1
|
Chen HX, Qiao HX, Zhao WT, Gu XH, Li L. Integrative evidence reveals a new species of Hysterothylacium (Nematoda: Ascaridoidea), with the characterization of its complete mitochondrial genome. Int J Parasitol Parasites Wildl 2025; 26:101042. [PMID: 39995494 PMCID: PMC11848143 DOI: 10.1016/j.ijppaw.2025.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/26/2025]
Abstract
The genus Hysterothylacium (Ascaridida: Raphidascarididae) is among the commonest groups of parasitic nematodes occurring in the digestive tract of marine fishes. In the present study, a new species of Hysterothylacium, H. hainanense sp. n. collected from Uranoscopus tosae (Jordan & Hubbs) and U. japonicus Houttuyn (Perciformes: Uranoscopidae) in the Chinese waters was described using integrative methods, including light and scanning electron microscopy, and ASAP and BI analyses based on the ITS sequence data. The complete mitochondrial genome of the new species was sequenced and annotated, which represents the first mitogenomic data for the genus Hysterothylacium, and also for the family Raphidascarididae. The mitogenome of H. hainanense sp. n. is 14059 bp in length, including 12 protein coding genes (missing atp8), 22 tRNA genes, 2 rRNA genes and 2 non-coding regions, which has 67.0% of overall A + T content, and represents the lowest level of A + T content in the ascaridoid mitogenomes reported so far. Molecular phylogenetic results suggested a close affinity between H. hainanense sp. n. and H. fabri in the genus Hysterothylacium.
Collapse
Affiliation(s)
- Hui-Xia Chen
- Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, Hebei Province, PR China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, 050024, Shijiazhuang, Hebei Province, PR China
| | - Hai-Xia Qiao
- Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, Hebei Province, PR China
| | - Wen-Ting Zhao
- Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, Hebei Province, PR China
| | - Xiao-Hong Gu
- Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, Hebei Province, PR China
| | - Liang Li
- Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, Hebei Province, PR China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, 050024, Shijiazhuang, Hebei Province, PR China
| |
Collapse
|
2
|
Gu XH, Mu JT, Chen HX, Li L. Integrated evidence reveals a new subspecies of the genus Seuratascaris (Nematoda: Ascaridomorpha), with characterization of the complete mitochondrial genome. Parasite 2025; 32:14. [PMID: 39996964 PMCID: PMC11852783 DOI: 10.1051/parasite/2025008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Species of Seuratascaris Sprent, 1985 are a rarely reported group of ascaridoid nematodes, parasitising various frogs and toads. In the present study, a new subspecies of Seuratascaris, S. physalis bazhaiensis n. subsp. was described using integrated taxonomic methods, based on specimens collected from Odorrana graminea (Anura: Ranidae) in Guangxi Zhuang Autonomous Region, China. Results of the Assemble Species by Automatic Partitioning (ASAP) and Bayesian inference based on the mitochondrial cox1, cox2 and rrnS data all supported S. physalis bazhaiensis representing a distinct taxon from the nominate subspecies S. physalis physalis. Supplementary morphometric and genetic data of S. phy. physalis are presented based on newly collected material from Odorrana tiannanensis (Anura: Ranidae) and Rhacophorus sp. (Anura: Rhacophoridae) in Yunnan Province, China. A key to species of Seuratascaris is provided. The complete mitochondrial genome of S. physalis bazhaiensis was sequenced and annotated, and represents the first mitogenomic data for the genus Seuratascaris. This mitogenome has only 13,628 bp (including 12 protein-coding genes, 22 tRNA genes, 2 ribosomal RNAs, and only 1 non-coding region), and is the smallest of the reported ascaridoid mitogenomes so far.
Collapse
Affiliation(s)
- Xiao-Hong Gu
- Hebei Collaborative Innovation Center for Eco‐Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; College of Life Sciences, Hebei Normal University 050024 Shijiazhuang Hebei Province P.R. China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology 050024 Shijiazhuang Hebei Province P.R. China
| | - Jia-Tong Mu
- Hebei Collaborative Innovation Center for Eco‐Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; College of Life Sciences, Hebei Normal University 050024 Shijiazhuang Hebei Province P.R. China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology 050024 Shijiazhuang Hebei Province P.R. China
| | - Hui-Xia Chen
- Hebei Collaborative Innovation Center for Eco‐Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; College of Life Sciences, Hebei Normal University 050024 Shijiazhuang Hebei Province P.R. China
| | - Liang Li
- Hebei Collaborative Innovation Center for Eco‐Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; College of Life Sciences, Hebei Normal University 050024 Shijiazhuang Hebei Province P.R. China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology 050024 Shijiazhuang Hebei Province P.R. China
| |
Collapse
|
3
|
Gao Y, Hu Y, Xu S, Liang H, Lin H, Yin TH, Zhao K. Characterisation of the mitochondrial genome and phylogenetic analysis of Toxocara apodemi (Nematoda: Ascarididae). J Helminthol 2024; 98:e33. [PMID: 38618902 DOI: 10.1017/s0022149x24000221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
We first sequenced and characterised the complete mitochondrial genome of Toxocara apodeme, then studied the evolutionary relationship of the species within Toxocaridae. The complete mitochondrial genome was amplified using PCR with 14 specific primers. The mitogenome length was 14303 bp in size, including 12 PCGs (encoding 3,423 amino acids), 22 tRNAs, 2 rRNAs, and 2 NCRs, with 68.38% A+T contents. The mt genomes of T. apodemi had relatively compact structures with 11 intergenic spacers and 5 overlaps. Comparative analyses of the nucleotide sequences of complete mt genomes showed that T. apodemi had higher identities with T. canis than other congeners. A sliding window analysis of 12 PCGs among 5 Toxocara species indicated that nad4 had the highest sequence divergence, and cox1 was the least variable gene. Relative synonymous codon usage showed that UUG, ACU, CCU, CGU, and UCU most frequently occurred in the complete genomes of T. apodemi. The Ka/Ks ratio showed that all Toxocara mt genes were subject to purification selection. The largest genetic distance between T. apodemi and the other 4 congeneric species was found in nad2, and the smallest was found in cox2. Phylogenetic analyses based on the concatenated amino acid sequences of 12 PCGs demonstrated that T. apodemi formed a distinct branch and was always a sister taxon to other congeneric species. The present study determined the complete mt genome sequences of T. apodemi, which provide novel genetic markers for further studies of the taxonomy, population genetics, and systematics of the Toxocaridae nematodes.
