1
|
Wang X, Lin H, Zhao M, Lu Y, Xia G, Liu Z. Effects of Coconut Exocarp Flavonoid and EDTA-2Na on Aldehyde Generation During Pan-Frying Processing of Squid ( Dsidicus gigas). Foods 2025; 14:1925. [PMID: 40509453 PMCID: PMC12154107 DOI: 10.3390/foods14111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/17/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Squid is rich in polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), which exert various human health benefits. Pan-fried squid is a popular processed product beloved by consumers. However, the PUFAs of squid can be severely oxidized during thermal processing, which will result in the reduction in nutritional value and generation of harmful compounds like aldehydes. In this study, flavonoids extracted from coconut exocarp (CEF) and the metal ion chelating agent disodium ethylenediaminetetraacetate (EDTA-2Na) were used to inhibit lipid oxidation during the frying of squid, with the lipid oxidation level, the changes in fatty acid composition, and aldehyde concentrations being examined by gas chromatography mass spectrometry and high-performance liquid chromatography mass spectrometry. Results indicated that during pan-frying, the peroxide value, thiobarbituric acid value, and total oxidation value increased significantly, while the contents of EPA and DHA decreased significantly, and the concentrations of most aldehydes increased in a time- and temperature-dependent pattern. Both CEF and EDTA-2Na treatments inhibited these changes; comparatively, the CEF treatment was significantly better than that of EDTA-2Na. For instance, the CEF treatment inhibited the generation of HHE by 31.90%, 33.24%, and 19.73%, respectively, after pan-frying of squid at 180 °C for 6, 8, and 10 min, while the corresponding values for HNE were 22.65%, 18.96%, and 17.28% respectively. These results suggested that CEF can improve the oxidative stability of squid lipids during pan-frying and reduce the generation and accumulation of aldehydes and improve the security of processed squid products.
Collapse
Affiliation(s)
- Xinwen Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.W.); (H.L.); (M.Z.); (Y.L.); (G.X.)
| | - Hongping Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.W.); (H.L.); (M.Z.); (Y.L.); (G.X.)
| | - Mantong Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.W.); (H.L.); (M.Z.); (Y.L.); (G.X.)
| | - Yuehan Lu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.W.); (H.L.); (M.Z.); (Y.L.); (G.X.)
| | - Guanghua Xia
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.W.); (H.L.); (M.Z.); (Y.L.); (G.X.)
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| | - Zhongyuan Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.W.); (H.L.); (M.Z.); (Y.L.); (G.X.)
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| |
Collapse
|
2
|
Toncan F, Raj RR, Lee MJ. Dynamics of Fatty Acid Composition in Lipids and Their Distinct Roles in Cardiometabolic Health. Biomolecules 2025; 15:696. [PMID: 40427589 PMCID: PMC12110056 DOI: 10.3390/biom15050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Obesity and cardiometabolic diseases (CMDs) have reached epidemic levels. Dysregulation of lipid metabolism is a risk factor for obesity and CMDs. Lipids are energy substrates, essential components of cell membranes, and signaling molecules. Fatty acids (FAs) are the major components of lipids and are classified based on carbon chain length and number, position, and stereochemistry of double bonds. They exert differential impacts on CMDs, such that saturated fat increases risks while very-long-chain n-3 FAs provide benefits. The functionalities of FAs, modulating membrane properties, acting as ligands for receptors, and serving as precursors for lipid mediators, are vital for insulin signaling, lipid metabolism, oxidative stress, and inflammatory response, collectively contributing to cardiometabolic health. This review examines recent advances in the characteristics and functional properties of different FAs in lipid structures, signaling pathways, and cellular metabolism to better understand the differential roles of different types of FAs in obesity and cardiometabolic health.
Collapse
Affiliation(s)
- Fiorenzo Toncan
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI 96822, USA;
| | | | - Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI 96822, USA;
| |
Collapse
|
3
|
Li L, Zhao S, Leng Z, Chen S, Shi Y, Shi L, Li J, Mao K, Tang H, Meng B, Wang Y, Shang G, Liu H. Pathological mechanisms and related markers of steroid-induced osteonecrosis of the femoral head. Ann Med 2024; 56:2416070. [PMID: 39529511 PMCID: PMC11559024 DOI: 10.1080/07853890.2024.2416070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic disease with a high disability rate. Long-term administration of steroids is the most common pathogenic factor for non-traumatic ONFH. Early diagnosis of steroid-induced osteonecrosis of the femoral head (SONFH) is difficult and mainly depends on imaging. OBJECTIVES The objectives of this review were to examine the pathological mechanisms of SONFH, summarize related markers of SONFH, and identify areas for future studies. METHODS We reviewed studies on pathological mechanisms and related markers of SONFH and discussed the relationship between them, as well as clinical applications and the outlook of potential markers. RESULTS The pathological mechanisms of SONFH included decreased osteogenesis, lipid accumulation, increased intraosseous pressure, and microcirculation disruption. Differential proteomics and genomics play crucial roles in the occurrence, progression, and outcome of SONFH, providing novel insights into SONFH. Additionally, the biological functions of mesenchymal stem cells (MSCs) and exosomes (Exos) in SONFH have attracted increasing attention. CONCLUSIONS The pathological mechanisms of SONFH are complex. The related markers mentioned in the current review can predict the occurrence and progression of SONFH, which will help provide effective early clinical prevention and treatment strategies for SONFH.
