1
|
Sherzai AZ, Sherzai AN, Sherzai D. A Systematic Review of Omega-3 Consumption and Neuroprotective Cognitive Outcomes. Am J Lifestyle Med 2023; 17:560-588. [PMID: 37426732 PMCID: PMC10328206 DOI: 10.1177/15598276221117102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Context While a great deal of interest has been accorded to the cognitive effects of n-3 long-chain polyunsaturated fatty acids (LC PUFAs), there is a need for systematic review data that assess this outcome across the lifespan, accounting for population differences and highlighting methodological limitations of extant studies. Objective This systematic review addresses the effects of n-3s on human cognition and provides an overview on the current state of research and recommendations for future efforts. Data Sources Based on a thorough review of highly powered articles from PubMed (MEDLINE), Web of Science, and ProQuest Central, the authors evaluated articles published between 2000 and 2020 assessing LC PUFA status on cognition as a primary outcome measure. Using the PRISMA guidelines, the researchers' primary aim was to provide a comprehensive overview of the articles. Conclusions The results indicate inconsistent effects of intervention, with benefits for specific groups on specific outcomes. Although results were rarely definitive across cognitive domains, and the majority of studies indicated the presence of a possible threshold effect in which LC PUFA needs were already being met, and supplementation did not have an additional effect, there is evidence for trends towards benefit in cognitive functions, in those experiencing early cognitive decline.
Collapse
Affiliation(s)
- Ayesha Z. Sherzai
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, USA (DS, AZS); and California State University, Los Angeles, CA, USA (ANS)
| | - Alexander N. Sherzai
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, USA (DS, AZS); and California State University, Los Angeles, CA, USA (ANS)
| | - Dean Sherzai
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, USA (DS, AZS); and California State University, Los Angeles, CA, USA (ANS)
| |
Collapse
|
2
|
Andriambelo B, Stiffel M, Roke K, Plourde M. New perspectives on randomized controlled trials with omega-3 fatty acid supplements and cognition: A scoping review. Ageing Res Rev 2023; 85:101835. [PMID: 36603691 DOI: 10.1016/j.arr.2022.101835] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Long chain polyunsaturated omega-3 fatty acids (n-3 FA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to be important components in a healthy diet and contribute to healthy functioning of the heart and the brain, among other organs. Although there are epidemiological studies on the strong relationship between fish or n-3 FA consumption and lower risk of cognitive decline, results from randomized controlled trials (RCTs) are less consistent. Here, we performed a scoping review on RCTs with n-3 FA supplementation where cognition was evaluated. Seventy-eight RCTs published before April 2022 were included in this review. Among these RCTs, 43.6% reported a positive cognitive outcome after the consumption of n-3 FA compared to the placebo. However, there was a large diversity of populations studied (age ranges and health status), wide range of doses of EPA + DHA supplemented (79 mg/day - 5200 mg/day) and a multitude of tests evaluating cognition, mainly diagnostic tests, that were used to assess cognitive scores and overall cognitive status. RCTs were thereafter categorized into non-cognitively impaired middle-aged adults (n = 24), non-cognitively impaired older adults (n = 24), adults with subjective memory complaints (n = 14), adults with mild cognitive impairments (MCI, n = 9) and people with diagnosed dementia or other cognitive changes (n = 7). Among these categories, 66.7% of RCTs conducted with MCI adults reported a positive cognitive outcome when supplemented with n-3 FA vs. the placebo. Therefore, this scoping review provides rationale and questions to a) strengthen the design of future RCTs with n-3 FA for cognitive outcomes, and b) generate more informative data to support clinicians in their practice in assessing cognition before and after a nutritional intervention.