Collapse
Affiliation(s)
- Y Gao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang Taizhou318000, China
- Zhejiang-Malaysia Joint Laboratory for Bioactive Materials and Applied Microbiology, School of Life Sciences, Taizhou University, Zhejiang Taizhou318000, China
| | - Y Hu
- Taizhou City Center for Disease Control and Prevention, Zhejiang Taizhou318000, China
| | - S Xu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang Taizhou318000, China
- Zhejiang-Malaysia Joint Laboratory for Bioactive Materials and Applied Microbiology, School of Life Sciences, Taizhou University, Zhejiang Taizhou318000, China
| | - H Liang
- Taizhou City Center for Disease Control and Prevention, Zhejiang Taizhou318000, China
| | - H Lin
- Taizhou City Center for Disease Control and Prevention, Zhejiang Taizhou318000, China
| | - T H Yin
- Zhejiang-Malaysia Joint Laboratory for Bioactive Materials and Applied Microbiology, School of Life Sciences, Taizhou University, Zhejiang Taizhou318000, China
- Tunku Abdul Rahman University of Management and Technology, Jalan Genting Kelang, Kuala Lumpur 53300, Malaysia
| | - K Zhao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang Taizhou318000, China
- Zhejiang-Malaysia Joint Laboratory for Bioactive Materials and Applied Microbiology, School of Life Sciences, Taizhou University, Zhejiang Taizhou318000, China
| |
Collapse
|
4
|
Li H, Chen W, Qi W, Ren Z, Pan X, Shen F, Lu J, Zhai J, Wu Y, Zou J, Xiao L, Feng Y, Yuan D. Molecular characterization of a novel Spiruromorpha species in wild Chinese pangolin by mitogenome sequence analysis. Parasitol Res 2024; 123:137. [PMID: 38376760 DOI: 10.1007/s00436-024-08143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Pangolins are susceptible to a variety of gastrointestinal nematodes due to their burrowing lifestyle and feeding habits, and few parasitic nematodes have been reported. Here, a Chinese pangolin with old wounds on its leg and tail was rescued from the Heyuan City, Guangdong Province. The cox1 and SSU rRNA of the worms from the intestine of the Chinese pangolin had the highest sequence identity of 89.58% and 97.95% to the species in the infraorder Spiruromorpha. The complete mitogenome of the worm was further assembled by next-generation sequencing, with a size of 13,708 bp and a GC content of 25.6%. The worm mitogenome had the highest sequence identity of 78.56% to that of Spirocerca lupi, sharing the same gene arrangement with S. lupi and some species in other families under Spiruromorpha. However, the mitogenome between the worm and S. lupi showed differences in codon usage of PCGs, sequences of NCR, and tRNA secondary structures. Phylogenetic analysis showed that the worm mitogenome was clustered with S. lupi in the family Thelaziidae to form a separate branch. However, it is still difficult to identify the worm in the family Thelaziidae because the species in the family Thelaziidae are confused, specifically S. lupi and Thelazia callipaeda in the family Thelaziidae were separated and grouped with species from other families. Thus, the parasitic nematode from the Chinese pangolin may be a novel species in Spiruromorpha and closely related to S. lupi. This study enriches the data on gastrointestinal nematodes in the Chinese pangolin.
