1
|
Zhang W, Chen X, Tian J, Schal C, Mohamed A, Zang LS, Xia Y, Keyhani NO. An odorant-binding protein functions in fire ant social immunity interfacing with innate immunity. Open Biol 2025; 15:240254. [PMID: 39933575 PMCID: PMC11813584 DOI: 10.1098/rsob.240254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Social immunity-mediated sanitation behaviours occur in insects when microbially killed corpses are removed and/or dismembered by healthy nestmates. However, little is known concerning the chemical signals or receptor proteins that mediate these responses. Here, we identify cuticular components in the eusocial red important fire ant, Solenopsis invicta: behenic acid, which induces dismemberment behaviour, and oleic and cis,cis-9,12-linoleic acids, which inhibit dismemberment in a process mediated by S. invicta odorant-binding protein-15 (SiOBP15). Yeast two-hybrid screening and protein-protein interaction analyses identified the ant immunity-related proteins apolipophorin-III (SiApoLp-III) and fatty acid binding protein-5 (SiFABP5) as SiOBP15 interacting partners. SiOBP15 and SiFABP5 bound all three dismemberment-related compounds, whereas interactions between SiOBP15 and SiApoLp-III narrowed binding to behenic acid. RNAi-mediated gene expression knockdown of SiOBP15, SiApoLp-III or SiFABP5 revealed that behenic acid chemoreception determines dismemberment behaviour via SiApoLp-III/SiOBP15, whereas SiOBP15 or SiOBP15/SiFABP5 recognition of linoleic acid inhibits dismemberment behaviour. These data identify a host circuit linking olfactory proteins and proteins involved in innate immunity to control the degree of sanitation behaviour elicited in response to microbial infection. We identify specific chemical cues transduced by these proteins, providing a mechanism connecting olfaction-related processes to innate immunity, host-pathogen interactions and social immunity.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District550025, People’s Republic of China
- Department of Biological Sciences, University of Illinois, Chicago, IL60607, USA
- School of Life Science, Chongqing University, Chongqing401331, People’s Republic of China
| | - Xuanyu Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District550025, People’s Republic of China
| | - Jiaxin Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District550025, People’s Republic of China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza12613, Egypt
| | - Lian-Sheng Zang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District550025, People’s Republic of China
| | - Yuxian Xia
- School of Life Science, Chongqing University, Chongqing401331, People’s Republic of China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL60607, USA
| |
Collapse
|
2
|
Deeti S, Cheng K. Desert Ant ( Melophorus bagoti) Dumpers Learn from Experience to Improve Waste Disposal and Show Spatial Fidelity. INSECTS 2024; 15:814. [PMID: 39452390 PMCID: PMC11508993 DOI: 10.3390/insects15100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The Central Australian red honey-pot ant Melophorus bagoti maintains non-cryptic ground-nesting colonies in the semi-desert habitat, performing all the activities outside the nest during the hottest periods of summer days. These ants rely on path integration and view-based cues for navigation. They manage waste by taking out unwanted food, dead nestmates, and some other wastes, typically depositing such items at distances > 5 m from the nest entrance, a process called dumping. We found that over multiple runs, dumpers headed in the same general direction, showing sector fidelity. Experienced ants dumped waste more efficiently than naive ants. Naive individuals, lacking prior exposure to the outdoor environment around the nest, exhibited much scanning and meandering during waste disposal. In contrast, experienced ants dumped waste with straighter paths and a notable absence of scanning behaviour. Furthermore, experienced dumpers deposited waste at a greater distance from the nest compared to their naive counterparts. We also investigated the navigational knowledge of naive and experienced dumpers by displacing them 2 m away from the nest. Naive dumpers were not oriented towards the nest in their initial trajectory at any of the 2 m test locations, whereas experienced dumpers were oriented towards the nest at all test locations. Naive dumpers were nest-oriented as a group, however, at the test location nearest to where they dumped their waste. These differences suggest that in red honey ants, learning supports waste disposal, with dumping being refined through experience. Dumpers gain greater spatial knowledge through repeated runs outside the nest, contributing to successful homing behaviour.
Collapse
Affiliation(s)
- Sudhakar Deeti
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | | |
Collapse
|
3
|
Li H, Liu J, Wang Q, Ma Y, Zhao W, Chen B, Price JH, Zhang D. Oleic acid triggers burial behavior in a termite population through an odorant binding protein. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 167:104090. [PMID: 38369269 DOI: 10.1016/j.ibmb.2024.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Social insects maintain hygienic conditions through their social immunity behaviors. Among these behaviors, burial behavior of termites is central for protecting healthy individuals from corpses. Many factors trigger burial behavior, and it is generally believed that chemicals released by corpses, such as oleic acid, are the most important cues for triggering burial behavior in termites. However, the contribution of the olfactory system to this behavior remains unclear. Here we report an odorant binding protein (OBP) that transports oleic acid and triggers burial behavior in Coptotermes formosanus Shiraki. We demonstrated that CforOBP7 is highly expressed in the antennae of workers. Fluorescent competition binding experiments exhibited that CforOBP7 has a strong affinity for oleic acid. Furthermore, the antennal response to oleic acid was significantly reduced, and oleic acid-triggered burial behavior was also inhibited in CforOBP7-silenced termites. We conclude that CforOBP7 governs the burial behavior of C. formosanus triggered by oleic acid.
