1
|
Juśkiewicz J, Ognik K, Fotschki J, Napiórkowska D, Cholewińska E, Grzelak-Błaszczyk K, Krauze M, Fotschki B. The Effects of Dietary Chromium Supplementation along with Discontinuing a High-Fat Diet on the Microbial Enzymatic Activity and the Production of SCFAs in the Faeces of Rats. Nutrients 2023; 15:3962. [PMID: 37764746 PMCID: PMC10534834 DOI: 10.3390/nu15183962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The present study assessed the changes in faecal microbial activity in obese Wistar rats fed high-fat or low-fat diets supplemented with various forms of chromium (picolinate or nanoparticles). The 18-week study was divided into two phases: an introductory period (9 weeks; obesity status induction via a high-fat diet) and an experimental period (9 weeks; maintained on a high-fat diet or switched to a low-fat diet and Cr supplementation). During the experimental period (10-18 weeks of feeding), samples of fresh faeces were collected on chosen days. The bacterial enzymatic activity and short-chain fatty acids (SCFAs) concentration were assessed to characterise the dynamism of the changes in faecal microbial metabolic activity under the applied dietary treatments. The results indicated that faecal microbial metabolic activity displayed several adaptation mechanisms in response to modifications in dietary conditions, and a beneficial outcome resulted from a pro-healthy dietary habit change, that is, switching from a high-fat to a low-fat diet. Dietary supplementation with chromium nanoparticles further modulated the aforementioned microbial activity, i.e., diminished the extracellular and total enzymatic activities, while the effect of chromium picolinate addition was negligible. Both the high-fat diet and the addition of chromium nanoparticles reduced SCFA concentrations and increased the faecal pH values.
Collapse
Affiliation(s)
- Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (J.F.); (D.N.); (B.F.)
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (K.O.); (E.C.); (M.K.)
| | - Joanna Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (J.F.); (D.N.); (B.F.)
| | - Dorota Napiórkowska
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (J.F.); (D.N.); (B.F.)
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (K.O.); (E.C.); (M.K.)
| | - Katarzyna Grzelak-Błaszczyk
- Institute of Food Technology and Analysis, Łódź University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Magdalena Krauze
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (K.O.); (E.C.); (M.K.)
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (J.F.); (D.N.); (B.F.)
| |
Collapse
|
2
|
Fotschki B, Ognik K, Cholewińska E, Grzelak-Błaszczyk K, Myszczyński K, Krauze M, Juśkiewicz J. Effect of Chromium Nanoparticles and Switching from a High-Fat to a Low-Fat Diet on the Cecal Microenvironment in Obese Rats. Nutrients 2023; 15:3118. [PMID: 37513536 PMCID: PMC10384463 DOI: 10.3390/nu15143118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Previous studies showed that chromium nanoparticles (Cr-NPs) might be used as dietary compounds against some obesity-related disorders; however, there is little information on how these compounds influence the gut microenvironment. The aim of this study was to investigate whether the negative effects of a high-fat diet in the large intestine of rats might be mitigated by switching to a low-fat diet and supplementation with Cr-NPs. Microbiota sequencing analysis revealed that the main action of the Cr-NPs was focused on changing the gut microbiota's activity. Supplementation with nanoparticles decreased the activity of β-glucuronidase and enzymes responsible for the hydrolysis of dietary oligosaccharides and, thus, lowered the concentration of short-chain fatty acids in the cecum. In this group, there was also an elevated level of cecal lithocholic acid. The most favorable effect on the regulation of obesity-related disorders was observed when a high-fat diet was switched to a low-fat diet. This dietary change enhanced the production of short-chain fatty acids, reduced the level of secondary bile acids, and increased the microbial taxonomic richness, microbial differences, and microbial enzymatic activity in the cecum. To conclude, supplementation of a high-fat diet with Cr-NPs primarily had an effect on intestinal microbial activity, but switching to a low-fat diet had a powerful, all-encompassing effect on the gut that improved both microbial activity and composition.
