1
|
Webb RJ, Lodge JK, Scott SS, Davies IG. Metabolomic Characterisation of Low-Density Lipoproteins Isolated from Iodixanol and KBr-Based Density Gradient Ultracentrifugation. Metabolites 2025; 15:68. [PMID: 39997693 PMCID: PMC11857088 DOI: 10.3390/metabo15020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Salt-based density gradient ultracentrifugation (SBUC) is frequently used to isolate lipoproteins for their subsequent analysis. However, the addition of salts may disrupt their molecular composition. Therefore, the aim of the present study was to assess the impact of SBUC upon the molecular composition of low-density lipoprotein (LDL) particles, compared to a validated non-salt method involving iodixanol gradient ultracentrifugation (IGUC). METHODS Whole human plasma was analysed for various lipid parameters before LDL particles were isolated using both SBUC and IGUC methods. Each fraction was then filtered to obtain low-molecular-weight compounds. The LDL molecular content of the resulting fractions from both methods was determined using untargeted liquid chromatography-mass spectrometry (LC-MS) in positive and negative modes. RESULTS A total of 1041 and 401 features were putatively identified using positive and negative modes, respectively. Differences were shown in the molecular composition of LDL prepared using SBUC and IGUC; in positive mode ionisation, the PLS-DA model showed reasonable fit and discriminatory power (R2 = 0.63, Q2 = 0.58, accuracy 0.88) and permutation testing was significant (p < 0.001). CONCLUSIONS The findings reveal distinct differences in the small molecule composition of LDL prepared using the two methods, with IGUC exhibiting greater variation. In negative mode, both methods detected phospholipids, long-chain sphingolipids, and ceramides, but IGUC showed higher fold differences for some phospholipids. However, in positive mode, non-native brominated adducts were found in LDL isolated using SBUC and evidence of potential bacterial contamination was discovered in samples prepared using IGUC, both of which have the capacity to affect in vitro experiments.
Collapse
Affiliation(s)
- Richard J. Webb
- School of Health and Sport Sciences, Liverpool Hope University, Liverpool L16 9JD, UK
| | - John K. Lodge
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Department of Applied Sciences, Northumbria University, Newcastle-Upon-Tyne NE1 7ST, UK
| | - Sophie S. Scott
- Department of Applied Sciences, Northumbria University, Newcastle-Upon-Tyne NE1 7ST, UK
| | - Ian G. Davies
- Research Institute of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
2
|
Gao Y, Finlay R, Yin X, Brennan L. Urinary Biomarkers of Strawberry and Blueberry Intake. Metabolites 2024; 14:505. [PMID: 39330512 PMCID: PMC11434597 DOI: 10.3390/metabo14090505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction There is increasing interest in food biomarkers to address the shortcomings of self-reported dietary assessments. Berries are regarded as important fruits worldwide; however, there are no well-validated biomarkers of berry intake. Thus, the objective of this study is to identify urinary biomarkers of berry intake. Methods For the discovery study, participants consumed 192 g strawberries with 150 g blueberries, and urine samples were collected at 2, 4, 6, and 24 h post-consumption. A dose-response study was performed, whereby participants consumed three portions (78 g, 278 g, and 428 g) of mixed strawberries and blueberries. The urine samples were profiled by an untargeted LC-MS metabolomics approach in the positive and negative modes. Results Statistical analysis of the data revealed that 39 features in the negative mode and 15 in the positive mode significantly increased between fasting and 4 h following mixed berry intake. Following the analysis of the dose-response data, 21 biomarkers showed overall significance across the portions of berry intake. Identification of the biomarkers was performed using fragmentation matches in the METLIN, HMDB, and MoNA databases and in published papers, confirmed where possible with authentic standards. Conclusions The ability of the panel of biomarkers to assess intake was examined, and the predictability was good, laying the foundations for the development of biomarker panels.
Collapse
Affiliation(s)
- Ya Gao
- Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (Y.G.); (R.F.); (X.Y.)
- UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Rebecca Finlay
- Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (Y.G.); (R.F.); (X.Y.)
- UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Xiaofei Yin
- Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (Y.G.); (R.F.); (X.Y.)
- UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Lorraine Brennan
- Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (Y.G.); (R.F.); (X.Y.)
- UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
3
|
Wang L, Lan W, Chen D. Blueberry ( Vaccinium spp.) Anthocyanins and Their Functions, Stability, Bioavailability, and Applications. Foods 2024; 13:2851. [PMID: 39272616 PMCID: PMC11395062 DOI: 10.3390/foods13172851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Blueberry fruits are rich in anthocyanins. There are 25 known anthocyanidins found in blueberries (Vaccinium spp.) until now. Anthocyanins found in blueberries have attracted considerable interest for their outstanding abilities as antioxidants, anti-inflammatory agents, anti-diabetic, anti-obesity, and neuroprotection compounds, as well as their potential for preventing cardiovascular diseases, protecting vision, and inhibiting cancer development. However, their application is constrained by issues related to instability and relatively low bioavailability. Thus, this review provides a detailed overview of categories, functions, stability, and bioavailability of blueberry anthocyanins and their practical applications. The available studies indicate that there is more potential for the industrial production of blueberry anthocyanins.
Collapse
Affiliation(s)
- Li Wang
- Anhui Ecological Fermentation Engineering Research Center for Functional Fruit Beverage, Fuyang Normal University, Fuyang 236037, China
- College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, China
| | - Wei Lan
- Anhui Ecological Fermentation Engineering Research Center for Functional Fruit Beverage, Fuyang Normal University, Fuyang 236037, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
4
|
Kocabas S, Sanlier N. The power of berries against cardiovascular diseases. Nutr Rev 2024; 82:963-977. [PMID: 37695292 DOI: 10.1093/nutrit/nuad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Cardiovascular diseases (CVDs) pose a serious threat to human health and incidence is increasing gradually. Nutrition has an important impact on the prophylaxis and progression of CVD. In this article, general attention is drawn to the possible positive effects of berries on CVD. Polyphenols have beneficial effects on the vascular system by inhibiting low-density lipoprotein oxidation and platelet aggregation, lowering blood pressure, improving endothelial dysfunction, and attenuating antioxidant defense and inflammatory responses. This review provides an overview of the effects of berries for the prevention and treatment of CVDs. Berries contain several cardioprotective antioxidants, vitamins, and numerous phytochemicals, such as phenolic compounds, that have antioxidant properties and antiplatelet activity. Phytochemical compounds in their structures can modulate dissimilar signaling pathways related to cell survival, differentiation, and growth. Important health benefits of berries include their antioxidant roles and anti-inflammatory impacts on vascular function. The effectiveness and potential of polyphenols primarily depend on the amount of bioavailability and intake. Although circulating berry metabolites can improve vascular function, their biological activities, mechanisms of action, and in vivo interactions are still unknown. Analyzing human studies or experimental studies to evaluate the bioactivity of metabolites individually and together is essential to understanding the mechanisms by which these metabolites affect vascular function.
Collapse
Affiliation(s)
- Sule Kocabas
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| |
Collapse
|
5
|
Mostafa H, Cheok A, Meroño T, Andres-Lacueva C, Rodriguez-Mateos A. Biomarkers of Berry Intake: Systematic Review Update. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11789-11805. [PMID: 37499164 PMCID: PMC10416351 DOI: 10.1021/acs.jafc.3c01142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Berries are rich in (poly)phenols, and these compounds may be beneficial to human health. Estimating berry consumption through self-reported questionnaires has been challenging due to compliance issues and a lack of precision. Estimation via food-derived biomarkers in biofluids was proposed as a complementary alternative. We aimed to review and update the existing evidence on biomarkers of intake for six different types of berries. A systematic literature search was performed to update a previous systematic review on PubMed, Web of Science, and Scopus from January 2020 until December 2022. Out of 42 papers, only 18 studies were eligible. A multimetabolite panel is suggested for blueberry and cranberry intake. Proposed biomarkers for blueberries include hippuric acid and malvidin glycosides. For cranberries, suggested biomarkers are glycosides of peonidin and cyanidin together with sulfate and glucuronide conjugates of phenyl-γ-valerolactone derivatives. No new metabolite candidates have been found for raspberries, strawberries, blackcurrants, and blackberries. Further studies are encouraged to validate these multimetabolite panels for improving the estimation of berry consumption.
