 0. The volunteers consumed drinks containing 3.0 g active glucomannan hydrolysates (AMH) for 14 days, after which time blood samples were retaken (Day 15). Blood samples were analysed to determine the blood lipid and glucose concentrations.
Findings
– The average fasting blood glucose at the start of the trial was 2.54 mmol/L but reduced slightly to 2.49 mmol/L after consumption of the glucomannan. The total average cholesterol at the start of the trial was higher (6.69 mmol/L) than desirable (
<
5.0 mmol/L). This was reduced after consuming the glucomannan to 6.44 mmol/L (3.74 per cent). The triglyceride content was also higher initially than recommended (2.88 mmol/L) but was reduced by 11.5 per cent. The high-density lipoprotein (HDL) was within the desirable range before and after consumption (1.57 and 1.52 mmol/L, respectively), while the average low-density lipoprotein (LDL) was higher than recommended (
<
3.0 mmol/L), representing 4.55 mmol/L and 4.40 mmol/L before and after consumption, respectively. Both parameters were reduced by over 3.0 per cent. The consumption of the glucomannan hydrolysates also reduced the total cholesterol/HDL and LDL/HDL ratios.
Originality/value
– The AMH was effective in lowering blood cholesterol and glucose concentrations. Consumption of such carbohydrates could prove useful for these physiological disorders. Further studies are desirable to characterise the exact mechanism.
Collapse
|
22
|
Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M, Nauta A, Raes J, van Tol EAF, Tuohy KM, on behalf of the ILSI Europe Prebiotics Task Force Expert Group ‘Microbial metabolism and fermentation’. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev 2015; 28:42-66. [PMID: 26156216 PMCID: PMC4501371 DOI: 10.1017/s0954422415000037] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Available evidence on the bioactive, nutritional and putative detrimental properties of gut microbial metabolites has been evaluated to support a more integrated view of how prebiotics might affect host health throughout life. The present literature inventory targeted evidence for the physiological and nutritional effects of metabolites, for example, SCFA, the potential toxicity of other metabolites and attempted to determine normal concentration ranges. Furthermore, the biological relevance of more holistic approaches like faecal water toxicity assays and metabolomics and the limitations of faecal measurements were addressed. Existing literature indicates that protein fermentation metabolites (phenol, p-cresol, indole, ammonia), typically considered as potentially harmful, occur at concentration ranges in the colon such that no toxic effects are expected either locally or following systemic absorption. The endproducts of saccharolytic fermentation, SCFA, may have effects on colonic health, host physiology, immunity, lipid and protein metabolism and appetite control. However, measuring SCFA concentrations in faeces is insufficient to assess the dynamic processes of their nutrikinetics. Existing literature on the usefulness of faecal water toxicity measures as indicators of cancer risk seems limited. In conclusion, at present there is insufficient evidence to use changes in faecal bacterial metabolite concentrations as markers of prebiotic effectiveness. Integration of results from metabolomics and metagenomics holds promise for understanding the health implications of prebiotic microbiome modulation but adequate tools for data integration and interpretation are currently lacking. Similarly, studies measuring metabolite fluxes in different body compartments to provide a more accurate picture of their nutrikinetics are needed.
Collapse
Affiliation(s)
- Kristin A. Verbeke
- Translational Research in Gastrointestinal Disorders (TARGID), KU Leuven and Leuven Food Science and Nutrition Research Center (LFoRCe), Leuven, Belgium
| | - Alan R. Boobis
- Department of Medicine, Imperial College London, London, UK
| | - Alessandro Chiodini
- Formerly ILSI Europe, Box 6, Avenue Emmanuel Mounier 83, BE-1200, Brussels, Belgium; now European Commission, Research Executive Agency (REA) Unit B2, Brussels, Belgium
| | - Christine A. Edwards
- Human Nutrition School of Medicine, College of MVLS, University of Glasgow, Glasgow, Scotland
| | | | - Michiel Kleerebezem
- Host Microbe Interactomics, Wageningen University, Wageningen, The Netherlands
| | - Arjen Nauta
- FrieslandCampina, Amersfoort, The Netherlands
| | - Jeroen Raes
- Microbiology and Immunology, Rega Institute, KU Leuven, Leuven; VIB, Leuven; DBIT, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Kieran M. Tuohy
- Nutrition and Nutrigenomics, Research and Innovation Centre-Fondazione Edmund Mach, Trento, Italy
| | | |
Collapse
|
23
|