Collapse
Affiliation(s)
- Hongyue Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Jiahan Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qian Wang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yuanfei Ma
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Weisong Zhao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Bosheng Chen
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Jennifer Hackney Price
- School of Mathematical & Natural Sciences, New College of Interdisciplinary Arts & Sciences, Arizona State University, Phoenix, AZ, USA
| | - Dayu Zhang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
4
|
Wagner T, Czaczkes TJ. Corpse-associated odours elicit avoidance in invasive ants. PEST MANAGEMENT SCIENCE 2024; 80:1859-1867. [PMID: 38041619 DOI: 10.1002/ps.7916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/05/2023] [Accepted: 12/02/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Invasive ants, such as Linepithema humile (the Argentine ant), pose a global threat, necessitating a better understanding of their behaviour in order to improve management strategies. Traditional eradication methods, including baiting, have had limited success, but the causes of control failure are not always clear. This study aims to investigate whether ants form associations between food odours and corpses, and subsequently avoid areas or food sources with food odours associated with corpses. We propose that ants may learn to avoid toxic baits in part because of their association with ant corpses, which could have implications for pest control strategies. RESULTS Ants were tested on a Y-maze after exposure to scented corpses or dummies. 69% (n = 64) of ants avoided branches bearing the scent of scented corpses. Colonies neglected food with corpse-associated odours, with only 42% (n = 273) of foragers feeding from such sources. However, if corpses were produced by feeding ants scented toxicant, focal ants encountering these corpses did not avoid the corpse-associated scent on a Y-maze (53%, n = 65). In dual-feeder tests, ants did not avoid feeding at food sources scented with odours associated with conspecific corpses. CONCLUSION Conspecific corpses act as a negative stimulus for ants in a foraging situation, potentially causing avoidance of toxic baits. This study suggests adding odours to baits and cycling them to disrupt the bait-corpse association may be helpful. Interestingly, although avoidance of baits was observed, feeding preferences were not significantly affected. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Thomas Wagner
- Animal Comparative Economics Laboratory, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Tomer J Czaczkes
- Animal Comparative Economics Laboratory, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Cappa F, De Fazi L, Baracchi D, Cervo R. Adverse effects of the fungal biopesticide Beauveria bassiana on a predatory social wasp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168202. [PMID: 37914122 DOI: 10.1016/j.scitotenv.2023.168202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Biopesticides are considered eco-friendly alternatives to synthetic agrochemicals. However, their impact on non-target organisms is still poorly understood. Social wasps, in particular, are a largely neglected group when it comes to risk assessment of plant protection products, despite the relevant ecological and economic services provided by these insects. In the present study, we evaluated the impact of a common biopesticide, the entomopathogenic fungus Beauveria bassiana, on the paper wasp Polistes dominula. We adopted a holistic approach in ecotoxicology by focusing not only on the detrimental effects on isolated individuals, but also on the whole colony. Both adult wasps belonging to different castes and immature larvae were topically exposed to a field-realistic concentration of fungal spores from the commercial strain of B. bassiana ATCC 74040 to assess the impact of the biopesticide on their survival, behavior and physiology. Our results showed that the fungus causes a number of adverse effects on P. dominula, that include increased mortality, altered locomotion and feeding rate, selective ejection of exposed larvae from nests, reduced oviposition rate and ovary development in foundresses, and colony failure. Our findings provide new insights on the often-neglected sublethal effects of pollutants that can jeopardize not only individual beneficial insects, but also the delicate social balance of their colonies and their valuable ecosystem services, highlighting that the natural origin of plant-protection products does not always guarantee environmental safety.
Collapse
Affiliation(s)
- Federico Cappa
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy.
| | - Livia De Fazi
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | - David Baracchi
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | - Rita Cervo
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Zhang W, Chen X, Eleftherianos I, Mohamed A, Bastin A, Keyhani NO. Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol Rev 2024; 48:fuae003. [PMID: 38341280 PMCID: PMC10883697 DOI: 10.1093/femsre/fuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
Insects are one of the most successful animals in nature, and entomopathogenic fungi play a significant role in the natural epizootic control of insect populations in many ecosystems. The interaction between insects and entomopathogenic fungi has continuously coevolved over hundreds of millions of years. Many components of the insect innate immune responses against fungal infection are conserved across phyla. Additionally, behavioral responses, which include avoidance, grooming, and/or modulation of body temperature, have been recognized as important mechanisms for opposing fungal pathogens. In an effort to investigate possible cross-talk and mediating mechanisms between these fundamental biological processes, recent studies have integrated and/or explored immune and behavioral responses. Current information indicates that during discrete stages of fungal infection, several insect behavioral and immune responses are altered simultaneously, suggesting important connections between the two systems. This review synthesizes recent advances in our understanding of the physiological and molecular aspects influencing cross-talk between behavioral and innate immune antifungal reactions, including chemical perception and olfactory pathways.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Xuanyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Research fellow, King Saud University Museum of Arthropods, Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia
| | - Ashley Bastin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
7
|
Chen J, Du Y. Fire ants feed their nestmates with their own venom. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104437. [PMID: 35970221 DOI: 10.1016/j.jinsphys.2022.104437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Venom secretion is widely used by ants for disease control and more generally as an external surface disinfectant. Here we report evidence that Solenopsis invicta feed their nestmates with their own venom. Venom alkaloids were found in crops and midguts of ants at concentration levels that have previously been reported as effective against various pathogens. These venom alkaloids were found in midguts of the larvae, indicating that trophallaxis must be involved in the transfer of venom, since larvae do not produce alkaloids and they depend on workers to be fed. After the mating flight, the female alates shed their wings, burrow into the soil, and start new colonies. The new queen provided alkaloids to her first batch of larvae in the new colony. Since the crops of female alates contain venom alkaloids donated from their nestmate workers, the transfer of worker alkaloids to new generation occurred. After minim adult workers emerged, they took the role in providing venom to the larvae in the colony. Minim adult workers eventually died out and the normal workers became the venom donors in the colony. Although other functions may be possible, considering the well-known antimicrobial property of venom alkaloids and their detected concentration levels, venom in the digestive system is most likely used as an internal antibiotic by fire ants.