Collapse
Affiliation(s)
- Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Katarzyna Grzelak-Błaszczyk
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Magdalena Krauze
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
3
|
Zeneli L, Daci-Ajvazi M, Sekovanić A, Jurasović J, Bajraktari D. The Effects of Chromium and Vanadium on Biomarkers of Carbohydrate and Lipid Metabolism in Workers Exposed to Coal Fly Ash. J Xenobiot 2022; 12:307-316. [PMID: 36278758 PMCID: PMC9590079 DOI: 10.3390/jox12040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chromium (Cr) and vanadium (V) are micronutrients playing a role in carbohydrate and lipid metabolism but can be toxic at high concentrations, especially in specific forms. The study documents the effect of Cr and V concentrations on glucose and lipid metabolism in workers exposed to coal fly ash. We quantified selected metals (Cr, V) in the blood and serum of workers from a thermal power plant in Kosovo and compared them with the reference biological values. We determined fasting serum glucose and lipid profiles using a biochemical analyzer Synchron CX7 (Beckman Coulter). We quantified blood and serum Cr and V by inductively coupled plasma mass spectrometry. We also evaluated the association between carbohydrate and lipid metabolism biomarkers (glucose, cholesterol, and triglycerides) and co-exposure to coal fly ash. Power plant workers had significantly higher blood Cr and V levels (p < 0.0001) and significantly lower serum Cr and V levels (p < 0.0001) than the controls. We also found statistically significant (p < 0.0001) correlations between high blood Cr levels and low glucose/blood Cr ratios as well as between high serum Cr levels and low glucose/serum Cr ratios. Finally, in power plant workers, high blood V levels significantly correlated with low triglycerides/blood V and cholesterol/blood V ratios (p < 0.0001), while high serum V levels correlated with low cholesterol/serum V ratios (p = 0.005). Based on these findings, we concluded that the glucose/Cr, triglycerides/V and cholesterol/V ratios should be considered when evaluating carbohydrate and lipid metabolism disorders in occupationally-exposed workers.
Collapse
Affiliation(s)
- Lulzim Zeneli
- Faculty of Education, University Fehmi Agani, 50000 Gjakova, Kosovo
| | - Majlinda Daci-Ajvazi
- Faculty of Mathematics and Natural Sciences, University of Prishtina, 10000 Prishtina, Kosovo
| | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Jasna Jurasović
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Demush Bajraktari
- Faculty of Pharmacy, UBT Higher Education Institution, 10000 Prishtina, Kosovo
- Correspondence:
| |
Collapse
|
4
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
5
|
Dworzański W, Cholewińska E, Fotschki B, Juśkiewicz J, Ognik K. Oxidative, epigenetic changes and fermentation processes in the intestine of rats fed high-fat diets supplemented with various chromium forms. Sci Rep 2022; 12:9817. [PMID: 35701510 PMCID: PMC9198011 DOI: 10.1038/s41598-022-13328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of the study was to determine how feeding rats a high-fat diet (F) supplemented with various forms of chromium affects the responses of the immune and redox systems, as well as epigenetic changes in the ileal tissue and the course of fermentation processes in the caecum. The rats received a pharmacologically relevant dose 0.3 mg Cr/kg body weight in form of chromium(III) picolinate (Cr-Pic), chromium (III)-methionine (Cr-Met), or chromium nanoparticles (Cr-NPs). The F increased DNA oxidation and raised the level of interleukin IL-6. The F was shown to reduce the intensity of fermentation processes in the caecum while increasing the activity of potentially harmful enzymes in the faeces. The addition of Cr in the form of Cr-NPs and Cr-Met in rats fed F beneficially increased mobilization of enzymes of the DNA repair pathway. All forms of Cr, but especially Cr-NPs, beneficially decreased the activity of caecal bacterial β-glucuronidase, faecal β-glucosidase and β-glucuronidase. However, due to the increase in level of cytokine IL-2 in small intestinal wall, induced by all tested forms of chromium, it is difficult to state conclusively that this element can mitigate unfavourable pro-inflammatory and oxidative changes induced by a F in the small intestinal wall.
