1
|
Ariyaratne A, Kim SY, Pollo SMJ, Perera S, Liu H, Nguyen WNT, Coria AL, Luzzi MDC, Bowron J, Szabo EK, Patel KD, Wasmuth JD, Nair MG, Finney CAM. Trickle infection with Heligmosomoides polygyrus results in decreased worm burdens but increased intestinal inflammation and scarring. Front Immunol 2022; 13:1020056. [PMID: 36569914 PMCID: PMC9773095 DOI: 10.3389/fimmu.2022.1020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Intestinal roundworms cause chronic debilitating disease in animals, including humans. Traditional experimental models of these types of infection use a large single-dose infection. However, in natural settings, hosts are exposed to parasites on a regular basis and when mice are exposed to frequent, smaller doses of Heligmosomoides polygyrus, the parasites are cleared more quickly. Whether this more effective host response has any negative consequences for the host is not known. Results Using a trickle model of infection, we found that worm clearance was associated with known resistance-related host responses: increased granuloma and tuft cell numbers, increased levels of granuloma IgG and decreased intestinal transit time, as well as higher serum IgE levels. However, we found that the improved worm clearance was also associated with an inflammatory phenotype in and around the granuloma, increased smooth muscle hypertrophy/hyperplasia, and elevated levels of Adamts gene expression. Discussion To our knowledge, we are the first to identify the involvement of this protein family of matrix metalloproteinases (MMPs) in host responses to helminth infections. Our results highlight the delicate balance between parasite clearance and host tissue damage, which both contribute to host pathology. When continually exposed to parasitic worms, improved clearance comes at a cost.
Collapse
Affiliation(s)
- Anupama Ariyaratne
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Stephen M. J. Pollo
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Shashini Perera
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - William N. T. Nguyen
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aralia Leon Coria
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Mayara de Cassia Luzzi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Joel Bowron
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Edina K. Szabo
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Kamala D. Patel
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - James D. Wasmuth
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Constance A. M. Finney
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
3
|
Ali Mubaraki M, Ahmad M, Hafiz TA, Marie MA. The therapeutic prospect of crosstalk between prokaryotic and eukaryotic organisms in the human gut. FEMS Microbiol Ecol 2019; 94:4966977. [PMID: 29796663 DOI: 10.1093/femsec/fiy065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
The peaceful phenomenon of the co-evolution between the prokaryotes (microbiota) and the eukaryotes (parasites including protozoa and helminths) in the animal gut has drawn the researchers' attention. Importantly, exploring the potential of helminths for therapeutic uses was one of the reasons behind understanding the physiological and immunological crosstalk existing between them. Here we discuss the interactive immunological associations of helminths and microbial responses individually and in combination with their hosts. Considering that there is probably crosstalk between eukaryotic organisms like helminths and protozoa with their host's gut microbiota, in this review we searched the literature identifying the privileged and favourable relationship generated between them in the host. Understanding the possibilities of the role of helminths along with gut microbiota as a black box would certainly help decode the therapeutic intrusion with helminths in experimental clinical trials, and a successful trial could be used to consider possible future and safe treatments for various immune-inflammatory diseases in humans.