Windey K, De Preter V, Huys G, Broekaert WF, Delcour JA, Louat T, Herman J, Verbeke K. Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects. Br J Nutr 2015; 113:225-38. [PMID: 25498469 DOI: 10.1017/s0007114514003523] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wheat bran extract (WBE), containing arabinoxylan-oligosaccharides that are potential prebiotic substrates, has been shown to modify bacterial colonic fermentation in human subjects and to beneficially affect the development of colorectal cancer (CRC) in rats. However, it is unclear whether these changes in fermentation are able to reduce the risk of developing CRC in humans. The aim of the present study was to evaluate the effects of WBE on the markers of CRC risk in healthy volunteers, and to correlate these effects with colonic fermentation. A total of twenty healthy subjects were enrolled in a double-blind, cross-over, randomised, controlled trial in which the subjects ingested WBE (10 g/d) or placebo (maltodextrin, 10 g/d) for 3 weeks, separated by a 3-week washout period. At the end of each study period, colonic handling of NH3 was evaluated using the biomarker lactose[15N, 15N']ureide, colonic fermentation was characterised through a metabolomics approach, and the predominant microbial composition was analysed using denaturing gradient gel electrophoresis. As markers of CRC risk, faecal water genotoxicity was determined using the comet assay and faecal water cytotoxicity using a colorimetric cell viability assay. Intake of WBE induced a shift from urinary to faecal 15N excretion, indicating a stimulation of colonic bacterial activity and/or growth. Microbial analysis revealed a selective stimulation of Bifidobacterium adolescentis. In addition, WBE altered the colonic fermentation pattern and significantly reduced colonic protein fermentation compared with the run-in period. However, faecal water cytotoxicity and genotoxicity were not affected. Although intake of WBE clearly affected colonic fermentation and changed the composition of the microbiota, these changes were not associated with the changes in the markers of CRC risk.
Collapse
Affiliation(s)
- Karen Windey
- Translational Research Center for Gastrointestinal Disorders (TARGID),O&N 1, Box 701, Herestraat 49,3000Leuven,Belgium
| | - Vicky De Preter
- Translational Research Center for Gastrointestinal Disorders (TARGID),O&N 1, Box 701, Herestraat 49,3000Leuven,Belgium
| | - Geert Huys
- Laboratory of Microbiology & BCCM/LMG Bacteria Collection, Universiteit Gent,Gent,Belgium
| | | | - Jan A Delcour
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven,Leuven,Belgium
| | - Thierry Louat
- Interface Valorisation Platform (IVAP), KU Leuven,Leuven,Belgium
| | - Jean Herman
- Interface Valorisation Platform (IVAP), KU Leuven,Leuven,Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders (TARGID),O&N 1, Box 701, Herestraat 49,3000Leuven,Belgium
| |
Collapse
|
24
|
Windey K, François I, Broekaert W, De Preter V, Delcour JA, Louat T, Herman J, Verbeke K. High dose of prebiotics reduces fecal water cytotoxicity in healthy subjects. Mol Nutr Food Res 2014; 58:2206-18. [PMID: 25164793 DOI: 10.1002/mnfr.201400298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/18/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
Abstract
SCOPE In vitro and animal studies have shown differential colonic fermentation of structurally different prebiotics. We evaluated the impact of two structurally different prebiotics (wheat bran extract (WBE, containing arabinoxylan-oligosaccharides) and oligofructose) on colonic fermentation and markers of bowel health in healthy volunteers. METHODS AND RESULTS Nineteen healthy subjects completed a double-blind, cross-over randomized controlled trial. Interventions with WBE, oligofructose or placebo for 2 wk (week 1: 15 g/day; week 2: 30 g/day) were separated by 2-wk wash-out periods. At the end of each study period, colonic fermentation was characterized through a metabolomics approach. Fecal water genotoxicity and cytotoxicity were determined using the comet and WST-1 assay, respectively, as parameters of gut health. Cluster analysis revealed differences in effects of WBE and oligofructose on colonic fermentation. WBE, but not oligofructose, reduced fecal p-cresol (p = 0.009) and isovaleric acid concentrations (p = 0.022), markers of protein fermentation. Fecal water cytotoxicity was significantly lower after intake of WBE (p = 0.015). Both WBE- and oligofructose-intake tended to reduce fecal water genotoxicity compared to placebo (WBE: p = 0.060; oligofructose: p = 0.057). Changes in fermentation were not related to changes in fecal water toxicity. CONCLUSION Structurally different prebiotics affect colonic fermentation and gut health in a different way.