Collapse
Affiliation(s)
- Jian Chen
- USDA-ARS, Biological Control of Pests Research Unit, Stoneville, MS 38776, USA.
| | - Yuzhe Du
- USDA-ARS, Southern Insect Management Research Unit, Stoneville, MS 38776, USA
| |
Collapse
|
8
|
Detrain C, Leclerc JB. Spatial distancing by fungus-exposed Myrmica ants is prompted by sickness rather than contagiousness. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104384. [PMID: 35318040 DOI: 10.1016/j.jinsphys.2022.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The ecological success of ants relies on their high level of sociality and cooperation between genetically related nestmates. However, these group-living insects suffer from elevated risks of disease outbreak in the whole nest. To face this sanitary challenge, social and spatial distancing of pathogen-exposed individuals from susceptible nestmates appear to be simple, although efficient, ways to limit the propagation of contact-transmitted pathogens. Here we question whether spatial distancing in Myrmica rubra ants is an active response of diseased individuals that correlates with their level of infectiousness. We contaminated foragers with spores of Metarhizium brunneum entomopathogenic fungus. We daily tracked the location of these pathogen-exposed individuals and we analyzed their movement patterns until their death on the 5th day post-contamination. Quite unexpectedly, we found that contagious individuals, whose body was covered with infectious spores, did not reduce their mobility nor stayed far away from larvae in order to limit pathogen transmission to healthy nestmates. Spatial distancing occurred later when diseased individuals were no longer contagious because spores had penetrated their body. These sick ants mainly stayed outside the nest, were less mobile and showed a shift from a superdiffusive to subdiffusive walking pattern. Furthermore, these diseased ants did not actively head towards directions that were opposite to the nest entrance. This study found no evidence for early spatial distancing by contaminated M.rubra workers that would fit to the actual risk of colony-wide contagion. Coupled to a lower mobility and area-reduced walking patterns, the late distancing of moribund individuals appears to be a symptom of sickness resulting from fungus-induced physical and physiological dysfunctions. Besides questioning the truly altruistic nature of death in isolation in this system (and potentially others), we discuss about the ecological and physiological constraints that explain the absence of early distancing when some ant species are exposed to pathogens.
Collapse
Affiliation(s)
- Claire Detrain
- Unit of Social Ecology CP 231, Université Libre de Bruxelles, 50 Avenue F Roosevelt, 1050 Brussels, Belgium.
| | - Jean-Baptiste Leclerc
- Unit of Social Ecology CP 231, Université Libre de Bruxelles, 50 Avenue F Roosevelt, 1050 Brussels, Belgium
| |
Collapse
|
9
|
Rissanen J, Helanterä H, Freitak D. Pathogen Prevalence Modulates Medication Behavior in Ant Formica fusca. FRONTIERS IN INSECT SCIENCE 2022; 2:870971. [PMID: 38468809 PMCID: PMC10926551 DOI: 10.3389/finsc.2022.870971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 03/13/2024]
Abstract
Ants face unique challenges regarding pathogens, as the sociality which has allowed them to form large and complex colonies also raises the potential for transmission of disease within them. To cope with the threat of pathogens, ants have developed a variety of behavioral and physiological strategies. One of these strategies is self-medication, in which animals use biologically active compounds to combat pathogens in a way which would be harmful in the absence of infection. Formica fusca are the only ants that have previously been shown to successfully self-medicate against an active infection caused by a fungal pathogen by supplementing their diet with food containing hydrogen peroxide. Here, we build on that research by investigating how the prevalence of disease in colonies of F. fusca affects the strength of the self-medication response. We exposed either half of the workers of each colony or all of them to a fungal pathogen and offered them different combinations of diets. We see that workers of F. fusca engage in self-medication behavior even if exposed to a low lethal dose of a pathogen, and that the strength of that response is affected by the prevalence of the disease in the colonies. We also saw that the infection status of the individual foragers did not significantly affect their decision to forage on either control food or medicinal food as uninfected workers were also foraging on hydrogen peroxide food, which opens up the possibility of kin medication in partially infected colonies. Our results further affirm the ability of ants to self-medicate against fungal pathogens, shed new light on plasticity of self-medication and raise new questions to be investigated on the role self-medication has in social immunity.
Collapse
Affiliation(s)
- Jason Rissanen
- Institute of Biology, University of Graz, Graz, Austria
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Heikki Helanterä
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Dalial Freitak
- Institute of Biology, University of Graz, Graz, Austria
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
10
|
Milutinović B, Schmitt T. Chemical cues in disease recognition and their immunomodulatory role in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100884. [PMID: 35151903 DOI: 10.1016/j.cois.2022.100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Preventing infections is crucial for host fitness and many insects modify their behaviour upon sensing a contagion. We review chemical cues that mediate insect behaviour in response to parasites, and diseased or dead conspecifics. Considering the large diversity of behavioural disease defences described, surprisingly little is known about disease-associated cues that mediate them, especially their chemoreceptor and neuronal details. Interestingly, disease cues do not only modify host behaviour, but they could also play a direct role in immune system activation via neuroendocrine regulation, bypassing the need for risky immunological contact with the parasite. Such crosstalk is an exciting emerging research area in insect ecological immunology that should prove invaluable in studying host-parasite interactions by combining analytical methods from chemical ecology.