Collapse
Affiliation(s)
- Longyu Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shangkun Zhao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifang Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keya Mao
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, China
| | - Hai Tang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Meng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yisheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Lamantia V, Bissonnette S, Beaudry M, Cyr Y, Rosiers CD, Baass A, Faraj M. EPA and DHA inhibit LDL-induced upregulation of human adipose tissue NLRP3 inflammasome/IL-1β pathway and its association with diabetes risk factors. Sci Rep 2024; 14:27146. [PMID: 39511203 PMCID: PMC11543682 DOI: 10.1038/s41598-024-73672-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
Elevated numbers of atherogenic lipoproteins (apoB) predict the incidence of type 2 diabetes (T2D). We reported that this may be mediated via the activation of the NLRP3 inflammasome, as low-density lipoproteins (LDL) induce interleukin-1 beta (IL-1β) secretion from human white adipose tissue (WAT) and macrophages. However, mitigating nutritional approaches remained unknown. We tested whether omega-3 eicosapentaenoic and docosahexaenoic acids (EPA and DHA) treat LDL-induced upregulation of WAT IL-1β-secretion and its relation to T2D risk factors. Twelve-week intervention with EPA and DHA (2.7 g/day, Webber Naturals) abolished baseline group-differences in WAT IL-1β-secretion between subjects with high-apoB (N = 17) and low-apoB (N = 16) separated around median plasma apoB. Post-intervention LDL failed to trigger IL-1β-secretion and inhibited it in lipopolysaccharide-stimulated WAT. Omega-3 supplementation also improved β-cell function and postprandial fat metabolism in association with higher blood EPA and mostly DHA. It also blunted the association of WAT NLRP3 and IL1B expression and IL-1β-secretion with multiple cardiometabolic risk factors including adiposity. Ex vivo, EPA and DHA inhibited WAT IL-1β-secretion in a dose-dependent manner. In conclusion, EPA and DHA treat LDL-induced upregulation of WAT NLRP3 inflammasome/IL-1β pathway and related T2D risk factors. This may aid in the prevention of T2D and related morbidities in subjects with high-apoB.Clinical Trail Registration ClinicalTrials.gov (NCT04496154): Omega-3 to Reduce Diabetes Risk in Subjects with High Number of Particles That Carry "Bad Cholesterol" in the Blood - Full Text View - ClinicalTrials.gov.
Collapse
Affiliation(s)
- Valérie Lamantia
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Simon Bissonnette
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Myriam Beaudry
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Yannick Cyr
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Christine Des Rosiers
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Montréal Heart Institute, Montréal, QC, Canada
| | - Alexis Baass
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - May Faraj
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada.
- Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Li Y, Yu H, Lopes-Virella MF, Huang Y. GPR40/GPR120 Agonist GW9508 Improves Metabolic Syndrome-Exacerbated Periodontitis in Mice. Int J Mol Sci 2024; 25:9622. [PMID: 39273569 PMCID: PMC11394899 DOI: 10.3390/ijms25179622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
G protein-coupled receptor (GPR)40 and GPR120 are receptors for medium- and long-chain free fatty acids. It has been well documented that GPR40 and GPR120 activation improves metabolic syndrome (MetS) and exerts anti-inflammatory effects. Since chronic periodontitis is a common oral inflammatory disease initiated by periodontal pathogens and exacerbated by MetS, we determined if GPR40 and GPR120 activation with agonists improves MetS-associated periodontitis in animal models in this study. We induced MetS and periodontitis by high-fat diet feeding and periodontal injection of lipopolysaccharide, respectively, and treated mice with GW9508, a synthetic GPR40 and GPR120 dual agonist. We determined alveolar bone loss, osteoclast formation, and periodontal inflammation using micro-computed tomography, osteoclast staining, and histology. To understand the underlying mechanisms, we further performed studies to determine the effects of GW9508 on osteoclastogenesis and proinflammatory gene expression in vitro. Results showed that GW9508 improved metabolic parameters, including glucose, lipids, and insulin resistance. Results also showed that GW9508 improves periodontitis by reducing alveolar bone loss, osteoclastogenesis, and periodontal inflammation. Finally, in vitro studies showed that GW9508 inhibited osteoclast formation and proinflammatory gene secretion from macrophages. In conclusion, this study demonstrated for the first time that GPR40/GPR120 agonist GW9508 reduced alveolar bone loss and alleviated periodontal inflammation in mice with MetS-exacerbated periodontitis, suggesting that activating GPR40/GPR120 with agonist GW9508 is a potential anti-inflammatory approach for the treatment of MetS-associated periodontitis.