Collapse
Affiliation(s)
- Hamza Mostafa
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Alex Cheok
- Department
of Nutritional Sciences, School of Life Course and Population Sciences,
Faculty of Life Sciences and Medicine, King’s
College London, 150 Stamford
Street, SE1 9NH London, U.K.
| | - Tomás Meroño
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Cristina Andres-Lacueva
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Ana Rodriguez-Mateos
- Department
of Nutritional Sciences, School of Life Course and Population Sciences,
Faculty of Life Sciences and Medicine, King’s
College London, 150 Stamford
Street, SE1 9NH London, U.K.
| |
Collapse
|
6
|
Sotelo-González AM, Reynoso-Camacho R, Hernández-Calvillo AK, Castañón-Servín AP, García-Gutiérrez DG, Gómez-Velázquez HDDJ, Martínez-Maldonado MÁ, de los Ríos EA, Pérez-Ramírez IF. Strawberry, Blueberry, and Strawberry-Blueberry Blend Beverages Prevent Hepatic Steatosis in Obese Rats by Modulating Key Genes Involved in Lipid Metabolism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4418. [PMID: 36901426 PMCID: PMC10002361 DOI: 10.3390/ijerph20054418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
There is an increasing interest in developing natural herb-infused functional beverages with health benefits; therefore, in this study, we aimed to evaluate the effect of strawberry, blueberry, and strawberry-blueberry blend decoction-based functional beverages on obesity-related metabolic alterations in high-fat and high-fructose diet-fed rats. The administration of the three berry-based beverages for eighteen weeks prevented the development of hypertriglyceridemia in obese rats (1.29-1.78-fold) and hepatic triglyceride accumulation (1.38-1.61-fold), preventing the development of hepatic steatosis. Furthermore, all beverages significantly down-regulated Fasn hepatic expression, whereas the strawberry beverage showed the greatest down-regulation of Acaca, involved in fatty acid de novo synthesis. Moreover, the strawberry beverage showed the most significant up-regulation of hepatic Cpt1 and Acadm (fatty acid β-oxidation). In contrast, the blueberry beverage showed the most significant down-regulation of hepatic Fatp5 and Cd36 (fatty acid intracellular transport). Nevertheless, no beneficial effect was observed on biometric measurements, adipose tissue composition, and insulin resistance. On the other hand, several urolithins and their derivatives, and other urinary polyphenol metabolites were identified after the strawberry-based beverages supplementation. In contrast, enterolactone was found significantly increase after the intake of blueberry-based beverages. These results demonstrate that functional beverages elaborated with berry fruits prevent diet-induced hypertriglyceridemia and hepatic steatosis by modulating critical genes involved in fatty acid hepatic metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiku Daniel de Jesús Gómez-Velázquez
- Chemistry School, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
- Facultad de Estudios Superiores Cuautilán, Universidad Nacional Autónoma de México, Querétaro 76231, Mexico
| | | | | | | |
Collapse
|
7
|
Haskell-Ramsay CF, Dodd FL, Smith D, Cuthbertson L, Nelson A, Lodge JK, Jackson PA. Mixed Tree Nuts, Cognition, and Gut Microbiota: A 4-Week, Placebo-Controlled, Randomized Crossover Trial in Healthy Nonelderly Adults. J Nutr 2022; 152:2778-2788. [PMID: 36202391 PMCID: PMC9840001 DOI: 10.1093/jn/nxac228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Beneficial effects of nut supplementation on cognitive function have previously been demonstrated in young and older adults. Alterations to gut microbiota have also been shown following tree nut consumption. However, no data exists on the effects of nuts on cognition and intestinal microbial communities assessed within the same study. OBJECTIVES The study aimed to examine the effects of daily consumption of tree nuts for 4 wk on cognitive function (primary outcome), mood, metabolomics, and gut microbial species (secondary outcomes) in healthy, nonelderly adults. METHODS This randomized, placebo-controlled, double-blind, counterbalanced crossover study assessed the effects of 4 wk of supplementation with 30 g/d mixed tree nuts versus placebo on cognition and mood in 79 healthy adults aged 18-49 y. Metabolic responses, gut bacterial community structure, and the potential for these to impact cognition were explored using a multi-omic approach. Bacterial community analysis was conducted in Quantitative Insights Into Microbial Ecology 2 (QIIME2). RESULTS Mixed model analysis indicated that nut consumption led to significant improvements to accuracy (placebo M = 92.2% compared with NUTS M = 94.5%; P = 