Collapse
Affiliation(s)
- Murad Ali Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammad Ahmad
- Medical Surgical Nursing Department, College of Nursing, King Saud University, Saudi Arabia
| | - Taghreed A Hafiz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammed A Marie
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
4
|
Ryan NM, Oghumu S. Role of mast cells in the generation of a T-helper type 2 dominated anti-helminthic immune response. Biosci Rep 2019; 39:BSR20181771. [PMID: 30670631 PMCID: PMC6379226 DOI: 10.1042/bsr20181771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Mast cells are long-lived, innate immune cells of the myeloid lineage which are found in peripheral tissues located throughout the body, and positioned at the interface between the host and the environment. Mast cells are found in high concentrations during helminth infection. Using Kitw-sh mast cell deficient mice, a recently published study in Bioscience Reports by Gonzalez et al. (Biosci. Rep., 2018) focused on the role of mast cells in the immune response to infection by the helminth Hymenolepis diminuta The authors showed that mast cells play a role in the modulation of Th2 immune response characterized by a unique IL-4, IL-5 and IL-13 cytokine profile, as well as subsequent robust worm expulsion during H. diminuta infection. Unlike WT mice which expelled H. diminuta at day 10, Kitw-sh deficient mice displayed delayed worm expulsion (day 14 post infection). Further, a possible role for mast cells in the basal expression of cytokines IL-25, IL-33 and thymic stromal lymphopoietin was described. Deletion of neutrophils in Kitw-sh deficient mice enhanced H. diminuta expulsion, which was accompanied by splenomegaly. However, interactions between mast cells and other innate and adaptive immune cells during helminth infections are yet to be fully clarified. We conclude that the elucidation of mechanisms underlying mast cell interactions with cells of the innate and adaptive immune system during infection by helminths can potentially uncover novel therapeutic applications against inflammatory, autoimmune and neoplastic diseases.
Collapse
Affiliation(s)
- Nathan M Ryan
- Department of Pathology, College of Medicine, Ohio State University Wexner Medical Center, Columbus, OH, U.S.A
| | - Steve Oghumu
- Department of Pathology, College of Medicine, Ohio State University Wexner Medical Center, Columbus, OH, U.S.A.
| |
Collapse
|
5
|
Guivier E, Lippens C, Faivre B, Sorci G. Plastic and micro-evolutionary responses of a nematode to the host immune environment. Exp Parasitol 2017; 181:14-22. [PMID: 28733132 DOI: 10.1016/j.exppara.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022]
Abstract
Parasitic organisms have to cope with the defences deployed by their hosts and this can be achieved adopting immune evasion strategies or optimal life history traits according to the prevailing pattern of immune-mediated mortality. Parasites often encounter variable immune environments both within and between hosts, promoting the evolution of plastic strategies instead of fixed responses. Here, we explored the plasticity and micro-evolutionary responses of immunomodulatory mechanisms and life history traits to the immune environment provided by the host, using the parasitic nematode Heligmosomoides polygyrus. To test if the parasite responds plastically to the immune environment, we stimulated the systemic inflammatory response of mice and we assessed i) the expression of two genes with candidate immunomodulatory functions (Hp-Tgh2 and Hp-CPI); ii) changes in the number of eggs shed in the faeces. To test if the immune environment induces a micro-evolutionary response in the parasite, we maintained the nematode in mice whose inflammatory response was up- or down-regulated during four generations. We found that H. polygyrus plastically responded to a sudden rise of pro-inflammatory cytokines, up-regulating the expression of two candidate genes involved in the process of immune modulation, and enhancing egg output. At the micro-evolutionary level, parasites maintained in hosts experiencing different levels of inflammation did not have differential expression of Hp-Tgh2 and Hp-CPI genes when infecting unmanipulated, control, mice. However, parasites maintained in mice with an up-regulated inflammation shed more eggs compared to the control line. Overall, our study shows that H. polygyrus can plastically adjust the expression of immunomodulatory genes and life history traits, and responds to selection exerted by the host immune system.