Collapse
Affiliation(s)
- Hongyi Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Wenmin Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Zhengjiu Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Xi Pan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Fei Shen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Jinzhi Lu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Junqiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Yajiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Jiejian Zou
- Guangdong Wildlife Monitoring and Rescue Center, Guangzhou, 510520, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
| | - Dongjuan Yuan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Gu XH, Guo N, Chen HX, Sitko J, Li LW, Guo BQ, Li L. Mitogenomic phylogenies suggest the resurrection of the subfamily Porrocaecinae and provide insights into the systematics of the superfamily Ascaridoidea (Nematoda: Ascaridomorpha), with the description of a new species of Porrocaecum. Parasit Vectors 2023; 16:275. [PMID: 37563590 PMCID: PMC10416420 DOI: 10.1186/s13071-023-05889-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The family Toxocaridae is a group of zooparasitic nematodes of veterinary, medical and economic significance. However, the evolutionary relationship of Porrocaecum and Toxocara, both genera currently classified in Toxocaridae, and the monophyly of the Toxocaridae remain under debate. Moreover, the validity of the subgenus Laymanicaecum in the genus Porrocaecum is open to question. Due to the scarcity of an available genetic database, molecular identification of Porrocaecum nematodes is still in its infancy. METHODS A number of Porrocaecum nematodes collected from the Eurasian marsh harrier Circus aeruginosus (Linnaeus) (Falconiformes: Accipitridae) in the Czech Republic were identified using integrated morphological methods (light and scanning electron microscopy) and molecular techniques (sequencing and analyzing the nuclear 18S, 28S and ITS regions). The complete mitochondrial genomes of the collected nematode specimens and of Porrocaecum (Laymanicaecum) reticulatum (Linstow, 1899) were sequenced and annotated for the first time. Phylogenetic analyses of ascaridoid nematodes based on the amino acid sequences of 12 protein-coding genes of mitochondrial genomes were performed using maximum likelihood and Bayesian inference. RESULTS A new species of Porrocaecum, named P. moraveci n. sp., is described based on the morphological and genetic evidence. The mitogenomes of P. moraveci n. sp. and P. reticulatum both contain 36 genes and are 14,517 and 14,210 bp in length, respectively. Comparative mitogenomics revealed that P. moraveci n. sp. represents the first known species with three non-coding regions and that P. reticulatum has the lowest overall A + T content in the mitogenomes of ascaridoid nematodes tested to date. Phylogenetic analyses showed the representatives of Toxocara clustered together with species of the family Ascarididae rather than with Porrocaecum and that P. moraveci n. sp. is a sister to P. reticulatum. CONCLUSIONS The characterization of the complete mitochondrial genomes of P. moraveci n. sp. and P. reticulatum is reported for the first time. Mitogenomic phylogeny analyses indicated that the family Toxocaridae is non-monophyletic and that the genera Porrocaecum and Toxocara do not have an affinity. The validity of the subgenus Laymanicaecum in Porrocaecum was also rejected. Our results suggest that: (i) Toxocaridae should be degraded to a subfamily of the Ascarididae that includes only the genus Toxocara; and (ii) the subfamily Porrocaecinae should be resurrected to include only the genus Porrocaecum. The present study enriches the database of ascaridoid mitogenomes and provides a new insight into the systematics of the superfamily Ascaridoidea.
Collapse
Affiliation(s)
- Xiao-Hong Gu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Ning Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Hui-Xia Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Jiljí Sitko
- Muzeum Komenského V Přerově, 750 02, Přerově, Czech Republic
| | - Lin-Wei Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Bing-Qian Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Liang Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China.
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China.
| |
Collapse
|
6
|
Zhou M, Lu Y, Han L, Lu M, Guan C, Yu J, Liu H, Chen D, Li H, Yang Y, Zhang L, Tian L, Liu Q, Hou Z. Exploration of Parascaris species in three different Equus populations in China. Parasit Vectors 2023; 16:202. [PMID: 37322493 DOI: 10.1186/s13071-023-05768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/04/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The roundworms, Parascaris spp., are important nematode parasites of foals and were historically model organisms in the field of cell biology, leading to many important discoveries. According to karyotype, ascarids in Equus are commonly divided into Parascaris univalens (2n = 2) and Parascaris equorum (2n = 4). METHODS Here, we performed morphological identification, karyotyping and sequencing of roundworms from three different hosts (horses, zebras and donkeys). Phylogenetic analysis was performed to study the divergence of these ascarids based on cytochrome c oxidase subunit I (COI) and internal transcribed spacer (ITS) sequences. RESULTS Karyotyping, performed on eggs recovered from worms of three different Equus hosts in China, showed two different karyotypes (2n = 2 in P. univalens collected from horses and zebras; 2n = 6 in Parascaris sp. collected from donkeys). There are some differences in the terminal part of the spicula between P. univalens (concave) and Parascaris sp. (rounded). Additionally, it was found that the egg's chitinous layer was significantly thicker in Parascaris sp. (> 5 μm) than P. univalens (< 5 μm) (F(2537) = 1967, P < 0.01). Phylogenetic trees showed that the sequences of Parascaris from Equus hosts were divided into two distinct lineages based on sequences of the COI and ITS. CONCLUSIONS Comparing the differences in roundworms collected from three different Equus hosts, this study describes a Parascaris species (Parascaris sp.) with six chromosomes in donkeys. It is worth noting that the thickness of the chitinous layer in the Parascaris egg may serve as a diagnostic indicator to distinguish the two roundworms (P. univalens and Parascaris sp.). The Parascaris sp. with six chromosomes in donkeys in the present study may be a species of P. trivalens described in 1934, but the possibility that it is a new Parascaris species cannot be ruled out. Both karyotyping and molecular analysis are necessary to solve the taxonomic problems in Parascaris species.
