1
|
Hernández-Ruiz RG, Olivares-Ochoa XC, Salinas-Varela Y, Guajardo-Espinoza D, Roldán-Flores LG, Rivera-Leon EA, López-Quintero A. Phenolic Compounds and Anthocyanins in Legumes and Their Impact on Inflammation, Oxidative Stress, and Metabolism: Comprehensive Review. Molecules 2025; 30:174. [PMID: 39795230 PMCID: PMC11722078 DOI: 10.3390/molecules30010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammation, oxidative stress, and metabolic diseases are intricately linked in a complex, self-reinforcing relationship. Inflammation can induce oxidative stress, while oxidative stress can trigger inflammatory responses, creating a cycle that contributes to the development and progression of metabolic disorders; in addition, these effects can be observed at systemic and local scales. Both processes lead to cellular damage, mitochondrial dysfunction, and insulin resistance, particularly affecting adipose tissue, the liver, muscles, and the gastrointestinal tract. This results in impaired metabolic function and energy production, contributing to conditions such as type 2 diabetes, obesity, and metabolic syndrome. Legumes are a good source of phenolic compounds and anthocyanins that exert an antioxidant effect-they directly neutralize reactive oxygen species and free radicals, reducing oxidative stress. In vivo, in vitro, and clinical trial studies demonstrate that these compounds can modulate key cellular signaling pathways involved in inflammation and metabolism, improving insulin sensitivity and regulating lipid and glucose metabolism. They also exert anti-inflammatory effects by inhibiting proinflammatory enzymes and cytokines. Additionally, anthocyanins and phenolics may positively influence the gut microbiome, indirectly affecting metabolism and inflammation.
Collapse
Affiliation(s)
- Rocio Guadalupe Hernández-Ruiz
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | - Xochitl Citalli Olivares-Ochoa
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | - Yahatziri Salinas-Varela
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | | | | | - Edgar Alfonso Rivera-Leon
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico;
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos (CUAltos), UdeG, Tepatitlán de Morelos 47620, Jalisco, Mexico
| | - Andres López-Quintero
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico;
| |
Collapse
|
2
|
Bell RC, Zahradka P, Aliani M, Liang Y, Jarman M, MacKenzie M, Chan C, Ozga J, Proctor S, Wishart D, Taylor CG. A Comparison of Dry Bean and Pea Consumption on Serum Cholesterol: A Randomized Controlled Trial in Adults with Mild Hypercholesterolemia. J Nutr 2024; 154:3375-3387. [PMID: 39357673 PMCID: PMC11600120 DOI: 10.1016/j.tjnut.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Diets including pulses are associated with better cardiovascular profiles, including lipid, glycemia, and hemodynamics; however, evidence is lacking regarding the contributions of individual pulse varieties. OBJECTIVES This randomized, controlled trial examined the effects of beans or peas individually, relative to rice, on LDL-cholesterol levels (primary outcome) and other indices of cardiovascular disease risk (secondary outcomes) at 6 wk in adults with mild hypercholesterolemia. METHODS This randomized, controlled, single-blind, 3-arm parallel-group study was conducted in 2 Canadian cities (Edmonton, Alberta; Winnipeg, Manitoba). Participants (n = 60 per group) were randomly assigned to 6 wk of regular consumption of foods containing either 120 g (∼0.75 cups) of beans (mixture of black, great northern, navy, and pinto) or 120 g (∼0.75 cups) peas (mixture of yellow and green), or identical foods containing white, parboiled rice (control foods). LDL-cholesterol (primary outcome) and indices of lipid metabolism, glycemia, and hemodynamics (secondary outcomes) were assessed. RESULTS Mean LDL-cholesterol was lower in the bean group (-0.21; 95% CI: -0.39, -0.03) but not the pea group (-0.11; 95% CI: -0.29, 0.07) relative to rice after 6 wk. Non-HDL-cholesterol (-0.20; 95% CI: -0.40, -0.002) and total cholesterol (-0.28; 95% CI: -0.49, -0.06) were also lower in the bean compared with rice groups. No changes were noted in triglycerides (-0.07; 95% CI: -0.28, 0.14), glucose (0.02; 95% CI: -0.17, 0.14), insulin (4.94; 95% CI: -5.51, 11.38), or blood pressure (systolic: -1.39; 95% CI: -5.18, 2.40; diastolic: -1.89; 95% CI: -4.65, 0.88). Dietary fiber intake (grams per day or grams per 1000 kcal) was not correlated with LDL-cholesterol (grams per day: r2 = 0.209, P = 0.142; grams per 1000 kcal: r2 =0.126, P = 0.379) in the bean group. Gastrointestinal effects were transient and most often not related to the study foods. CONCLUSIONS Beans, but not peas, lowered LDL-cholesterol, relative to rice, in adults with mild hypercholesterolemia. Fiber may not be responsible for the effect of beans, suggesting other phytochemicals may be the active component(s). Strategies incorporating 120 g of pulses in a meal are feasible for managing some cardiometabolic risk factors. This trial was registered at clinicaltrials.gov as NCT01661543.
