1
|
Scott K, Khayachi A, Alda M, Nunes A. Prediction of Treatment Outcome in Bipolar Disorder: When Can We Expect Clinical Relevance? Biol Psychiatry 2025:S0006-3223(25)00103-9. [PMID: 39954922 DOI: 10.1016/j.biopsych.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Long-term pharmacological treatment is the cornerstone of the management of bipolar disorder (BD). Clinicians typically select mood-stabilizing medications from among several options through trial and error. This process could be optimized by using robust predictors of treatment response. We review clinical features and biological markers studied in relation to outcome of long-term treatment of BD. To date, the literature focuses mostly on lithium and to a lesser extent on the anticonvulsants valproate and lamotrigine. The most promising results show association of lithium response with certain clinical features (episodic clinical course and absence of rapid cycling, low rates of comorbid conditions, family history of BD and lithium response) as well as low polygenic risk for schizophrenia and major depression. The clinical application of these findings remains limited, however, due to heterogeneity of the illness as well as unanswered questions about specificity of the effects of different medications.
Collapse
Affiliation(s)
- Katie Scott
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic.
| | - Abraham Nunes
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Gitlin M, Bauer M. Lithium: current state of the art and future directions. Int J Bipolar Disord 2024; 12:40. [PMID: 39609318 PMCID: PMC11604892 DOI: 10.1186/s40345-024-00362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Lithium is our oldest continuously prescribed medication in psychopharmacology, with its history as an agent for treating mood disorders extending from the 19th century. Although clinicians prescribe it less frequently than in the past, its utility in treating bipolar disorder is unquestionable. Novel potential indications for its use in psychiatry have created excitement about broader roles for lithium in treating and preventing other disorders. CONTENT Lithium is effective both in treating acute mania, as an adjunctive antidepressant, and as a maintenance treatment in bipolar disorder. Lithium has also shown some efficacy in treating and preventing unipolar depression, but less clearly than for bipolar maintenance treatment and acute mania. Common side effects include nausea, polyuria, tremor, weight gain and cognitive dulling. These side effects are typically manageable with reasonable clinical strategies. Lithium affects renal, thyroid and parathyroid function. With clinical monitoring, these effects are easily managed although infrequent cases of severe renal insufficiency may occur with long term use. Although not all studies are positive, a consistent database suggests the efficacy of lithium in decreasing suicide attempts and suicides, likely due to its effect on impulsivity and aggression as well as its prophylaxis against depressive and manic recurrences. Recent data have suggested lithium's potential efficacy for a number of new clinical indications. Lithium's neuroprotective effects suggest potential efficacy in preventing mild cognitive impairment (MCI) and dementia as well as in aiding recovery from strokes. Higher (but still trace) lithium levels in drinking water are associated with lower rates of dementia. It is still not clear how much lithium-and what serum lithium levels- are required for either of these effects. Other preliminary research suggests that lithium may also have antiviral effects and may decrease cancer risk. CONCLUSIONS Lithium continues to be the mainstay treatment of mood disorders in general and in bipolar disorder specifically. Other potential clinical uses for lithium in psychiatry have re-invigorated excitement for research in other areas such as suicide, preventing cognitive impairment and possibly preventing viral infections and diminishing cancer risk.
Collapse
Affiliation(s)
- Michael Gitlin
- Department of Psychiatry, Geffen School of Medicine at UCLA, 300 UCLA Medical Plaza, Suite 2200, Los Angeles, CA, 90095, USA.
| | - Michael Bauer
- Department of Psychiatry, Carl Gustav Carus University Hospital, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Rybakowski JK. Lithium: Fifteen Years Later. Neuropsychobiology 2024; 83:205-213. [PMID: 39510063 DOI: 10.1159/000542490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND The 75th anniversary of introducing lithium into modern psychiatry is recognized, attested by the 1949 paper of John Cade. About this event, my editorial in the special 2010 issue of Neuropsychobiology was titled "Lithium: Sixty Years Thereafter." Since then, fifteen more years have brought further information about lithium. This paper makes a narrative review of the most important articles published in this period. SUMMARY The selected key literature of 2010-2024 addressed lithium prophylactic efficacy in bipolar disorder (BD), including pediatric, recurrent depression, and lithium augmentation of antidepressants in treatment-resistant depression (TRD). Novel data have been obtained for lithium adverse effects (kidney, thyroid) and beneficial outcomes of long-term lithium administration (anti-suicidal, neuroprotective, antiviral, and others). The results on the mechanisms of lithium action covered genetic investigations of the Consortium of Lithium Genetics (ConLiGen) and in vitro studies with induced pluripotent stem cells and lymphoblastoid cell lines. The underutilization of lithium nowadays was emphasized, and the ways to overcome it were considered. KEY MESSAGES Lithium remains the choice drug for recurrence prevention in BD, also in adolescents, and a significant option for augmentation of antidepressants in TRD. The adverse side effects should be carefully followed and managed according to current guidelines. There are also beneficial lithium impacts, of which anti-suicidal and anti-dementia seem the most important. Most of the results of neurobiological studies on lithium mechanisms may be related to lithium response and some (e.g., immunomodulatory) to the pathogenesis of BD. Better education about lithium could make more patients the beneficiary of this drug.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Abé C, Liberg B, Klahn AL, Petrovic P, Landén M. Mania-related effects on structural brain changes in bipolar disorder - a narrative review of the evidence. Mol Psychiatry 2023; 28:2674-2682. [PMID: 37147390 PMCID: PMC10615759 DOI: 10.1038/s41380-023-02073-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
Cross-sectional neuroimaging studies show that bipolar disorder is associated with structural brain abnormalities, predominantly observed in prefrontal and temporal cortex, cingulate gyrus, and subcortical regions. However, longitudinal studies are needed to elucidate whether these abnormalities presage disease onset or are consequences of disease processes, and to identify potential contributing factors. Here, we narratively review and summarize longitudinal structural magnetic resonance imaging studies that relate imaging outcomes to manic episodes. First, we conclude that longitudinal brain imaging studies suggest an association of bipolar disorder with aberrant brain changes, including both deviant decreases and increases in morphometric measures. Second, we conclude that manic episodes have been related to accelerated cortical volume and thickness decreases, with the most consistent findings occurring in prefrontal brain areas. Importantly, evidence also suggests that in contrast to healthy controls, who in general show age-related cortical decline, brain metrics remain stable or increase during euthymic periods in bipolar disorder patients, potentially reflecting structural recovering mechanisms. The findings stress the importance of preventing manic episodes. We further propose a model of prefrontal cortical trajectories in relation to the occurrence of manic episodes. Finally, we discuss potential mechanisms at play, remaining limitations, and future directions.