Collapse
Affiliation(s)
- Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Maolin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | | | - Jie Yu
- Dong-E-E-Jiao Co. Ltd, Shandong, China
| | - Hetong Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Denghui Chen
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Hongjia Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Yuling Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Lu Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Lihong Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China.
| | - Quan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China.
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China.
| |
Collapse
|
7
|
The Complete Mitogenome of Toxocara vitulorum: Novel In-Sights into the Phylogenetics in Toxocaridae. Animals (Basel) 2022; 12:ani12243546. [PMID: 36552470 PMCID: PMC9774135 DOI: 10.3390/ani12243546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Toxocara vitulorum (Ascaridida: Nematoda) is one of the most common intestinal nematodes of cattle and buffalos and, therefore, represents a serious threat to their populations worldwide. Despite its significance in veterinary health the epidemiology, population genetics, and molecular ecology of this nematode remain poorly understood. The mitogenome can yield a foundation for studying these areas and assist in the surveillance and control of T. vitulorum. Herein, the first whole mitogenome of T. vitulorum was sequenced utilizing Illumina technology and characterized with bioinformatic pipeline analyses. The entire genome of T. vitulorum was 15,045 bp in length and contained 12 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs). The gene arrangement (GA) of T. vitulorum was similar to those of other Toxocara species under GA3. The whole genome showed significant levels of AT and GC skew. Comparative mitogenomics including sequence identities, Ka/Ks, and sliding window analysis, indicated a purifying selection of 12 PCGs with cox1 and nad6 having the lowest and highest evolutionary rate, respectively. Whole amino acid sequence-based phylogenetic analysis supported a novel sister-species relationship of T. vitulorum with the congeneric species Toxocara canis, Toxocara cati, and Toxocara malaysiensis in the family Toxocaridae. Further, 12 (PCGs) single gene-based phylogenies suggested that nad4 and nad6 genes shared same topological trees with that of the whole genome, suggesting that these genes were suitable as novel genetic markers for phylogenetic and evolutionary studies of Ascaridida species. This complete mitogenome of T. vitulorum refined phylogenetic relationships in Toxocaridae and provided the resource of markers for population genetics, systematics, and epidemiology of this bovine nematode.
Collapse
|
8
|
The equine ascarids: resuscitating historic model organisms for modern purposes. Parasitol Res 2022; 121:2775-2791. [PMID: 35986167 PMCID: PMC9391215 DOI: 10.1007/s00436-022-07627-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022]
Abstract
The equine ascarids, Parascaris spp., are important nematode parasites of juvenile horses and were historically model organisms in the field of cell biology, leading to many important discoveries, and are used for the study of chromatin diminution. In veterinary parasitology, Parascaris spp. are important not only because they can cause clinical disease in young horses but also because they are the only ascarid parasites to have developed widespread anthelmintic resistance. Despite this, much of the general biology and mechanisms of anthelmintic resistance are poorly understood. This review condenses known basic biological information and knowledge on the mechanisms of anthelmintic resistance in Parascaris spp., highlighting the importance of foundational research programs. Although two variants of this parasite were recognized based on the number of chromosomes in the 1870s and suggested to be two species in 1890, one of these, P. univalens, appears to have been largely forgotten in the veterinary scientific literature over the past 100 years. We describe how this omission has had a century-long effect on nomenclature and data analysis in the field, highlighting the importance of proper specimen identification in public repositories. A summary of important basic biology, including life cycle, in vitro maintenance, and immunology, is given, and areas of future research for the improvement of knowledge and development of new systems are given. Finally, the limited knowledge regarding anthelmintic resistance in Parascaris spp. is summarized, along with caution regarding assumptions that resistance mechanisms can be applied across clades.
Collapse
|
9
|
Population genetic structure and morphological diversity of Cruzia tentaculata (Nematoda: Ascaridida), a parasite of marsupials (Didelphinae), along the Atlantic Forest on the eastern coast of South America. Parasitology 2022; 149:1487-1504. [PMID: 35929484 PMCID: PMC10090786 DOI: 10.1017/s0031182022000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cruzia tentaculata is a helminth parasite of marsupials and has a wide geographic distribution from Mexico to Argentina. The aim of this study was to analyse the genetic population structure of this nematode along the Atlantic Forest biome. Cruzia tentaculata specimens were recovered from Didelphis aurita, Didelphis albiventris and Philander quica in 9 localities. Morphological and morphometric data were investigated for phenotypic diversity among localities and hosts using multivariate discriminant analysis of principal components. Phylogenetic relationships of C. tentaculata were determined using maximum likelihood and Bayesian inference. The population structure was analysed by fixation indices, molecular variance analysis, Tajima's D and Fu's Fs neutrality tests, Mantel tests and Bayesian clustering analysis. A higher significant morphometric difference for males was observed between localities. In the haplogroup networks, 2 groups were recovered, separating locations from the north and from the south/southeast. The morphometric variation in C. tentaculata between different localities was compatible with this north and southeast/south pattern, suggesting adaptation to different ecological conditions. Population genetic analyses suggested a pattern of evolutionary processes driven by Pleistocene glacial refugia in the northeast and southeast of the Atlantic Forest based on the distribution of genetic diversity.