Collapse
Affiliation(s)
- Rhonda C Bell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, and Dept of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, and Dept of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - YuZhu Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Megan Jarman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Michelle MacKenzie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine Chan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn Ozga
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Spencer Proctor
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - David Wishart
- Departments of Science, Medicine and Dentistry, Pharmacy and Pharmaceutical Sciences, Biological Sciences, Computing Science, Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, and Dept of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Knez M, Ranić M, Gurinović M. Underutilized plants increase biodiversity, improve food and nutrition security, reduce malnutrition, and enhance human health and well-being. Let's put them back on the plate! Nutr Rev 2024; 82:1111-1124. [PMID: 37643733 PMCID: PMC11233877 DOI: 10.1093/nutrit/nuad103] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
The global food system depends on a limited number of plant species. Plants with unsatisfactory nutritional value are overproduced, whereas the wide variety of nutrient-rich plant species used in earlier times remains neglected. Basing our diet on a few crops has wide-ranging negative consequences on nutrition and food security. Although still under-researched, underutilized plants are slowly starting to receive increased recognition. These plants have superior nutritional content and immense potential to contribute to food and nutrition security and increased sustainability. This narrative review provides evidence to encourage the promotion, domestication, and commercialization of underutilized plants. The anti-inflammatory, antidiabetic, and anticancer effects of some of underutilized plants are presented in this review. The outstanding ability of forgotten plants to increase food and nutrition security, boost dietary diversity, reduce malnutrition, and enhance human health and well-being is demonstrated. The main barriers and obstacles to reintroducing underutilized foods are reviewed and recommendations for overcoming nutrition and dietary-related challenges for re-establishing underutilized plants into the global food system are presented. The expansion of underutilized plants for human use is of paramount importance. The exceptional nutritional properties, bioactive potential, and proven health benefits of underutilized plants indicate that increased promotion, domestication, and commercialization of these plants should be strongly supported. Besides health benefits, marginalized plants have the potential to enhance human well-being and improve people's lives in many ways, retain biodiversity, and develop local economies. Therefore, underutilized plants should be used in the broader context of well-balanced and healthy diets.
Collapse
Affiliation(s)
- Marija Knez
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Capacity Development Network in Nutrition in Central and Eastern Europe, Belgrade, Serbia
| | - Marija Ranić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Capacity Development Network in Nutrition in Central and Eastern Europe, Belgrade, Serbia
| | - Mirjana Gurinović
- Capacity Development Network in Nutrition in Central and Eastern Europe, Belgrade, Serbia
| |
Collapse
|
4
|
Radosinska J, Kollarova M, Jasenovec T, Radosinska D, Vrbjar N, Balis P, Puzserova A. Aging in Normotensive and Spontaneously Hypertensive Rats: Focus on Erythrocyte Properties. BIOLOGY 2023; 12:1030. [PMID: 37508459 PMCID: PMC10376635 DOI: 10.3390/biology12071030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Erythrocyte deformability, crucial for oxygen delivery to tissues, plays an important role in the etiology of various diseases. As the factor maintaining the erythrocyte deformability, nitric oxide (NO) has been identified. Reduced NO bioavailability also plays a role in the pathogenesis of hypertension. Our aim was to determine whether aging and hypertension affect erythrocyte deformability and NO production by erythrocytes in experimental animals divided into six groups according to age (7, 20 and 52 weeks), labeled WKY-7, WKY-20 and WKY-52 for normotensive Wistar-Kyoto (WKY) rats, and SHR-7, SHR-20 and SHR-52 for spontaneously hypertensive rats (SHR). The filtration method for the determination of erythrocyte deformability and the fluorescent probe DAF-2 DA for NO production were applied. Deformability and NO production by erythrocytes increased at a younger age, while a decrease in both parameters was observed at an older age. Strain-related differences in deformability were observed at 7 and 52 weeks of age. SHR-7 had reduced deformability and SHR-52 had increased deformability compared with age-matched WKY. Changes in NO production under hypertensive conditions are an unlikely primary factor affecting erythrocyte deformability, whereas age-related changes in deformability are at least partially associated with changes in NO production. However, an interpretation of data obtained in erythrocyte parameters observed in SHRs of human hypertension requires precaution.