0.019) and speed of response (placebo M = 788 ms compared with NUTS M = 757 ms; P = 0.004) on a picture recognition task. No significant changes to bacterial community α or β diversity were observed when comparing nut consumption to the placebo arm. However, an unclassified Lachnospiraceae amplicon sequence variant (ASV) was significantly enriched in participants when supplemented with nuts (P = 0.015). No correlations were observed between the changes to picture recognition and the changes to the unclassified Lachnospiraceae ASV. There were no significant changes to the urinary metabolome. CONCLUSIONS These findings indicate a positive effect of nut on cognition following only 4 wk of consumption in a healthy nonelderly sample, as well as upregulation of a microbial taxa associated with gut health. The effects appear to be independent of one another, but further exploration is required in those experiencing cognitive decline and/or gut dysbiosis.
Collapse
Affiliation(s)
| | - Fiona L Dodd
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Darren Smith
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Lewis Cuthbertson
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Nelson
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - John K Lodge
- School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Philippa A Jackson
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Effects of Blueberry Consumption on Cardiovascular Health in Healthy Adults: A Cross-Over Randomised Controlled Trial. Nutrients 2022; 14:nu14132562. [PMID: 35807742 PMCID: PMC9268639 DOI: 10.3390/nu14132562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 01/27/2023] Open
Abstract
Blueberries are rich in polyphenols, and their effect on cardiovascular health, including risk factors for endothelial dysfunction and hypertension, has been investigated in interventional studies. However, the difference between blueberry treatments in varied forms for their cardiovascular-protective effect remains poorly understood. The current study assessed the effects of whole blueberry and freeze-dried blueberry powder compared to a control on cardiovascular health in young adults. A cross-over randomised controlled trial (RCT) was implemented with 1 week of treatment for three treatment groups, each followed by 1 week of wash out period. Systolic (SBP) and diastolic blood pressure (DBP), pulse wave velocity (PWV), plasma cholesterol (low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and total cholesterol) and triglyceride levels (TAG), and glucose and nitrite (NO2-) concentrations were compared following fresh blueberry, freeze-dried blueberry powder, and control treatments. Thirty-seven participants with a mean age of 25.86 ± 6.81 completed the study. No significant difference was observed among fresh blueberry, blueberry powder, and the control arm. Plasma NO2- levels were improved by 68.66% and 4.34% separately following whole blueberry and blueberry powder supplementations compared to the baseline, whereas the control supplementation reported a decrease (−9.10%), although it was not statistically significant. There were no other effects shown for SBP, DBP, total cholesterol, HDL-C, LDL-C, TAG, or glucose. No difference was shown between whole blueberry and freeze-dried blueberry powder consumption for improving cardiovascular health.
Collapse
|
9
|
Polia F, Pastor-Belda M, Martínez-Blázquez A, Horcajada MN, Tomás-Barberán FA, García-Villalba R. Technological and Biotechnological Processes To Enhance the Bioavailability of Dietary (Poly)phenols in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2092-2107. [PMID: 35156799 PMCID: PMC8880379 DOI: 10.1021/acs.jafc.1c07198] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 06/10/2023]
Abstract
The health effects of (poly)phenols (PPs) depend upon their bioavailability that, in general, is very low and shows a high interindividual variability. The low bioavailability of PPs is mainly attributed to their low absorption in the upper gastrointestinal tract as a result of their low water solubility, their presence in foods as polymers or in glycosylated forms, and their tight bond to food matrices. Although many studies have investigated how technological and biotechnological processes affect the phenolic composition of fruits and vegetables, limited information exists regarding their effects on PP bioavailability in humans. In the present review, the effect of food processing (mechanical, thermal, and non-thermal treatments), oral-delivery nanoformulations, enzymatic hydrolysis, fermentation, co-administration with probiotics, and generation of postbiotics in PP bioavailability have been overviewed, focusing in the evidence provided in humans.
