1
|
Salfer IJ, Bartell PA, Harvatine KJ. Effects of timing of abomasal infusion of fatty acids on the daily rhythms of milk synthesis and plasma hormones and metabolites in dairy cows. J Dairy Sci 2025:S0022-0302(25)00363-7. [PMID: 40383386 DOI: 10.3168/jds.2024-26215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
Dairy cows display daily rhythms of milk synthesis that appear to be driven by a circadian clock located in the mammary gland. These rhythms are altered by the time of feed availability. Fatty acids have been shown to entrain circadian rhythms in liver and adipose tissue in experimental models, but their role in the mammary gland has not been well investigated. Our objective was to determine the effects of the timing of fatty acid absorption on the daily rhythms of milk synthesis. Nine lactating Holstein cows were arranged in a 3 × 3 Latin square design. Treatments were abomasal infusions of 350 g/d of a free fatty acid stock enriched in cis-9 18:1 either continuously throughout the day for 22 h (CON) or for 8 h from 0900 to 1700 h (DAY) or from 2100 to 0500 h (NGT). Treatment periods were 12 d with a 5-d washout. Cows were milked every 6 h during the final 7 d of each period to determine the daily patterns of milk synthesis. A 24-h rhythm was fit to time course data using cosine analysis, and the amplitude and acrophase (time at peak) were determined. Daily milk and milk protein yields were decreased by DAY and NGT compared with CON, whereas milk fat yield was not changed. Milk yield fit a 24-h rhythm in CON and DAY but not in NGT. Furthermore, DAY delayed the peak of the daily rhythm of milk yield by 2 h compared with CON. Fat and protein concentrations exhibited daily rhythms in CON and NGT but not DAY. Fat yield only fit a 24-h rhythm in DAY. Both de novo and mixed-source fatty acid yields were reduced by DAY and NGT, suggesting that the faster infusion rates may have resulted in concentrations of fatty acids that exceeded a threshold sufficient to inhibit de novo fatty acid synthesis. Plasma glucose concentration failed to display a daily rhythm in any treatment, whereas nonesterified fatty acids showed a rhythm in CON and NGT, but this rhythm was abolished by DAY. Insulin fit a rhythm in NGT and tended to fit a rhythm with a lower amplitude in CON, but no rhythm was present in DAY. Blood urea nitrogen exhibited a daily rhythm under all treatments, and both the mean and amplitude were increased by DAY. Daily rhythms of milk synthesis were also modified by DAY, with a slight delay in the daily peak of milk yield and elimination of the rhythms of milk fat and protein concentrations. Infusion at night had little effect. Daytime infusion also modified the daily rhythms of plasma metabolites by reducing the amplitude of nonesterified fatty acid concentration and increased the amplitude of blood urea nitrogen.
Collapse
Affiliation(s)
- I J Salfer
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - P A Bartell
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - K J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
2
|
Ravelo AD, Matamoros C, Harvatine KJ, Salfer IJ. Daily rhythms of glucose, insulin, and nonesterified fatty acid responses to an intravenous glucose tolerance test in dairy cows. J Dairy Sci 2025; 108:5462-5474. [PMID: 40139369 DOI: 10.3168/jds.2024-26146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/06/2025] [Indexed: 03/29/2025]
Abstract
In nonruminant species, glucose tolerance and insulin sensitivity are known to be regulated by circadian rhythms, which are repeating ∼24-h cycles that govern many aspects of behavior, physiology, and metabolism. However, it is unknown if these rhythms exist in dairy cows. Our objective was to determine the fit of a daily rhythm of glucose, insulin, and nonesterified fatty acid (NEFA) clearance rates independent of daily patterns of nutrient intake. To accomplish our objective, 12 multiparous lactating Holstein cows were enrolled in a within-subject design conducted over 2 experimental periods (n = 6/period). Within each period, cows were subjected to intravenous glucose tolerance tests (IVGTT) at 4 timepoints, representing different times of the day (0300, 0900, 1500, and 2100 h). The 0900 and 2100 h IVGTT were performed 36 h apart, followed by a 7-d washout, and then the 1500 and 0300 h IVGTT were performed 36 h apart. Cows were fed 12 times/d at 2-h intervals beginning 24 h before the first IVGTT in each set until the second IVGTT in each set to stabilize feed intake across the day, with 1 time/d feeding occurring during the washout period. For each IVGTT, 250 g of glucose was infused as a 50% (wt/vol) d-glucose solution via a jugular catheter and blood was collected at -15, -5, immediately before, 0, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min relative to infusion. A linear mixed model with the fixed effects of cosine and sine and random effect of cow within period was used for the outcomes of clearance rate, half-life, baseline concentration, time to baseline concentration, and area under the curve (AUC) for glucose, insulin, and NEFA. A zero-amplitude test was used to determine the fit of a 24-h cosine function and cosinor rhythmometry was used to determine the amplitude and acrophase of the 24-h rhythm. Insulin concentrations at baseline followed a diurnal rhythm. Glucose and insulin clearance rate, half-life, and AUC also followed a diurnal rhythm. Glucose and insulin clearance rates peaked at 1247 h and 0944 h, respectively. No circadian rhythm was detected for plasma NEFA concentrations. Results suggest that insulin-stimulated glucose uptake is controlled differently throughout the day by circadian rhythms.