Collapse
Affiliation(s)
- Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Quantify Research, Stockholm, Sweden
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Luisa Klahn
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Predrag Petrovic
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Cognitive and Computational Neuropsychiatry, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Long-Term Lithium Therapy: Side Effects and Interactions. Pharmaceuticals (Basel) 2023; 16:ph16010074. [PMID: 36678571 PMCID: PMC9867198 DOI: 10.3390/ph16010074] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Lithium remains the drug of first choice for prophylactic treatment of bipolar disorder, preventing the recurrences of manic and depressive episodes. The longitudinal experiences with lithium administration greatly exceed those with other mood stabilizers. Among the adverse side effects of lithium, renal, gastrointestinal, neurological, thyroid, metabolic, cognitive, dermatological, cardiologic, and sexual are listed. Probably, the most important negative effect of lithium, occurring mostly after 10-20 years of its administration, is interstitial nephropathy. Beneficial side-effects of long-term lithium therapy also occur such as anti-suicidal, antiviral, and anti-dementia ones. Pharmacokinetic and pharmacodynamic interactions of lithium, mostly those with other drugs, may have an impact on the success of long-term lithium treatment. This paper makes the narrative updated review of lithium-induced side-effects and interactions that may influence its prophylactic effect in bipolar disorder. Their description, mechanisms, and management strategies are provided. The papers appearing in recent years focused mainly on the long-term lithium treatment are reviewed in detail, including recent research performed at Department of Psychiatry, Poznan University of Medical Sciences, Poland. Their own observations on ultra-long lithium treatment of patients with bipolar disorder are also presented. The review can help psychiatrists to perform a successful lithium prophylaxis in bipolar patients.
Collapse
|
6
|
Almeida OP, Singulani MP, Ford AH, Hackett ML, Etherton-Beer C, Flicker L, Hankey GJ, De Paula VJR, Penteado CT, Forlenza OV. Lithium and Stroke Recovery: A Systematic Review and Meta-Analysis of Stroke Models in Rodents and Human Data. Stroke 2022; 53:2935-2944. [PMID: 35968702 DOI: 10.1161/strokeaha.122.039203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Lithium has neuroprotective effects in animal models of stroke, but benefits in humans remain uncertain. This article aims to systematically review the available evidence of the neuroprotective and regenerative effects of lithium in animal models of stroke, as well as in observational and trial stroke studies in humans. METHODS This systematic review and meta-analysis was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched Medline, Embase, and PsycINFO for preclinical and clinical studies published between January 2000 and September 2021. A random-effects meta-analysis was conducted from observational studies. RESULTS From 1625 retrieved studies, 42 were included in the systematic review. Of those, we identified 36 rodent models of stroke using preinsult or postinsult treatment with lithium, and 6 studies were conducted in human samples, of which 4 could be meta-analyzed. The review of animal models was stratified according to the type of stroke and outcomes. Human data were subdivided into observational and intervention studies. Treatment of rodents with lithium was associated with smaller stroke volumes, decreased apoptosis, and improved poststroke function. In humans, exposure to lithium was associated with a lower risk of stroke among adults with bipolar disorder in 2 of 4 studies. Two small trials showed equivocal clinical benefits of lithium poststroke. CONCLUSIONS Animal models of stroke show consistent biological and functional evidence of benefits associated with lithium treatment, whereas human evidence remains sparse and inconclusive. The potential role of lithium in poststroke recovery is yet to be adequately tested in humans.