Collapse
Affiliation(s)
- Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Marta Kollarova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
- Premedix Academy, Medená 18, 811 02 Bratislava, Slovakia
| | - Tomas Jasenovec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Norbert Vrbjar
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Peter Balis
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Angelika Puzserova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
5
|
Das S, Sakr H, Al-Huseini I, Jetti R, Al-Qasmi S, Sugavasi R, Sirasanagandla SR. Atrazine Toxicity: The Possible Role of Natural Products for Effective Treatment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2278. [PMID: 37375903 DOI: 10.3390/plants12122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
There are various herbicides which were used in the agriculture industry. Atrazine (ATZ) is a chlorinated triazine herbicide that consists of a ring structure, known as the triazine ring, along with a chlorine atom and five nitrogen atoms. ATZ is a water-soluble herbicide, which makes it capable of easily infiltrating into majority of the aquatic ecosystems. There are reports of toxic effects of ATZ on different systems of the body but, unfortunately, majority of these scientific reports were documented in animals. The herbicide was reported to enter the body through various routes. The toxicity of the herbicide can cause deleterious effects on the respiratory, reproductive, endocrine, central nervous system, gastrointestinal, and urinary systems of the human body. Alarmingly, few studies in industrial workers showed ATZ exposure leading to cancer. We embarked on the present review to discuss the mechanism of action of ATZ toxicity for which there is no specific antidote or drug. Evidence-based published literature on the effective use of natural products such as lycopene, curcumin, Panax ginseng, Spirulina platensis, Fucoidans, vitamin C, soyabeans, quercetin, L-carnitine, Telfairia occidentalis, vitamin E, Garcinia kola, melatonin, selenium, Isatis indigotica, polyphenols, Acacia nilotica, and Zingiber officinale were discussed in detail. In the absence of any particular allopathic drug, the present review may open the doors for future drug design involving the natural products and their active compounds.
Collapse
Affiliation(s)
- Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Sara Al-Qasmi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raju Sugavasi
- Department of Anatomy, Fathima Institute of Medical Sciences, Kadapa 516003, India
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
6
|
Polyphenols, Saponins and Phytosterols in Lentils and Their Health Benefits: An Overview. Pharmaceuticals (Basel) 2022; 15:ph15101225. [PMID: 36297337 PMCID: PMC9609092 DOI: 10.3390/ph15101225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
The lentil (Lens culinaris L.) is one of the most important legumes (family, Fabaceae). It is a natural functional food rich in many bioactive compounds, such as polyphenols, saponins and phytosterols. Several studies have demonstrated that the consumption of lentils is potentially important in reducing the incidence of a number of chronic diseases, due to their bioactive compounds. The most common polyphenols in lentils include phenolic acids, flavan-3-ol, flavonols, anthocyanidins, proanthocyanidins or condensed tannins, and anthocyanins, which play an important role in the prevention of several degenerative diseases in humans, due to their antioxidant activity. Furthermore, lentil polyphenols are reported to have antidiabetic, cardioprotective and anticancer activities. Lentil saponins are triterpene glycosides, mainly soyasaponins I and βg. These saponins have a plasma cholesterol-lowering effect in humans and are important in reducing the risk of many chronic diseases. Moreover, high levels of phytosterols have been reported in lentils, especially in the seed coat, and β-sitosterol, campesterol, and stigmasterol are the most abundant. Beyond their hypocholesterolemic effect, phytosterols in lentils are known for their anti-inflammatory activity. In this review, the current information on the nutritional composition, bioactive compounds including polyphenols, saponins and phytosterols, and their associated health-promoting effects are discussed.