Collapse
Affiliation(s)
- Anay D Ravelo
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108
| | - Cesar Matamoros
- Department of Animal Science, Penn State University, University Park, PA 16802
| | - Kevin J Harvatine
- Department of Animal Science, Penn State University, University Park, PA 16802
| | - Isaac J Salfer
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108.
| |
Collapse
|
3
|
Jiang X, Geng H, Zhang C, Zhu Y, Zhu M, Feng D, Wang D, Yao J, Deng L. Circadian Rhythm Enhances mTORC1/AMPK Pathway-Mediated Milk Fat Synthesis in Dairy Cows via the Microbial Metabolite Acetic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28178-28193. [PMID: 39630106 DOI: 10.1021/acs.jafc.4c07488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Livestock may respond differently to circadian rhythms, leading to differences in the composition of the animal products. Nevertheless, the circadian effects on rumen microorganisms and animal products are poorly understood. In the study, it was found that dairy cows exhibited increased milk fat levels, decreased acetic acid concentrations in the rumen fluid, and elevated acetic acid levels in the blood during the night compared to those of the day. Correlational analyses suggested a high association between Succiniclasticum, Lactobacillus, Prevotellacene NK3B31_group, Muribaculaceae_unclassified, etc., which were significantly enriched in rumen fluid at night, and milk fat levels. The differential metabolite Vitamin B6, significantly elevated at night, promoted the translocation of acetic acid into the circulation by increasing the level of rumen epithelial MCT1 protein expression. In addition, we found that both acetic acid treatment time and dose modulated the expression of lipid metabolism transcription factors (PPARγ, PPARα, and SREBP1c) and downstream genes (FASN, SCD1, ACCα, and CPT1A). Additionally, the mTORC1 and AMPK pathways were responsible for the effects of acetic acid on transcription factors and genes involved in lipid metabolism. Differences in rumen microbial taxa were observed between the day and night. Microbial metabolite (acetic acid) was found to be absorbed into the bloodstream and entered the mammary gland at night at a significantly elevated level. This regulation impacted the expression of lipid metabolism-related transcription factors (PPARγ, PPARα, and SREBP1c), as well as downstream genes through the mTORC1 and AMPK signaling pathways, ultimately affecting milk fat synthesis. These findings provide a new perspective for the microbial regulation of milk synthesis.
Collapse
Affiliation(s)
- Xingwei Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miaomiao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dingping Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, Guangdong 518000, China
| |
Collapse
|
4
|
Reis LG, Teeple K, Schoonmaker JL, Davis C, Scinto S, Schinckel A, Casey T. Constant light and high fat diet alter daily patterns of activity, feed intake and fecal corticosterone levels in pregnant and lactating female ICR mice. PLoS One 2024; 19:e0312419. [PMID: 39565751 PMCID: PMC11578523 DOI: 10.1371/journal.pone.0312419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/05/2024] [Indexed: 11/22/2024] Open
Abstract
The prevalence of constant light exposure and high-fat diet in modern society raises concerns regarding their impact on maternal and offspring health outcomes. In rodents, exposure to maternal high-fat diet or continuous light negatively program metabolic and stress response outcomes of offspring. A 2x3 factorial study was conducted to investigate the impact of diet (control-CON, 10% fat, or high fat-HF, 60% fat) and exposure to different lighting conditions: regular 12-hour light-dark cycles (LD), continuous dim light (L5), or continuous bright light (L100) on female ICR mice daily patterns of time in and out of the nest, feed intake, and fecal corticosterone levels during gestation and lactation. Our previous analysis of these mice found HF diet decreased number of pups born, but increased litter growth rate to postnatal (PN) d12. Whereas continuous light increased gestation length and tended to increase PN litter growth. Here we report that patterns of grams of feed intake, an indicator of feeding activity, were affected by light, diet, period of the day (day versus night) and physiological state (gestation and lactation), with significant interactions among all these variables (P<0.05). HF diet and light treatment increased fecal corticosterone output (P<0.05) during lactation. Dams exhibited significant 12 h and 24 h rhythms of activity out of the nest in the first 48 h postnatal, with time outside of the nest greater in the second 24 h period. L100 treatment and HF diet attenuated rhythms and shifted phase of rhythms relative to LD and CON, respectively (P<0.05). Alterations in behavior affect maternal physiology, including level and timing of release of corticosteroids. Elevated fecal corticosterone levels due to high-fat diet and continuous light may have potential implications on maternal-offspring health, and potentially underlie some of the adverse effects of modern lifestyle factors on maternal and offspring health.