Collapse
Affiliation(s)
- Yanchun Li
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hong Yu
- Department of Biomedical & Community Health Sciences, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F Lopes-Virella
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yan Huang
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Delcheva G, Stefanova K, Stankova T. Ceramides-Emerging Biomarkers of Lipotoxicity in Obesity, Diabetes, Cardiovascular Diseases, and Inflammation. Diseases 2024; 12:195. [PMID: 39329864 PMCID: PMC11443555 DOI: 10.3390/diseases12090195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Abnormalities in lipid homeostasis have been associated with many human diseases, and the interrelation between lipotoxicity and cellular dysfunction has received significant attention in the past two decades. Ceramides (Cers) are bioactive lipid molecules that serve as precursors of all complex sphingolipids. Besides their function as structural components in cell and mitochondrial membranes, Cers play a significant role as key mediators in cell metabolism and are involved in numerous cellular processes, such as proliferation, differentiation, inflammation, and induction of apoptosis. The accumulation of various ceramides in tissues causes metabolic and cellular disturbances. Recent studies suggest that Cer lipotoxicity has an important role in obesity, metabolic syndrome, type 2 diabetes, atherosclerosis, and cardiovascular diseases (CVDs). In humans, elevated plasma ceramide levels are associated with insulin resistance and impaired cardiovascular and metabolic health. In this review, we summarize the role of ceramides as key mediators of lipotoxicity in obesity, diabetes, cardiovascular diseases, and inflammation and their potential as a promising diagnostic tool.
Collapse
Affiliation(s)
- Ginka Delcheva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Katya Stefanova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Teodora Stankova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Spaggiari R, Angelini S, Di Vincenzo A, Scaglione G, Morrone S, Finello V, Fagioli S, Castaldo F, Sanz JM, Sergi D, Passaro A. Ceramides as Emerging Players in Cardiovascular Disease: Focus on Their Pathogenetic Effects and Regulation by Diet. Adv Nutr 2024; 15:100252. [PMID: 38876397 PMCID: PMC11263787 DOI: 10.1016/j.advnut.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Impaired lipid metabolism is a pivotal driver of cardiovascular disease (CVD). In this regard, the accumulation of ceramides within the circulation as well as in metabolically active tissues and atherosclerotic plaques is a direct consequence of derailed lipid metabolism. Ceramides may be at the nexus between impaired lipid metabolism and CVD. Indeed, although on one hand ceramides have been implicated in the pathogenesis of CVD, on the other specific ceramide subspecies have also been proposed as predictors of major adverse cardiovascular events. This review will provide an updated overview of the role of ceramides in the pathogenesis of CVD, as well as their pathogenetic mechanisms of action. Furthermore, the manuscript will cover the importance of ceramides as biomarkers to predict cardiovascular events and the role of diet, both in terms of nutrients and dietary patterns, in modulating ceramide metabolism and homeostasis.
Collapse
Affiliation(s)
- Riccardo Spaggiari
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sharon Angelini
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Alessandra Di Vincenzo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Gerarda Scaglione
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sara Morrone
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Veronica Finello
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sofia Fagioli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Fabiola Castaldo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Juana M Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy.
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| |
Collapse
|
8
|
Lin SY, Wang YY, Pan PH, Wang JD, Yang CP, Chen WY, Kuan YH, Liao SL, Lo YL, Chang YH, Chen CJ. DHA alleviated hepatic and adipose inflammation with increased adipocyte browning in high-fat diet-induced obese mice. J Nutr Biochem 2023; 122:109457. [PMID: 37797731 DOI: 10.1016/j.jnutbio.2023.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Obesity is associated with accumulation of inflammatory immune cells in white adipose tissue, whereas thermogenic browning adipose tissue is inhibited. Dietary fatty acids are important nutritional components and several clinical and experimental studies have reported beneficial effects of docosahexaenoic acid (DHA) on obesity-related metabolic changes. In this study, we investigated effects of DHA on hepatic and adipose inflammation and adipocyte browning in high-fat diet-induced obese C57BL/6J mice, and in vitro 3T3-L1 preadipocyte differentiation. Since visceral white adipose tissue has a close link with metabolic abnormality, epididymal adipose tissue represents current target for evaluation. A course of 8-week DHA supplementation improved common phenotypes of obesity, including improvement of insulin resistance, inhibition of macrophage M1 polarization, and preservation of macrophage M2 polarization in hepatic and adipose tissues. Moreover, dysregulated adipokines and impaired thermogenic and browning molecules, considered obesogenic mechanisms, were improved by DHA, along with parallel alleviation of endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and mitochondrial DNA stress-directed innate immunity. During 3T3-L1 preadipocytes differentiation, DHA treatment decreased lipid droplet accumulation and increased the levels of thermogenic, browning, and mitochondrial biogenesis molecules. Our study provides experimental evidence that DHA mitigates obesity-associated inflammation and induces browning of adipose tissue in visceral epididymal adipose tissue. Since obesity is associated with metabolic abnormalities across tissues, our findings indicate that DHA may have potential as part of a dietary intervention to combat obesity.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City, Taiwan; Institute of Clinical Medicine, Science in Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung City, Taiwan
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City, Taiwan
| | - Ching-Ping Yang
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yu-Li Lo
- Department and Institute of Pharmacology, Science in Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
9
|