Collapse
Affiliation(s)
- B Andriambelo
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - M Stiffel
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - K Roke
- GOED- Global Organization for EPA and DHA Omega-3, Salt Lake City, UT, United States
| | - M Plourde
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada.
| |
Collapse
|
3
|
Rovio SP, Salo H, Niinikoski H, Lagström H, Salo P, Viikari JSA, Rönnemaa T, Jula A, Raitakari OT, Pahkala K. Dietary Intervention in Infancy and Cognitive Function in Young Adulthood: The Special Turku Coronary Risk Factor Intervention Project. J Pediatr 2022; 246:184-190.e1. [PMID: 35367245 DOI: 10.1016/j.jpeds.2022.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Consumption of saturated fatty acids (SAFAs), polyunsaturated fatty acids (PUFAs), cholesterol, and fiber have been linked with cognitive function in adults. We evaluated these associations from childhood by leveraging data from the Special Turku Coronary Risk Factor Intervention Project (STRIP). STUDY DESIGN STRIP recruited children aged 5 months and randomly assigned them into intervention/control groups. The intervention introduced a heart-healthy diet, characterized mainly by low consumption of SAFAs and cholesterol, through counseling at least biannually between age 7 months and 20 years. Diet was assessed repeatedly using food diaries. Six years after the end of the intervention phase, at age 26 years, the participants were invited to the first postintervention follow-up, which included cognitive testing that covered learning and memory, verbal memory, short-term working memory, reaction time, information processing, and cognitive flexibility and inhibitory control. We studied the associations of the STRIP intervention and the consumptions of SAFAs, PUFAs, cholesterol, and fiber within these cognitive domains. RESULTS Participants in the STRIP intervention group had better cognitive flexibility and inhibitory control and were better able to manage conflicting information and ignore task-irrelevant information (0.18 SD higher in the intervention group, adjusted for sex and socioeconomic status). No associations were observed with the dietary components studied. CONCLUSIONS The infancy-onset STRIP intervention, which promoted a heart-healthy diet, was favorably associated with cognitive flexibility and inhibitory control at age 26 years. No associations were found for the intervention targets studied, indicating that these specific dietary components did not underlie the observed effect of the intervention.
Collapse
Affiliation(s)
- Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Henri Salo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Harri Niinikoski
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Pediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| | - Pia Salo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma S A Viikari
- Department of Medicine, University of Turku, Turku, Finland; Division of Medicine, Turku University Hospital, Turku, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland; Division of Medicine, Turku University Hospital, Turku, Finland
| | - Antti Jula
- Department of Chronic Disease Prevention, Institute for Health and Welfare, Turku, Finland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Paavo Nurmi Center and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Crawford C, Boyd C, Deuster PA. Dietary Supplement Ingredients for Optimizing Cognitive Performance Among Healthy Adults: A Systematic Review. J Altern Complement Med 2021; 27:940-958. [PMID: 34370563 DOI: 10.1089/acm.2021.0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Dietary supplements promoted for brain health and enhanced cognitive performance are widely available. Claims made for these products are directed not only to the elderly wishing to prevent or mitigate cognitive decline, but also young healthy populations looking to boost their cognitive performance. It is unclear whether these claims made on product bottles and through advertising match the science. Objectives: To explore the evidence on the efficacy and safety of single dietary supplement ingredients frequently marketed with claims of enhanced cognitive performance among healthy adults. Design: A systematic review. Results: Nine of 54 dietary supplement ingredients identified through a scoping review met the eligibility criteria with at least 3 published studies identified per ingredient, yielding 69 unique publications. Ingredients evaluated included Bacopa monnieri, choline, creatine, omega-3 fatty acids, Ginkgo biloba, ginseng, Rhodiola rosea, tyrosine, and valerian root, all in supplement form and compared with a placebo, at various serving sizes and durations of use. Conclusions: The low level of certainty in the state of the science, coupled with not always knowing what is in a dietary supplement product, make weighing risks and benefits difficult; these data hinder the ability to develop recommendations about using such ingredients for consumers interested in boosting their cognitive performance. Whereas certain trends regarding promising serving sizes or duration for use, are pointed to in this synthesis, when combined, studies are inconsistent and imprecise, and many are methodologically flawed. Potential solutions to address research gaps are offered, for future research next steps, which is needed to strengthen the evidence and inform decisions.