Collapse
Affiliation(s)
- Leriana Garcia Reis
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Kelsey Teeple
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Jenna Lynn Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Corrin Davis
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Sara Scinto
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Allan Schinckel
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
5
|
Nichols K, Wever N, Rolland M, Dijkstra J. Effect of source and frequency of rumen-protected protein supplementation on mammary gland amino acid metabolism and nitrogen balance of dairy cattle. J Dairy Sci 2024; 107:6797-6816. [PMID: 38762111 DOI: 10.3168/jds.2023-24370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/27/2024] [Indexed: 05/20/2024]
Abstract
The AA profile of MP affects mammary gland metabolism and milk N efficiency of dairy cattle. Further, the frequency of dietary protein supplementation may influence N partitioning leading to reduced N excretion. This study investigated the effect of source and frequency of rumen-protected (RP) protein supplementation on apparent total-tract digestibility, milk production, mammary gland AA metabolism, and N balance of dairy cattle. Twenty-eight Holstein-Friesian cows (2.3 ± 0.9 lactations; 93 ± 27 DIM; mean ± SD) were used in a randomized complete block design and fed a basal TMR consisting of 41% corn silage, 32% grass silage, and 27% concentrate (DM basis) and formulated to meet 100% and 95% of net energy and MP requirements, respectively. Cows were adapted to the basal TMR in a freestall barn for 7 d, moved to individual tiestalls for 13 d of adaptation to dietary treatments, and then moved into climate respiration chambers for a 4-d measurement period. Treatments consisted of the basal TMR (CON; 159 g CP/kg DM) or the basal TMR including 1 of 3 iso-MP supplements: (1) 315-g mixture of RP soybean meal and RP rapeseed meal fed daily (ST-RPSR), (2) 384-g mixture of RP His, RP Lys, and RP Met fed daily (ST-RPAA), and (3) 768-g mixture of RP His, RP Lys, and RP Met fed every other day (OS-RPAA). The basal TMR with the addition of treatment supplements was designed to deliver 100% of required MP over a 48-h period. The mixture of His, Lys, and Met was formulated to deliver digestible AA in amounts relative to their concentration in casein. Compared with ST-RPSR, ST-RPAA increased milk protein and fat concentration, increased the arterial concentration of total His, Lys, and Met (HLM), decreased mammary clearance of HLM, and increased clearance of Phe, Leu, and Tyr (tendency for Leu and Tyr). Rumen-protected protein source did not affect N balance, but the marginal use efficiency (efficiency of transfer of RP protein supplement into milk protein) of ST-RPAA (67%) was higher than that of ST-RPSR (17%). Milk protein concentration decreased with OS-RPAA compared with ST-RPAA. Arterial concentration of HLM increased on the nonsupplemented day compared with the supplemented day with OS-RPAA, and there was no difference in arterial HLM concentration across days with ST-RPAA. Mammary uptake of HLM tended to increase on the nonsupplemented day compared with the supplemented day with OS-RPAA. Supplementation frequency of RP AA did not affect N balance or overall milk N efficiency, but the marginal use efficiency of OS-RPAA (49%) was lower compared with ST-RPAA. Overall, mammary glands responded to an increased supply of His, Lys, and Met by reducing efflux of other EAA when RP His, RP Lys, and RP Met were supplemented compared with RP plant proteins. Mammary glands increased sequestration of EAA (primarily HLM) on the nonsupplemented day with OS-RPAA, but supplementing RP AA according to a 24-h oscillating pattern did not increase N efficiency over static supplementation.
Collapse
Affiliation(s)
- K Nichols
- Animal Nutrition Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands.