Collapse
Affiliation(s)
- Barbara Milutinović
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany; Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Shibao H, Kutsukake M, Matsuyama S, Fukatsu T. Linoleic acid as corpse recognition signal in a social aphid. ZOOLOGICAL LETTERS 2022; 8:2. [PMID: 34991720 PMCID: PMC8734330 DOI: 10.1186/s40851-021-00184-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Social insect colonies constantly produce dead insects, which cause sanitary problems and potentially foster deadly pathogens and parasites. Hence, many social insects have evolved a variety of hygienic behaviors to remove cadavers from the colonies. To that end, they have to discriminate dead insects from live ones, where chemical cues should play important roles. In ants, bees and termites, such corpse recognition signals, also referred to as "death pheromones" or "necromones", have been identified as fatty acids, specifically oleic acid and/or linoleic acid. Meanwhile, there has been no such report on social aphids. Here we attempted to identify the "death pheromone" of a gall-forming social aphid with second instar soldiers, Tuberaphis styraci, by making use of an artificial diet rearing system developed for this species. On the artificial diet plates, soldiers exhibited the typical cleaning behavior, pushing colony wastes with their heads continuously, against dead aphids but not against live aphids. GC-MS and GC-FID analyses revealed a remarkable increase of linoleic acid on the body surface of the dead aphids in comparison with the live aphids. When glass beads coated with either linoleic acid or body surface extract of the dead aphids were placed on the artificial diet plates, soldiers exhibited the cleaning behavior against the glass beads. A series of behavioral assays showed that (i) soldiers exhibit the cleaning behavior more frequently than non-soldiers, (ii) young soldiers perform the cleaning behavior more frequently than old soldiers, and (iii) the higher the concentration of linoleic acid is, the more active cleaning behavior is induced. Analysis of the lipids extracted from the aphids revealed that linoleic acid is mainly derived from phospholipids that constitute the cell membranes. In conclusion, we identified linoleic acid as the corpse recognition factor of the social aphid T. styraci. The commonality of the death pheromones across the divergent social insect groups (Hymenoptera, Blattodea and Hemiptera) highlights that these unsaturated fatty acids are generally produced by enzymatic autolysis of cell membranes after death and therefore amenable to utilization as a reliable signal of dead insects.
Collapse
Affiliation(s)
- Harunobu Shibao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Mayako Kutsukake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Shigeru Matsuyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takema Fukatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Mondet F, Blanchard S, Barthes N, Beslay D, Bordier C, Costagliola G, Hervé MR, Lapeyre B, Kim SH, Basso B, Mercer AR, Le Conte Y. Chemical detection triggers honey bee defense against a destructive parasitic threat. Nat Chem Biol 2021; 17:524-530. [PMID: 33495646 DOI: 10.1038/s41589-020-00720-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
Invasive species events related to globalization are increasing, resulting in parasitic outbreaks. Understanding of host defense mechanisms is needed to predict and mitigate against the consequences of parasite invasion. Using the honey bee Apis mellifera and the mite Varroa destructor, as a host-parasite model, we provide a comprehensive study of a mechanism of parasite detection that triggers a behavioral defense associated with social immunity. Six Varroa-parasitization-specific (VPS) compounds are identified that (1) trigger Varroa-sensitive hygiene (VSH, bees' key defense against Varroa sp.), (2) enable the selective recognition of a parasitized brood and (3) induce responses that mimic intrinsic VSH activity in bee colonies. We also show that individuals engaged in VSH exhibit a unique ability to discriminate VPS compounds from healthy brood signals. These findings enhance our understanding of a critical mechanism of host defense against parasites, and have the potential to apply the integration of pest management in the beekeeping sector.
Collapse
Affiliation(s)
- Fanny Mondet
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France. .,Department of Zoology, University of Otago, Dunedin, New Zealand.
| | - Solene Blanchard
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France.,UMT PrADE, Avignon, France
| | - Nicolas Barthes
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Dominique Beslay
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France.,UMT PrADE, Avignon, France
| | - Celia Bordier
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France.,UMT PrADE, Avignon, France
| | - Guy Costagliola
- INRAE, UR1115 Plantes et Systèmes de Culture Horticoles, Avignon, France
| | - Maxime R Hervé
- National Research Institute for Agriculture, Food, and Environment, IGEPP, University of Rennes, Rennes, France
| | - Benoit Lapeyre
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Seo Hyun Kim
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Benjamin Basso
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France.,UMT PrADE, Avignon, France.,ITSAP, Avignon, France
| | - Alison R Mercer
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Yves Le Conte
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France.,UMT PrADE, Avignon, France
| |
Collapse
|
13
|
Maák I, Tóth E, Lenda M, Lőrinczi G, Kiss A, Juhász O, Czechowski W, Torma A. Behaviours indicating cannibalistic necrophagy in ants are modulated by the perception of pathogen infection level. Sci Rep 2020; 10:17906. [PMID: 33087857 PMCID: PMC7578781 DOI: 10.1038/s41598-020-74870-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022] Open
Abstract
Cannibalistic necrophagy is rarely observed in social hymenopterans, although a lack of food could easily favour such behaviour. One of the main supposed reasons for the rarity of necrophagy is that eating of nestmate corpses carries the risk of rapid spread of pathogens or parasites. Here we present an experimental laboratory study on behaviour indicating consumption of nestmate corpses in the ant Formica polyctena. We examined whether starvation and the fungal infection level of the corpses affects the occurrence of cannibalistic necrophagy. Our results showed that the ants distinguished between corpses of different types and with different levels of infection risk, adjusting their behaviour accordingly. The frequency of behaviours indicating cannibalistic necrophagy increased during starvation, although these behaviours seem to be fairly common in F. polyctena even in the presence of other food sources. The occurrence and significance of cannibalistic necrophagy deserve further research because, in addition to providing additional food, it may be part of the hygienic behaviour repertoire. The ability to detect infections and handle pathogens are important behavioural adaptations for social insects, crucial for the fitness of both individual workers and the entire colony.