Collapse
Affiliation(s)
- Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Monique P Singulani
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Andrew H Ford
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Maree L Hackett
- The George Institute for Global Health, the University of New South Wales, Sydney, Australia (M.L.H.)
| | - Christopher Etherton-Beer
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Vanessa J R De Paula
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Camila T Penteado
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Orestes V Forlenza
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| |
Collapse
|
7
|
Jones G, Suchting R, Zanetti MV, Leung E, da Costa SC, Sousa RTD, Busatto G, Soares J, Otaduy MC, Gattaz WF, Machado-Vieira R. Lithium increases cortical and subcortical volumes in subjects with bipolar disorder. Psychiatry Res Neuroimaging 2022; 324:111494. [PMID: 35640450 DOI: 10.1016/j.pscychresns.2022.111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022]
Abstract
Bipolar disorder (BD) is a highly variable and burdensome disease for patients and caregivers. A BD diagnosis almost triples the likelihood of developing dementia as the disease progresses. Neurocognitive reserve appears to be one of the most important influences on lifelong functional outcomes and quality of life in BD. Though several prior studies have assessed the effects of lithium on regional gray and white matter volumes in this population, representative cohorts are typically middle-aged, have a more severe pathology, and are not as commonly assessed in the depressive phase (which represents the majority of most patients' lifespans outside of remission). Here we have shown that positive adaptations with lithium can be observed throughout the brain after only six weeks of monotherapy at low-therapeutic serum levels. Importantly, these results remove some confounders seen in prior studies (patients were treatment free at time of enrollment and mostly treatment naïve). This cohort also includes underrepresented demographics in the literature (young adult patients, mostly bipolar II, and exclusively in the depressed phase). These findings bolster the extensive body of evidence in support of long-term lithium therapy in BD, furthering the possibility of its expanded use to wider demographics.
Collapse
Affiliation(s)
- Gregory Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Robert Suchting
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Marcus V Zanetti
- LIM27, Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Edison Leung
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | | | - Rafael T de Sousa
- LIM27, Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Geraldo Busatto
- LIM21, Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Jair Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Maria C Otaduy
- Department of Radiology, University of São Paulo, São Paulo, Brazil
| | - Wagner F Gattaz
- LIM27, Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| |
Collapse
|
8
|
Rybakowski JK, Ferensztajn-Rochowiak E. Mini-review: Anomalous association between lithium data and lithium use. Neurosci Lett 2022; 777:136590. [PMID: 35346779 DOI: 10.1016/j.neulet.2022.136590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 01/14/2023]
Abstract
This mini-review aims to show a discrepancy between favorable data of lithium's therapeutic activity and the decreased use of the drug worldwide. The data point to lithium as the best mood stabilizer in the maintenance treatment of bipolar disorder for the prevention of manic and depressive recurrences. The second most encouraging psychiatric use of lithium is the augmentation of antidepressants in treatment-resistant depression. In addition to its mood-stabilizing properties, lithium is the most efficacious antisuicidal drug among all mood stabilizers. The drug also exerts antiviral, immunomodulatory, and neuroprotective effects which may be of major clinical value. On the other hand, the data of lithium use show that its therapeutic application in many countries has declined. A reason for this can be the introduction and heavy promotion of other mood-stabilizers, while lithium is an "orphan" drug with the minimal interest of any drug company. Probably, very important is also a perception of lithium as a "toxic drug", pointing to its side effects, mainly thyroid, renal and cognitive ones. In recent years, several proposals to turn back this anomalous association appeared, challenging a negative perception of lithium and optimizing its long-term administration. They show the data on lithium superiority over other mood stabilizers and point to the proper management of the lithium-induced side effects. This endeavor aims to allow a larger number of mood disorder patients to become beneficiaries of lithium use.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, 60-572 Poznan, ul. Szpitalna 27/33, Poland.
| | - Ewa Ferensztajn-Rochowiak
- Department of Adult Psychiatry, Poznan University of Medical Sciences, 60-572 Poznan, ul. Szpitalna 27/33, Poland
| |
Collapse
|
9
|
Abé C, Ching CRK, Liberg B, Lebedev AV, Agartz I, Akudjedu TN, Alda M, Alnæs D, Alonso-Lana S, Benedetti F, Berk M, Bøen E, Bonnin CDM, Breuer F, Brosch K, Brouwer RM, Canales-Rodríguez EJ, Cannon DM, Chye Y, Dahl A, Dandash O, Dannlowski U, Dohm K, Elvsåshagen T, Fisch L, Fullerton JM, Goikolea JM, Grotegerd D, Haatveit B, Hahn T, Hajek T, Heindel W, Ingvar M, Sim K, Kircher TTJ, Lenroot RK, Malt UF, McDonald C, McWhinney SR, Melle I, Meller T, Melloni EMT, Mitchell PB, Nabulsi L, Nenadić I, Opel N, Overs BJ, Panicalli F, Pfarr JK, Poletti S, Pomarol-Clotet E, Radua J, Repple J, Ringwald KG, Roberts G, Rodriguez-Cano E, Salvador R, Sarink K, Sarró S, Schmitt S, Stein F, Suo C, Thomopoulos SI, Tronchin G, Vieta E, Westlye LT, White AG, Yatham LN, Zak N, Thompson PM, Andreassen OA, Landén M. Longitudinal Structural Brain Changes in Bipolar Disorder: A Multicenter Neuroimaging Study of 1232 Individuals by the ENIGMA Bipolar Disorder Working Group. Biol Psychiatry 2022; 91:582-592. [PMID: 34809987 DOI: 10.1016/j.biopsych.2021.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with cortical and subcortical structural brain abnormalities. It is unclear whether such alterations progressively change over time, and how this is related to the number of mood episodes. To address this question, we analyzed a large and diverse international sample with longitudinal magnetic resonance imaging (MRI) and clinical data to examine structural brain changes over time in BD. METHODS Longitudinal structural MRI and clinical data from the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) BD Working Group, including 307 patients with BD and 925 healthy control subjects, were collected from 14 sites worldwide. Male and female participants, aged 40 ± 17 years, underwent MRI at 2 time points. Cortical thickness, surface area, and subcortical volumes were estimated using FreeSurfer. Annualized change rates for each imaging phenotype were compared between patients with BD and healthy control subjects. Within patients, we related brain change rates to the number of mood episodes between time points and tested for effects of demographic and clinical variables. RESULTS Compared with healthy control subjects, patients with BD showed faster enlargement of ventricular volumes and slower thinning of the fusiform and parahippocampal cortex (0.18 <d < 0.22). More (hypo)manic episodes were associated with faster cortical thinning, primarily in the prefrontal cortex. CONCLUSIONS In the hitherto largest longitudinal MRI study on BD, we did not detect accelerated cortical thinning but noted faster ventricular enlargements in BD. However, abnormal frontocortical thinning was observed in association with frequent manic episodes. Our study yields insights into disease progression in BD and highlights the importance of mania prevention in BD treatment.