Collapse
Affiliation(s)
- Wojciech Dworzański
- Chair and Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Bartosz Fotschki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| |
Collapse
|
6
|
Yang J, Wang C, Liu L, Zhang M. Lactobacillus reuteri KT260178 Supplementation Reduced Morbidity of Piglets Through Its Targeted Colonization, Improvement of Cecal Microbiota Profile, and Immune Functions. Probiotics Antimicrob Proteins 2021; 12:194-203. [PMID: 30659502 DOI: 10.1007/s12602-019-9514-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Supplementing suckling piglets with Lactobacillus reuteri isolated from a homologous source improves L. reuteri colonization number in the gastrointestinal tract, which can have health benefits. This study investigated dietary L. reuteri supplementation on the growth and health-including immune status-of piglets, as well as its colonization. A total of 60 sows with similar parity and body weight were allocated into one of three groups after secretion (n = 20 each, with 10 neonatal piglets of each): untreated control, L. reuteri supplementation, and antibiotic treatment. The experimental duration was 28 days, from birth of piglets to their group transferred. For the first 7 days after birth, all neonatal piglets were fed by sows. Piglets in the L. reuteri supplementation group were administered with 1.0 ml L. reuteri fermentation broth containing 5.0 × 107 CFU. From 7 to 28 days, piglets were given basal feed (control), basal feed supplemented with L. reuteri (1.0 × 107 CFU/g), or aureomycin (150 mg/kg). L. reuteri colonization in the distal jejunum and ileum was increased in piglets in the L. reuteri-supplemented as compared to the control group after 28 days, as determined by fluorescence in situ hybridization and real-time PCR analysis. Total Lactobacillus and Bifidobacterium counts in the cecum were higher whereas total aerobic bacteria (Escherichia coli and Staphylococcus) counts were lower in the L. reuteri as compared to the control group. L. reuteri supplementation also improved body antioxidant status and immune function relative to control animals. Strain-specific L. reuteri administered to piglets colonizes the intestinal mucosa and improves cecal microbiota profile and whole-body antioxidant and immune status, leading to better growth and lower morbidity and mortality rates.
Collapse
Affiliation(s)
- Jiajun Yang
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 of Nongke South Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui Academy of Agriculture Science, Hefei, 230031, China
| | - Chonglong Wang
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 of Nongke South Road, Hefei, 230031, Anhui, China. .,Key Laboratory of Pig Molecular Quantitative Genetics, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 of Nongke South Road, Hefei, 230031, Anhui, China.
| | - Linqing Liu
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 of Nongke South Road, Hefei, 230031, Anhui, China.,Key Laboratory of Pig Molecular Quantitative Genetics, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 of Nongke South Road, Hefei, 230031, Anhui, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanminyuan West Road, Haidian District, Beijing, 100094, People's Republic of China
| |
Collapse
|
7
|
Sushko ОО, Iskra RJ, Ponkalo LI. Influence of chromium citrate on oxidative stress in the tissues of muscle and kidney of rats with experimentally induced diabetes. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chromium is one of the important trace elements that is essential for carbohydrate, protein and lipid metabolism. Chromium improves glucose metabolism and reduces insulin resistance due to increased insulin sensitivity. Therefore, it is important to consider the use of chromium citrate as a nutritional supplement with potential hypoglycemic and hypolipidemic effects. In this research work, we investigated the activity of the antioxidant system and the level of lipid hydroperoxides in the tissues of skeletal muscles and kidneys of experimental diabetic rats and for rats which received in their daily diet chromium citrate in the amounts 0.1 and 0.2 μg/mL of water. We induced the experimental model of diabetes by intraperitoneal injection of alloxan in the amount 150 mg/kg of body weight of the animals. We monitored glucose levels by measuring daily glucose levels with a portable glucose meter. For research, we selected animals with a glucose level > 11.1 mmol/L. We monitored the body weight of rats. On the 40th day of the study, we withdrew the animals from the experiment by decapitation. We selected the tissue for research, namely skeletal muscles and kidneys. In samples of the tissue homogenates, we measured the activity of antioxidant enzymes and the content of lipid peroxide oxidation products. As a result of our research, we found that the products of lipid peroxide oxidation and glutathione peroxidase activity increased in skeletal muscle of animals with diabetes mellitus. The activity of glutathione reductase, catalase, superoxide dismutase, and the content of reduced glutathione decreased at the same time. In the kidneys of diabetic rats, the activity of glutathione peroxidase, glutathione reductase, catalase and content of lipid hydroperoxides increased but the activity of superoxide dismutase and the content of reduced glutathione decreased. The addition of chromium citrate to the diet of animals in amounts 0.1 and 0.2 μg/mL led to the suppression of oxidative stress. The activity of catalase, glutathione peroxidase and the content of lipid hydroperoxides, TBA-positive substances decreased. Also, the activity of superoxide dismutase increased with the addition of chromium citrate. These results indicate normalization of antioxidant defense in the skeletal muscle and kidneys of experimental rats with experimental diabetes given chromium citrate in the amount 0.1 mg/mL of water.