Collapse
|
10
|
Chen SY, Qiu QG, Mo HL, Gong TF, Li F, He JL, Li WC, Xie XR, Liu W. Molecular Identification and Phylogenetic Analysis of Ascarids in Wild Animals. Front Vet Sci 2022; 9:891672. [PMID: 35573413 PMCID: PMC9100682 DOI: 10.3389/fvets.2022.891672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Ascarid nematodes are the most common and harmful nematodes parasites in animals. By analyzing genetic variation, this study explores the genetic and phylogenetic relationship among ascarids from 11 different hosts. This study collected ascarid samples from the feces of nine animal species in Changsha Ecological Zoo of Hunan Province and two animal kinds in the College of Veterinary Medicine of Hunan Agricultural University. The mitochondrial gene (pcox1) and ribosomal ITS sequences were amplified, sequenced, and analyzed by PCR to identify the species of the samples. The phylogenetic tree was constructed based on two genes (cox1 and ITS) by the Neighbor-joining method, and the phylogenetic relationship was analyzed. The sequencing results showed that the sequence lengths of pcox1 and ITS genes in the samples were 441 bp and 838–1,177 bp, respectively. The difference rates were 0.00–1.70% in pcox1 gene and 0.00–7.30% in ITS gene. Phylogenetic analysis showed that ascarid worms from the white lion, Northeast tiger, South China tiger and cheetah were identified as Toxascaris leonina. Ascarids from the zebra were identified as Parascaris equorum, while those from chicken and peacocks were identified as Ascaridia galli. Ascarids of wolf and dog origin were Toxocara canis, the snake ascarids belonged to Ophidascaris filaria, and the bear ascarids belonged to Baylisascaris transfuga. There was a significant gap between different kinds of ascarid worms. We found that these two mitochondrial genes pcox1 and ITS showed a common characteristic that the intraspecific differences were significantly smaller than the interspecific differences, confirming that these two genes could be used as interspecific genetic markers for molecular identification of different ascarids origins. The intraspecific variation rate of the ITS gene was higher than that of pcox1, indicating that ITS can also be used in the genetic research of Ascaris species development. This study revealed the genetic evolution and phylogeny of ascarids in wild animals, and our results will help prevent and control ascarids in wild animals.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- The Key Laboratory of Animal Vaccine & Protein Engineering, Changsha, China
| | | | - Hai-Long Mo
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Teng-Fang Gong
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Fen Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jun-Lin He
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wen-Chao Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xin-Rui Xie
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wei Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- The Key Laboratory of Animal Vaccine & Protein Engineering, Changsha, China
- *Correspondence: Wei Liu
| |
Collapse
|
11
|
Gao JF, Mao RF, Li Y, Sun YY, Gao ZY, Zhang XG, Jin ZH, An Q, Zhang ZH, Zhang AH, Wei W, Lan Z, Wang CR. Characterization of the mitochondrial genome of Tetrameres grusi and insights into the phylogeny of Spirurina. Int J Parasitol Parasites Wildl 2022; 17:35-42. [PMID: 34976723 PMCID: PMC8688868 DOI: 10.1016/j.ijppaw.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 10/25/2022]
|
12
|
von Samson-Himmelstjerna G, Janssen IJI, Ramünke S, Goday C, Borges FDA, Koudela B, Niedźwiedź A, Tomczuk K, Studzińska MB, Kornas S, Krücken J. Very low intraspecific sequence variation in selected nuclear and mitochondrial Parascaris univalens genes. INFECTION GENETICS AND EVOLUTION 2021; 95:105035. [PMID: 34384934 DOI: 10.1016/j.meegid.2021.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022]
Abstract
Equines were over decades considered to be infected by two morphologically virtually indistinguishable ascarid species, Parascaris univalens and Parascaris equorum. Reliable species discrimination is only possible using enzyme isoelectric focussing and karyotyping with P. univalens having one and P. equorum two chromosome pairs. However, presumably the complexity of both methods prevented their routine use in nearly all previous studies about prevalence and drug resistance of Parascaris spp. These have barely been performed on the species level although most studies stated presence of one or the other species. Recently, only P. univalens has been identified by karyotyping and the last published study identifying P. equorum dates back to 1989. In order to improve species-specific detection, molecular markers are required. Here, partial 12S rRNA, cytochrome oxidase I (COI) and complete internal transcribed spacer (ITS)-1 and - 2 sequences were obtained from 24 karyotyped Parascaris specimens from Poland and 6 German specimens (not karyotyped) and used in phylogenetic analyses with orthologous sequences from GenBank. All karyotyped specimens were identified as P. univalens. In the phylogenetic analysis, they formed very homogenous clusters for all target genes and in a multi-locus analysis. Within this cluster, almost all sequences from GenBank were also included, no matter if they had been assigned to P. univalens or P. equorum. However, a small number of P. univalens ITS and COI sequences originating from donkeys from a single farm in China formed a highly supported sister cluster suggesting that they might represent another Parascaris genotype or species. Our data also strongly suggest that nearly all ITS and COI sequences previously deposited in GenBank and assigned to P. equorum actually represent P. univalens. The fact that significantly different sequences can be found in Parascaris spp. suggests that PCR-based species diagnosis will be possible once molecular markers have been identified for P. equorum from karyotyped specimens.