Collapse
|
7
|
Finger Millet Ethanol Extracts Prevent Hypertension by Inhibiting the Angiotensin-Converting Enzyme Level and Enhancing the Antioxidant Capacity in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2021; 10:antiox10111766. [PMID: 34829637 PMCID: PMC8614972 DOI: 10.3390/antiox10111766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Finger millet (Eleusine coracana) contains high levels of calcium and polyphenols, which have a variety of beneficial functions. We tested the hypothesis that finger millet ethanol extracts (FEs) have an antihypertensive effect in spontaneously hypertensive rats (SHRs). The study groups were assigned as follows: (1) Wistar Kyoto rats (normal); (2) SHRs treated with saline (negative control); (3) SHRs treated with captopril 50 mg/kg bw (positive control); (4) SHRs treated with FE 250 mg/kg bw (FE250); and (5) SHRs treated with FE 500 mg/kg bw (FE500). FE supplementation improved the lipid profiles, including the triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels, without deterioration in liver function. The thiobarbituric acid reactive substance concentration and superoxide dismutase activity significantly improved after the application of FE250 and FE500. Interestingly, FE250 and FE500 application dramatically reduced the systolic blood pressure. FE supplementation exhibited powerful control over the renin-angiotensin system by reducing the angiotensin-converting enzyme levels and renin mRNA expression in the kidney. Additionally, FE500 application ameliorated vascular remodeling, reversed the thickening media, and decreased the media thickness/lumen diameter ratio of the aorta. These results imply that FEs are a potent antihypertensive nutraceutical for regulating the renin-angiotensin system and simultaneously inhibiting oxidative stress.
Collapse
|
8
|
Loader TB, Zahradka P, Ahmadi S, Taylor CG. Processing method modulates the effectiveness of black beans for lowering blood cholesterol in spontaneously hypertensive rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:449-458. [PMID: 32648589 DOI: 10.1002/jsfa.10654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/16/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Various foods are known to have beneficial effects on health when consumed whole; however, there is a trend towards preparing foods from processed ingredients, and it remains unclear whether the benefits of the whole food are retained. The purpose of this study was therefore to examine whether different processing techniques affect the lowering of cholesterol and the vascular effects of black beans (Phaseolus vulgaris L.). RESULTS Beans were prepared by overnight soaking and boiling - the standard method - and by micronization, extrusion, or dehulling and boiling, and they were then fine milled. Beans prepared by the standard method were also coarse milled. These five materials were incorporated into semi-purified diets (30% wt/wt) and fed to spontaneously hypertensive rats for 4 weeks. Body weight, blood pressure, and aorta morphology were unaltered by the diets. Fasting total cholesterol was significantly reduced in rats fed micronized beans compared with extruded beans (both fine-milled) or the bean-free diet, while boiling combined with coarse milling lowered low-density lipoprotein (LDL) cholesterol. The lack of cholesterol lowering in rats fed extruded bean compared to micronized was not explained by the amount or composition of dietary fiber or resistant starch. Differences in the polyphenolic profile as determined by high-performance liquid chromatography (HPLC) were also unable to explain the variations in cholesterol-lowering capacity. CONCLUSION The present study demonstrates that processing of black beans alters the health effects observed with the whole pulse, and suggests that products prepared with processed ingredients will need to be tested empirically to establish whether the biological effects are maintained in vivo. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tara B Loader
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Shokoufeh Ahmadi
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
9
|
Mithul Aravind S, Wichienchot S, Tsao R, Ramakrishnan S, Chakkaravarthi S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res Int 2021; 142:110189. [PMID: 33773665 DOI: 10.1016/j.foodres.2021.110189] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The beneficial health roles of dietary polyphenols in preventing oxidative stress related chronic diseases have been subjected to intense investigation over the last two decades. As our understanding of the role of gut microbiota advances our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review focused onthe role of different types and sources of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis were discussed with reference to different types and sources of dietary polyphenols. Similarly, the mechanisms behind the health benefits by various polyphenolic metabolites bio-transformed by gut microbiota were also explained. However, further research should focus on the importance of human trials and profound links of polyphenols-gut microbiota-nerve-brain as they provide the key to unlock the mechanisms behind the observed benefits of dietary polyphenols found in vitro and in vivo studies.