Collapse
Affiliation(s)
- Franck Polia
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | - Marta Pastor-Belda
- Department
of Analytical Chemistry, Faculty of Chemistry, Regional Campus of
International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Alberto Martínez-Blázquez
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | | | - Francisco A. Tomás-Barberán
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | - Rocío García-Villalba
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| |
Collapse
|
10
|
Herrera-Balandrano DD, Chai Z, Beta T, Feng J, Huang W. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Curtis PJ, Berends L, van der Velpen V, Jennings A, Haag L, Chandra P, Kay CD, Rimm EB, Cassidy A. Blueberry anthocyanin intake attenuates the postprandial cardiometabolic effect of an energy-dense food challenge: Results from a double blind, randomized controlled trial in metabolic syndrome participants. Clin Nutr 2021; 41:165-176. [PMID: 34883305 PMCID: PMC8757535 DOI: 10.1016/j.clnu.2021.11.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
Background & aims Whilst the cardioprotective effects of blueberry intake have been shown in prospective studies and short-term randomized controlled trials (RCTs), it is unknown whether anthocyanin-rich blueberries can attenuate the postprandial, cardiometabolic dysfunction which follows energy-dense food intakes; especially in at-risk populations. We therefore examined whether adding blueberries to a high-fat/high-sugar meal affected the postprandial cardiometabolic response over 24 h. Methods A parallel, double-blind RCT (n = 45; age 63.4 ± 7.4 years; 64% male; BMI 31.4 ± 3.1 kg/m2) was conducted in participants with metabolic syndrome. After baseline assessments, an energy-dense drink (969 Kcals, 64.5 g fat, 84.5 g carbohydrate, 17.9 g protein) was consumed with either 26 g (freeze-dried) blueberries (equivalent to 1 cup/150 g fresh blueberries) or 26 g isocaloric matched placebo. Repeat blood samples (30, 60, 90, 120, 180, 360 min and 24 h), a 24 h urine collection and vascular measures (at 3, 6, and 24 h) were performed. Insulin and glucose, lipoprotein levels, endothelial function (flow mediated dilatation (FMD)), aortic and systemic arterial stiffness (pulse wave velocity (PWV), Augmentation Index (AIx) respectively), blood pressure (BP), and anthocyanin metabolism (serum and 24 h urine) were assessed. Results Blueberries favorably affected postprandial (0–24 h) concentrations of glucose (p < 0.001), insulin (p < 0.01), total cholesterol (p = 0.04), HDL-C, large HDL particles (L-HDL-P) (both p < 0.01), extra-large HDL particles (XL-HDL-P; p = 0.04) and Apo-A1 (p = 0.01), but not LDL-C, TG, or Apo-B. After a transient higher peak glucose concentration at 1 h after blueberry intake ([8.2 mmol/L, 95%CI: 7.7, 8.8] vs placebo [6.9 mmol/L, 95%CI: 6.4, 7.4]; p = 0.001), blueberries significantly attenuated 3 h glucose ([4.3 mmol/L, 95%CI: 3.8, 4.8] vs placebo [5.1 mmol/L, 95%CI: 4.6, 5.6]; p = 0.03) and insulin concentrations (blueberry: [23.4 pmol/L, 95%CI: 15.4, 31.3] vs placebo [52.9 pmol/L, 95%CI: 41.0, 64.8]; p = 0.0001). Blueberries also improved HDL-C ([1.12 mmol/L, 95%CI: 1.06, 1.19] vs placebo [1.08 mmol/L, 95%CI: 1.02, 1.14]; p = 0.04) at 90 min and XL-HDLP levels ([0.38 × 10-6, 95%CI: 0.35, 0.42] vs placebo [0.35 × 10-6, 95%CI: 0.32, 0.39]; p = 0.02) at 3 h. Likewise, significant improvements were observed 6 h after blueberries for HDL-C ([1.17 mmol/L, 95%CI: 1.11, 1.24] vs placebo [1.10 mmol/L, 95%CI: 1.03, 1.16]; p < 0.001), Apo-A1 ([1.37 mmol/L, 95%CI: 1.32, 1.41] vs placebo [1.31 mmol/L, 95%CI: 1.27, 1.35]; p = 0.003), L-HDLP ([0.70 × 10-6, 95%CI: 0.60, 