Collapse
Affiliation(s)
- István Maák
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland.
- Department of Ecology, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary.
| | - Eszter Tóth
- Department of Microbiology, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Magdalena Lenda
- Australian Research Council Centre of Excellence for Environmental Decisions, School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland
| | - Gábor Lőrinczi
- Department of Ecology, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Anett Kiss
- Department of Ecology, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Orsolya Juhász
- Department of Ecology, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Wojciech Czechowski
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland
| | - Attila Torma
- Department of Ecology, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Center for Ecological Research, Institute of Ecology and Botany, 'Lendület' Landscape and Conservation Ecology, Alkotmány Utca 2-4, Vácrátót, 2163, Hungary
| |
Collapse
|
14
|
|
15
|
Qiu HL, Qin CS, Fox EGP, Wang DS, He YR. Differential Behavioral Responses of Solenopsis invicta (Hymenoptera: Formicidae) Workers Toward Nestmate and Non-Nestmate Corpses. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5877675. [PMID: 32725158 PMCID: PMC7387867 DOI: 10.1093/jisesa/ieaa069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 06/11/2023]
Abstract
The removal of corpses (aka 'necrophoric behavior') is critical to sanitation in ant colonies. However, little is known about differences in the necrophoric responses of Solenopsis invicta workers towards corpses of nestmates and non-nestmates. We introduced corpses of S. invicta workers from either intracolony (i.e., nestmate) or intercolony (i.e., non-nestmate) origin at the entrance of artificial nests, and recorded workers' aggressive responses and necrophoric behaviors for analysis. Solenopsis invicta workers displayed distinct responses towards corpses of different origins. Specifically, resident workers were more likely to remove fresh non-nestmate corpses than nestmate corpses, but there was no difference regarding corpses that had been dead for 15 min or longer. Resident workers reacted more aggressively to, and removed more quickly, fresh non-nestmate corpses than corpses of their nestmates. On the other hand, there was no significant difference in the removal time between nestmate and non-nestmate corpses that had been dead for 15 min or longer. Resident workers always displayed stronger aggressiveness towards non-nestmate corpses than nestmate corpses, excepting to corpses that had been dead for 6 h, which elicited a response. No significant correlation between the removal times and aggressiveness levels were detected in any treatments. It remains to be tested whether this differential response is adaptive in how it influences colony fitness and competition.
Collapse
Affiliation(s)
- Hua-Long Qiu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Chang-Sheng Qin
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Eduardo G P Fox
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - De-Sen Wang
- College of Agriculture, South China Agricultural University, Guangdong, Guangzhou, China
| | - Yu-Rong He
- College of Agriculture, South China Agricultural University, Guangdong, Guangzhou, China
| |
Collapse
|
16
|
Overlooked Scents: Chemical Profile of Soma, Volatile Emissions and Trails of the Green Tree Ant, Oecophylla smaragdina. Molecules 2020; 25:molecules25092112. [PMID: 32365972 PMCID: PMC7249187 DOI: 10.3390/molecules25092112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
The green tree ant, Oecophylla smaragdina, is one of only two recognized species of weaver ants. While the identity and functions of chemicals produced and emitted by its congener O. longinoda have been studied quite extensively and serve as a valuable model in chemical ecology research, little comparable information is available about O. smaragdina. Although some analyses of chemicals produced and emitted by O. smaragdina have been reported, the literature is fragmentary and incomplete for this species. To address this knowledge gap, and to enable comparisons in the chemical ecology of the two weaver ant species, we here describe diverse chemicals from the cuticle, Dufour's glands, poison glands, head, headspace volatiles, and trails of O. smaragdina.
Collapse
|
17
|
Wang L, Zeng L, Xu Y, Lu Y. Prevalence and management of Solenopsis invicta in China. NEOBIOTA 2020. [DOI: 10.3897/neobiota.54.38584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Red imported fire ant, Solenopsis invicta, was first found in Taiwan province of China in 2003. To prevent transboundary expansion, the Chinese government has formulated various control strategies in the last 15 years to slow down the spread of S. invicta. Despite all efforts, S. invicta invasion has reached more than 390 counties of 13 provinces and two special administrative regions in China; at present, S. invicta remains at the stage of rapid expansion. The transnational entry of S. invicta is linked to imported logs and wastepaper coming mostly from the United States. In domestic settings, long-distance expansion of S. invicta relied on potted plant and turf transportation. Both monogyne and polygyne social forms of S. invicta were present in China with polygyne colonies as the dominant one. Data on population and breeding dynamics of S. invicta reveal the presence of two peaks annually with nuptial flights occurring throughout the year. Arthropods, plant seeds, and honeydew are important food sources of S. invicta, thereby causing negative impacts on the abundance, diversity, and richness of native arthropod communities. Fire ants are threats not only to agriculture and power facilities, but also to human health, with more than 30% of people having suffered from the sting and 10% having experienced an allergic reaction. To address the expansion of S. invicta, the National Fire Ant Detection and Management Union was established and the formulation and implementation of management policies were drawn. Plant quarantine becomes an essential step in fire ant management, whereas the two-step method of combing toxic baits and contact dust emerges as the forefront method crucial in managing S. invicta. The experience and lessons learned from fire ant management in China could benefit other countries when facing similar challenges.