Collapse
Affiliation(s)
- S Mithul Aravind
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India
| | - Santad Wichienchot
- Center of Excellence in Functional Food and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Korhong, Hat Yai, Songkhla 90110, Thailand
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| | - S Ramakrishnan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - S Chakkaravarthi
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India.
| |
Collapse
|
10
|
Clark JL, Taylor CG, Zahradka P. Black beans and red kidney beans induce positive postprandial vascular responses in healthy adults: A pilot randomized cross-over study. Nutr Metab Cardiovasc Dis 2021; 31:216-226. [PMID: 32917495 DOI: 10.1016/j.numecd.2020.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/25/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Consuming pulses (dry beans, dry peas, chickpeas, lentils) over several weeks can improve vascular function and decrease cardiovascular disease risk; however, it is unknown whether pulses can modulate postprandial vascular responses. The objective of this study was to compare different bean varieties (black, navy, pinto, red kidney) and white rice for their acute postprandial effects on vascular and metabolic responses in healthy individuals. METHODS AND RESULTS The study was designed as a single-blinded, randomized crossover trial with a minimum 6 days between consumption of the food articles. Vascular tone (primary endpoint), haemodynamics and serum biochemistry (secondary endpoints) were measured in 8 healthy adults before and at 1, 2, and 6 h after eating ¾ cup of beans or rice. Blood pressure and pulse wave velocity (PWV) were lower at 2 h following red kidney bean and pinto bean consumption compared to rice and navy bean, respectively (p < 0.05). There was greater vasorelaxation 6 h following consumption of darker-coloured beans, as shown by decreased vascular tone: PWV was lower after consuming black bean compared to pinto bean, augmentation pressure was lower after consuming black bean compared to rice and pinto bean, and wave reflection magnitude was lower after consuming red kidney bean and black bean compared to rice, navy bean, and pinto bean (p < 0.05). LDL-cholesterol concentrations were lower 6 h after black bean consumption compared to rice (p < 0.05). CONCLUSION Overall, red kidney and black beans, the darker-coloured beans, elicited a positive effect on the tensile properties of blood vessels, and this acute response may provide insight for how pulses modify vascular function.
Collapse
Affiliation(s)
- Jaime L Clark
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada.
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada.
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada.
| |
Collapse
|
11
|
Clark JL, Loader TB, Anderson HD, Zahradka P, Taylor CG. Regular Black Bean Consumption Is Necessary to Sustain Improvements in Small-Artery Vascular Compliance in the Spontaneously Hypertensive Rat. Nutrients 2020; 12:nu12030685. [PMID: 32138293 PMCID: PMC7146454 DOI: 10.3390/nu12030685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 01/02/2023] Open
Abstract
Edible legume seeds, such as lentils, have been shown to modulate the structural and functional properties of hypertensive blood vessels, however, the effects of dried beans have not been similarly evaluated. To determine whether beans could attenuate hypertension-induced vascular changes (remodeling and stiffness) in relation to their phytochemical content, spontaneously hypertensive rats (SHR) were fed diets containing black beans (BB; high phytochemical content as indicated by their dark seed coat colour) or navy (white) beans (NB; low phytochemical content) for eight weeks. An additional follow-up phase was included to determine how long the alterations in vascular properties are maintained after bean consumption is halted. Assessments included blood pressure (BP), pulse wave velocity (PWV), vessel compliance (small-artery) and morphology (large-artery), and body composition. Neither BBs nor NBs altered BP or PWV in SHR. SHR-BB demonstrated greater medial strain (which is indicative of greater elasticity) at higher intraluminal pressures (80 and 140 mmHg) compared to SHR-NB. BB consumption for 8 weeks enhanced vascular compliance compared to SHR-NB, as demonstrated by a rightward shift in the stress-strain curve, but this improvement was lost within 2 weeks after halting bean consumption. BB and NB increased lean mass after 8 weeks, but halting BB consumption increased fat mass. In conclusion, regular consumption of BBs may be appropriate as a dietary anti-hypertensive strategy via their positive actions on vascular remodeling and compliance.
Collapse
Affiliation(s)
- Jaime L. Clark
- Department of Food and Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (J.L.C.); (T.B.L.); (P.Z.)
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Tara B. Loader
- Department of Food and Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (J.L.C.); (T.B.L.); (P.Z.)
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Hope D. Anderson
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (J.L.C.); (T.B.L.); (P.Z.)