Collapse
Affiliation(s)
- Christoph Abé
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, California
| | - Benny Liberg
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Lebedev
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Agartz
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Theophilus N Akudjedu
- Institute of Medical Imaging and Visualisation, Bournemouth University, Bournemouth, United Kingdom; Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland, Galway, Ireland
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia; National Institute of Mental Health, Klecany, Czech Republic
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Bjørknes College, Oslo, Norway
| | - Silvia Alonso-Lana
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Michael Berk
- Orygen, the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, the University of Melbourne, Melbourne, Victoria, Australia; Department of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Deakin University, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia
| | - Erlend Bøen
- Unit of Psychosomatic and CL Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Caterina Del Mar Bonnin
- Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clínic, Institute of Neurosciences, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Fabian Breuer
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Erick J Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Signal Processing Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Dara M Cannon
- Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland, Galway, Ireland
| | - Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Science and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Andreas Dahl
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Orwa Dandash
- Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Lukas Fisch
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janice M Fullerton
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia; Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Jose M Goikolea
- Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clínic, Institute of Neurosciences, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tim Hahn
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia; National Institute of Mental Health, Klecany, Czech Republic; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia; National Institute of Mental Health, Klecany, Czech Republic; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Walter Heindel
- Clinic for Radiology, University of Münster, Münster, Germany
| | - Martin Ingvar
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Department of Neuroradiology, Stockholm, Sweden
| | - Kang Sim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; West Region, Institute of Mental Health, Singapore, Singapore; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo T J Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | | | - Ulrik F Malt
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Department of Psychiatry and Addiction, Section for C-L Psychiatry and Psychosomatics, Oslo University Hospital, Oslo, Norway
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland, Galway, Ireland
| | - Sean R McWhinney
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Elisa M T Melloni
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, California; Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland, Galway, Ireland
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Bronwyn J Overs
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Francesco Panicalli
- Hospital general de Granollers, Barcelona, Spain; Benito Menni CASM, Barcelona, Spain
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - Joaquim Radua
- Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Early Psychosis: Interventions and Clinical-detection lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Early Psychosis: Interventions and Clinical-detection lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kai G Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Elena Rodriguez-Cano
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Benito Menni CASM, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - Kelvin Sarink
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; West Region, Institute of Mental Health, Singapore, Singapore; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Simon Schmitt
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany; Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Science and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, California
| | - Giulia Tronchin
- Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland, Galway, Ireland
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clínic, Institute of Neurosciences, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Adam G White
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathalia Zak
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, California
| | - Ole A Andreassen
- KG Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
BIPOLAR DISORDER, MOOD STABILIZERS AND COGNITIVE FLEXIBILITY: TRANSLATIONALLY DISSECTING ILLNESS FROM DRUG EFFECTS. Behav Brain Res 2022; 424:113799. [PMID: 35181389 DOI: 10.1016/j.bbr.2022.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
Bipolar disorder (BD) effects on cognition are confounded by the putative cognitive impact of its major pharmacological treatments, given the neurotrophic potential of mood stabilizers, particularly lithium. We examined the area of cognitive flexibility (CF), aiming to disentangle BD from medication effects, using translational methodology. CF was assessed by CANTAB-IED (intra- extra-dimensional shift; Study 1, euthymic BD participants) and its animal analogue (Study 2, rats). Both studies included groups (1) control, (2) lithium, chronic, current treatment (LI-CHRON-C, A: >2 years, N=32; B: 2 months, N=11); (3) valproate, chronic, current treatment (VPA-CHRON-C, A: >2 years, N=30; B: 2 months, N=12). Study 2 included 2 additional groups; Group 4: LI-CHRON-PAST (2 months, stopped 1 month pretest, N=13); Group 5: LI-ACUTE (LI on test days only, N=13). In Study 1, neither total nor stage (discrimination: D; reversal R; intra- extra-dimensional shifts: IED) IED errors differed between groups [(Kruskal-Wallis: H(2, N= 94) 0.95 > p > 0.65]. Similarly in Study 2, errors did not differentiate the 5 pharmacological groups. Differences emerged only between LI-ACUTE and Controls in response latencies (D, R, IED ANOVAS: 0.002 > p > 0.0003; contrasts D, R: p = 0.002, 0.0001). In conclusion, LI and VPA BD patients were indistinguishable from Controls in IED errors, as were animals treated with LI-CHRON, current or past, or VPA-CHRON-C vs Controls. LI-ACUTE treatment produced significant latency deficits vs. Controls. Within the limitations of translational comparisons, our results suggest that the normal CF noted in euthymic BDs is not attributable to mood stabilizer effects.