0.81] vs placebo [0.59 × 10-6, 95%CI: 0.50, 0.68]; p = 0.003) and XL-HDLP ([0.44 × 10-6, 95%CI: 0.40, 0.48] vs placebo [0.40 × 10-6, 95%CI: 0.36, 0.44]; p < 0.001). Similarly, total cholesterol levels were significantly lower 24 h after blueberries ([4.9 mmol/L, 95%CI: 4.6, 5.1] vs placebo [5.0 mmol/L, 95%CI: 4.8, 5.3]; p = 0.04). Conversely, no effects were observed for FMD, PWV, AIx and BP. As anticipated, total anthocyanin-derived phenolic acid metabolite concentrations significantly increased in the 24 h after blueberry intake; especially hippuric acid (6-7-fold serum increase, 10-fold urinary increase). In exploratory analysis, a range of serum/urine metabolites were associated with favorable changes in total cholesterol, HDL-C, XL-HDLP and Apo-A1 (R = 0.43 to 0.50). Conclusions For the first time, in an at-risk population, we show that single-exposure to the equivalent of 1 cup blueberries (provided as freeze-dried powder) attenuates the deleterious postprandial effects of consuming an energy-dense high-fat/high-sugar meal over 24 h; reducing insulinaemia and glucose levels, lowering cholesterol, and improving HDL-C, fractions of HDL-P and Apo-A1. Consequently, intake of anthocyanin-rich blueberries may reduce the acute cardiometabolic burden of energy-dense meals. Clinical trial registry NCT02035592 at www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Peter J Curtis
- Nutrition & Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, NR47UQ, UK
| | - Lindsey Berends
- Nutrition & Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, NR47UQ, UK
| | - Vera van der Velpen
- Nutrition & Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, NR47UQ, UK
| | - Amy Jennings
- Institute for Global Food Security, Queen's University Belfast, BT9 5DL, Ireland
| | - Laura Haag
- Nutrition & Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, NR47UQ, UK
| | - Preeti Chandra
- Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Colin D Kay
- Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Eric B Rimm
- Departments of Epidemiology & Nutrition, Harvard T.H. Chan School of Public Health, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aedín Cassidy
- Institute for Global Food Security, Queen's University Belfast, BT9 5DL, Ireland.
| |
Collapse
|
12
|
Kimble R, Murray L, Keane KM, Haggerty K, Howatson G, Lodge JK. The influence of tart cherries ( Prunus Cerasus) on vascular function and the urinary metabolome: a randomised placebo-controlled pilot study. J Nutr Sci 2021; 10:e73. [PMID: 34589205 PMCID: PMC8453453 DOI: 10.1017/jns.2021.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/24/2023] Open
Abstract
Montmorency tart cherries (MC) have been found to modulate indices of vascular function with interventions of varying duration. The objective of this preliminary study was to identify the chronic effects of MC supplementation on vascular function and the potential for urinary metabolomics to provide mechanistic evidence. We performed a placebo-controlled, double-blind, randomised study on 23 healthy individuals (18M, 7F) that consumed 30 ml MC or a placebo twice daily for 28 days. Whole body measures of vascular function and spot urine collections were taken at baseline and after supplementation. There were no significant changes to vascular function including blood pressure and arterial stiffness. Urinary metabolite profiling highlighted significant changes (P < 0⋅001) with putative discriminatory metabolites related to tryptophan and histidine metabolism. Overall, MC supplementation for 28 days does not improve indices of vascular function but changes to the urinary metabolome could be suggestive of potential mechanisms.