| | - N Wever
- Animal Nutrition Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - M Rolland
- Ajinomoto Animal Nutrition Europe, 75017 Paris, France
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
6
|
Amatobi KM, Ozbek-Unal AG, Schäbler S, Deppisch P, Helfrich-Förster C, Mueller MJ, Wegener C, Fekete A. The circadian clock is required for rhythmic lipid transport in Drosophila in interaction with diet and photic condition. J Lipid Res 2023; 64:100417. [PMID: 37481037 PMCID: PMC10550813 DOI: 10.1016/j.jlr.2023.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
Modern lifestyle is often at odds with endogenously driven rhythmicity, which can lead to circadian disruption and metabolic syndrome. One signature for circadian disruption is a reduced or altered metabolite cycling in the circulating tissue reflecting the current metabolic status. Drosophila is a well-established model in chronobiology, but day-time dependent variations of transport metabolites in the fly circulation are poorly characterized. Here, we sampled fly hemolymph throughout the day and analyzed diacylglycerols (DGs), phosphoethanolamines (PEs) and phosphocholines (PCs) using LC-MS. In wild-type flies kept on sugar-only medium under a light-dark cycle, all transport lipid species showed a synchronized bimodal oscillation pattern with maxima at the beginning and end of the light phase which were impaired in period01 clock mutants. In wild-type flies under constant dark conditions, the oscillation became monophasic with a maximum in the middle of the subjective day. In strong support of clock-driven oscillations, levels of the targeted lipids peaked once in the middle of the light phase under time-restricted feeding independent of the time of food intake. When wild-type flies were reared on full standard medium, the rhythmic alterations of hemolymph lipid levels were greatly attenuated. Our data suggest that the circadian clock aligns daily oscillations of DGs, PEs, and PCs in the hemolymph to the anabolic siesta phase, with a strong influence of light on phase and modality.
Collapse
Affiliation(s)
- Kelechi M Amatobi
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany; Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ayten Gizem Ozbek-Unal
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Stefan Schäbler
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Peter Deppisch
- Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Martin J Mueller
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Wegener
- Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| | - Agnes Fekete
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Huang J, Wang Q, Zhang K, He S, Liu Z, Li M, Liu M, Guo Y, Wu Z. Optimizing Feeding Strategies for Growing Rabbits: Impact of Timing and Amount on Health and Circadian Rhythms. Animals (Basel) 2023; 13:2742. [PMID: 37685006 PMCID: PMC10487096 DOI: 10.3390/ani13172742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Mammals exhibit circadian rhythms in their behavior and physiological activities to adapt to the diurnal changes of the environment. Improper feeding methods can disrupt the natural habits of animals and harm animal health. This study investigated the effects of feeding amount and feeding time on growing rabbits in northern China during spring. A total of 432 healthy 35-day-old weaned rabbits with similar body weight were randomly assigned to four groups: whole day diet-unrestricted feeding (WUF), whole day diet-restricted feeding (WRF), nighttime diet-unrestricted feeding (NUF), and nighttime diet-restricted feeding (NRF). The results showed that nighttime diet-unrestricted feeding improved performance, circadian rhythm of behavior, and body temperature, while reducing the risk of diarrhea and death. WRF group increased daytime body temperature but had no significant difference in feed conversion rate. The study suggests that nighttime diet-unrestricted feeding in spring can improve the growth and welfare of rabbits in northern China. Our study underscores the pivotal role of feeding timing in enhancing animal health. Future investigations should delve into the underlying mechanisms and expand the application of this strategy across seasons and regions to improve rabbit husbandry practices.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.H.); (Q.W.); (K.Z.); (S.H.); (Z.L.)
| | - Qiangjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.H.); (Q.W.); (K.Z.); (S.H.); (Z.L.)
| | - Kehao Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.H.); (Q.W.); (K.Z.); (S.H.); (Z.L.)
| | - Shuai He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.H.); (Q.W.); (K.Z.); (S.H.); (Z.L.)
| | - Zhongying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.H.); (Q.W.); (K.Z.); (S.H.); (Z.L.)
| | - Mingyong Li
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao 266431, China; (M.L.); (M.L.)
| | - Man Liu
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao 266431, China; (M.L.); (M.L.)
| | - Yao Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.H.); (Q.W.); (K.Z.); (S.H.); (Z.L.)
| | - Zhonghong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.H.); (Q.W.); (K.Z.); (S.H.); (Z.L.)
| |
Collapse
|
8
|
Montes ME, Brunton M, Mann A, Teeple K, George U, Boerman J, Casey T. Relationship between body temperature and behavior of nonpregnant early-lactation dairy cows. JDS COMMUNICATIONS 2023; 4:308-312. [PMID: 37521064 PMCID: PMC10382830 DOI: 10.3168/jdsc.2022-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/04/2022] [Indexed: 08/01/2023]
Abstract
Animal behavior and management factors that influence behavior affect physiology and lactation performance. Circadian rhythms of core body temperature are a primary output of the master clock; however, core body temperature in early-lactation dairy cows showed poor fit to 24-h rhythms. We hypothesized that eating behavior was related to daily body temperature oscillations. The objectives of this study were to determine if oscillations in daily behaviors, specifically feeding behavior, were related to body temperature. The behavior of 11 Holstein cows (34 ± 14 d in milk; mean ± standard deviation) housed in a freestall barn was recorded every 10 min for a 48-h period. Simultaneously, data loggers (iButtons; iButtonLink Technology) recorded the body temperature of cows with the same sampling frequency. The mean temperature of all cows showed a better fit to a 2-component cosinor (R2 = 0.54) than to a single cosinor model (R2 = 0.26). Logistic regression showed that the probability (Pr) of a cow experiencing an increase in body temperature (increment, I) given that she was milking [Pr(I|milking) = 0.94] was higher than for ruminating [Pr(I|ruminating) = 0.69], lying [Pr(I|lying) = 0.66], feeding [Pr(I|feeding) = 0.16], standing [Pr(I|standing) = 0.54], and mounting [Pr(I|mounting) = 0.62]. The main limitations of this study are the length of the observation period and the sample size. Longer observation windows on core body temperature would allow to isolate the noise and the signal and identify patterns with more clarity. Oscillations in body temperature were not associated with feeding. However, findings indicate that milking, activity associated with walking to the parlor, or the temperature in the parlor may affect secondary rhythms of daily body temperature.