Annevelink CE, Sapp PA, Petersen KS, Shearer GC, Kris-Etherton PM. Diet-derived and diet-related endogenously produced palmitic acid: Effects on metabolic regulation and cardiovascular disease risk. J Clin Lipidol 2023; 17:577-586. [PMID: 37666689 PMCID: PMC10822025 DOI: 10.1016/j.jacl.2023.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
Palmitic acid is the predominant dietary saturated fatty acid (SFA) in the US diet. Plasma palmitic acid is derived from dietary fat and also endogenously from de novo lipogenesis (DNL) and lipolysis. DNL is affected by excess energy intake resulting in overweight and obesity, and the macronutrient profile of the diet. A low-fat diet (higher carbohydrate and/or protein) promotes palmitic acid synthesis in adipocytes and the liver. A high-fat diet is another source of palmitic acid that is taken up by adipose tissue, liver, heart and skeletal muscle via lipolytic mechanisms. Moreover, overweight/obesity and accompanying insulin resistance increase non-esterified fatty acid (NEFA) production. Palmitic acid may affect cardiovascular disease (CVD) risk via mechanisms beyond increasing low-density lipoprotein-cholesterol (LDL-C), notably synthesis of ceramides and possibly through branched fatty acid esters of hydroxy fatty acids (FAHFAs) from palmitic acid. Ceramides are positively associated with incident CVD, whereas the role of FAHFAs is uncertain. Given the new evidence about dietary regulation of palmitic acid metabolism there is interest in learning more about how diet modulates circulating palmitic acid concentrations and, hence, potentially CVD risk. This is important because of the heightened interest in low carbohydrate (carbohydrate controlled) and high carbohydrate (low-fat) diets coupled with the ongoing overweight/obesity epidemic, all of which can increase plasma palmitic acid levels by different mechanisms. Consequently, learning more about palmitic acid biochemistry, trafficking and how its metabolites affect CVD risk will inform future dietary guidance to further lower the burden of CVD.
Collapse
Affiliation(s)
- Carmen E Annevelink
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip A Sapp
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Greg C Shearer
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
10
|
Calzada C, Vors C, Penhoat A, Cheillan D, Michalski MC. Role of circulating sphingolipids in lipid metabolism: Why dietary lipids matter. Front Nutr 2023; 9:1108098. [PMID: 36712523 PMCID: PMC9874159 DOI: 10.3389/fnut.2022.1108098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids are structural components of cell membranes and lipoproteins but also act as signaling molecules in many pathophysiological processes. Although sphingolipids comprise a small part of the plasma lipidome, some plasma sphingolipids are recognized as implicated in the development of metabolic diseases and cardiovascular diseases. Plasma sphingolipids are mostly carried out into lipoproteins and may modulate their functional properties. Lipids ingested from the diet contribute to the plasma lipid pool besides lipids produced by the liver and released from the adipose tissue. Depending on their source, quality and quantity, dietary lipids may modulate sphingolipids both in plasma and lipoproteins. A few human dietary intervention studies investigated the impact of dietary lipids on circulating sphingolipids and lipid-related cardiovascular risk markers. On the one hand, dietary saturated fatty acids, mainly palmitic acid, may increase ceramide concentrations in plasma, triglyceride-rich lipoproteins and HDL. On the other hand, milk polar lipids may decrease some molecular species of sphingomyelins and ceramides in plasma and intestine-derived chylomicrons. Altogether, different dietary fatty acids and lipid species can modulate circulating sphingolipids vehicled by postprandial lipoproteins, which should be part of future nutritional strategies for prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Catherine Calzada
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Université Claude Bernard Lyon 1, Pierre Bénite, France,*Correspondence: Catherine Calzada ✉
| | - Cécile Vors
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Armelle Penhoat
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - David Cheillan
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Université Claude Bernard Lyon 1, Pierre Bénite, France,Service de Biochimie et de Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Marie-Caroline Michalski
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Université Claude Bernard Lyon 1, Pierre Bénite, France
| |
Collapse
|
11
|
Wang Y, Feltham BA, Louis XL, Eskin MNA, Suh M. Maternal diets affected ceramides and fatty acids in brain regions of neonatal rats with prenatal ethanol exposure. Nutr Neurosci 2023; 26:60-71. [PMID: 34957933 DOI: 10.1080/1028415x.2021.2017661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objectives: Ceramide (Cer), known as apoptotic markers, increases with prenatal ethanol (EtOH) exposure, resulting in neuroapoptosis. Whether maternal nutrition can impact Cer concentrations in brain, via altering plasma and brain fatty acid compositions have not been examined. This study compared a standard chow with a formulated semi-purified energy dense (E-dense) diet on fatty acid composition, Cer concentrations, and apoptosis in plasma and brain regions (cortex, cerebellum, and hippocampus) of pups exposed to EtOH during gestation. Methods: Pregnant Sprague-Dawley rats were randomized into four groups: chow (n = 6), chow + EtOH (20% v/v) (n = 7), E-dense (n = 6), and E-dense + EtOH (n = 8). At postnatal day 7, representing the peak brain growth spurt in rats, lipids, and apoptosis were analyzed by gas chromatography and a fluorometric caspase-3 assay kit, respectively. Results: Maternal E-dense diet increased total fatty acid concentrations (p < 0.0001), including docosahexaenoic acid (DHA) (p < 0.0001) in plasma, whereas DHA concentrations were decreased in the cerebellum (p < 0.03) of pups than those from chow-fed dams. EtOH-induced Cer elevations in the hippocampus of pups born to dams fed chow were reduced by an E-dense diet (p < 0.02). No significant effects of maternal diet quality and EtOH were observed on caspase-3 activity. No significant correlations existed between plasma/brain fatty acids and Cer concentrations. Discussions: Maternal diet quality affected fatty acid compositions and Cer concentrations of pups with prenatal EtOH exposure, differently. Maternal nutrition has the potential to prevent or alleviate some of the adverse effects of prenatal EtOH exposure.