Collapse
Affiliation(s)
| | - I Jana I Janssen
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany
| | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany
| | - Clara Goday
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Fernando de A Borges
- School of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Bretislav Koudela
- Central European Institute of Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno 612 42, Czech Republic; Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Artur Niedźwiedź
- Department of Internal Medicine and Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Krzysztof Tomczuk
- Sub-Department of Parasitology and Invasive Diseases, Veterinary Faculty, University of Life Sciences, Lublin, Poland
| | - Maria Bernadeta Studzińska
- Sub-Department of Parasitology and Invasive Diseases, Veterinary Faculty, University of Life Sciences, Lublin, Poland
| | - Slawomir Kornas
- Department of Zoology and Animal Welfare, Faculty of Animal Sciences, University of Agriculture, Al. Mickiewicza 24/28, Kraków, Poland
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany
| |
Collapse
|
13
|
do Carmo Neto JR, Guerra RO, Machado JR, Silva ACA, da Silva MV. Antiprotozoal and anthelmintic activity of zinc oxide nanoparticles. Curr Med Chem 2021; 29:2127-2141. [PMID: 34254904 DOI: 10.2174/0929867328666210709105850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Nanomaterials represent a wide alternative for the treatment of several diseases that affect both human and animal health. The use of these materials mainly involves trying to solve the problem of resistance that pathogenic organisms acquire to conventional drugs. A well-studied example that represents a potential component for biomedical applications is the use of zinc oxide (ZnO) nanoparticles (NPs). Its antimicrobial function is related, especially the ability to generate/induce ROS that affects the homeostasis of the pathogen in question. Protozoa and helminths that harm human health and the economic performance of animals have already been exposed to this type of nanoparticle. Thus, through this review, our goal is to discuss the state-of-the-art effect of ZnO NPs on these parasites.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450 Goiania, GO, Brazil
| | - Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
14
|
Scala A, Tamponi C, Sanna G, Predieri G, Meloni L, Knoll S, Sedda G, Dessì G, Cappai MG, Varcasia A. Parascaris spp. eggs in horses of Italy: a large-scale epidemiological analysis of the egg excretion and conditioning factors. Parasit Vectors 2021; 14:246. [PMID: 33964977 PMCID: PMC8106216 DOI: 10.1186/s13071-021-04747-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background Equine ascariosis, caused by Parascaris spp., is a worldwide endoparasitic disease affecting young horses in particular. Despite the great number of horses reared in Italy, large-scale epidemiological surveys dealing with ascariosis prevalence in the country are not reported in the current literature. For this reason, the present survey aims to describe, for the first time, the spread and infestation of Parascaris spp. in a large population of Italian horses (6896 animals) using faecal egg counts, and further to identify risk factors associated with ascarid egg shedding. Methods Individual rectal faecal samples collected during routine veterinary examinations were used and Parascaris spp. prevalence was tested against the animal’s age, sex, housing conditions, geographic provenance as well as the respective sampling season. Results Among the examined stables, 35.8% showed at least one horse to be positive for Parascaris spp. eggs and an overall prevalence of 6.3% was found. Ascariosis rates tended to decrease significantly with age and, proportionally, 80.0% of the recorded Parascaris spp. eggs were found in 0.7% of the examined animals. Statistically significant differences among prevalence rates were found between the different geographic areas of provenance and prevalence was found to be higher in horses reared outdoors compared to those raised indoors. Analysis of data based on sex and season did not show any significant differences. Despite the lower prevalence found compared to other European countries, ascariosis was concluded to represent a significant health challenge for horses reared in Italy, especially foals. Age (foals and yearlings) and outdoor rearing were identified to be significant risk factors for Parascaris spp. egg shedding. Furthermore, the relevance of the infected horses over 6 years of age should not be underestimated as these represent a significant source of contamination for younger animals. Conclusions The development of improved treatment protocols based on regular faecal examination combined with follow-up assessment of the efficacy of integrated action plans would prove beneficial in regard to animal health and anthelmintic resistance reduction in the field. Graphic Abstract
Collapse
Affiliation(s)
- Antonio Scala
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Claudia Tamponi
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Giuliana Sanna
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | | | - Luisa Meloni
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Stephane Knoll
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Giampietro Sedda
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Giorgia Dessì
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | | | - Antonio Varcasia
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy.