Collapse
|
8
|
Yang J, Zhang M, Zhou Y. Effects of selenium-enriched Bacillus sp. compounds on growth performance, antioxidant status, and lipid parameters breast meat quality of Chinese Huainan partridge chicks in winter cold stress. Lipids Health Dis 2019; 18:63. [PMID: 30871550 PMCID: PMC6417213 DOI: 10.1186/s12944-019-1015-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/10/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Both selenium (Se) and probiotic Bacillus regulate the metabolism to help defense clod stress and improve the meat quality in breeding chicks. The purpose of this study was to evaluate the effect of supplemental Se and Bacillus in the form of Se-enriched Bacillus (SECB) on the growth performance, lipid parameters, breast Se and antibiotic levels, and breast meat quality of chicken in winter cold stress. METHODS Five hundred 1-d-old chickens were divided into five groups randomly: Control, inorganic Se, compound Bacillus, SECB, and antibiotic. The feed duration was 56 d. RESULTS After 28 d of treatment, chicks feed SECB or compound Bacillus had higher body weights than the control, and after 56 d, chicks given either SECB or compound Bacillus had higher body weights than the control chicks or those given inorganic Se. Adding SECB to feed significantly increased the lightness, redness, and yellowness of breast meat, improved the water-holding capacity, and reduced the shear force and cooking loss. The concentration of Se in the breast muscle very significantly increased after SECB and inorganic Se supplementation, which was opposite to the concentration of flavomycin in antibiotic supplemented chicks. The antioxidative status of plasma and breast meat was significantly improved with added compound Bacillus and SECB: the total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase ability in the breast muscle significantly improved, and the malondialdehyde concentration in plasma decreased. The levels of total cholesterol plasma triglyceride and very-low-density lipoprotein cholesterol in the plasma and breast muscle was decreased compared to that of the control, while the plasma high-density lipoprotein cholesterol concentration increased. CONCLUSIONS In conclusion, SECB supplementation promoted the body growth, antioxidative status, and Se concentrations in the plasma and breast meat, and also improved the breast meat quality.
Collapse
Affiliation(s)
- Jiajun Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanminyuan West Road, Haidian District, Beijing, 100094, China
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, NongKe South of Road, Hefei, 230031, Anhui, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanminyuan West Road, Haidian District, Beijing, 100094, China.
| | - Ying Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanminyuan West Road, Haidian District, Beijing, 100094, China
| |
Collapse
|
9
|
Yang J, Qian K, Wang C, Wu Y. Roles of Probiotic Lactobacilli Inclusion in Helping Piglets Establish Healthy Intestinal Inter-environment for Pathogen Defense. Probiotics Antimicrob Proteins 2019; 10:243-250. [PMID: 28361445 DOI: 10.1007/s12602-017-9273-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gastrointestinal tract of pigs is densely populated with microorganisms that closely interact with the host and with ingested feed. Gut microbiota benefits the host by providing nutrients from dietary substrates and modulating the development and function of the digestive and immune systems. An optimized gastrointestinal microbiome is crucial for pigs' health, and establishment of the microbiome in piglets is especially important for growth and disease resistance. However, the microbiome in the gastrointestinal tract of piglets is immature and easily influenced by the environment. Supplementing the microbiome of piglets with probiotic bacteria such as Lactobacillus could help create an optimized microbiome by improving the abundance and number of lactobacilli and other indigenous probiotic bacteria. Dominant indigenous probiotic bacteria could improve piglets' growth and immunity through certain cascade signal transduction pathways. The piglet body provides a permissive habitat and nutrients for bacterial colonization and growth. In return, probiotic bacteria produce prebiotics such as short-chain fatty acids and bacteriocins that benefit piglets by enhancing their growth and reducing their risk of enteric infection by pathogens. A comprehensive understanding of the interactions between piglets and members of their gut microbiota will help develop new dietary interventions that can enhance piglets' growth, protect piglets from enteric diseases caused by pathogenic bacteria, and maximize host feed utilization.
Collapse
Affiliation(s)
- Jiajun Yang
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui province, People's Republic of China
| | - Kun Qian
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui province, People's Republic of China.