Collapse
Affiliation(s)
- Yidi Wang
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Bradley A Feltham
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Xavier L Louis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Michael N A Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Daniel N, Le Barz M, Mitchell PL, Varin TV, Julien IB, Farabos D, Pilon G, Gauthier J, Garofalo C, Kang JX, Trottier J, Barbier O, Roy D, Chassaing B, Levy E, Raymond F, Lamaziere A, Flamand N, Silvestri C, Jobin C, Di Marzo V, Marette A. Comparing Transgenic Production to Supplementation of ω-3 PUFA Reveals Distinct But Overlapping Mechanisms Underlying Protection Against Metabolic and Hepatic Disorders. FUNCTION 2022; 4:zqac069. [PMID: 36778746 PMCID: PMC9909367 DOI: 10.1093/function/zqac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
We compared endogenous ω-3 PUFA production to supplementation for improving obesity-related metabolic dysfunction. Fat-1 transgenic mice, who endogenously convert exogenous ω-6 to ω-3 PUFA, and wild-type littermates were fed a high-fat diet and a daily dose of either ω-3 or ω-6 PUFA-rich oil for 12 wk. The endogenous ω-3 PUFA production improved glucose intolerance and insulin resistance but not hepatic steatosis. Conversely, ω-3 PUFA supplementation fully prevented hepatic steatosis but failed to improve insulin resistance. Both models increased hepatic levels of ω-3 PUFA-containing 2-monoacylglycerol and N-acylethanolamine congeners, and reduced levels of ω-6 PUFA-derived endocannabinoids with ω-3 PUFA supplementation being more efficacious. Reduced hepatic lipid accumulation associated with the endocannabinoidome metabolites EPEA and DHEA, which was causally demonstrated by lower lipid accumulation in oleic acid-treated hepatic cells treated with these metabolites. While both models induced a significant fecal enrichment of the beneficial Allobaculum genus, mice supplemented with ω-3 PUFA displayed additional changes in the gut microbiota functions with a significant reduction of fecal levels of the proinflammatory molecules lipopolysaccharide and flagellin. Multiple-factor analysis identify that the metabolic improvements induced by ω-3 PUFAs were accompanied by a reduced production of the proinflammatory cytokine TNFα, and that ω-3 PUFA supplementation had a stronger effect on improving the hepatic fatty acid profile than endogenous ω-3 PUFA. While endogenous ω-3 PUFA production preferably improves glucose tolerance and insulin resistance, ω-3 PUFA intake appears to be required to elicit selective changes in hepatic endocannabinoidome signaling that are essential to alleviate high-fat diet-induced hepatic steatosis.