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Carla G. Taylor
- Department of Food and Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (J.L.C.); (T.B.L.); (P.Z.)
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence: ; Tel.: +1-204-258-1361
| |
Collapse
|
12
|
Abstract
A wide variety of plant species provide edible seeds. Seeds are the dominant source of human calories and protein. The most important and popular seed food sources are cereals, followed by legumes and nuts. Their nutritional content of fiber, protein, and monounsaturated/polyunsaturated fats make them extremely nutritious. They are important additions to our daily food consumption. When consumed as part of a healthy diet, seeds can help reduce blood sugar, cholesterol, and blood pressure.
Collapse
|
13
|
Bresciani A, Marti A. Using Pulses in Baked Products: Lights, Shadows, and Potential Solutions. Foods 2019; 8:E451. [PMID: 31581614 PMCID: PMC6835306 DOI: 10.3390/foods8100451] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023] Open
Abstract
Nowadays, consumers are more conscious of the environmental and nutritional benefits of foods. Pulses-thanks to both nutritional and health-promoting features, together with their low environmental impact-satisfy the demand for high-protein/high-fiber products. However, their consumption is still somewhat limited in Western countries, due to the presence of antinutrient compounds including phytic acid, trypsin inhibitors, and some undigested oligosaccharides, which are responsible for digestive discomfort. Another limitation of eating pulses regularly is their relatively long preparation time. One way to increase the consumption of pulses is to use them as an ingredient in food formulations, such as bread and other baked products. However, some sensory and technological issues limit the use of pulses on an industrial scale; consequently, they require special attention when combined with cereal-based products. Developing formulations and/or processes to improve pulse quality is necessary to enhance their incorporation into baked products. In this context, this study provides an overview of strengths and weaknesses of pulse-enriched baked products focusing on the various strategies-such as the choice of suitable ingredients or (bio)-technological approaches-that counteract the negative effects of including pulses in baked goods.
Collapse
Affiliation(s)
- Andrea Bresciani
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy.
| | - Alessandra Marti
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
14
|
Clark JL, Taylor CG, Zahradka P. Rebelling against the (Insulin) Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds. Nutrients 2018; 10:E434. [PMID: 29601521 PMCID: PMC5946219 DOI: 10.3390/nu10040434] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022] Open
Abstract
Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils) are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance.
Collapse
Affiliation(s)
- Jaime L Clark
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| |
Collapse
|
15
|
CIURESCU GEORGETA, VASILACHI ANDREEA, ROPOTÃ MARIANA, PALADE MIHAI, DRAGOMIR CÃTALIN. Beneficial effects of increasing dietary levels of raw lentil seeds on meat fatty acid and plasma metabolic profile in broiler chickens. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i11.75892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The aim of the present study was to investigate the effect of diets containing raw lentil seeds (Lens culinaris cv. Eston and cv. Anicia) on meat fatty acids profile and blood plasma parameters of broiler chickens. Day old, broiler chicks (1,000; Cobb 500) were randomly allocated to the following 5 treatments, viz. a diet based on corn and SBM as control; 200g/kg of raw lentil seeds cv. Eston (LE); 400 g/kg of LE; 200g/kg of raw lentil seeds cv. Anicia (LA);400 g/kg of LA. Data were analysed as a 2 × 2 factorial arrangement. The broilers meat fatty acid profile was affected by dietary inclusion of lentil. Accordingly, breast muscle of broilers fed raw lentil seeds had significant higher levels of alfa-linolenic, eicosapentaenoic (EPA), docosapentaenoic and docosahexaenoic (DHA) acids. A significant interaction was observed between level and cultivar for majority of n-3 PUFA profile, except for octadecatetraenoic acid, EPA and DHA. The blood plasma parameters were not influenced by treatments, except for glucose and triglycerides concentration which were lower in the groups fed with lentils. No significant interaction between lentil levels and cultivars was noticed for plasma parameters. Based on the results, we concluded that raw lentil seeds represent an interesting alternative protein source which can improve the quality of broiler meat that can be recommended in healthy, balanced diets to prevent human diseases.