Collapse
Affiliation(s)
- Rachel Kimble
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Lucy Murray
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Karen M. Keane
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Karen Haggerty
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - John K. Lodge
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| |
Collapse
|
13
|
Zhong H, Abdullah, Deng L, Zhao M, Tang J, Liu T, Zhang H, Feng F. Probiotic-fermented blueberry juice prevents obesity and hyperglycemia in high fat diet-fed mice in association with modulating the gut microbiota. Food Funct 2021; 11:9192-9207. [PMID: 33030465 DOI: 10.1039/d0fo00334d] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blueberry dietary interventions have demonstrated remarkable potential against obesity and type 2 diabetes mellitus. However, the effects of fermented blueberry juice on metabolic syndrome, the gut microbiota, and insulin resistance have not yet been reported. This study aimed to investigate the potential of fermented blueberry juice against obesity, hyperglycemia, and gut microbiota dysbiosis in high fat diet (HFD)-fed mice. Our study findings revealed that supplementation with fresh blueberry juice (BBJ), and fermented blueberry juice with homemade probiotic starter (FBJ) or commercial starter (CFBJ) significantly decreased fat accumulation and low density lipoprotein cholesterol (LDL-C) levels in HFD-fed mice. FBJ showed relatively more potency to reduce body weight than BBJ and CFBJ. The percentage increase in the body weight of the FBJ group was almost the same as that in the normal chow diet (NCD) group, and was approximately 10% lower than the BBJ and CFBJ groups. Overall, all blueberry juices significantly ameliorated hyperlipidemia and insulin resistance in HFD-fed mice. Moreover, the dietary interventions with BBJ, FBJ, and CFBJ for 17 weeks significantly improved the community richness and diversity of the gut microflora along with an altered structure in the HFD-fed mice group. The FBJ treated mice group showed relatively low abundance of Firmicutes, obesity-related bacteria (Oscillibacter and Alistipes), and high abundance of lean bacteria (Akkermansia, Barnesiella, Olsenella, Bifidobacterium, and Lactobacillus) compared to the HFD-fed mice group. Furthermore, BBJ and FBJ treatments regulated the liver mRNA and protein expression levels involved in lipid and glucose metabolism. This study inferred that fermented blueberry juice could be used as a functional food to prevent the modern pandemics i.e., obesity and insulin resistance.
Collapse
Affiliation(s)
- Hao Zhong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. and Ningbo Institute of Zhejiang University, Ningbo 315100, China
| | - Abdullah
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lingli Deng
- College of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. and Ningbo Institute of Zhejiang University, Ningbo 315100, China
| | - Jun Tang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. and Ningbo Institute of Zhejiang University, Ningbo 315100, China
| | - Tao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. and Ningbo Institute of Zhejiang University, Ningbo 315100, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. and Ningbo Institute of Zhejiang University, Ningbo 315100, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. and Ningbo Institute of Zhejiang University, Ningbo 315100, China
| |
Collapse
|
14
|
Ulaszewska M, Garcia-Aloy M, Vázquez-Manjarrez N, Soria-Florido MT, Llorach R, Mattivi F, Manach C. Food intake biomarkers for berries and grapes. GENES AND NUTRITION 2020; 15:17. [PMID: 32967625 PMCID: PMC7509942 DOI: 10.1186/s12263-020-00675-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Grapes and berries are two types of widely consumed fruits characterized by a high content in different phytochemicals. However, their accurate dietary assessment is particularly arduous, because of the already wide recognized bias associated with self-reporting methods, combined with the large range of species and cultivars and the fact that these fruits are popularly consumed not only in fresh and frozen forms but also as processed and derived products, including dried and canned fruits, beverages, jams, and jellies. Reporting precise type and/or quantity of grape and berries in FFQ or diaries can obviously be affected by errors. Recently, biomarkers of food intake (BFIs) rose as a promising tool to provide accurate information indicating consumption of certain food items. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs have been developed within the Food Biomarker Alliance (FoodBAll) Project. This paper aims to evaluate the putative BIFs for blueberries, strawberries, raspberries, blackberries, cranberries, blackcurrant, and grapes. Candidate BFIs for grapes were resveratrol metabolites and tartaric acid. The metabolites considered as putative BFI for berries consumption were mostly anthocyanins derivatives together with several metabolites of ellagitannins and some aroma compounds. However, identification of BFIs for single berry types encountered more difficulties. In the absence of highly specific metabolites reported to date, we suggested some multi-metabolite panels that may be further investigated as putative biomarkers for some berry fruits.