Collapse
|
11
|
Ching CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, Agartz I, Brouwer RM, Cannon DM, de Zwarte SMC, Eyler LT, Favre P, Hajek T, Haukvik UK, Houenou J, Landén M, Lett TA, McDonald C, Nabulsi L, Patel Y, Pauling ME, Paus T, Radua J, Soeiro‐de‐Souza MG, Tronchin G, van Haren NEM, Vieta E, Walter H, Zeng L, Alda M, Almeida J, Alnæs D, Alonso‐Lana S, Altimus C, Bauer M, Baune BT, Bearden CE, Bellani M, Benedetti F, Berk M, Bilderbeck AC, Blumberg HP, Bøen E, Bollettini I, del Mar Bonnin C, Brambilla P, Canales‐Rodríguez EJ, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz‐Zuluaga AM, Dima D, Duchesnay É, Elvsåshagen T, Fears SC, Frangou S, Fullerton JM, Glahn DC, Goikolea JM, Green MJ, Grotegerd D, Gruber O, Haarman BCM, Henry C, Howells FM, Ives‐Deliperi V, Jansen A, Kircher TTJ, Knöchel C, Kramer B, Lafer B, López‐Jaramillo C, Machado‐Vieira R, MacIntosh BJ, Melloni EMT, Mitchell PB, Nenadic I, Nery F, Nugent AC, Oertel V, Ophoff RA, Ota M, Overs BJ, Pham DL, Phillips ML, Pineda‐Zapata JA, Poletti S, Polosan M, Pomarol‐Clotet E, Pouchon A, Quidé Y, Rive MM, Roberts G, Ruhe HG, Salvador R, Sarró S, Satterthwaite TD, Schene AH, Sim K, et alChing CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, Agartz I, Brouwer RM, Cannon DM, de Zwarte SMC, Eyler LT, Favre P, Hajek T, Haukvik UK, Houenou J, Landén M, Lett TA, McDonald C, Nabulsi L, Patel Y, Pauling ME, Paus T, Radua J, Soeiro‐de‐Souza MG, Tronchin G, van Haren NEM, Vieta E, Walter H, Zeng L, Alda M, Almeida J, Alnæs D, Alonso‐Lana S, Altimus C, Bauer M, Baune BT, Bearden CE, Bellani M, Benedetti F, Berk M, Bilderbeck AC, Blumberg HP, Bøen E, Bollettini I, del Mar Bonnin C, Brambilla P, Canales‐Rodríguez EJ, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz‐Zuluaga AM, Dima D, Duchesnay É, Elvsåshagen T, Fears SC, Frangou S, Fullerton JM, Glahn DC, Goikolea JM, Green MJ, Grotegerd D, Gruber O, Haarman BCM, Henry C, Howells FM, Ives‐Deliperi V, Jansen A, Kircher TTJ, Knöchel C, Kramer B, Lafer B, López‐Jaramillo C, Machado‐Vieira R, MacIntosh BJ, Melloni EMT, Mitchell PB, Nenadic I, Nery F, Nugent AC, Oertel V, Ophoff RA, Ota M, Overs BJ, Pham DL, Phillips ML, Pineda‐Zapata JA, Poletti S, Polosan M, Pomarol‐Clotet E, Pouchon A, Quidé Y, Rive MM, Roberts G, Ruhe HG, Salvador R, Sarró S, Satterthwaite TD, Schene AH, Sim K, Soares JC, Stäblein M, Stein DJ, Tamnes CK, Thomaidis GV, Upegui CV, Veltman DJ, Wessa M, Westlye LT, Whalley HC, Wolf DH, Wu M, Yatham LN, Zarate CA, Thompson PM, Andreassen OA. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. Hum Brain Mapp 2022; 43:56-82. [PMID: 32725849 PMCID: PMC8675426 DOI: 10.1002/hbm.25098] [Show More Authors] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
Collapse
Affiliation(s)
- Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | - Abraham Nunes
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
- Faculty of Computer ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christoph Abé
- Faculty of Computer ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Center for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Rachel M. Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Sonja M. C. de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Lisa T. Eyler
- Department of PsychiatryUniversity of CaliforniaLa JollaCaliforniaUSA
- Desert‐Pacific MIRECCVA San Diego HealthcareSan DiegoCaliforniaUSA
| | - Pauline Favre
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
- Neurospin, CEA Paris‐Saclay, team UNIACTGif‐sur‐YvetteFrance
| | - Tomas Hajek
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
- National Institute of Mental HealthKlecanyCzech Republic
| | - Unn K. Haukvik
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University HospitalOsloNorway
| | - Josselin Houenou
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
- Neurospin, CEA Paris‐Saclay, team UNIACTGif‐sur‐YvetteFrance
- APHPMondor University Hospitals, DMU IMPACTCréteilFrance
| | - Mikael Landén
- Department of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Tristram A. Lett
- Department for Psychiatry and PsychotherapyCharité Universitätsmedizin BerlinBerlinGermany
- Department of Neurology with Experimental NeurologyCharité Universitätsmedizin BerlinBerlinGermany
| | - Colm McDonald
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Yash Patel
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
| | - Melissa E. Pauling
- Desert‐Pacific MIRECCVA San Diego HealthcareSan DiegoCaliforniaUSA
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
| | - Tomas Paus
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Departments of Psychology and PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Joaquim Radua
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Early Psychosis: Interventions and Clinical‐detection (EPIC) lab, Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Marcio G. Soeiro‐de‐Souza
- Mood Disorders Unit (GRUDA), Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil
| | - Giulia Tronchin
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Neeltje E. M. van Haren
- Department of Child and Adolescent Psychiatry/PsychologyErasmus Medical CenterRotterdamThe Netherlands
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Henrik Walter
- Department for Psychiatry and PsychotherapyCharité Universitätsmedizin BerlinBerlinGermany
| | - Ling‐Li Zeng
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina
| | - Martin Alda
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | - Jorge Almeida
- Dell Medical SchoolThe University of Texas at AustinAustinTexasUSA
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
| | - Silvia Alonso‐Lana
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Cara Altimus
- Milken Institute Center for Strategic PhilanthropyWashingtonDistrict of ColumbiaUSA
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Medical FacultyTechnische Universität DresdenDresdenGermany
| | - Bernhard T. Baune
- Department of PsychiatryUniversity of MünsterMünsterGermany