Collapse
|
16
|
Polyphenol-Rich Lentils and Their Health Promoting Effects. Int J Mol Sci 2017; 18:ijms18112390. [PMID: 29125587 PMCID: PMC5713359 DOI: 10.3390/ijms18112390] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Polyphenols are a group of plant metabolites with potent antioxidant properties, which protect against various chronic diseases induced by oxidative stress. Evidence showed that dietary polyphenols have emerged as one of the prominent scientific interests due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are measured based on the human consumption and their bioavailability. Lentil (Lens culinaris; Family: Fabaceae) is a great source of polyphenol compounds with various health-promoting properties. Polyphenol-rich lentils have a potential effect on human health, possessing properties such as antioxidant, antidiabetic, anti-obesity, anti-hyperlipidemic, anti-inflammatory and anticancer. Based on the explorative study, the current comprehensive review aims to give up-to-date information on nutritive compositions, bioactive compounds and the health-promoting effect of polyphenol-rich lentils, which explores their therapeutic values for future clinical studies. All data of in vitro, in vivo and clinical studies of lentils and their impact on human health were collected from a library database and electronic search (Science Direct, PubMed and Google Scholar). Health-promoting information was gathered and orchestrated in the suitable place in the review.
Collapse
|
17
|
Hall C, Hillen C, Garden Robinson J. Composition, Nutritional Value, and Health Benefits of Pulses. Cereal Chem 2017. [DOI: 10.1094/cchem-03-16-0069-fi] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Clifford Hall
- Department of Plant Science, North Dakota State University, Fargo, ND 58108-6050, U.S.A
| | - Cassandra Hillen
- Department of Plant Science, North Dakota State University, Fargo, ND 58108-6050, U.S.A
| | | |
Collapse
|
18
|
Hanson M, Zahradka P, Taylor CG, Aliani M. Identification of urinary metabolites with potential blood pressure-lowering effects in lentil-fed spontaneously hypertensive rats. Eur J Nutr 2016; 57:297-308. [PMID: 27770189 DOI: 10.1007/s00394-016-1319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE Urine samples were obtained from a previously completed study that showed lentil consumption attenuates the increase in blood pressure that occurs over time in spontaneously hypertensive rats (SHRs). The objective of the present study was to compare the metabolite profile of the urine samples from control and lentil-fed SHR in relation to the compounds present in lentils but not in other pulses. METHODS The urine samples were from 17-week-old, male SHR fed semi-purified diet prepared with powder (30 %, w/w) from cooked whole pulses or a pulse-free control diet (n = 8/group) for 4 weeks. Pulse powders, control diet and urine samples were extracted using acetonitrile and analyzed by a high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). RESULTS Twenty-seven metabolites were significantly different in urine samples from lentil-fed SHR compared to SHR fed control diet, but only 7 were not present in the urine of SHR fed other pulses. Of these metabolites, only citrulline is linked to blood pressure regulation via production of the vasodilator nitric oxide (NO). Several arginine-related compounds that are NO synthase substrates or inhibitors were detected in lentils but not the control diet or other pulse powders. CONCLUSIONS Consumption of lentils increases the availability of arginine and several related compounds that could potentially elevate production of NO and contribute to the blood pressure-lowering effects of lentil-rich diets.
Collapse
Affiliation(s)
- Matthew Hanson
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- St Boniface Hospital Albrechtsen Research Centre, Canadian Centre for Agri-Food Research in Health and Medicine, 351 Tache Ave, Winnipeg, MB, R2H 2A6, Canada
| | - Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- St Boniface Hospital Albrechtsen Research Centre, Canadian Centre for Agri-Food Research in Health and Medicine, 351 Tache Ave, Winnipeg, MB, R2H 2A6, Canada
| | - Carla G Taylor
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- St Boniface Hospital Albrechtsen Research Centre, Canadian Centre for Agri-Food Research in Health and Medicine, 351 Tache Ave, Winnipeg, MB, R2H 2A6, Canada
| | - Michel Aliani
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada.