Collapse
Affiliation(s)
- M Ulaszewska
- Fondazione Edmund Mach, Research and Innovation Centre Food Quality and Nutrition, Via Mach 1, 38010, San Michele all'Adige, Italy.,Center for Omics Sciences, Proteomics and Metabolomics Facility - ProMeFa, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Garcia-Aloy
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain. .,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain.
| | - N Vázquez-Manjarrez
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont-Ferrand, France.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Slavador Zubiran, Mexico City, Mexico
| | - M T Soria-Florido
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - R Llorach
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - F Mattivi
- Fondazione Edmund Mach, Research and Innovation Centre Food Quality and Nutrition, Via Mach 1, 38010, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trent, Trento, Italy
| | - C Manach
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont-Ferrand, France
| |
Collapse
|
15
|
Wang Y, Gallegos JL, Haskell-Ramsay C, Lodge JK. Effects of chronic consumption of specific fruit (berries, citrus and cherries) on CVD risk factors: a systematic review and meta-analysis of randomised controlled trials. Eur J Nutr 2020; 60:615-639. [PMID: 32535781 PMCID: PMC7900084 DOI: 10.1007/s00394-020-02299-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Purpose
This review aims to compare the magnitude of the effects of chronic consumption of fruits; specifically berries, citrus and cherries on cardiovascular disease (CVD) risk factors. Methods PubMed, Web of Science, Scopus, and psycARTICLES were searched from inception until January 2020. Forty-five chronic (≥ 1 week) randomised controlled trials assessing CVD risk factors including endothelial (dys)function, blood pressure (BP), blood lipids and inflammatory biomarkers were included. Results Investigated interventions reported improvements in endothelial function (n = 8), inflammatory biomarkers and lipid status (n = 14), and BP (n = 10). Berries including juice of barberry, cranberry, grape, pomegranate, powder of blueberry, grape, raspberry and freeze-dried strawberry significantly reduced SBP by 3.68 mmHg (95% CI − 6.79 to − 0.58; P = 0.02) and DBP by 1.52 mmHg (95% CI − 2.87 to − 0.18, P = 0.04). In subgroup analysis, these associations were limited to cranberry juice (SBP by 1.52 mmHg [95% CI − 2.97 to − 0.07; P = 0.05], DBP by 1.78 mmHg [95% CI − 3.43 to − 0.12, P = 0.04] and cherry juice (SBP by 3.11 mmHg [95% CI − 4.06 to − 2.15; P = 0.02]). Berries also significantly elevated sVCAM-1 levels by 14.57 ng/mL (85% CI 4.22 to 24.93; P = 0.02). Conclusion These findings suggest that supplementing cranberry or cherry juice might contribute to an improvement in blood pressure. No other significant improvements were observed for other specified fruits. More research is warranted comparing different classes of fruit and exploring the importance of fruit processing on their cardiovascular-protective effects. Electronic supplementary material The online version of this article (10.1007/s00394-020-02299-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yueyue Wang
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, EBD223 Ellison Building, Newcastle upon Tyne, NE1 8ST, UK
| | - Jose Lara Gallegos
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, EBD223 Ellison Building, Newcastle upon Tyne, NE1 8ST, UK
| | - Crystal Haskell-Ramsay
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - John K Lodge
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, EBD223 Ellison Building, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|