Collapse
Affiliation(s)
- Cindy Crawford
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Courtney Boyd
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
5
|
van der Wurff IS, Meyer BJ, de Groot RH. Effect of Omega-3 Long Chain Polyunsaturated Fatty Acids (n-3 LCPUFA) Supplementation on Cognition in Children and Adolescents: A Systematic Literature Review with a Focus on n-3 LCPUFA Blood Values and Dose of DHA and EPA. Nutrients 2020; 12:E3115. [PMID: 33053843 PMCID: PMC7599612 DOI: 10.3390/nu12103115] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) supplementation in the cardiovascular field is effective if a certain Omega-3 index (O3I) is achieved or the daily n-3 LCPUFA dose is high enough. Whether this applies to studies on cognition in children and adolescents is unclear. The aims of the current review were to investigate whether: (1) a certain O3I level and (2) a minimum daily n-3 LCPUFA dose are required to improve cognition in 4-25 year olds. Web of Science and PubMed were searched. Inclusion criteria: placebo controlled randomized controlled trial; participants 4-25 years; supplementation with docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA); assessing cognition; in English and ≥10 participants per treatment arm. Thirty-three studies were included, 21 in typically developing participants, 12 in those with a disorder. A positive effect on cognitive measures was more likely in studies with an increase in O3I to >6%. Half of the studies in typically developing children with daily supplementation dose ≥450 mg DHA + EPA showed improved cognition. For children with a disorder no cut-off value was found. In conclusion, daily supplementation of ≥450 mg DHA + EPA per day and an increase in the O3I to >6% makes it more likely to show efficacy on cognition in children and adolescents.
Collapse
Affiliation(s)
- Inge S.M. van der Wurff
- Conditions for Lifelong Learning, Faculty of Educational Sciences, Open University of the Netherlands, 6419 Heerlen, The Netherlands;
| | - Barbara J. Meyer
- School of Medicine, Lipid Research Centre, Molecular Horizons, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Renate H.M. de Groot
- Conditions for Lifelong Learning, Faculty of Educational Sciences, Open University of the Netherlands, 6419 Heerlen, The Netherlands;
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands
| |
Collapse
|
6
|
Cook RL, Parker HM, Donges CE, O'Dwyer NJ, Cheng HL, Steinbeck KS, Cox EP, Franklin JL, Garg ML, O'Connor HT. Omega-3 polyunsaturated fatty acids status and cognitive function in young women. Lipids Health Dis 2019; 18:194. [PMID: 31694658 PMCID: PMC6836340 DOI: 10.1186/s12944-019-1143-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background Research indicates that low omega-3 polyunsaturated fatty acid (n-3 PUFA) may be associated with decreased cognitive function. This study examined the association between n-3 PUFA status and cognitive function in young Australian women. Methods This was a secondary outcome analysis of a cross-sectional study that recruited 300 healthy women (18–35 y) of normal weight (NW: BMI 18.5–24.9 kg/m2) or obese weight (OB: BMI ≥30.0 kg/m2). Participants completed a computer-based cognition testing battery (IntegNeuro™) evaluating the domains of impulsivity, attention, information processing, memory and executive function. The Omega-3 Index (O3I) was used to determine n-3 PUFA status (percentage of EPA (20:5n-3) plus DHA (22:6n3) in the red cell membrane) and the participants were divided into O3I tertile groups: T1 < 5.47%, T2 = 5.47–6.75%, T3 > 6.75%. Potential confounding factors of BMI, inflammatory status (C-reactive Protein), physical activity (total MET-min/wk), alpha1-acid glycoprotein, serum ferritin and hemoglobin, were assessed. Data reported as z-scores (mean ± SD), analyses via ANOVA and ANCOVA. Results Two hundred ninety-nine women (26.9 ± 5.4 y) completed the study (O3I data, n = 288). The ANOVA showed no overall group differences but a significant group × cognition domain interaction (p < 0.01). Post hoc tests showed that participants in the low O3I tertile group scored significantly lower on attention than the middle group (p = 0.01; ES = 0.45 [0.15–0.74]), while the difference with the high group was borderline significant (p = 0.052; ES = 0.38 [0.09–0.68]). After confounder adjustments, the low group had lower attention scores than both the middle (p = 0.01) and high (p = 0.048) groups. These findings were supported by univariate analyses which found significant group differences for the attention domain only (p = 0.004). Conclusions Cognitive function in the attention domain was lower in women with lower O3I, but still within normal range. This reduced but normal level of cognition potentially provides a lower baseline from which cognition would decline with age. Further investigation of individuals with low n-3 PUFA status is warranted.