Collapse
Affiliation(s)
- Maria Elisa Montes
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Mercedes Brunton
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Adrianna Mann
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Kelsey Teeple
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Uduak George
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182-7720
| | - Jacquelyn Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
9
|
Salfer IJ, Matamoros CI, Bartell PA, Harvatine KJ. Effects of the timing of protein infusion on the daily rhythms of milk synthesis and plasma hormones and metabolites in dairy cows. J Dairy Sci 2023:S0022-0302(23)00293-X. [PMID: 37268575 DOI: 10.3168/jds.2022-22633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/10/2023] [Indexed: 06/04/2023]
Abstract
Milk synthesis exhibits a daily rhythm that is modified by the timing of feed intake. However, it is unknown how specific nutrients entrain this daily rhythm. Amino acids have an important role in milk synthesis, and may have a role in entrainment of mammary circadian rhythms. The objective of this study was to determine the effects of intestinally absorbed protein on daily rhythms of milk and milk component synthesis and key plasma hormones and metabolites. Nine lactating Holstein cows were assigned to 1 of 3 treatment sequences in a 3 × 3 Latin square. Treatments included abomasal infusions of 500 g/d of sodium caseinate either continuously throughout the day (CON), for 8 h/d from 0900 to 1700 h (DAY), or for 8 h/d from 2100 to 0500 h (NGT). Cows were milked every 6 h during the final 8 d of each period. A 24-h rhythm was fit to data using cosine analysis and the amplitude and acrophase were determined. Night infusion of protein decreased the daily milk yield and milk protein yield by 8.2% and 9.2%, respectively. Milk fat yield was increased 5.5% by DAY and milk fat concentration was increased 8.8% by NGT. Milk yield exhibited a daily rhythm in all treatments, with NGT increasing the amplitude of the daily rhythm 33% compared with CON. Milk fat concentration fit a daily rhythm in CON and NGT, but not DAY, whereas milk protein concentration fit a daily rhythm in CON and DAY, but not NGT. Moreover, DAY abolished the daily rhythm of plasma glucose concentration, but induced rhythms of plasma insulin and nonesterified fatty acid concentrations. Results suggest that feeding increased protein levels during the early part of the day may increase milk fat yield and modify energy metabolism through increased daily variation in insulin-stimulated lipid release, but additional research focused on feeding multiple diets across the day is required.
Collapse
Affiliation(s)
- Isaac J Salfer
- Department of Animal Science, Penn State University, University Park, PA 16802
| | - Cesar I Matamoros
- Department of Animal Science, Penn State University, University Park, PA 16802
| | - P A Bartell
- Department of Animal Science, Penn State University, University Park, PA 16802
| | - Kevin J Harvatine
- Department of Animal Science, Penn State University, University Park, PA 16802.
| |
Collapse
|
10
|
The Effect of Short-Wavelength White LED Illumination throughout the Night on the Milk Fatty Acid Profile of High-Yielding Dairy Cows. BIOLOGY 2022; 11:biology11121799. [PMID: 36552308 PMCID: PMC9775544 DOI: 10.3390/biology11121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Fatty acid levels in milk vary between day and night milking. Many dairy cows are still kept under white light-emitting diode (W-LED) illumination throughout the night, although it is known to disrupt endogenous circadian rhythms. We investigated the effects of whole-night W-LED illumination (125 lux) on milk yield and circadian composition, compared to a natural light−dark (LD) cycle of 10 h light. Mid−late lactation cows (n = 34) that were exposed to natural LD cycle showed circadian variation in milk fat composition, characterized by higher health-promoting monounsaturated fatty acid (MUFA; 24.2 ± 0.4 vs. 23.2 ± 0.4 g/100 g fat, p < 0.001) and lower saturated fatty acid levels (71.2 ± 0.4 vs. 72.5 ± 0.4, p < 0.001) at 13:30 h (day milk) than at 03:30 h (night milk). Compared to natural LD (n = 16), W-LED (n = 18) did not affect milk production or milk fat yields, yet abolished the milking time variation in milk fat composition towards a less healthy fatty acid profile. This lowered MUFA levels of day milk (23.8 ± 0.4 vs. 26.7 ± 0.4, p < 0.01). Therefore, W-LED has no commercial advantage over the tested natural LD cycle, and conversely, even shows circadian disruption. Accordingly, a natural LD cycle of 10 h light is preferable over W-LED from the perspective of cost savings, the cows’ well-being, and preserving the natural milk fat profile, as the nutritional value of the day milk is slightly higher.