| |
Collapse
|
15
|
Urban JF, Nielsen MK, Gazzola D, Xie Y, Beshah E, Hu Y, Li H, Rus F, Flanagan K, Draper A, Vakalapudi S, Li RW, Ostroff GR, Aroian RV. An inactivated bacterium (paraprobiotic) expressing Bacillus thuringiensis Cry5B as a therapeutic for Ascaris and Parascaris spp. infections in large animals. One Health 2021; 12:100241. [PMID: 33889707 PMCID: PMC8048022 DOI: 10.1016/j.onehlt.2021.100241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ascaris and Parascaris are important parasites in the family Ascarididae, large, ubiquitous intestinal-dwelling nematodes infecting all classes of vertebrates. Parasitic nematode drug resistance in veterinary medicine and drug recalcitrance in human medicine are increasing worldwide, with few if any new therapeutic classes on the horizon. Some of these parasites are zoonotic, e.g., Ascaris is passed from humans to pigs and vice versa. The development of new therapies against this family of parasites would have major implications for both human and livestock health. Here we tested the therapeutic ability of a paraprobiotic or dead probiotic that expresses the Bacillus thuringiensis Cry5B protein with known anthelmintic properties, against zoonotic Ascaris suum and Parascaris spp. This paraprobiotic, known as IBaCC, intoxicated A. suum larvae in vitro and was highly effective in vivo against intestinal A. suum infections in a new mouse model for this parasite. Fermentation was scaled up to 350 l to treat pigs and horses. Single dose Cry5B IBaCC nearly completely cleared A. suum infections in pigs. Furthermore, single dose Cry5B IBaCC drove fecal egg counts in Parascaris-infected foals to zero, showing at least parity with, and potential superiority to, current efficacy of anthelmintics used against this parasite. Cry5B IBaCC therefore represents a new, paraprobiotic One Health approach towards targeting Ascarididae that is safe, effective, massively scalable, stable, and useful in human and veterinary medicine in both the developed and developing regions of the world. IBaCC is Bacillus thuringiensis Cry5B protein crystals trapped inside dead bacteria. IBaCC intoxicates Ascaris suum intestinal parasitic nematodes in vitro. IBaCC is highly effective against A. suum parasites in vivo in mice and pigs. IBaCC is highly effective against related Parascaris parasites in foals. IBaCC represents a new paradigm for treating ascarid parasites of humans and animals.
Collapse
Affiliation(s)
- Joseph F Urban
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America.,U. S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States of America
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - David Gazzola
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Yue Xie
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America.,U. S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States of America.,Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Ethiopia Beshah
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America.,U. S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States of America
| | - Yan Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Florentina Rus
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Kelly Flanagan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Austin Draper
- Synthetic Biomanufacturing Facility, Utah State University, Logan, UT, United States of America
| | - Sridhar Vakalapudi
- Synthetic Biomanufacturing Facility, Utah State University, Logan, UT, United States of America
| | - Robert W Li
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| | - Gary R Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| |
Collapse
|
16
|
Sazmand A, Bahari A, Papi S, Otranto D. Parasitic diseases of equids in Iran (1931-2020): a literature review. Parasit Vectors 2020; 13:586. [PMID: 33213507 PMCID: PMC7676409 DOI: 10.1186/s13071-020-04472-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
Parasitic infections can cause many respiratory, digestive and other diseases and contribute to some performance conditions in equids. However, knowledge on the biodiversity of parasites of equids in Iran is still limited. The present review covers all the information about parasitic diseases of horses, donkeys, mules and wild asses in Iran published as articles in Iranian and international journals, dissertations and congress papers from 1931 to July 2020. Parasites so far described in Iranian equids include species of 9 genera of the Protozoa (Trypanosoma, Giardia, Eimeria, Klossiella, Cryptosporidium, Toxoplasma, Neospora, Theileria and Babesia), 50 helminth species from the digestive system (i.e., 2 trematodes, 3 cestodes and 37 nematodes) and from other organs (i.e., Schistosoma turkestanica, Echinococcus granulosus, Dictyocaulus arnfieldi, Parafilaria multipapillosa, Setaria equina and 3 Onchocerca spp.). Furthermore, 16 species of hard ticks, 3 mite species causing mange, 2 lice species, and larvae of 4 Gastrophilus species and Hippobosca equina have been reported from equids in Iran. Archeoparasitological findings in coprolites of equids include Fasciola hepatica, Oxyuris equi, Anoplocephala spp. and intestinal strongyles. Parasitic diseases are important issues in terms of animal welfare, economics and public health; however, parasites and parasitic diseases of equines have not received adequate attention compared with ruminants and camels in Iran. The present review highlights the knowledge gaps related to equines about the presence, species, genotypes and subtypes of Neospora hughesi, Sarcocystis spp., Trichinella spp., Cryptosporidium spp., Giardia duodenalis, Blastocystis and microsporidia. Identification of ticks vectoring pathogenic parasites, bacteria and viruses has received little attention, too. The efficacy of common horse wormers also needs to be evaluated systematically.