Collapse
Affiliation(s)
- Rebecca L Cook
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia
| | - Helen M Parker
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Cheyne E Donges
- School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW, Australia
| | - Nicholas J O'Dwyer
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia.,School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW, Australia
| | - Hoi Lun Cheng
- Academic Department of Adolescent Medicine, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW, Australia
| | - Katharine S Steinbeck
- Academic Department of Adolescent Medicine, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW, Australia
| | - Eka P Cox
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia
| | - Janet L Franklin
- Metabolism and Obesity Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Helen T O'Connor
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
7
|
Chianese R, Coccurello R, Viggiano A, Scafuro M, Fiore M, Coppola G, Operto FF, Fasano S, Laye S, Pierantoni R, Meccariello R. Impact of Dietary Fats on Brain Functions. Curr Neuropharmacol 2018; 16:1059-1085. [PMID: 29046155 PMCID: PMC6120115 DOI: 10.2174/1570159x15666171017102547] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adequate dietary intake and nutritional status have important effects on brain functions and on brain health. Energy intake and specific nutrients excess or deficiency from diet differently affect cognitive processes, emotions, behaviour, neuroendocrine functions and synaptic plasticity with possible protective or detrimental effects on neuronal physiology. Lipids, in particular, play structural and functional roles in neurons. Here the importance of dietary fats and the need to understand the brain mechanisms activated by peripheral and central metabolic sensors. Thus, the manipulation of lifestyle factors such as dietary interventions may represent a successful therapeutic approach to maintain and preserve brain health along lifespan. METHODS This review aims at summarizing the impact of dietary fats on brain functions. RESULTS Starting from fat consumption, nutrient sensing and food-related reward, the impact of gut-brain communications will be discussed in brain health and disease. A specific focus will be on the impact of fats on the molecular pathways within the hypothalamus involved in the control of reproduction via the expression and the release of Gonadotropin-Releasing Hormone. Lastly, the effects of specific lipid classes such as polyunsaturated fatty acids and of the "fattest" of all diets, commonly known as "ketogenic diets", on brain functions will also be discussed. CONCLUSION Despite the knowledge of the molecular mechanisms is still a work in progress, the clinical relevance of the manipulation of dietary fats is well acknowledged and such manipulations are in fact currently in use for the treatment of brain diseases.
Collapse
Affiliation(s)
- Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy
| | - Marika Scafuro
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Giangennaro Coppola
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.,UO Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Salerno, Italy
| | | | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sophie Laye
- INRA, Bordeaux University, Nutrition and Integrative Neurobiology, UMR, Bordeaux, France
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
8
|
Teo L, Crawford C, Yehuda R, Jaghab D, Bingham JJ, Chittum HK, Gallon MD, O’Connell ML, Arzola SM, Berry K. Omega-3 polyunsaturated fatty acids to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field. Nutr Rev 2017; 75:36-48. [DOI: 10.1093/nutrit/nux008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
9
|
Yassine HN, Braskie MN, Mack WJ, Castor KJ, Fonteh AN, Schneider LS, Harrington MG, Chui HC. Association of Docosahexaenoic Acid Supplementation With Alzheimer Disease Stage in Apolipoprotein E ε4 Carriers: A Review. JAMA Neurol 2017; 74:339-347. [PMID: 28114437 DOI: 10.1001/jamaneurol.2016.4899] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Importance The apolipoprotein E ε4 (APOE4) allele identifies a unique population that is at significant risk for developing Alzheimer disease (AD). Docosahexaenoic acid (DHA) is an essential ω-3 fatty acid that is critical to the formation of neuronal synapses and membrane fluidity. Observational studies have associated ω-3 intake, including DHA, with a reduced risk for incident AD. In contrast, randomized clinical trials of ω-3 fatty acids have yielded mixed and inconsistent results. Interactions among DHA, APOE genotype, and stage of AD pathologic changes may explain the mixed results of DHA supplementation reported in the literature. Observations Although randomized clinical trials of ω-3 in symptomatic AD have had negative findings, several observational and clinical trials of ω-3 in the predementia stage of AD suggest that ω-3 supplementation may slow early memory decline in APOE4 carriers. Several mechanisms by which the APOE4 allele could alter the delivery of DHA to the brain may be amenable to DHA supplementation in predementia stages of AD. Evidence of accelerated DHA catabolism (eg, activation of phospholipases and oxidation pathways) could explain the lack of efficacy of ω-3 supplementation in AD dementia. The association of cognitive benefit with DHA supplementation in predementia but not AD dementia suggests that early ω-3 supplementation may reduce the risk for or delay the onset of AD symptoms in APOE4 carriers. Recent advances in brain imaging may help to identify the optimal timing for future DHA clinical trials. Conclusions and Relevance High-dose DHA supplementation in APOE4 carriers before the onset of AD dementia can be a promising approach to decrease the incidence of AD. Given the safety profile, availability, and affordability of DHA supplements, refining an ω-3 intervention in APOE4 carriers is warranted.