Collapse
|
11
|
Brown W, Caputo M, Siberski C, Koltes J, Peñagaricano F, Weigel K, White H. Predicting dry matter intake in mid-lactation Holstein cows using point-in-time data streams available on dairy farms. J Dairy Sci 2022; 105:9666-9681. [DOI: 10.3168/jds.2021-21650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
|
12
|
Matamoros C, Salfer IJ, Bartell PA, Harvatine KJ. Effect of the timing of sodium acetate infusion on the daily rhythms of milk synthesis and plasma metabolites and hormones in Holstein cows. J Dairy Sci 2022; 105:7432-7445. [PMID: 35931478 DOI: 10.3168/jds.2022-21912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022]
Abstract
Dairy cows have a daily pattern of feed intake which influences ruminal fermentation and nutrient absorption. Milk synthesis also exhibits a daily rhythm and is altered by the timing of feed availability. Nutrients can regulate physiological rhythms, but it is unclear which specific nutrients affect the rhythms of milk synthesis in the cow. The objective of this study was to determine the effect of the timing of acetate infusion on the daily rhythms of feed intake, milk synthesis, milk fatty acids, plasma insulin and metabolites, and core body temperature. Ten lactating ruminally cannulated Holstein cows (127 ± 24.6 d in milk; mean ± standard deviation) were arranged in a 3 × 3 Latin square design. Treatments were ruminal infusions of 600 g/d of acetate either continuously throughout the day (CON) or over 8 h/d during the day (day treatment, DT; 0900 to 1700 h) or the night (night treatment, NT; 2100 to 0500 h). Experimental periods were 14 d with a 7-d washout between periods. Cows were milked every 6 h during the final 7 d of each experimental period to determine the daily pattern of milk synthesis. Blood samples were taken to represent every 4 h across the day and plasma glucose, insulin, β-hydroxybutyrate, urea nitrogen, and acetate concentration were measured. An intravaginal temperature logger was used to measure core body temperature. Data were analyzed with cosinor-based rhythmometry to test the fit of a cosine function with a period of 24 h and to determine the acrophase (time at peak) and amplitude (peak to mean) of each rhythm. Milk yield fit a daily rhythm for all treatments and DT and NT phase-delayed the rhythm and DT increased the robustness of the rhythm. Milk protein concentration fit a daily rhythm for all treatments and DT increased robustness, whereas NT phase-delayed the rhythm. Plasma acetate concentration also fit a daily rhythm in all treatments. Plasma acetate peaked at ∼1600 h in CON and DT and at 0053 h in NT, reflecting the timing of treatment infusions. There was a daily rhythm in plasma β-hydroxybutyrate that reflected the plasma acetate rhythm. Core body temperature fit a rhythm for all treatments, but the amplitude of the rhythm was smaller than previously observed. In conclusion, the timing of acetate infusion influences peripheral rhythms of milk synthesis and plasma metabolites.
Collapse
Affiliation(s)
- C Matamoros
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | - I J Salfer
- Department of Animal Science, Pennsylvania State University, University Park 16802; Department of Animal Science, University of Minnesota, St. Paul 55108
| | - P A Bartell
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | - K J Harvatine
- Department of Animal Science, Pennsylvania State University, University Park 16802.