Collapse
Affiliation(s)
- Karen Windey
- Translational Research Center for Gastrointestinal Disorders (TARGID), KULeuven, Leuven, Belgium; Leuven Food Science and Nutrition Research Centre (LFoRCe), KULeuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tsuei J, Chau T, Mills D, Wan YJY. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Exp Biol Med (Maywood) 2014; 239:1489-504. [PMID: 24951470 DOI: 10.1177/1535370214538743] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Because of increasingly widespread sedentary lifestyles and diets high in fat and sugar, the global diabetes and obesity epidemic continues to grow unabated. A substantial body of evidence has been accumulated which associates diabetes and obesity to dramatically higher risk of cancer development, particularly in the liver and gastrointestinal tract. Additionally, diabetic and obese individuals have been shown to suffer from dysregulation of bile acid (BA) homeostasis and dysbiosis of the intestinal microbiome. Abnormally elevated levels of cytotoxic secondary BAs and a pro-inflammatory shift in gut microbial profile have individually been linked to numerous enterohepatic diseases including cancer. However, recent findings have implicated a detrimental interplay between BA dysregulation and intestinal dysbiosis that promotes carcinogenesis along the gut-liver axis. This review seeks to examine the currently investigated interactions between the regulation of BA metabolism and activity of the intestinal microbiota and how these interactions can drive cancer formation in the context of diabesity. The precarcinogenic effects of BA dysregulation and gut dysbiosis including excessive inflammation, heightened oxidative DNA damage, and increased cell proliferation are discussed. Furthermore, by focusing on the mediatory roles of BA nuclear receptor farnesoid x receptor, ileal transporter apical sodium dependent BA transporter, and G-coupled protein receptor TGR5, this review attempts to connect BA dysregulation, gut dysbiosis, and enterohepatic carcinogenesis at a mechanistic level. A better understanding of the intricate interplay between BA homeostasis and gut microbiome can yield novel avenues to combat the impending rise in diabesity-related cancers.
Collapse
Affiliation(s)
- Jessica Tsuei
- Department of Pathology and Laboratory Medicine, University of California at Davis Medical Center, Sacramento, CA 95831, USA
| | - Thinh Chau
- Department of Pathology and Laboratory Medicine, University of California at Davis Medical Center, Sacramento, CA 95831, USA
| | - David Mills
- Department of Food Science and Technology, Department of Viticulture and Enology, Foods for Health Institute, University of California, Davis, CA 95616, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California at Davis Medical Center, Sacramento, CA 95831, USA
| |
Collapse
|
26
|
Zhang C, Chen JD, Yang FQ. Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydr Polym 2014; 104:175-81. [DOI: 10.1016/j.carbpol.2013.12.081] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/21/2013] [Accepted: 12/29/2013] [Indexed: 01/05/2023]
|
27
|
The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. PLoS One 2014; 9:e83644. [PMID: 24454707 PMCID: PMC3891650 DOI: 10.1371/journal.pone.0083644] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/06/2013] [Indexed: 01/10/2023] Open
Abstract
CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin) in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1) with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the interpretation that the influence of dietary fibre on CPT-11 toxicity is partially mediated by an increased cecal production of butyrate.
Collapse
|
28
|
|
29
|
Chiu YT, Stewart M. Comparison of Konjac Glucomannan Digestibility and Fermentability with Other Dietary Fibers In Vitro. J Med Food 2012; 15:120-5. [DOI: 10.1089/jmf.2011.0084] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yu-Ting Chiu
- Department of Human Nutrition, Food, and Animal Science, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Maria Stewart
- Department of Human Nutrition, Food, and Animal Science, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
30
|
Wu WT, Chen HL. Konjac glucomannan and inulin systematically modulate antioxidant defense in rats fed a high-fat fiber-free diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9194-9200. [PMID: 21800874 DOI: 10.1021/jf202060p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of this study was to investigate the effects of konjac glucomannan (KGM) and inulin on the balance between pro-oxidative status and antioxidative defense systems in the colon, liver, and plasma of rats fed a high-fat fiber-free diet. Male Sprague-Dawley rats (n = 8 animals per group) were fed a high-fat (25% corn oil, w/w) fiber-free diet or that supplemented with KGM or inulin fiber (5%, w/w) for 4 weeks. The index of pro-oxidative status, malondialdehyde (MDA), and blood lymphocyte DNA damage; the antioxidative defense, that is, antioxidant enzymes (glutathione peroxidase, superoxide dismutase, catalase) in the colonic mucosa and liver; and the plasma antioxidant levels were determined. The fermentation of fiber was shown in fecal short-chain fatty acids. Incorporation of KGM and inulin into the high-fat fiber-free diet beneficially reduced the MDA levels of the colon and liver and DNA damage in blood lymphocytes. On the other hand, both fibers enhanced the antioxidative defense systems by up-regulating the gene expressions of glutathione peroxidase and catalase in the colonic mucosa and of superoxide dismutase and catalase in the liver. Furthermore, KGM and inulin promoted antioxidative status in the blood by elevating the α-tocopherol level. KGM and inulin were well-fermented in rats and increased the concentration and daily excretion of fecal short-chain fatty acids, especially acetate and butyrate. These results suggest that in vivo utilization of KGM and inulin stimulated both local and systemic antioxidative defense systems in rats.
Collapse
Affiliation(s)
- Wen-Tzu Wu
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | | |
Collapse
|