Collapse
Affiliation(s)
- Hussein N Yassine
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Katherine J Castor
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, California
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, California
| | - Lon S Schneider
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles6Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Michael G Harrington
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, California
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
10
|
McCabe D, Lisy K, Lockwood C, Colbeck M. The impact of essential fatty acid, B vitamins, vitamin C, magnesium and zinc supplementation on stress levels in women: a systematic review. JBI DATABASE OF SYSTEMATIC REVIEWS AND IMPLEMENTATION REPORTS 2017; 15:402-453. [PMID: 28178022 DOI: 10.11124/jbisrir-2016-002965] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Women juggling multiple roles in our complex society are increasingly experiencing psychological stress. Dietary supplementation to manage stress is widespread despite limited supporting evidence. A systematic review of the available literature was undertaken to investigate the efficacy of specific dietary supplements in managing female stress and anxiety. OBJECTIVES To identify the impact of essential fatty acids (EFAs), B vitamins, vitamin C, magnesium and/or zinc, consumed as dietary supplements to the daily diet, on female stress and anxiety levels. INCLUSION CRITERIA TYPES OF PARTICIPANTS Women aged 18 years and over, who had participated in a study where stress and/or anxiety were assessed. TYPES OF INTERVENTION(S) Dietary supplementation with EFAs, B vitamins, vitamin C, magnesium and/or zinc. TYPES OF COMPARATORS Supplements, either alone or combined, were compared with either no intervention or placebo. TYPES OF STUDIES Randomized controlled and pseudo-randomized trials were included. OUTCOMES Stress and anxiety were assessed using self-report or physiological outcome measures. SEARCH STRATEGY Published and unpublished studies were sought via MEDLINE (via PubMed), Embase, Scopus, CINAHL, PsycINFO, PsycARTICLES, MedNar, National Institute of Mental Health and the International Association for Women's Mental Health. METHODOLOGICAL QUALITY Methodological quality was evaluated using standardized critical appraisal instruments from the Joanna Briggs Institute. DATA EXTRACTION Data were extracted using the standardized data extraction instruments from the Joanna Briggs Institute. DATA SYNTHESIS Due to heterogeneity of the included studies, narrative synthesis was performed. RESULTS Fourteen studies were included in this review. Essential fatty acids were effective in reducing perceived stress and salivary cortisol levels during pregnancy and anxiety in premenstrual women, and anxiety during menopause in the absence of depression, but were ineffective when depression was disregarded. Disregarding the hormonal phase, EFAs were ineffective in reducing stress or anxiety in four groups of women. Combined magnesium and vitamin B6 supplementation reduced premenstrual anxiety but had no effect when used in isolation and did not affect stress in women suffering from dysmenorrhea when combined or used in isolation. Older women experienced anxiety reduction using vitamin B6, but not folate or vitamin B12. High-dose sustained-release vitamin C was effective in reducing anxiety and blood pressure in response to stress. CONCLUSION The current review suggests that EFAs may be effective in reducing prenatal stress and salivary cortisol and may reduce anxiety during premenstrual syndrome and during menopause in the absence of depression. Magnesium and vitamin B6 may be effective in combination in reducing premenstrual stress, and vitamin B6 alone may reduce anxiety effectively in older women. High-dose sustained-release vitamin C may reduce anxiety and mitigate increased blood pressure in response to stress. IMPLICATIONS FOR PRACTICE Essential fatty acids may be effective in reducing prenatal stress and salivary cortisol levels, and premenstrual or menopausal anxiety in the absence of depression. Combining magnesium and vitamin B6 may reduce premenstrual anxiety and vitamin B6 may reduce anxiety in older women. High-dose sustained-release vitamin C may reduce anxiety and mitigate increased blood pressure in response to stress. IMPLICATIONS FOR RESEARCH Investigating supplementation in longer term studies is warranted and should include compliance testing, the use of inert substances as controls and reliable outcome measures.