| | - Chonglong Wang
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui province, People's Republic of China
| | - Yijing Wu
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui province, People's Republic of China
| |
Collapse
|
10
|
Chromium malate alleviates high-glucose and insulin resistance in L6 skeletal muscle cells by regulating glucose uptake and insulin sensitivity signaling pathways. Biometals 2018; 31:891-908. [DOI: 10.1007/s10534-018-0132-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
|
11
|
Guo JR, Dong XF, Liu S, Tong JM. Effects of long-term Bacillus subtilis CGMCC 1.921 supplementation on performance, egg quality, and fecal and cecal microbiota of laying hens. Poult Sci 2018; 96:1280-1289. [PMID: 27789747 DOI: 10.3382/ps/pew389] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/25/2016] [Indexed: 02/01/2023] Open
Abstract
This study evaluated the effects of long-term Bacillus subtilis CGMCC 1.921 supplementation on the performance, egg quality, and fecal/cecal microbiota of laying hens. A total of 360 28-week-old Hy-Line Brown laying hens were randomly allocated into 5 treatments with 6 replicates of 12 birds each for 24 weeks. The experimental treatments included a basal diet without additions (Con) and the basal diet supplemented with 1.0 × 105 (B1), 1.0 × 106 (B2), 1.0 × 107 (B3), and 1.0 × 108 (B4) cfu/g B. subtilis CGMCC 1.921. The results showed that feed:egg ratio significantly decreased (P < 0.05) in groups B1 (wk 13 to 16, 17 to 20, 21 to 24, and one to 24), B2 (wk 13 to 16, 17 to 20, and 21 to 24), B3 (wk 13 to 16, 17 to 20, 21 to 24, and one to 24), and B4 (wk 13 to 16, 17 to 20, 21 to 24, and one to 24). However, egg production, egg weight, and feed intake were not significantly different (P > 0.05) among treatments. Eggshell strength significantly improved (P < 0.05) in groups B1 (wk 8, 16, 20, and 24), B2 (wk 20 and 24), and B3 (wk 8, 16, 20, and 24). Fecal E. coli counts significantly decreased (P < 0.05) in groups B1 (wk 16), B2 (wk 12, 16, 20, and 24), B3 (wk 12, 20, and 24), and B4 (wk 16, 20, and 24). Lactobacillus in cecal digesta of groups B1, B3, and B4 increased significantly (P < 0.01). Bifidobacterium in cecal digesta of groups B1, B2, B3, and B4 increased significantly (P < 0.05). Bifidobacterium counts increased linearly (P = 0.015) and quadratically (P = 0.004) as B. subtilis CGMCC 1.921 supplementation increased. Compared with Con, E. coli in the cecal digesta of groups B2 and B4 decreased significantly (P < 0.01). C. perfringens in the cecal digesta of groups B3 and B4 decreased significantly (P < 0.05). E. coli:Lactobacillus ratio decreased in group B1 (P < 0.05) and B2, B3, and B4 (P < 0.01). Therefore, the probiotic B. subtilis CGMCC 1.921 effectively improved performance and egg quality via the reduction of fecal E. coli and beneficial modulation of cecal microbiota.
Collapse
|
12
|
Ngala RA, Awe MA, Nsiah P. The effects of plasma chromium on lipid profile, glucose metabolism and cardiovascular risk in type 2 diabetes mellitus. A case - control study. PLoS One 2018; 13:e0197977. [PMID: 29975702 PMCID: PMC6033385 DOI: 10.1371/journal.pone.0197977] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/13/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The study was aimed at determining the effect of plasma chromium concentration on the metabolism of glucose, and lipids and their subsequent cardiovascular risk in patients with type 2 diabetes in the Bolgatanga district of Ghana. MATERIAL AND METHODS Fasting blood glucose and lipids profile were determined by enzymatic assay using the BT 5000® Random Access Chemistry Analyzer. Fasting serum insulin and High sensitive C-reactive protein were determined by ELISA, a solid phase direct sandwich immunoassay method. HOMA-IR, which is based on fasting blood sample for insulin and glucose concentrations measured in a single blood sample, was used to calculate insulin resistance. Plasma chromium was measured using an atomic Absorption Spectrometer. RESULTS Patientswith diabeteshad significantly (p<0.0001) increased LDL, TC, TG, VLDL, insulin, CRP and HOMAIR and a significantly reduced plasma chromium (p<0.0001) (0.53± 0.02μg/l and 0.11±0.01μg/l control and case respectively). Low Cr (p ≤0.001) was associated with high blood pressure, obesity and lipid dysregulation. Plasma Cr significantly correlated negatively with blood pressure and LDL. CONCLUSION Lower plasma Cr level was associated with hyperglycaemia, hyperinsulinemia, hypertension, insulin resistance and high inflammation marker HsCRP.