| |
Collapse
|
13
|
Matamoros C, Bomberger RA, Harvatine KJ. Validation of an alternate method for monitoring the presence of cows at the feed bunk in a Calan Broadbent Feeding System using a 3-axis, data-logging accelerometer. JDS COMMUNICATIONS 2022; 3:26-31. [PMID: 35757156 PMCID: PMC9231682 DOI: 10.3168/jdsc.2021-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Daily dry matter intake is a key observation in dairy nutrition, and observation of feeding behavior provides insight into the physiological control of hunger and satiety that regulate intake. The objective of the study was to develop and validate an alternative method to observe feeding behavior, including meal length and frequency, in a Calan Broadbent Feeding System (American Calan) using a 3-axis accelerometer (Hobo Pendant G, Onset Computer Corp.). Sensors were mounted between the door and the feed divider using commonly available materials without making permanent modifications to the feeding system. Forty-eight sensors were deployed with a recording frequency of 30 s for the last 7 d of each period in a crossover experiment with 24 multiparous and 24 primiparous animals housed in a freestall barn. The tilt angle on the Z-axis was used to determine when the door was open to indicate feeding activity. The sensor system was in very high agreement with 6 h of visual observation (Cohen’s κ = 0.92 ± 0.014; estimate ± 95% confidence interval). The minimum intermeal interval is the time between 2 feeding bouts that is still considered one meal. This essential criterion to characterize meals was calculated by determining the intersection of a mixture of Gaussian distributions fitted to the log-transformed between-feeding intervals. The best fitting mixture of Gaussian distributions was determined with the distribution module of JMP Pro 14.3.0 (SAS Institute Inc.). The minimum intermeal interval was 31.3 min using the best fitting model, a mixture of 3 Gaussian distributions. Using the determined minimum intermeal interval, meal length averaged 37.3 min/meal and meal frequency averaged 7.3 meals/d. In conclusion, data-logging 3-axis accelerometers are adequate to monitor presence of cows in the feed gate in the Calan Broadbent Feeding System, and this approach allows for reasonable estimation of meal length and frequency. A method was developed using a 3-axis accelerometer to detect cow presence at the bunk in a Calan Broadbent feeding system to characterize feeding behavior. The sensor was at 0° when the door was closed and near 60° when the door was open, allowing clear distinction of the presence of a cow at the feed bunk, in very high agreement with visual observations. In conclusion, accelerometers provided robust monitoring of the presence of cows in the feed gate in the Calan Broadbent Feeding System, and this approach allows for economical and reasonable observation of feeding behavior.
Collapse
|
14
|
Casey TM, Plaut K, Boerman J. Circadian clocks and their role in lactation competence. Domest Anim Endocrinol 2022; 78:106680. [PMID: 34607219 DOI: 10.1016/j.domaniend.2021.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Circadian rhythms are 24 h cycles of behavior, physiology and gene expression that function to synchronize processes across the body and coordinate physiology with the external environment. Circadian clocks are central to maintaining homeostasis and regulating coordinated changes in physiology in response to internal and external cues. Orchestrated changes occur in maternal physiology during the periparturient period to support the growth of the fetus and the energetic and nutritional demands of lactation. Discoveries in our lab made over a decade ago led us to hypothesize that the circadian timing system functions to regulate metabolic and mammary specific changes that occur to support a successful lactation. Findings of studies that ensued are summarized, and point to the importance of circadian clocks in the regulation of lactation competence. Disruption of the circadian timing system can negatively affect mammary gland development and differentiation, alter maternal metabolism and impair milk production.
Collapse
Affiliation(s)
- T M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - K Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Adegbeye MJ, Fajemisin AN, Aro SO, Omotoso OB, Christopher T, Aderibigbe AM, Elghandour MMMY, Salem AZ. Impact of varied time of feeding on the lactation and growth performance of West African Dwarf goat. Trop Anim Health Prod 2021; 53:495. [PMID: 34601656 DOI: 10.1007/s11250-021-02946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
This study was conducted to evaluate the effect of time of feeding on production performance of West African Dwarf (WAD) goats. Two experiments involving twenty-seven goats (15 bucks and 12 gravid does) were conducted. In Experiment I, the bucks were randomly allocated into three treatments of five replicates and fed for 115 days. In experiment II, pregnant goat-does were randomly allocated into three experimental treatments of four replicates per treatment 1 month to kidding. Goats were either fed in the morning (06:00 h), afternoon (12:00 h), or evening (18:00 h) respectively under natural light cycles. In experiment I, dry matter intake, weight gain, carcass characteristic, and meat chemical composition were not affected (P > 0.05) by time of feeding. In experiment II, data collection on feed intake, feed efficiency (FE), and milk yield spanned 6 weeks and were analyzed. From the results, milk yield in morning-fed goat-does was higher than evening-fed does while afternoon-fed does have the lowest yield at P < 0.001. Energy corrected milk in evening-fed does was higher (P = 0.006) than other treatments. Feed efficiency for milk yield and energy corrected milk yield (P < 0.001) in evening-fed does were higher than morning and afternoon-fed does. Milk component yield (g/day) for lactose (P = 0.002) was the highest in morning-fed does; evening-fed does had the highest (P = 0.001) crude fat while afternoon-fed does had the lowest yield for all milk component parameters. Conclusively, feeding in the morning and evening is recommended for milk production and component yield per day. However, for improved energy corrected milk yield and feed efficiency in lactating goats, feeding in the evening is recommended. It is recommended that further studies should be conducted on improving milk productivity in evening-fed goats due to the advantage it had over other feeding regimes. Thus, altering time of feeding could be a suitable alternative feeding strategy in a changing climate with a potential to improve production efficiency, especially in the tropics.