Collapse
Affiliation(s)
- Delia McCabe
- The Joanna Briggs Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | | | | | | |
Collapse
|
11
|
Radcliffe J, Thomas J, Bramley A, Kouris-Blazos A, Radford B, Scholey A, Pipingas A, Thomas C, Itsiopoulos C. Controversies in omega-3 efficacy and novel concepts for application. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016. [DOI: 10.1016/j.jnim.2016.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
DHA and improvement of memory function: evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Cooper RE, Tye C, Kuntsi J, Vassos E, Asherson P. Omega-3 polyunsaturated fatty acid supplementation and cognition: A systematic review and meta-analysis. J Psychopharmacol 2015; 29:753-63. [PMID: 26040902 DOI: 10.1177/0269881115587958] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are promoted as cognitive enhancers with consumption recommended in the general population and those with neurocognitive deficits such as attention deficit hyperactivity disorder (ADHD). However, evidence from randomised placebo-controlled trials is inconclusive. AIMS This study aimed to conduct a systematic review and meta-analysis examining the effect of n-3 PUFA supplementation on cognition in healthy populations and those with ADHD and related disorders (RDs). METHODS Databases were searched for randomised controlled trials (RCTs) in adults and school-aged children (who were healthy and typically developing (TD) or had ADHD or a related-neurodevelopmental disorder (ADHD+RD) which assessed the effects of n-3 PUFA on cognition. RESULTS In the 24 included studies n-3 PUFA supplementation, in the whole sample and the TD and ADHD+RD subgroup, did not show improvements in any of the cognitive performance measures. In those with low n-3 PUFA status, supplementation improved short-term memory. CONCLUSIONS There is marginal evidence that n-3 PUFA supplementation effects cognition in those who are n-3 PUFA deficient. However, there is no evidence of an effect in the general population or those with neurodevelopmental disorders. This has important implications given the widespread advertisement and consumption of n-3 PUFA; claims of cognitive benefit should be narrowed.
Collapse
Affiliation(s)
- Ruth E Cooper
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London London, UK
| | - Charlotte Tye
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London London, UK
| | - Jonna Kuntsi
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London London, UK
| | - Evangelos Vassos
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London London, UK
| | - Philip Asherson
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London London, UK
| |
Collapse
|
14
|
Docosahexaenoic acid and adult memory: a systematic review and meta-analysis. PLoS One 2015; 10:e0120391. [PMID: 25786262 PMCID: PMC4364972 DOI: 10.1371/journal.pone.0120391] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/02/2015] [Indexed: 11/24/2022] Open
Abstract
Introduction Subjective memory complaints are common with aging. Docosahexaenoic acid (DHA; 22:6 n-3) is a long-chain polyunsaturated fatty acid (LCPUFA) and an integral part of neural membrane phospholipids that impacts brain structure and function. Past research demonstrates a positive association between DHA plasma status/dietary intake and cognitive function. Objectives The current meta-analysis was designed to determine the effect of DHA intake, alone or combined with eicosapentaenoic acid (EPA; 20:5 n-3), on specific memory domains: episodic, working, and semantic in healthy adults aged 18 years and older. A secondary objective was to systematically review/summarize the related observational epidemiologic literature. Methods A systematic literature search of clinical trials and observational studies that examined the relationship between n-3 LCPUFA on memory outcomes in healthy adults was conducted in Ovid MEDLINE and EMBASE databases. Studies of subjects free of neurologic disease at baseline, with or without mild memory complaints (MMC), were included. Random effects meta-analyses were conducted to generate weighted group mean differences, standardized weighted group mean differences (Hedge’s g), z-scores, and p-values for heterogeneity comparing DHA/EPA to a placebo. A priori sub-group analyses were conducted to evaluate the effect of age at enrollment, dose level, and memory type tested. Results Episodic memory outcomes of adults with MMC were significantly (P<.004) improved with DHA/EPA supplementation. Regardless of cognitive status at baseline, > 1 g/day DHA/EPA improved episodic memory (P<.04). Semantic and working memory changes from baseline were significant with DHA but no between group differences were detected. Observational studies support a beneficial association between intake/blood levels of DHA/EPA and memory function in older adults. Conclusion DHA, alone or combined with EPA, contributes to improved memory function in older adults with mild memory complaints.