Collapse
Affiliation(s)
- Robert Amadu Ngala
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Martin Akilla Awe
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Paul Nsiah
- Department of Chemical Pathology, University of Cape Coast,- Ghana
| |
Collapse
|
13
|
Liu L, Wang B, He Y, Tao W, Liu Z, Wang M. Effects of Chromium-Loaded Chitosan Nanoparticles on Glucose Transporter 4, Relevant mRNA, and Proteins of Phosphatidylinositol 3-Kinase, Akt2-Kinase, and AMP-Activated Protein Kinase of Skeletal Muscles in Finishing Pigs. Biol Trace Elem Res 2017; 178:36-43. [PMID: 27888450 DOI: 10.1007/s12011-016-0890-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
The study was conducted to evaluate the effects of chromium-loaded chitosan nanoparticles (Cr-CNP) on glucose transporter 4 (GLUT4), relevant messenger RNA (mRNA), and proteins involved in phosphatidylinositol 3-kinase (PI3K), Akt2-kinase, and AMP-activated protein kinase (AMPK) of skeletal muscles in finishing pigs. A total of 120 crossbred barrows (BW 65.00 ± 1.26 kg) were randomly allotted to four dietary treatments, with three pens per treatment and 10 pigs per pen. Pigs were fed the basal diet supplemented with 0, 100, 200, or 400 μg/kg of Cr from Cr-CNP for 35 days. After the feeding trials, 24 pigs were slaughtered to collect longissimus muscle samples for analysis. Cr-CNP supplementation increased GLUT4 messenger RNA (mRNA) (quadratically, P < 0.01) and total and plasma membrane GLUT4 protein contents (linearly and quadratically, P < 0.001) in skeletal muscles. Glycogen synthase kinase 3β (GSK-3β) mRNA was decreased linearly (P < 0.001) and quadratically (P < 0.001). Supplemental Cr-CNP increased insulin receptor (InsR) mRNA quadratically (P < 0.01), Akt2 total protein level linearly (P < 0.01) and quadratically (P < 0.001), and PI3K total protein was increased significantly (P < 0.05) in 200 μg/kg treatment group. The mRNA of AMPK subunit gamma-3 (PRKAG3) and protein of AMPKα1 was significantly increased (P < 0.001) with the addition of Cr-CNP. The results indicate that dietary supplementation of Cr-CNP may promote glucose uptake by leading to recruitment of GLUT4 to the plasma membrane in skeletal muscles, and these actions may be associated with the insulin signal transduction and AMPK.
Collapse
Affiliation(s)
- Lujie Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Bin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yudan He
- Department of Animal Science, Jiangxi Biotech Vocational College, 608 Nanlian Road, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Wenjing Tao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zixun Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Minqi Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Yang J, Qian K, Zhang W, Xu Y, Wu Y. Effects of chromium-enriched bacillus subtilis KT260179 supplementation on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality. Lipids Health Dis 2016; 15:188. [PMID: 27821122 PMCID: PMC5100260 DOI: 10.1186/s12944-016-0355-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/21/2016] [Indexed: 12/04/2022] Open
Abstract
Background Both chromium (Cr) and probiotic bacillus own the virtues of regulating animal metabolism and meat quality. Purpose of this study was to evaluate the efficiency of supplemental Cr and bacillus in the form of chromium-enriched Bacillus subtilis KT260179 (CEBS) on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality. Methods Six hundred of 1-day-old Chinese Huainan Partridge chickens were divided into four groups randomly: Control, inorganic Cr, Bacillus subtilis, and CEBS. The feed duration was 56 days. Results After 28 days of treatment, broiler feed CEBS or normal B. subtilis had higher body weights than control broiler, and after 56 days, chickens given either CEBS or B. subtilis had greater body weights than control broiler or those given inorganic Cr. Plasma total cholesterol, triglycerides, and low density lipoprotein cholesterol levels declined significantly in the CEBS group compared with the control, whereas plasma high density lipoprotein cholesterol levels increased significantly. The concentration of Cr in blood and breast muscle increased after CEBS and inorganic Cr supplementation. B. subtilis and CEBS supplementation caused a significant increase in the numbers of Lactobacillus and Bifidobacterium in the caecum, while the numbers of Escherichia coli and Salmonella decreased significantly compared to the control. Feed adding CEBS increased the lightness, redness, and yellowness of breast meat, improved the water-holding capacity, decreased the shear force and cooking loss. Conclusions In all, CEBS supplementation promoted body growth, improved plasma lipid parameters, increased tissue Cr concentrations, altered cecal bacterial composition and improved breast meat quality.
Collapse
Affiliation(s)
- Jiajun Yang
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui, People's Republic of China
| | - Kun Qian
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui, People's Republic of China.
| | - Wei Zhang
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui, People's Republic of China
| | - Yayuan Xu
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui, People's Republic of China
| | - Yijing Wu
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui, People's Republic of China
| |
Collapse
|