Collapse
Affiliation(s)
- Moyosore J Adegbeye
- Department of Animal Production and Health, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Adebowale N Fajemisin
- Department of Animal Production and Health, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Samuel O Aro
- Department of Animal Production and Health, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Oluwatosin B Omotoso
- Department of Animal Production and Health, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Toye Christopher
- Department of Animal Production and Health, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Adebola M Aderibigbe
- Department of Animal Production and Health, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Mona M M Y Elghandour
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Autónoma del Estado México, Toluca, Estado de México, Mexico
| | - Abdelfattah Z Salem
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Autónoma del Estado México, Toluca, Estado de México, Mexico.
| |
Collapse
|
16
|
Casey T, Suarez-Trujillo A, Cummings S, Huff K, Crodian J, Bhide K, Aduwari C, Teeple K, Shamay A, Mabjeesh SJ, San Miguel P, Thimmapuram J, Plaut K. Core circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis. PLoS One 2021; 16:e0248199. [PMID: 34415905 PMCID: PMC8378744 DOI: 10.1371/journal.pone.0248199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
The role the mammary epithelial circadian clock plays in gland development and lactation is unknown. We hypothesized that mammary epithelial clocks function to regulate mammogenesis and lactogenesis, and propose the core clock transcription factor BMAL1:CLOCK regulates genes that control mammary epithelial development and milk synthesis. Our objective was to identify transcriptional targets of BMAL1 in undifferentiated (UNDIFF) and lactogen differentiated (DIFF) mammary epithelial cells (HC11) using ChIP-seq. Ensembl gene IDs with the nearest transcriptional start site to ChIP-seq peaks were explored as potential targets, and represented 846 protein coding genes common to UNDIFF and DIFF cells and 2773 unique to DIFF samples. Genes with overlapping peaks between samples (1343) enriched cell-cell adhesion, membrane transporters and lipid metabolism categories. To functionally verify targets, an HC11 line with Bmal1 gene knocked out (BMAL1-KO) using CRISPR-CAS was created. BMAL1-KO cultures had lower cell densities over an eight-day growth curve, which was associated with increased (p<0.05) levels of reactive oxygen species and lower expression of superoxide dismutase 3 (Sod3). RT-qPCR analysis also found lower expression of the putative targets, prolactin receptor (Prlr), Ppara, and beta-casein (Csn2). Findings support our hypothesis and highlight potential importance of clock in mammary development and substrate transport.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Aridany Suarez-Trujillo
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Shelby Cummings
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Katelyn Huff
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Jennifer Crodian
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Ketaki Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN, United States of America
| | - Clare Aduwari
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Kelsey Teeple
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Avi Shamay
- Animal Science Institute, Agriculture Research Origination, The Volcani Center, Rishon Letsiyon, Israel
| | - Sameer J. Mabjeesh
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Phillip San Miguel
- Genomics Core, Purdue University, West Lafayette, IN, United States of America
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, IN, United States of America
| | - Karen Plaut
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
17
|
McCabe CJ, Suarez-Trujillo A, Teeple KA, Casey TM, Boerman JP. Chronic prepartum light-dark phase shifts in cattle disrupt circadian clocks, decrease insulin sensitivity and mammary development, and are associated with lower milk yield through 60 days postpartum. J Dairy Sci 2020; 104:2422-2437. [PMID: 33309361 DOI: 10.3168/jds.2020-19250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023]
Abstract
Circadian and metabolic systems are interlocked and reciprocally regulated. To determine if the circadian system regulates glucose homeostasis and mammary development, the function of the circadian system was disrupted by exposing cattle to chronic light-dark cycle phase shifts from 5 wk before expected calving (BEC) to parturition. Multiparous Holstein cows were exposed to 16 h of light and 8 h of dark (CON, n = 8) or phase shifting (PS, n = 8) the light cycle 6 h every 3 d beginning 35 d BEC. After calving, both treatments were exposed to CON lighting. Mammary biopsies were taken at 21 d BEC and 21 d in milk (DIM), and histological analysis indicated PS treatment decreased the ratio of lumen to alveolar area and percentage of proliferating epithelial cells in the prepartum period. Intravenous glucose tolerance test was performed at 14 d BEC and 7 DIM by administering 50% dextrose. Blood glucose, β-hydroxybutyrate, insulin, and nonesterified fatty acids were consequently measured over 3 h. At 14 d BEC no treatment differences were observed in baseline glucose or insulin. Treatment had no effect on blood glucose or glucose area under the curve at 14 d BEC and 7 DIM. Insulin area under the curve was higher in PS versus CON at 14 d BEC and 7 DIM. The PS cows produced less milk than CON cows through 60 DIM (40.3 vs. 42.6 kg/d). Exposure to chronic light-dark PS in late gestation decreased mammary development and increased insulin resistance in periparturient cows, which may have caused subsequent lower milk yield.
Collapse
Affiliation(s)
- C J McCabe
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - A Suarez-Trujillo
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - K A Teeple
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - T M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| | - J P Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|