Collapse
|
15
|
Abstract
Declarative Memory consists of memory for events (episodic memory) and facts (semantic memory). Methods to test declarative memory are key in investigating effects of potential cognition-enhancing substances--medicinal drugs or nutrients. A number of cognitive performance tests assessing declarative episodic memory tapping verbal learning, logical memory, pattern recognition memory, and paired associates learning are described. These tests have been used as outcome variables in 34 studies in humans that have been described in the literature in the past 10 years. Also, the use of episodic tests in animal research is discussed also in relation to the drug effects in these tasks. The results show that nutritional supplementation of polyunsaturated fatty acids has been investigated most abundantly and, in a number of cases, but not all, show indications of positive effects on declarative memory, more so in elderly than in young subjects. Studies investigating effects of registered anti-Alzheimer drugs, cholinesterase inhibitors in mild cognitive impairment, show positive and negative effects on declarative memory. Studies mainly carried out in healthy volunteers investigating the effects of acute dopamine stimulation indicate enhanced memory consolidation as manifested specifically by better delayed recall, especially at time points long after learning and more so when drug is administered after learning and if word lists are longer. The animal studies reveal a different picture with respect to the effects of different drugs on memory performance. This suggests that at least for episodic memory tasks, the translational value is rather poor. For the human studies, detailed parameters of the compositions of word lists for declarative memory tests are discussed and it is concluded that tailored adaptations of tests to fit the hypothesis under study, rather than "off-the-shelf" use of existing tests, are recommended.
Collapse
Affiliation(s)
- Wim J Riedel
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Universiteitssingel 40, 6229ER, Maastricht, The Netherlands,
| | | |
Collapse
|
16
|
Salem N, Vandal M, Calon F. The benefit of docosahexaenoic acid for the adult brain in aging and dementia. Prostaglandins Leukot Essent Fatty Acids 2015; 92:15-22. [PMID: 25457546 DOI: 10.1016/j.plefa.2014.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/08/2014] [Indexed: 01/08/2023]
Abstract
A brief overview of the evidence for omega-3 fatty acids and, in particular, of docosahexaenoic acid (DHA), involvement in cognition and in dementia is given. Two studies are presented in this regard in which the key intervention is a DHA supplement. The fist, the MIDAS Study demonstrated that DHA can be of benefit for episodic memory in healthy adults with a mild memory complaint. The second, the ADCS AD trial found no benefit of DHA in the primary outcomes but found an intriguing benefit for cognitive score in ApoE4 negative allele patients. This leads to a consideration of the mechanisms of action and role of ApoE and its modulation by DHA. Given the fundamental role of ApoE in cellular lipid transport and metabolism in the brain and periphery, it is no surprise that ApoE affects n-3 PUFA brain function as well. It remains to be seen to what extent ApoE4 deleterious effect in AD is associated with n-3 PUFA-related cellular mechanisms in the brain and, more specifically, whether ApoE4 directly impairs the transport of DHA into the brain, as has been suggested.