Collapse
Affiliation(s)
| | | | - Patricia L Mitchell
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Thibault V Varin
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Isabelle Bourdeau Julien
- Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Dominique Farabos
- Saint Antoine Research Center, Sorbonne University INSERM UMR 938; Assistance Publique - Hôpitaux de Paris, Clinical Metabolomics department, Hôpital Saint Antoine, Paris, 75571, France
| | - Geneviève Pilon
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Josée Gauthier
- Department of Medicine, Department of Infectious Diseases and Immunology, and Department of Anatomy and Cell Physiology, University of Florida, Gainesville FL, 32608, USA
| | - Carole Garofalo
- Department of Nutrition, University of Montreal, Montreal QC H3T 1A8, Canada and Research Centre, Sainte-Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Quebec Research Centre, and Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Quebec Research Centre, and Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada
| | - Denis Roy
- Faculty of Agricultural and Food Sciences, School of Nutrition, Laval University, Quebec, QC G1V 0A6, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Benoit Chassaing
- INSERM U1016, Mucosal Microbiota in Chronic Inflammatory Diseases’ Team, CNRS UMR 8104, University of Paris, Paris, 75014, France
| | - Emile Levy
- Department of Nutrition, University of Montreal, Montreal QC H3T 1A8, Canada and Research Centre, Sainte-Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Frédéric Raymond
- Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Antonin Lamaziere
- Saint Antoine Research Center, Sorbonne University INSERM UMR 938; Assistance Publique - Hôpitaux de Paris, Clinical Metabolomics department, Hôpital Saint Antoine, Paris, 75571, France
| | - Nicolas Flamand
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Cristoforo Silvestri
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Christian Jobin
- Department of Medicine, Department of Infectious Diseases and Immunology, and Department of Anatomy and Cell Physiology, University of Florida, Gainesville FL, 32608, USA
| | - Vincenzo Di Marzo
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada,Joint International Research Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition between Laval University and Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Campania, 80078, Italy
| | | |
Collapse
|
13
|
Camacho-Muñoz D, Niven J, Kucuk S, Cucchi D, Certo M, Jones SW, Fischer DP, Mauro C, Nicolaou A. Omega-3 polyunsaturated fatty acids reverse the impact of western diets on regulatory T cell responses through averting ceramide-mediated pathways. Biochem Pharmacol 2022; 204:115211. [PMID: 35985403 DOI: 10.1016/j.bcp.2022.115211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
Abstract
Western diet (WD), high in sugar and fat, promotes obesity and associated chronic low-grade pro-inflammatory environment, leading to impaired immune function, reprogramming of innate and adaptive immune cells, and development of chronic degenerative diseases, including cardiovascular disease. Increased concentrations of circulating and tissue ceramides contribute to inflammation and cellular dysfunction common in immune metabolic and cardiometabolic disease. Therefore, ceramide-lowering interventions have been considered as strategies to improve adipose tissue health. Here, we report the ability of omega-3 polyunsaturated fatty acids (n-3PUFA) to attenuate inflammatory phenotypes promoted by WD, through ceramide-dependent pathways. Using an animal model, we show that enrichment of WD diet with n-3PUFA, reduced the expression of ceramide synthase 2 (CerS2), and lowered the concentration of long-chain ceramides (C23-C26) in plasma and adipose tissues. N-3PUFA also increased prevalence of the anti-inflammatory CD4+Foxp3+ and CD4+Foxp3+CD25+ Treg subtypes in lymphoid organs. The CerS inhibitor FTY720 mirrored the effect of n-3PUFA. Treatment of animal and human T cells with ceramide C24 in vitro, reduced CD4+Foxp3+ Treg polarisation and IL-10 production, and increased IL-17, while it decreased Erk and Akt phosphorylation downstream of T cell antigen receptors (TCR). These findings suggest that molecular mechanisms mediating the adverse effect of ceramides on regulatory T lymphocytes, progress through reduced TCR signalling. Our findings suggest that nutritional enrichment of WD with fish oil n-3PUFA can partially mitigate its detrimental effects, potentially improving the low-grade inflammation associated with immune metabolic disease. Compared to pharmacological interventions, n-3PUFA offer a simpler approach that can be accommodated as lifestyle choice.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jennifer Niven
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Salih Kucuk
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Danilo Cucchi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Deborah P Fischer
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| |
Collapse
|
14
|
Inimitable Impacts of Ceramides on Lipid Rafts Formed in Artificial and Natural Cell Membranes. MEMBRANES 2022; 12:membranes12080727. [PMID: 35893445 PMCID: PMC9330320 DOI: 10.3390/membranes12080727] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/02/2023]
Abstract
Ceramide is the simplest precursor of sphingolipids and is involved in a variety of biological functions ranging from apoptosis to the immune responses. Although ceramide is a minor constituent of plasma membranes, it drastically increases upon cellular stimulation. However, the mechanistic link between ceramide generation and signal transduction remains unknown. To address this issue, the effect of ceramide on phospholipid membranes has been examined in numerous studies. One of the most remarkable findings of these studies is that ceramide induces the coalescence of membrane domains termed lipid rafts. Thus, it has been hypothesised that ceramide exerts its biological activity through the structural alteration of lipid rafts. In the present article, we first discuss the characteristic hydrogen bond functionality of ceramides. Then, we showed the impact of ceramide on the structures of artificial and cell membranes, including the coalescence of the pre-existing lipid raft into a large patch called a signal platform. Moreover, we proposed a possible structure of the signal platform, in which sphingomyelin/cholesterol-rich and sphingomyelin/ceramide-rich domains coexist. This structure is considered to be beneficial because membrane proteins and their inhibitors are separately compartmentalised in those domains. Considering the fact that ceramide/cholesterol content regulates the miscibility of those two domains in model membranes, the association and dissociation of membrane proteins and their inhibitors might be controlled by the contents of ceramide and cholesterol in the signal platform.