Collapse
Affiliation(s)
- Emmanuel Guivier
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; Physiopathologie des dyslipidémies, INSERM UMR 866, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| | - Cédric Lippens
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| |
Collapse
|
6
|
Mukai K, Tsai M, Starkl P, Marichal T, Galli SJ. IgE and mast cells in host defense against parasites and venoms. Semin Immunopathol 2016; 38:581-603. [PMID: 27225312 PMCID: PMC5010491 DOI: 10.1007/s00281-016-0565-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
IgE-dependent mast cell activation is a major effector mechanism underlying the pathology associated with allergic disorders. The most dramatic of these IgE-associated disorders is the fatal anaphylaxis which can occur in some people who have developed IgE antibodies to otherwise innocuous antigens, such as those contained in certain foods and medicines. Why would such a highly "maladaptive" immune response develop in evolution and be retained to the present day? Host defense against parasites has long been considered the only beneficial function that might be conferred by IgE and mast cells. However, recent studies have provided evidence that, in addition to participating in host resistance to certain parasites, mast cells and IgE are critical components of innate (mast cells) and adaptive (mast cells and IgE) immune responses that can enhance host defense against the toxicity of certain arthropod and animal venoms, including enhancing the survival of mice injected with such venoms. Yet, in some people, developing IgE antibodies to insect or snake venoms puts them at risk for having a potentially fatal anaphylactic reaction upon subsequent exposure to such venoms. Delineating the mechanisms underlying beneficial versus detrimental innate and adaptive immune responses associated with mast cell activation and IgE is likely to enhance our ability to identify potential therapeutic targets in such settings, not only for reducing the pathology associated with allergic disorders but perhaps also for enhancing immune protection against pathogens and animal venoms.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Philipp Starkl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California 94305-5324, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
7
|
Vukman KV, Lalor R, Aldridge A, O'Neill SM. Mast cells: new therapeutic target in helminth immune modulation. Parasite Immunol 2016; 38:45-52. [PMID: 26577605 DOI: 10.1111/pim.12295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders.
Collapse
Affiliation(s)
- K V Vukman
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvarad ter 4., H-1089, Budapest, Hungry.,Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - R Lalor
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - A Aldridge
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - S M O'Neill
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
8
|
Cwiklinski K, O'Neill SM, Donnelly S, Dalton JP. A prospective view of animal and human Fasciolosis. Parasite Immunol 2016; 38:558-68. [PMID: 27314903 PMCID: PMC5053257 DOI: 10.1111/pim.12343] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/09/2016] [Indexed: 12/17/2022]
Abstract
Fasciolosis, a food-borne trematodiasis, results following infection with the parasites, Fasciola hepatica and Fasciola gigantica. These trematodes greatly affect the global agricultural community, infecting millions of ruminants worldwide and causing annual economic losses in excess of US $3 billion. Fasciolosis, an important zoonosis, is classified by WHO as a neglected tropical disease with an estimated 17 million people infected and a further 180 million people at risk of infection. The significant impact on agriculture and human health together with the increasing demand for animal-derived food products to support global population growth demonstrate that fasciolosis is a major One Health problem. This review details the problematic issues surrounding fasciolosis control, including drug resistance, lack of diagnosis and the threat that hybridization of the Fasciola species poses to future animal and human health. We discuss how these parasites may mediate their long-term survival through regulation and modulation of the host immune system, by altering the host immune homeostasis and/or by influencing the intestinal microbiome particularly in respect to concurrent infections with other pathogens. Large genome, transcriptome and proteomic data sets are now available to support an integrated One Health approach to develop novel diagnostic and control strategies for both animal and human disease.
Collapse
Affiliation(s)
- K Cwiklinski
- School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | - S M O'Neill
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - S Donnelly
- The i3 Institute & School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australia
| | - J P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
9
|
Johnston CJC, Robertson E, Harcus Y, Grainger JR, Coakley G, Smyth DJ, McSorley HJ, Maizels R. Cultivation of Heligmosomoides polygyrus: an immunomodulatory nematode parasite and its secreted products. J Vis Exp 2015:e52412. [PMID: 25867600 PMCID: PMC4401400 DOI: 10.3791/52412] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heligmosomoides polygyrus (formerly known as Nematospiroides dubius, and also referred to by some as H. bakeri) is a gastrointestinal helminth that employs multiple immunomodulatory mechanisms to establish chronic infection in mice and closely resembles prevalent human helminth infections. H. polygyrus has been studied extensively in the field of helminth-derived immune regulation and has been found to potently suppress experimental models of allergy and autoimmunity (both with active infection and isolated secreted products). The protocol described in this paper outlines management of the H. polygyrus life cycle for consistent production of L3 larvae, recovery of adult parasites, and collection of their excretory-secretory products (HES).