Collapse
Affiliation(s)
- Norman Salem
- Nutritional Lipids, DSM Nutritional Products, Columbia, MD, USA.
| | - Milene Vandal
- Center de recherche du center Hospitalier de l׳Université Laval (CHUL), Québec, QC, Canada; Faculté de pharmacie, Université Laval, Quebec, Canada; Institut des Nutraceutiques et des Aliments Fonctionnels, Universite Laval, Quebec, Canada
| | - Frederic Calon
- Center de recherche du center Hospitalier de l׳Université Laval (CHUL), Québec, QC, Canada; Faculté de pharmacie, Université Laval, Quebec, Canada; Institut des Nutraceutiques et des Aliments Fonctionnels, Universite Laval, Quebec, Canada
| |
Collapse
|
17
|
An evidence-based method for examining and reporting cognitive processes in nutrition research. Nutr Res Rev 2014; 27:232-41. [PMID: 25268900 DOI: 10.1017/s0954422414000158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cognitive outcomes are frequently implemented as endpoints in nutrition research. To reduce the number of statistical comparisons it is commonplace for nutrition researchers to combine cognitive test results into a smaller number of broad cognitive abilities. However, there is a clear lack of understanding and consensus as to how best execute this practice. The present paper reviews contemporary models of human cognition and proposes a standardised, evidence-based method for grouping cognitive test data into broader cognitive abilities. Both Carroll's model of human cognitive ability and the Cattell-Horn-Carroll (CHC) model of intelligence provide empirically based taxonomies of human cognition. These models provide a cognitive 'map' that can be used to guide the handling and analysis of cognitive outcomes in nutrition research. Making use of a valid cognitive nomenclature can provide the field of clinical nutrition with a common cognitive language enabling efficient comparisons of cognitive outcomes across studies. This will make it easier for researchers, policymakers and readers to interpret and compare cognitive outcomes for different interventions. Using an empirically derived cognitive nomenclature to guide the creation of cognitive composite scores will ensure that cognitive endpoints are theoretically valid and meaningful. This will increase the generalisability of trial results to the general population. The present review also discusses how the CHC model of cognition can also guide the synthesis of cognitive outcomes in systematic reviews and meta-analysis.
Collapse
|
18
|
Bauer I, Hughes M, Rowsell R, Cockerell R, Pipingas A, Crewther S, Crewther D. Omega-3 supplementation improves cognition and modifies brain activation in young adults. Hum Psychopharmacol 2014; 29:133-44. [PMID: 24470182 DOI: 10.1002/hup.2379] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 09/26/2013] [Accepted: 11/11/2013] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The current study aimed to investigate the effects of eicosapentaenoic acid (EPA)-rich and docosahexaenoic acid (DHA)-rich supplementations on cognitive performance and functional brain activation. DESIGN A double-blind, counterbalanced, crossover design, with a 30-day washout period between two supplementation periods (EPA-rich and DHA-rich) was employed. Functional magnetic resonance imaging scans were obtained during performance of Stroop and Spatial Working Memory tasks prior to supplementation and after each 30-day supplementation period. RESULTS Both supplementations resulted in reduced ratio of arachidonic acid to EPA levels. Following the EPA-rich supplementation, there was a reduction in functional activation in the left anterior cingulate cortex and an increase in activation in the right precentral gyrus coupled with a reduction in reaction times on the colour-word Stroop task. By contrast, the DHA-rich supplementation led to a significant increase in functional activation in the right precentral gyrus during the Stroop and Spatial Working Memory tasks, but there was no change in behavioural performance. CONCLUSIONS By extending the theory of neural efficiency to the within-subject neurocognitive effects of supplementation, we concluded that following the EPA-rich supplementation, participants' brains worked 'less hard' and achieved a better cognitive performance than prior to supplementation. Conversely, the increase in functional activation and lack of improvement in time or accuracy of cognitive performance following DHA-rich supplementation may indicate that DHA-rich supplementation is less effective than EPA-rich supplementation in enhancing neurocognitive functioning after a 30-day supplementation period in the same group of individuals.
Collapse
Affiliation(s)
- Isabelle Bauer
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Matthew Hughes
- Brain and Psychological Sciences Research Centre; Swinburne University of Technology; Hawthorn Australia
| | - Renee Rowsell
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Robyn Cockerell
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Sheila Crewther
- School of Psychological Sciences; La Trobe University; Bundoora Australia
| | - David Crewther
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| |
Collapse
|
19
|
Lin W, Wu FW, Yue L, Du QG, Tian L, Wang ZX. Combination of Urea Complexation and Molecular Distillation to Purify DHA and EPA from Sardine Oil Ethyl Esters. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-013-2402-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|