Collapse
Affiliation(s)
- Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, 6517658978 Iran
| | - Aliasghar Bahari
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, 6517658978 Iran
| | - Sareh Papi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, 6517658978 Iran
| | - Domenico Otranto
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, 6517658978 Iran
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. prov. per Casamassima km 3, 70010 Valenzano, Bari, Italy
| |
Collapse
|
17
|
Comparative analysis of mitochondrial DNA datasets indicates that Cylicostephanus minutus represents a species complex. INFECTION GENETICS AND EVOLUTION 2020; 84:104487. [PMID: 32745810 DOI: 10.1016/j.meegid.2020.104487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022]
Abstract
Cyathostomins are one kind of the most important parasites in equids. Cylicostephanus minutus is a member of the subfamily Cyathostominae. In the present study, we determined the complete mitochondrial (mt) genomes from four Cs. minutus isolates and reconstructed the phylogenetic relationship of Strongylidae to test the hypothesis that Cs. minutus represents a species complex. The complete mt genome sequences of Cs. minutus were 13,772-13,822 bp in length, and contained 36 genes (12 protein coding genes, 22 tRNA genes, two rRNA genes), and two non-coding regions (NCRs). The intraspecific identity of nucleotide sequences and amino acid sequences in Cs. minutus (1-4) were 89.3-97.9% and 97.0-98.8%, respectively. Two operational taxonomic units (OTUs) were determined based on the mt genome sequences, OTU 2 (Csm 1 and Csm 2) and OTU 3 (Csm 3 and Csm 4). Sequence analysis showed the divergence between OTU 2 and OTU 3 was 8.9-10.7%. Pairwise comparisons of 12 protein coding genes between OTU 2 and OTU 3 showed a difference of 3.0-13.3% at the nucleotide level and 0-6.7% at the amino acid level. Phylogenetic analysis showed the separation of Cs. minutus isolates from the same host into different distinct clades based on mt genomes. Comparisons of partial mt cox1, nad5, and cytb and ITS2 sequences from 20 Cs. minutus isolates from the same host and the same geographical location with other Cs. minutus sequences available in GenBank revealed significant nucleotide differences. Phylogenetic analysis showed a separation of Cs. minutus into three distinct clades. Thus, the comparative and phylogenetic analyses of mtDNA datasets indicated that Cs. minutus represents a complex of at least three species. Our results have further confirmed the existence of a cryptic Cs. minutus species, and provides a reference for the taxonomical, population genetics, and systematics studies of other cyathostomin species.
Collapse
|
18
|
Qiu YY, Gao Y, Li Y, Ma XX, Lv QB, Hu Y, Qiu HY, Chang QC, Wang CR. Comparative analyses of complete ribosomal DNA sequences of Clonorchis sinensis and Metorchis orientalis: IGS sequences may provide a novel genetic marker for intraspecific variation. INFECTION GENETICS AND EVOLUTION 2019; 78:104125. [PMID: 31770595 DOI: 10.1016/j.meegid.2019.104125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022]
Abstract
Both Clonorchis sinensis and Metorchis orientalis are the fish-borne zoonotic trematodes, and have a wide distribution of southeastern Asia, especially in China. Due to the similar morphology, life cycle, and parasitic positions are difficult to differentiate between both metacercariae. In the present study, the complete rDNA sequences of five C. sinensis and five M. orientalis were obtained and compared for the first time. And the IGS rDNA sequences were tested as a genetic marker. The results showed complete rDNA lengths of C. sinensis were range from 8049 bp to 8391 bp, including 1991 bp, 1116 bp, 3854 bp, and 1088-1430 bp belonging to 18S, ITS, 28S and IGS, respectively. And the complete rDNA lengths of M. orientalis were range from 7881 bp to 9355 bp, including 1991 bp, 1077 bp, 3856 bp, and 957-2431 bp belonging to 18S, ITS, 28S and IGS, respectively. Comparative analyses reveal length difference main in IGS, which has higher intraspecific and interspecific variations than other ribosomal regions. Forty four repeat (forward and inverted) sequences were found in the complete rDNAs of C. sinensis and M. orientalis. The phylogenetic analyses showed that the sequences of ITS1, ITS2, 18S and 28S could be used as different level genetic markers. In IGS phylogenetic tree, Opisthorchiidae, Paramphistomidae, Dicrocoeliidae, and Schistosomatidae formed monophyletic groups, and the same length sequences were clustered together in the same species. These findings of the present study provide the new molecular data for studying the complete rDNA of C. sinensis and M. orientalis, and indicate IGS sequences may used as a novel genetic marker for studying intraspecific variation in trematodes.
Collapse
Affiliation(s)
- Yang-Yuan Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Yuan Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, PR China
| | - Ye Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Xiao-Xiao Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Qing-Bo Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Yang Hu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Hong-Yu Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China.
| |
Collapse
|
19
|
Martin F, Höglund J, Bergström TF, Karlsson Lindsjö O, Tydén E. Resistance to pyrantel embonate and efficacy of fenbendazole in Parascaris univalens on Swedish stud farms. Vet Parasitol 2018; 264:69-73. [DOI: 10.1016/j.vetpar.2018.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
|
20
|
Anthelmintic resistance and novel control options in equine gastrointestinal nematodes. Parasitology 2018; 146:425-437. [DOI: 10.1017/s0031182018001786] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractControl of equine nematodes has relied on benzimidazoles (BZs), tetrahydropyrimidines and macrocyclic lactones. The intensive use of anthelmintics has led to the development of anthelmintic resistance (AR) in equine cyathostomins and Parascaris equorum. Field studies indicate that BZ and pyrantel resistance is widespread in cyathostomins and there are also increasing reports of resistance to macrocyclic lactones in cyathostomins and P. equorum. The unavailability of reliable laboratory-based techniques for detecting resistance further augments the problem of nematode control in horses. The only reliable test used in horses is the fecal egg count reduction test; therefore, more focus should be given to develop and validate improved methodologies for diagnosing AR at an early stage, as well as determining the mechanisms involved in resistance development. Therefore, equine industry and researchers should devise and implement new strategies for equine worm control, such as the use of bioactive pastures or novel feed additives, and control should increasingly incorporate alternative and evidence-based parasite control strategies to limit the development of AR. This review describes the history and prevalence of AR in equine nematodes, along with recent advances in developing resistance diagnostic tests and worm control strategies in horses, as well as giving some perspective on recent research into novel control strategies.
Collapse
|