Collapse
|
18
|
Miller CN, Whitehead SR, Kwit C. Effects of seed morphology and elaiosome chemical composition on attractiveness of five Trillium species to seed-dispersing ants. Ecol Evol 2020; 10:2860-2873. [PMID: 32211161 PMCID: PMC7083703 DOI: 10.1002/ece3.6101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 12/23/2022] Open
Abstract
Morphological and chemical attributes of diaspores in myrmecochorous plants have been shown to affect seed dispersal by ants, but the relative importance of these attributes in determining seed attractiveness and dispersal success is poorly understood. We explored whether differences in diaspore morphology, elaiosome fatty acids, or elaiosome phytochemical profiles explain the differential attractiveness of five species in the genus Trillium to eastern North American forest ants. Species were ranked from least to most attractive based on empirically-derived seed dispersal probabilities in our study system, and we compared diaspore traits to test our hypotheses that more attractive species will have larger diaspores, greater concentrations of elaiosome fatty acids, and distinct elaiosome phytochemistry compared to the less attractive species. Diaspore length, width, mass, and elaiosome length were significantly greater in the more attractive species. Using gas chromatography-mass spectrometry, we found significantly higher concentrations of oleic, linoleic, hexadecenoic, stearic, palmitoleic, and total fatty acids in elaiosomes of the more attractive species. Multivariate assessments revealed that elaiosome phytochemical profiles, identified through liquid chromatography-mass spectrometry, were more homogeneous for the more attractive species. Random forest classification models (RFCM) identified several elaiosome phytochemicals that differed significantly among species. Random forest regression models revealed that some of the compounds identified by RFCM, including methylhistidine (α-amino acid) and d-glucarate (carbohydrate), were positively related to seed dispersal probabilities, while others, including salicylate (salicylic acid) and citrulline (L-α-amino acid), were negatively related. These results supported our hypotheses that the more attractive species of Trillium-which are geographically widespread compared to their less attractive, endemic congeners-are characterized by larger diaspores, greater concentrations of fatty acids, and distinct elaiosome phytochemistry. Further advances in our understanding of seed dispersal effectiveness in myrmecochorous systems will benefit from a portrayal of dispersal unit chemical and physical traits, and their combined responses to selection pressures.
Collapse
Affiliation(s)
- Chelsea N. Miller
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
| | - Susan R. Whitehead
- Department of Biological SciencesVirginia Tech UniversityBlacksburgVAUSA
| | - Charles Kwit
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
- Department of Forestry, Wildlife and FisheriesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
19
|
Comparison of Twelve Ant Species and Their Susceptibility to Fungal Infection. INSECTS 2019; 10:insects10090271. [PMID: 31454953 PMCID: PMC6780858 DOI: 10.3390/insects10090271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
Eusocial insects, such as ants, have access to complex disease defenses both at the individual, and at the colony level. However, different species may be exposed to different diseases, and/or deploy different methods of coping with disease. Here, we studied and compared survival after fungal exposure in 12 species of ants, all of which inhabit similar habitats. We exposed the ants to two entomopathogenic fungi (Beauveria bassiana and Metarhizium brunneum), and measured how exposure to these fungi influenced survival. We furthermore recorded hygienic behaviors, such as autogrooming, allogrooming and trophallaxis, during the days after exposure. We found strong differences in autogrooming behavior between the species, but none of the study species performed extensive allogrooming or trophallaxis under the experimental conditions. Furthermore, we discuss the possible importance of the metapleural gland, and how the secondary loss of this gland in the genus Camponotus could favor a stronger behavioral response against pathogen threats.
Collapse
|
20
|
Liu L, Zhao XY, Tang QB, Lei CL, Huang QY. The Mechanisms of Social Immunity Against Fungal Infections in Eusocial Insects. Toxins (Basel) 2019; 11:E244. [PMID: 31035652 PMCID: PMC6563085 DOI: 10.3390/toxins11050244] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/21/2019] [Accepted: 04/27/2019] [Indexed: 12/28/2022] Open
Abstract
Entomopathogenic fungus as well as their toxins is a natural threat surrounding social insect colonies. To defend against them, social insects have evolved a series of unique disease defenses at the colony level, which consists of behavioral and physiological adaptations. These colony-level defenses can reduce the infection and poisoning risk and improve the survival of societal members, and is known as social immunity. In this review, we discuss how social immunity enables the insect colony to avoid, resist and tolerate fungal pathogens. To understand the molecular basis of social immunity, we highlight several genetic elements and biochemical factors that drive the colony-level defense, which needs further verification. We discuss the chemosensory genes in regulating social behaviors, the antifungal secretions such as some insect venoms in external defense and the immune priming in internal defense. To conclude, we show the possible driving force of the fungal toxins for the evolution of social immunity. Throughout the review, we propose several questions involved in social immunity extended from some phenomena that have been reported. We hope our review about social 'host-fungal pathogen' interactions will help us further understand the mechanism of social immunity in eusocial insects.