- Department of PsychiatryThe University of MelbourneMelbourneVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of PsychologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Francesco Benedetti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Michael Berk
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- IMPACT Institute – The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon HealthDeakin UniversityGeelongVictoriaAustralia
| | - Amy C. Bilderbeck
- The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of MelbourneOrygenMelbourneVictoriaAustralia
- P1vital LtdWallingfordUK
| | | | - Erlend Bøen
- Mood Disorders Research ProgramYale School of MedicineNew HavenConnecticutUSA
| | - Irene Bollettini
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Caterina del Mar Bonnin
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Paolo Brambilla
- Psychosomatic and CL PsychiatryOslo University HospitalOsloNorway
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Erick J. Canales‐Rodríguez
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
- Department of RadiologyCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
| | - Orwa Dandash
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of Melbourne and Melbourne HealthMelbourneVictoriaAustralia
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Udo Dannlowski
- Department of PsychiatryUniversity of MünsterMünsterGermany
| | | | - Ana M. Díaz‐Zuluaga
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
| | - Danai Dima
- Department of Psychology, School of Social Sciences and ArtsCity, University of LondonLondonUK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University HospitalOsloNorway
- Department of NeurologyOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Scott C. Fears
- Center for Neurobehavioral GeneticsLos AngelesCaliforniaUSA
- Greater Los Angeles Veterans AdministrationLos AngelesCaliforniaUSA
| | - Sophia Frangou
- Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Janice M. Fullerton
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jose M. Goikolea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Melissa J. Green
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Oliver Gruber
- Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Bartholomeus C. M. Haarman
- Department of Psychiatry, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Chantal Henry
- Department of PsychiatryService Hospitalo‐Universitaire, GHU Paris Psychiatrie & NeurosciencesParisFrance
- Université de ParisParisFrance
| | - Fleur M. Howells
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | | | - Andreas Jansen
- Core‐Facility Brainimaging, Faculty of MedicineUniversity of MarburgMarburgGermany
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Tilo T. J. Kircher
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Christian Knöchel
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Bernd Kramer
- Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Beny Lafer
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloSPBrazil
| | - Carlos López‐Jaramillo
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
- Mood Disorders ProgramHospital Universitario Trastorno del ÁnimoMedellínColombia
| | - Rodrigo Machado‐Vieira
- Experimental Therapeutics and Molecular Pathophysiology Program, Department of PsychiatryUTHealth, University of TexasHoustonTexasUSA
| | - Bradley J. MacIntosh
- Hurvitz Brain SciencesSunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Elisa M. T. Melloni
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Philip B. Mitchell
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Igor Nenadic
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Fabiano Nery
- University of CincinnatiCincinnatiOhioUSA
- Universidade de São PauloSão PauloSPBrazil
| | | | - Viola Oertel
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Roel A. Ophoff
- UCLA Center for Neurobehavioral GeneticsLos AngelesCaliforniaUSA
- Department of PsychiatryErasmus Medical Center, Erasmus UniversityRotterdamThe Netherlands
| | - Miho Ota
- Department of Mental Disorder ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | | | - Daniel L. Pham
- Milken Institute Center for Strategic PhilanthropyWashingtonDistrict of ColumbiaUSA
| | - Mary L. Phillips
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Sara Poletti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Mircea Polosan
- University of Grenoble AlpesCHU Grenoble AlpesGrenobleFrance
- INSERM U1216 ‐ Grenoble Institut des NeurosciencesLa TroncheFrance
| | - Edith Pomarol‐Clotet
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Arnaud Pouchon
- University of Grenoble AlpesCHU Grenoble AlpesGrenobleFrance
| | - Yann Quidé
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Maria M. Rive
- Department of PsychiatryAmsterdam UMC, location AMCAmsterdamThe Netherlands
| | - Gloria Roberts
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Henricus G. Ruhe
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Aart H. Schene
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
| | - Kang Sim
- West Region, Institute of Mental HealthSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jair C. Soares
- Center of Excellent on Mood DisordersUTHealth HoustonHoustonTexasUSA
- Department of Psychiatry and Behavioral SciencesUTHealth HoustonHoustonTexasUSA
| | - Michael Stäblein
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Dan J. Stein
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- SAMRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Georgios V. Thomaidis
- Papanikolaou General HospitalThessalonikiGreece
- Laboratory of Mechanics and MaterialsSchool of Engineering, Aristotle UniversityThessalonikiGreece
| | - Cristian Vargas Upegui
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMCAmsterdamThe Netherlands
| | - Michèle Wessa
- Department of Neuropsychology and Clinical PsychologyJohannes Gutenberg‐University MainzMainzGermany
| | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and AddictionOslo University HospitalOsloNorway
| | | | - Daniel H. Wolf
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Mon‐Ju Wu
- Department of Psychiatry and Behavioral SciencesUTHealth HoustonHoustonTexasUSA
| | - Lakshmi N. Yatham
- Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Carlos A. Zarate
- Chief Experimental Therapeutics & Pathophysiology BranchBethesdaMarylandUSA
- Intramural Research ProgramNational Institute of Mental HealthBethesdaMarylandUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | | |
Collapse
|
12
|
Ochoa ELM. Lithium as a Neuroprotective Agent for Bipolar Disorder: An Overview. Cell Mol Neurobiol 2022; 42:85-97. [PMID: 34357564 PMCID: PMC11441275 DOI: 10.1007/s10571-021-01129-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
Lithium (Li+) is a first option treatment for adult acute episodes of Bipolar Disorder (BD) and for the prophylaxis of new depressed or manic episodes. It is also the preferred choice as maintenance treatment. Numerous studies have shown morphological abnormalities in the brains of BD patients, suggesting that this highly heritable disorder may exhibit progressive and deleterious changes in brain structure. Since treatment with Li+ ameliorates these abnormalities, it has been postulated that Li+ is a neuroprotective agent in the same way atypical antipsychotics are neuroprotective in patients diagnosed with schizophrenia spectrum disorders. Li+'s neuroprotective properties are related to its modulation of nerve growth factors, inflammation, mitochondrial function, oxidative stress, and programmed cell death mechanisms such as autophagy and apoptosis. Notwithstanding, it is not known whether Li+-induced neuroprotection is related to the inhibition of its putative molecular targets in a BD episode: the enzymes inositol-monophosphatase, (IMPase), glycogen-synthase-kinase 3β (GSK3), and Protein kinase C (PKC). Furthermore, it is uncertain whether these neuroprotective mechanisms are correlated with Li+'s clinical efficacy in maintaining mood stability. It is expected that in a nearby future, precision medicine approaches will improve diagnosis and expand treatment options. This will certainly contribute to ameliorating the medical and economic burden created by this devastating mood disorder.
Collapse
Affiliation(s)
- Enrique L M Ochoa
- Department of Psychiatry and Behavioral Sciences, Volunteer Clinical Faculty, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
13
|
Lithium - ein Update. INFO NEUROLOGIE + PSYCHIATRIE 2022. [PMCID: PMC8765824 DOI: 10.1007/s15005-021-2201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Lithium effects on Hippocampus volumes in patients with bipolar disorder. J Affect Disord 2021; 294:521-526. [PMID: 34330048 DOI: 10.1016/j.jad.2021.07.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/11/2021] [Accepted: 07/11/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Lithium is one of the most effective medications for bipolar disorder episode prevention, but its mechanism of action is still largely unknown. The hippocampus is a subcortical cerebral structure involved in the formation of emotional responses, cognition and various primitive functions, altered during affective episodes. Deviations in the anatomy or physiology of the hippocampus would partially explain the symptomatology of bipolar subjects, and restoration may reflect treatment response. METHODS In this mini review, we summarize the studies which have investigated the effect of lithium intake on the volume of hippocampus, measured using magnetic resonance imaging (MRI). We performed a bibliographic search on PubMed, using the terms terms "hippocampus", "lithium", "bipolar disorder", "volume" and "MRI". Only original studies were considered. RESULTS Thirteen studies met the inclusion criteria. Nine studies demonstrated increased total hippocampal volume or hippocampal subfield volumes in BD patients on lithium treatment (Li BD) compared to those not taking lithium (non-Li BD), while four failed to show significant differences between groups. When healthy controls were compared to either the Li subjects or the non-Li ones, the findings were more heterogeneous. LIMITATIONS Heterogeneity in the methodology and definition of groups limits the comparison of study results. CONCLUSIONS Lithium may be associated with increased hippocampal volume in BD, potentially due to its putative neurotrophic action, but further research is needed better define the morphological alterations of hippocampus in BD and the longitudinal effects of lithium in the short and long-term.
Collapse
|
15
|
Nayak R, Rosh I, Kustanovich I, Stern S. Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from In Vitro Model Systems. Int J Mol Sci 2021; 22:9315. [PMID: 34502224 PMCID: PMC8431659 DOI: 10.3390/ijms22179315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Bipolar disorder (BD) and schizophrenia are psychiatric disorders that manifest unusual mental, behavioral, and emotional patterns leading to suffering and disability. These disorders span heterogeneous conditions with variable heredity and elusive pathophysiology. Mood stabilizers such as lithium and valproic acid (VPA) have been shown to be effective in BD and, to some extent in schizophrenia. This review highlights the efficacy of lithium and VPA treatment in several randomized, controlled human trials conducted in patients suffering from BD and schizophrenia. Furthermore, we also address the importance of using induced pluripotent stem cells (iPSCs) as a disease model for mirroring the disease's phenotypes. In BD, iPSC-derived neurons enabled finding an endophenotype of hyperexcitability with increased hyperpolarizations. Some of the disease phenotypes were significantly alleviated by lithium treatment. VPA studies have also reported rescuing the Wnt/β-catenin pathway and reducing activity. Another significant contribution of iPSC models can be attributed to studying the molecular etiologies of schizophrenia such as abnormal differentiation of patient-derived neural stem cells, decreased neuronal connectivity and neurite number, impaired synaptic function, and altered gene expression patterns. Overall, despite significant advances using these novel models, much more work remains to fully understand the mechanisms by which these disorders affect the patients' brains.