- St Boniface Hospital Albrechtsen Research Centre, Canadian Centre for Agri-Food Research in Health and Medicine, 351 Tache Ave, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
19
|
Hanson MG, Taylor CG, Wu Y, Anderson HD, Zahradka P. Lentil consumption reduces resistance artery remodeling and restores arterial compliance in the spontaneously hypertensive rats. J Nutr Biochem 2016; 37:30-38. [PMID: 27596012 DOI: 10.1016/j.jnutbio.2016.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/18/2016] [Accepted: 07/15/2016] [Indexed: 11/27/2022]
Abstract
We previously established that lentils were able to significantly attenuate the development of hypertension in spontaneously hypertensive rats (SHRs), but the mechanism was not investigated. The current study was therefore designed to examine the effect of lentils on arterial function in relation to arterial stiffness, lipid biochemistry and activation of select aortic proteins. Seventeen-week-old male SHRs were randomly assigned to groups (n=10/group) fed (a) 30% w/w green lentils, (b) 30% red lentils, (c) 30% mixed lentils (red and green) or (d) no lentils for 8 weeks. Normotensive Wistar Kyoto (WKY) groups (n=10/group) received either the mixed lentil or no lentil diet. Blood pressure, pulse wave velocity and serum lipids were measured at baseline and 8 weeks, while pressure myography, arterial morphology and aortic proteins were measured after termination. There were no dietary-related changes in pulse wave velocity or blood pressure for any SHR or WKY group. Low-density lipoprotein cholesterol and high-density lipoprotein cholesterol were significantly lower in only SHR red lentil and WKY mixed lentil groups compared to their controls. The lentil diets reduced the media:lumen ratio of SHRs relative to control-fed SHRs but had no effect on WKYs. Both red and green lentils reduced arterial stiffness of SHRs but not WKYs. SHR lentil groups showed lower aortic p38 mitogen-activated protein kinase (p38MAPK) phosphorylation, thus implying that p38MAPK activation is suppressed with lentil feeding. Lentil-based diets suppress pathological vascular remodeling in SHRs, while green lentils maintain the vascular function of SHRs similar to normotensive WKYs despite the presence of high blood pressure.
Collapse
Affiliation(s)
- Matthew G Hanson
- Department of Physiology and Pathophysiology, University of Manitoba, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- Department of Physiology and Pathophysiology, University of Manitoba, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada; Department of Human Nutritional Sciences, University of Manitoba, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Yinghong Wu
- Department of Human Nutritional Sciences, University of Manitoba, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Hope D Anderson
- College of Pharmacy, University of Manitoba, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada; Department of Human Nutritional Sciences, University of Manitoba, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada.
| |
Collapse
|
20
|
Effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats. Eur J Nutr 2016; 56:2129-2138. [PMID: 27344669 DOI: 10.1007/s00394-016-1252-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE The objective of this study was to determine the effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats (SHRs). METHODS The protein of foxtail millet after extruding or fermenting and the raw foxtail millet was extracted and hydrolyzed by digestive protease to generate angiotensin-converting enzyme (ACE) inhibitory peptides. The potential antihypertensive effect of protein hydrolysates from foxtail millet in SHRs was investigated. RESULTS After 4 weeks of treatment with 200 mg peptides/kg of body weight of protein hydrolysates, blood pressure was lowered significantly, and the raw and extruded samples were more effective than the fermented samples. The serum ACE activity and angiotensin II levels in the treatment groups were significantly lower than that of the control. The percent heart weight decreased in the treatment groups. CONCLUSION Thus, ingestion of foxtail millet protein hydrolysates especially for the raw and extruded hydrolysates may ameliorate hypertension and alleviate related cardiovascular diseases.
Collapse
|
21
|
Abstract
Pulses (beans, peas, and lentils) have been consumed for at least 10 000 years and are among the most extensively used foods in the world. A wide variety of pulses can be grown globally, making them important both economically as well as nutritionally. Pulses provide protein and fibre, as well as a significant source of vitamins and minerals, such as iron, zinc, folate, and magnesium, and consuming half a cup of beans or peas per day can enhance diet quality by increasing intakes of these nutrients. In addition, the phytochemicals, saponins, and tannins found in pulses possess antioxidant and anti-carcinogenic effects, indicating that pulses may have significant anti-cancer effects. Pulse consumption also improves serum lipid profiles and positively affects several other cardiovascular disease risk factors, such as blood pressure, platelet activity, and inflammation. Pulses are high in fibre and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels. Emerging research examining the effect of pulse components on HIV and consumption patterns with aging populations indicates that pulses may have further effects on health. In conclusion, including pulses in the diet is a healthy way to meet dietary recommendations and is associated with reduced risk of several chronic diseases. Long-term randomized controlled trials are needed to demonstrate the direct effects of pulses on these diseases.
Collapse
Affiliation(s)
- Adriana N Mudryj
- a Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|