Collapse
Affiliation(s)
- Long Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
- Plant Protection College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xing-Ying Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qing-Bo Tang
- Plant Protection College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiu-Ying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
21
|
Sun Q, Haynes KF, Zhou X. Managing the risks and rewards of death in eusocial insects. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170258. [PMID: 30012744 PMCID: PMC6053982 DOI: 10.1098/rstb.2017.0258] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2018] [Indexed: 12/22/2022] Open
Abstract
Eusocial insects frequently face death of colony members as a consequence of living in large groups where the success of the colony is not dependent on the fate of the individual. Whereas death of conspecifics commonly triggers aversion in many group-living species due to risk of pathogens, eusocial insects perform cooperative corpse management. The causes and social context of the death, as well as feeding and nesting ecology of the species, influence the way that corpses are treated. The corpse itself releases cues that dictate the colony's response. As a result, social insects exhibit behavioural responses that promote disease resistance, colony defence and nutrient recycling. Corpse management represents a unique adaption that enhances colony success, and is another factor that has enabled eusocial insects to be so successful. In this review, we summarize the causes of death, the sensory detection of death and corpse management strategies of social insects. In addition, we provide insights into the evolution of behavioural response to the dead and the ecological relevance of corpse management.This article is part of the theme issue 'Evolutionary thanatology: impacts of the dead on the living in humans and other animals'.
Collapse
Affiliation(s)
- Qian Sun
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Centre North, Lexington, KY 40546, USA
| | - Kenneth F Haynes
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Centre North, Lexington, KY 40546, USA
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Centre North, Lexington, KY 40546, USA
| |
Collapse
|
22
|
Rojas MG, Elliott RB, Morales-Ramos JA. Mortality of Solenopsis invicta Workers (Hymenoptera: Formicidae) After Indirect Exposure to Spores of Three Entomopathogenic Fungi. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5037117. [PMID: 29905878 PMCID: PMC6007449 DOI: 10.1093/jisesa/iey050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Mortality caused by indirect exposure to Metarhizium brunneum and Beauveria bassiana (GHA and NI8) to the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), workers was evaluated. Groups of 50 workers were placed in one side of dual-box arenas. The opposite side of the arenas was lined with filter paper squares previously sprayed with unformulated purified spores (106 spores/ml) suspended in 0.2% Ethal TDA 3, HLB 8 of the three fungal strains, or untreated filter paper squares as the control. Daily observations were done for 1 wk to determine mortality. Dead ants from each treatment and control were collected, surface cleaned, and placed in PDA media and incubated at 27°C, 60% RH for 7 d to detect fungal growth. The presence of fungal growth in the dead ants confirmed that fungal spores infected workers while walking on the treated paper. In the M. brunneum and B. bassiana GHA treatments, 51.35 and 56.68% of the workers died, respectively, during days 1 and 2. However, only 9.47 and 35.96% of the mortality could be explained by fungal infection by M. brunneum and B. bassiana GHA, respectively. Most of the mortality observed in the B. bassiana NI8 treatment (84.48%) occurred later (between days 4-6) and most of this mortality occurring during day 4 (89.06%) could be explained by B. bassiana infection. Overall mortality was significantly higher in the B. bassiana NI8 treatment than the other two fungi tested and control. Potential application of these fungal strains for fire ant control are discussed.
Collapse
|
23
|
McAfee A, Chapman A, Iovinella I, Gallagher-Kurtzke Y, Collins TF, Higo H, Madilao LL, Pelosi P, Foster LJ. A death pheromone, oleic acid, triggers hygienic behavior in honey bees (Apis mellifera L.). Sci Rep 2018; 8:5719. [PMID: 29632403 PMCID: PMC5890279 DOI: 10.1038/s41598-018-24054-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
Eusocial insects live in teeming societies with thousands of their kin. In this crowded environment, workers combat disease by removing or burying their dead or diseased nestmates. For honey bees, we found that hygienic brood-removal behavior is triggered by two odorants - β-ocimene and oleic acid - which are released from brood upon freeze-killing. β-ocimene is a co-opted pheromone that normally signals larval food-begging, whereas oleic acid is a conserved necromone across arthropod taxa. Interestingly, the odorant blend can induce hygienic behavior more consistently than either odorant alone. We suggest that the volatile β-ocimene flags hygienic workers' attention, while oleic acid is the death cue, triggering removal. Bees with high hygienicity detect and remove brood with these odorants faster than bees with low hygienicity, and both molecules are strong ligands for hygienic behavior-associated odorant binding proteins (OBP16 and OBP18). Odorants that induce low levels of hygienic behavior, however, are weak ligands for these OBPs. We are therefore beginning to paint a picture of the molecular mechanism behind this complex behavior, using odorants associated with freeze-killed brood as a model.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada
| | - Abigail Chapman
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada
| | - Immacolata Iovinella
- Dipartimento di Biologia Università degli Studi di Firenze Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Ylonna Gallagher-Kurtzke
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada
| | - Troy F Collins
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada
| | - Heather Higo
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada
| | - Lufiani L Madilao
- Wine Research Center, Food, Nutrition and Health Building, University of British Columbia, 2205 East Mall, Vancouver, British Columbia, Canada
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, 24 Konrad-Lorenzstrasse, Tulln, Austria
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada.
| |
Collapse
|
24
|
|
25
|
Pull CD, Ugelvig LV, Wiesenhofer F, Grasse AV, Tragust S, Schmitt T, Brown MJF, Cremer S. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. eLife 2018; 7:e32073. [PMID: 29310753 PMCID: PMC5760203 DOI: 10.7554/elife.32073] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/17/2017] [Indexed: 01/19/2023] Open
Abstract
In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.