Collapse
|
15
|
An Z, Zhao R, Han F, Sun Y, Liu Y, Liu L. Potential Serum Biomarkers Associated with Premature Rupture of Fetal Membranes in the First Trimester. Front Pharmacol 2022; 13:915935. [PMID: 35873552 PMCID: PMC9304655 DOI: 10.3389/fphar.2022.915935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Premature rupture of the fetal membranes (PROM) is a common and important obstetric complication with increased risk of adverse consequences for both mothers and fetuses. An accurate and timely method to predict the occurrence of PROM is needed for ensuring maternal and fetal safety. Untargeted metabolomics was applied to characterize metabolite profiles related to PROM in early pregnancy. 41 serum samples from pregnant women who developed PROM later in gestation and 106 from healthy pregnant women as a control group, were analyzed. Logistic regression analysis was adjusted to analyze a PROM prediction model in the first trimester. A WISH amniotic cell viability assay was applied to explore the underlying mechanisms involved in PROM, mediated by C8-dihydroceramide used to mimic a potential biomarker (Cer 40:0; O2). Compared with healthy controls, 13 serum metabolites were identified. The prediction model comprising four compounds (Cer 40:0; O2, sphingosine, isohexanal and PC O-38:4) had moderate accuracy to predict PROM events with the maximum area under the curve of a receiver operating characteristics curve of approximately 0.70. Of these four compounds, Cer 40:0; O2 with an 1.81-fold change between PROM and healthy control serum samples was defined as a potential biomarker and inhibited the viability of WISH cells. This study sheds light on predicting PROM in early pregnancy and on understanding the underlying mechanism of PROM.Trial Registration: This study protocol has been registered at www.ClinicalTrials.gov, CT03651934, on 29 August 2018 (prior to recruitment).
Collapse
Affiliation(s)
- Zhuoling An
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Rui Zhao
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuan Sun
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanping Liu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Yanping Liu, ; Lihong Liu,
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yanping Liu, ; Lihong Liu,
| |
Collapse
|
16
|
Shi P, Liao K, Xu J, Wang Y, Xu S, Yan X. Eicosapentaenoic acid mitigates palmitic acid-induced heat shock response, inflammation and repair processes in fish intestine. FISH & SHELLFISH IMMUNOLOGY 2022; 124:362-371. [PMID: 35421576 DOI: 10.1016/j.fsi.2022.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Understanding the metabolic effects of fatty acids on fish intestine is critical to the substitution of fish oil with vegetable oils in aquaculture. In this study, the effects of eicosapentaenoic acid (EPA) and palmitic acid (PA) on fish intestine were evaluated in vitro and in vivo. As the first step for in vitro study, an intestinal cell line (SPIF) was established from silver pomfret (Pampus argenteus). Thereafter, the effects of EPA and PA on cell viability, prostaglandin E2 (PGE2) production, and the expression of genes related to heat shock response, inflammation, extracellular matrix (ECM) formation and degradation were examined in SPIF cells. Finally, these metabolic effects of EPA and PA on the intestine were examined in zebrafish (Danio rerio) larvae. Results showed that all tested fatty acids (PA, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid, and docosahexaenoic acid) except EPA reduced SPIF viability to distinct degrees at the same concentrations. PA decreased SPIF viability accompanied by an increase in PGE2 level. Meanwhile, PA increased the expression of genes related to heat shock response (grp78, grp94, hsp70, and hsp90) and inflammation (nf-κb, il-1β, and cox2). Furthermore, PA reduced the expression of collagen type I (col1a1a and col1a1b) and extracellular matrix (ECM) degradation-related gene mmp2, while up-regulating timp2 mRNA expression. In vivo, PA also increased hsp70, il-1β, and cox2 mRNA levels and limited the expression of collagen type I in the larval zebrafish intestine. Interestingly, the combination of EPA and PA partially recovered the PA-induced changes in cell viability, PGE2 production, and mRNA expression in vitro and in vivo. These results suggest that PA may result in heat shock and inflammatory responses, as well as alter ECM formation and degradation in fish intestine, while EPA could at least partially mitigate these negative effects caused by PA.
Collapse
Affiliation(s)
- Peng Shi
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China.