Collapse
Affiliation(s)
| | - Elaine Robertson
- Institute of Immunology and Infection Research, University of Edinburgh
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh
| | | | - Gillian Coakley
- Institute of Immunology and Infection Research, University of Edinburgh
| | - Danielle J Smyth
- Institute of Immunology and Infection Research, University of Edinburgh
| | - Henry J McSorley
- Institute of Immunology and Infection Research, University of Edinburgh
| | - Rick Maizels
- Institute of Immunology and Infection Research, University of Edinburgh;
| |
Collapse
|
10
|
Abstract
Mast cells have been demonstrated to have critical roles in host defense against a number of types of pathogens. In order to better understand how mast cells participate in effective immune responses, it is important to evaluate their ability to respond directly to pathogens and their products. In the current chapter we provide a methodology to evaluate human mast cell responses to a number of bacterial and fungal pathogen products and to mammalian reovirus as a model of acute viral infection. These methods should provide key information necessary to aid in the effective design of experiments to evaluate human mast cell responses to a number of other organisms. However, it is important to carefully consider the biology of the mast cell subsets and pathogens involved and the optimal experimental conditions necessary to evaluate mediators of interest.
Collapse
Affiliation(s)
- Ian D Haidl
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada, B3H 4R2
| | | |
Collapse
|
11
|
Vukman KV, Adams PN, Dowling D, Metz M, Maurer M, O’Neill SM. The effects of Fasciola hepatica tegumental antigens on mast cell function. Int J Parasitol 2013; 43:531-9. [DOI: 10.1016/j.ijpara.2013.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/04/2013] [Accepted: 01/22/2013] [Indexed: 12/21/2022]
|
12
|
Abstract
Mast cells and basophils are potent effector cells of the innate immune system, and they have both beneficial and detrimental functions for the host. They are mainly implicated in pro-inflammatory responses to allergens but can also contribute to protection against pathogens. Although both cell types were identified more than 130 years ago by Paul Ehrlich, their in vivo functions remain poorly understood. The precursor cell populations that give rise to mast cells and basophils have recently been characterized and isolated. Furthermore, new genetically modified mouse strains have been developed, which enable more specific targeting of mast cells and basophils. Such advances offer new opportunities to uncover the true in vivo activities of these cells and to revisit their previously proposed effector functions.
Collapse
|
13
|
Vukman KV, Adams PN, Metz M, Maurer M, O’Neill SM. Fasciola hepaticaTegumental Coat Impairs Mast Cells’ Ability To Drive Th1 Immune Responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:2873-9. [DOI: 10.4049/jimmunol.1203011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Reynolds LA, Filbey KJ, Maizels RM. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin Immunopathol 2012; 34:829-46. [PMID: 23053394 PMCID: PMC3496515 DOI: 10.1007/s00281-012-0347-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023]
Abstract
Heligmosomoides polygyrus is a natural intestinal parasite of mice, which offers an excellent model of the immunology of gastrointestinal helminth infections of humans and livestock. It is able to establish long-term chronic infections in many strains of mice, exerting potent immunomodulatory effects that dampen both protective immunity and bystander reactions to allergens and autoantigens. Immunity to the parasite develops naturally in some mouse strains and can be induced in others through immunization; while the mechanisms of protective immunity are not yet fully defined, both antibodies and a host cellular component are required, with strongest evidence for a role of alternatively activated macrophages. We discuss the balance between resistance and susceptibility in this model system and highlight new themes in innate and adaptive immunity, immunomodulation, and regulation of responsiveness in helminth infection.