Collapse
Affiliation(s)
- Christopher D Pull
- IST Austria (Institute of Science and Technology Austria)KlosterneuburgAustria
| | - Line V Ugelvig
- IST Austria (Institute of Science and Technology Austria)KlosterneuburgAustria
| | - Florian Wiesenhofer
- IST Austria (Institute of Science and Technology Austria)KlosterneuburgAustria
| | - Anna V Grasse
- IST Austria (Institute of Science and Technology Austria)KlosterneuburgAustria
| | - Simon Tragust
- IST Austria (Institute of Science and Technology Austria)KlosterneuburgAustria
- Evolution, Genetics and BehaviourUniversity of RegensburgRegensburgGermany
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical BiologyUniversity of WürzburgWürzburgGermany
| | - Mark JF Brown
- School of Biological SciencesRoyal Holloway University of LondonEghamUnited Kingdom
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria)KlosterneuburgAustria
| |
Collapse
|
26
|
Cremer S, Pull CD, Fürst MA. Social Immunity: Emergence and Evolution of Colony-Level Disease Protection. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:105-123. [PMID: 28945976 DOI: 10.1146/annurev-ento-020117-043110] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Social insect colonies have evolved many collectively performed adaptations that reduce the impact of infectious disease and that are expected to maximize their fitness. This colony-level protection is termed social immunity, and it enhances the health and survival of the colony. In this review, we address how social immunity emerges from its mechanistic components to produce colony-level disease avoidance, resistance, and tolerance. To understand the evolutionary causes and consequences of social immunity, we highlight the need for studies that evaluate the effects of social immunity on colony fitness. We discuss the roles that host life history and ecology have on predicted eco-evolutionary dynamics, which differ among the social insect lineages. Throughout the review, we highlight current gaps in our knowledge and promising avenues for future research, which we hope will bring us closer to an integrated understanding of socio-eco-evo-immunology.
Collapse
Affiliation(s)
- Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg 3400, Austria; ,
| | - Christopher D Pull
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg 3400, Austria; ,
- Current affiliation: School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom;
| | - Matthias A Fürst
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg 3400, Austria; ,
| |
Collapse
|
27
|
Pull CD, Cremer S. Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour. BMC Evol Biol 2017; 17:219. [PMID: 29025392 PMCID: PMC5639488 DOI: 10.1186/s12862-017-1062-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. RESULTS Using Lasius niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. CONCLUSIONS We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.
Collapse
Affiliation(s)
- Christopher D Pull
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria. .,Present address: School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| |
Collapse
|
28
|
Qiu HL, Zhao CY, He YR. On the Molecular Basis of Division of Labor in Solenopsis invicta (Hymenoptera: Formicidae) Workers: RNA-seq Analysis. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3093133. [PMID: 28365770 PMCID: PMC5469383 DOI: 10.1093/jisesa/iex002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 06/07/2023]
Abstract
The fire ant Solenopsis invicta Buren is an important invasive pest. Among S. invicta workers behavioral changes depend on age where younger ants are nurses and older ants foragers. To identify potential genes associated with this division of labor, we compared gene expression between foragers and nurses by high-throughput sequencing. In total, we identified 1,618 genes significantly differently expressed between nurses and foragers, of which 542 were upregulated in foragers and 1,076 were upregulated in nurses. Several pathways related to metabolism were significantly enriched, such as lipid storage and fatty acid biosynthesis, which might contribute to the division of labor in S. invicta. Several genes involved in DNA methylation, transcription, and olfactory responses as well as resistance to stress were differentially expressed between nurses and foragers workers. Finally, a comparison between previously published microarray data and our RNA-seq data in S. invicta shows 116 genes overlap, and the GO term myofibril assembly (GO: 0030239) were simultaneously significantly enriched. These results advance knowledge of potentially important genes and molecular pathways associated with worker division of labor in S. invicta. We hope our dataset will provide . candidate target genes to disrupt organization in S. invicta as a control strategy against this invasive pest.
Collapse
Affiliation(s)
- Hua-Long Qiu
- Department of Entomology College of Agriculture, South China Agricultural University, Guangdong, Guangzhou 510642, China
| | - Cheng-Yin Zhao
- Department of Life Science Luoyang Normal University, Henan, Luoyang 471000, China
| | - Yu-Rong He
- Department of Entomology College of Agriculture, South China Agricultural University, Guangdong, Guangzhou 510642, China
| |
Collapse
|
29
|
Sun Q, Haynes KF, Zhou X. Dynamic changes in death cues modulate risks and rewards of corpse management in a social insect. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qian Sun
- Department of Entomology University of Kentucky Lexington Kentucky40546‐0091 USA
| | - Kenneth F. Haynes
- Department of Entomology University of Kentucky Lexington Kentucky40546‐0091 USA
| | - Xuguo Zhou
- Department of Entomology University of Kentucky Lexington Kentucky40546‐0091 USA
| |
Collapse
|
30
|
Metarhizium anisopliae infection alters feeding and trophallactic behavior in the ant Solenopsis invicta. J Invertebr Pathol 2016; 138:24-9. [PMID: 27234423 DOI: 10.1016/j.jip.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 05/13/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
In social insects, social behavior may be changed in a way that preventing the spread of pathogens. We infected workers of the ant Solenopsis invicta with an entomopathogenic fungus Metarhizium anisopliae and then videotaped and/or measured worker feeding and trophallactic behavior. Results showed that fungal infected S. invicta enhanced their preference for bitter alkaloid chemical quinine on 3days after inoculation, which might be self-medication of S. invicta by ingesting more alkaloid substances in response to pathogenic infection. Furthermore, infected ants devoted more time to trophallactic behavior with their nestmates on 3days post inoculation, in return receiving more food. Increased interactions between exposed ants and their naive nestmates suggest the existence of social immunity in S. invicta. Overall, our study indicates that S. invicta may use behavioral defenses such as self-medication and social immunity in response to a M. anisopliae infection.
Collapse
|