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Yajun Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Shanliang Xu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| |
Collapse
|
17
|
Mondal K, Takahashi H, Cole J, Del Mar NA, Li C, Stephenson DJ, Allegood J, Cowart LA, Chalfant CE, Reiner A, Mandal N. Systemic Elevation of n-3 Polyunsaturated Fatty Acids (n-3-PUFA) Is Associated with Protection against Visual, Motor, and Emotional Deficits in Mice following Closed-Head Mild Traumatic Brain Injury. Mol Neurobiol 2021; 58:5564-5580. [PMID: 34365584 PMCID: PMC8655834 DOI: 10.1007/s12035-021-02501-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/17/2021] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) causes neuroinflammation and neurodegeneration leading to various pathological complications such as motor and sensory (visual) deficits, cognitive impairment, and depression. N-3 polyunsaturated fatty acid (n-3 PUFA) containing lipids are known to be anti-inflammatory, whereas the sphingolipid, ceramide (Cer), is an inducer of neuroinflammation and degeneration. Using Fat1+-transgenic mice that contain elevated levels of systemic n-3 PUFA, we tested whether they are resistant to mild TBI-mediated sensory-motor and emotional deficits by subjecting Fat1-transgenic mice and their WT littermates to focal cranial air blast (50 psi) or sham blast (0 psi, control). We observed that visual function in WT mice was reduced significantly following TBI but not in Fat1+-blast animals. We also found Fat1+-blast mice were resistant to the decline in motor functions, depression, and fear-producing effects of blast, as well as the reduction in the area of oculomotor nucleus and increase in activated microglia in the optic tract in brain sections seen following blast in WT mice. Lipid and gene expression analyses confirmed an elevated level of the n-3 PUFA eicosapentaenoic acid (EPA) in the plasma and brain, blocking of TBI-mediated increase of Cer in the brain, and decrease in TBI-mediated induction of Cer biosynthetic and inflammatory gene expression in the brain of the Fat1+ mice. Our results demonstrate that suppression of ceramide biosynthesis and inflammatory factors in Fat1+-transgenic mice is associated with significant protection against the visual, motor, and emotional deficits caused by mild TBI. This study suggests that n-3 PUFA (especially, EPA) has a promising therapeutic role in preventing neurodegeneration after TBI.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Haruka Takahashi
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
- Department of Animal Science, Iwate University, Morioka, Japan
| | - Jerome Cole
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Chunyan Li
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23219, USA
- Hunter Holmes McGuire VA Medical Center, Richmond, VA, 23249, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
- The Moffitt Cancer Center, Tampa, FL, 33620, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
| | - Anton Reiner
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
18
|
Lindqvist HM, Bärebring L, Gjertsson I, Jylhä A, Laaksonen R, Winkvist A, Hilvo M. A Randomized Controlled Dietary Intervention Improved the Serum Lipid Signature towards a Less Atherogenic Profile in Patients with Rheumatoid Arthritis. Metabolites 2021; 11:632. [PMID: 34564448 PMCID: PMC8472309 DOI: 10.3390/metabo11090632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/26/2022] Open
Abstract
Diet is a major modifiable risk factor for cardiovascular disease (CVD). One explanation for this is its effect on specific lipids. However, knowledge on how the lipidome is affected is limited. We aimed to investigate if diet can change the new ceramide- and phospholipid-based CVD risk score CERT2 and the serum lipidome towards a more favorable CVD signature. In a crossover trial (ADIRA), 50 patients with rheumatoid arthritis (RA) had 10 weeks of a Mediterranean-style diet intervention or a Western-style control diet and then switched diets after a 4-month wash-out-period. Five hundred and thirty-eight individual lipids were measured in serum by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lipid risk scores were analyzed by Wilcoxon signed-rank test or mixed model and lipidomic data with multivariate statistical methods. In the main analysis, including the 46 participants completing ≥1 diet period, there was no significant difference in CERT2 after the intervention compared with the control, although several CERT2 components were changed within periods. In addition, triacylglycerols, cholesteryl esters, phosphatidylcholines, alkylphosphatidylcholines and alkenylphosphatidylcholines had a healthier composition after the intervention compared to after the control diet. This trial indicates that certain dietary changes can improve the serum lipid signature towards a less atherogenic profile in patients with RA.
Collapse
Affiliation(s)
- Helen M Lindqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Linnea Bärebring
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | | | | | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Mika Hilvo
- Zora Biosciences Oy, 02150 Espoo, Finland
| |
Collapse
|
19
|
Sphingolipids in foodstuff: Compositions, distribution, digestion, metabolism and health effects - A comprehensive review. Food Res Int 2021; 147:110566. [PMID: 34399542 DOI: 10.1016/j.foodres.2021.110566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/26/2022]
Abstract
Sphingolipids (SLs) are common in all eukaryotes, prokaryotes, and viruses, and played a vital role in human health. They are involved in physiological processes, including intracellular transport, cell division, and signal transduction. However, there are limited reviews on dietary effects on endogenous SLs metabolism and further on human health. Various dietary conditions, including the SLs-enriched diet, high-fat diet, and vitamins, can change the level of endogenous SLs metabolites and even affect human health. This review systematically summarizes the main known SLs in foods concerning their variety and contents, as well as their isolation and identification approaches. Moreover, the present review discusses the role of dietary (particularly SLs-enriched diet, high-fat diet, and vitamins) in endogenous SLs metabolism, highlighting how exogenous SLs are digested and absorbed. The role of SLs family in the pathogenesis of diseases, including cancers, neurological disorders, infectious and inflammatory diseases, and cardiovascular diseases, and in recently coronavirus disease-19 outbreak was also discussed. In the post-epidemic era, we believe that the concern for health and the need for plant-based products will increase. Therefore, a need for research on the absorption and metabolism pathway of SLs (especially plant-derived SLs) and their bioavailability is necessary. Moreover, the effects of storage treatment and processing on the content and composition of SLs in food are worth exploring. Further studies should also be conducted on the dose-response of SLs on human health to support the development of SLs supplements. More importantly, new approaches, such as, making SLs based hydrogels can effectively achieve sustained release and targeted therapies.
Collapse
|