Collapse
Affiliation(s)
- Lisa A. Reynolds
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Kara J. Filbey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
- Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT UK
| |
Collapse
|
15
|
Amelioration of the periparturient relaxation of immunity to parasites through a reduction in mammalian reproductive effort. Int J Parasitol 2012; 42:1127-34. [PMID: 23089291 DOI: 10.1016/j.ijpara.2012.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 01/05/2023]
Abstract
The degree of periparturient relaxation of immunity to gastrointestinal parasites has a nutritional basis, as overcoming protein scarcity through increased protein supply improves lactational performance, enhances local immune responses and reduces worm burdens. Herein lactating rats, re-infected with Nippostrongylus brasiliensis, are used to test the hypothesis that a similar and rapid improvement of immunity can be achieved through reducing nutrient demand at times of dietary protein scarcity. Reducing litter size from 12 to three pups during lactation resulted, as expected, in cessation of maternal body weight loss and increased pup body weight gain compared with dams which continued to nurse 12 pups. This increase in performance concurred with a rapid decrease in parasitism; within 3 days post nutrient reduction, a 87% reduction in the number of worm eggs found in the colon and 83% reduction in worm burdens was observed, which concurred with increased local immune responses, i.e. 70% more mast cells and 44% more eosinophils in the small intestinal mucosa, to levels similar to those in dams nursing three pups throughout. However, there were no concurrent changes in goblet cell hyperplasia, serum anti-N. brasiliensis-specific antibody levels or mRNA expression of IL-4, IL-10 or IL-13 in the mesenteric lymph nodes. To our knowledge the current study is the first to employ a litter reduction strategy to assess the rate of immune improvement upon overcoming nutrient scarcity in a non-ruminant host. These data support the hypothesis that periparturient relaxation of immunity to gastrointestinal nematodes can be reduced by restoring nutrient adequacy and, importantly, that this improvement can occur very rapidly.
Collapse
|
16
|
Maizels RM, Hewitson JP, Murray J, Harcus YM, Dayer B, Filbey KJ, Grainger JR, McSorley HJ, Reynolds LA, Smith KA. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp Parasitol 2012; 132:76-89. [PMID: 21875581 PMCID: PMC6485391 DOI: 10.1016/j.exppara.2011.08.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 01/12/2023]
Abstract
The intestinal nematode parasite Heligmosomoides polygyrus bakeri exerts widespread immunomodulatory effects on both the innate and adaptive immune system of the host. Infected mice adopt an immunoregulated phenotype, with abated allergic and autoimmune reactions. At the cellular level, infection is accompanied by expanded regulatory T cell populations, skewed dendritic cell and macrophage phenotypes, B cell hyperstimulation and multiple localised changes within the intestinal environment. In most mouse strains, these act to block protective Th2 immunity. The molecular basis of parasite interactions with the host immune system centres upon secreted products termed HES (H. polygyrus excretory-secretory antigen), which include a TGF-β-like ligand that induces de novo regulatory T cells, factors that modify innate inflammatory responses, and molecules that block allergy in vivo. Proteomic and transcriptomic definition of parasite proteins, combined with biochemical identification of immunogenic molecules in resistant mice, will provide new candidate immunomodulators and vaccine antigens for future research.
Collapse
Affiliation(s)
- Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Reynolds LA, Maizels RM. Cutting edge: in the absence of TGF-β signaling in T cells, fewer CD103+ regulatory T cells develop, but exuberant IFN-γ production renders mice more susceptible to helminth infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:1113-7. [PMID: 22753928 DOI: 10.4049/jimmunol.1200991] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple factors control susceptibility of C57BL/6 mice to infection with the helminth Heligmosomoides polygyrus, including TGF-β signaling, which inhibits immunity in vivo. However, mice expressing a T cell-specific dominant-negative TGF-β receptor II (TGF-βRII DN) show dampened Th2 immunity and diminished resistance to infection. Interestingly, H. polygyrus-infected TGF-βRII DN mice show greater frequencies of CD4(+)Foxp3(+)Helios(+) Tregs than infected wild-type mice, but levels of CD103 are greatly reduced on both these cells and on the CD4(+)Foxp3(+)Helios(-) population. Although Th9 and Th17 levels are comparable between infected TGF-βRII DN and wild-type mice, the former develop exaggerated CD4(+) and CD8(+) T cell IFN-γ responses. Increased susceptibility conferred by TGF-βRII DN expression was lost in IFN-γ-deficient mice, although they remained unable to completely clear infection. Hence, overexpression of IFN-γ negatively modulates immunity, and the presence of Helios(+) Tregs may maintain susceptibility on the C57BL/6 background.
Collapse
Affiliation(s)
- Lisa A Reynolds
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | |
Collapse
|
18
|
Abstract
Although MCs (mast cells) were discovered over 100 years ago, for the majority of this time their function was linked almost exclusively to allergy and allergic disease with few other roles in health and disease. The engineering of MC-deficient mice and engraftment of these mice with MCs deficient in receptors or mediators has advanced our knowledge of the role of MCs in vivo. It is now known that MCs have very broad and varied roles in both physiology and disease which will be reviewed here with a focus on some of the most recent discoveries over the last year. MCs can aid in maintaining a healthy physiology by secreting mediators that promote wound healing and homoeostasis as well as interacting with neurons. Major developments have been made in understanding MC function in defence against pathogens, in recognition of pathogens as well as direct effector functions. Probably the most quickly developing area of understanding is the involvement and contribution MCs make in the progression of a variety of diseases from some of the most common diseases to the more obscure.
Collapse
|
19
|
Morimoto M, Utsumiya K. Enhanced protection against Heligmosomoides polygyrus in IL-2 receptor β-chain overexpressed transgenic mice with intestinal mastocytosis. J Vet Med Sci 2011; 73:849-51. [PMID: 21301182 DOI: 10.1292/jvms.10-0566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
IL-2 receptor β-chain overexpressed transgenic (Tg2Rβ) mice lack NK cells, but the development of other lymphocyte subsets and macrophages remained apparently intact. These mice also exhibit intestinal mastocytosis. Helminth infection induces various immune responses, such as mast cells, goblet cells, eosinophils and IgE, mediated by Th2 cytokines. IL-4 is also important in the regulation of resistance and susceptibility to Heligmosomoides polygyrus infection. However, there are contradictory results about the relation between resistance to H. polygyrus and intestinal mastocytosis. The present study showed that Tg2Rβ mice suppressed worm fecundity with mastocytosis without an increase of the levels of goblet cells, eosinophils and IgE compared with control mice. These results clearly indicated that mast cells have the ability for to protect against H. polygyrus infection. However, additional studies are required to evaluate protective effector mechanisms against H. polygyrus.
Collapse
Affiliation(s)
- Masahiro Morimoto
- Laboratory of Veterinary Pathology, Faculty of Agriculture, Yamaguchi University, Japan.
| | | |
Collapse
|
20
|
Morimoto M. Intestinal smooth muscle cells locally enhance stem cell factor (SCF) production against gastrointestinal nematode infections. J Vet Med Sci 2011; 73:805-7. [PMID: 21228506 DOI: 10.1292/jvms.10-0548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smooth muscle cells can produce stem cell factor (SCF) in the normal state for the preservation of mast cells, but it is still unknown whether smooth muscle cells can enhance SCF production in response to the pathological stimuli. The present study showed that smooth muscle cells in mast cell-increased regions around worm cysts of intestinal nematodes significantly enhanced SCF gene expression compared with mast cell non-increased regions in same sample. SCF gene expression in mast cell non-increased regions in nematode-infected mice showed almost the same level as in non-infected control groups. These results indicate that smooth muscle cells can locally enhance SCF gene expression, and may have a role in local immunological reactions as growth factor-producing cells.
Collapse
Affiliation(s)
- Masahiro Morimoto
- Laboratory of Veterinary Pathology, Faculty of Agriculture, Yamaguchi University, Japan.
| |
Collapse
|