Collapse
Affiliation(s)
| | | | | | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel; (R.N.); (I.R.); (I.K.)
| |
Collapse
|
16
|
Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients. Mol Psychiatry 2021; 26:2440-2456. [PMID: 33398088 PMCID: PMC9129103 DOI: 10.1038/s41380-020-00981-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li-responsive (LR) and Li-non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on the LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/β-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/β-catenin signaling pathway by inhibiting GSK-3β and releasing β-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/β-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3β, upregulated LEF1 and Wnt/β-catenin gene targets, increased transcriptional activity of complex β-catenin/TCF/LEF1, and reduced excitability in NR neurons. In addition, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/β-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment.
Collapse
|
17
|
Hozer F, Sarrazin S, Laidi C, Favre P, Pauling M, Cannon D, McDonald C, Emsell L, Mangin JF, Duchesnay E, Bellani M, Brambilla P, Wessa M, Linke J, Polosan M, Versace A, Phillips ML, Delavest M, Bellivier F, Hamdani N, d'Albis MA, Leboyer M, Houenou J. Lithium prevents grey matter atrophy in patients with bipolar disorder: an international multicenter study. Psychol Med 2021; 51:1201-1210. [PMID: 31983348 DOI: 10.1017/s0033291719004112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Lithium (Li) is the gold standard treatment for bipolar disorder (BD). However, its mechanisms of action remain unknown but include neurotrophic effects. We here investigated the influence of Li on cortical and local grey matter (GM) volumes in a large international sample of patients with BD and healthy controls (HC). METHODS We analyzed high-resolution T1-weighted structural magnetic resonance imaging scans of 271 patients with BD type I (120 undergoing Li) and 316 HC. Cortical and local GM volumes were compared using voxel-wise approaches with voxel-based morphometry and SIENAX using FSL. We used multiple linear regression models to test the influence of Li on cortical and local GM volumes, taking into account potential confounding factors such as a history of alcohol misuse. RESULTS Patients taking Li had greater cortical GM volume than patients without. Patients undergoing Li had greater regional GM volumes in the right middle frontal gyrus, the right anterior cingulate gyrus, and the left fusiform gyrus in comparison with patients not taking Li. CONCLUSIONS Our results in a large multicentric sample support the hypothesis that Li could exert neurotrophic and neuroprotective effects limiting pathological GM atrophy in key brain regions associated with BD.
Collapse
Affiliation(s)
- Franz Hozer
- Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Corentin-Celton, Issy-les-Moulineaux, France
- Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France
- UNIACT Lab, Psychiatry Team, NeuroSpin Neuroimaging Platform, CEA Saclay, Gif-sur-Yvette, France
- INSERM U955, Mondor Institute for Biomedical Research, Team 15, Translational Psychiatry, Créteil, France
| | - Samuel Sarrazin
- UNIACT Lab, Psychiatry Team, NeuroSpin Neuroimaging Platform, CEA Saclay, Gif-sur-Yvette, France
- INSERM U955, Mondor Institute for Biomedical Research, Team 15, Translational Psychiatry, Créteil, France
| | - Charles Laidi
- UNIACT Lab, Psychiatry Team, NeuroSpin Neuroimaging Platform, CEA Saclay, Gif-sur-Yvette, France
- INSERM U955, Mondor Institute for Biomedical Research, Team 15, Translational Psychiatry, Créteil, France
- Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Mondor, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Pauline Favre
- UNIACT Lab, Psychiatry Team, NeuroSpin Neuroimaging Platform, CEA Saclay, Gif-sur-Yvette, France
- INSERM U955, Mondor Institute for Biomedical Research, Team 15, Translational Psychiatry, Créteil, France
| | - Melissa Pauling
- UNIACT Lab, Psychiatry Team, NeuroSpin Neuroimaging Platform, CEA Saclay, Gif-sur-Yvette, France
- INSERM U955, Mondor Institute for Biomedical Research, Team 15, Translational Psychiatry, Créteil, France
- Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Mondor, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Dara Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), NCBES Galway Neuroscience Centre, National University of Ireland Galway, H91 TK33Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), NCBES Galway Neuroscience Centre, National University of Ireland Galway, H91 TK33Galway, Ireland
| | - Louise Emsell
- Translational MRI, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
- Department of Old Age Psychiatry, University Psychiatry Centre, KU Leuven, Leuven, Belgium
| | | | - Edouard Duchesnay
- UNATI Lab, NeuroSpin Neuroimaging Platform, CEA Saclay, Gif-sur-Yvette, France
| | - Marcella Bellani
- UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Grand Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Michele Wessa
- Department of Clinical Psychology and Neuropsychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia Linke
- Department of Clinical Psychology and Neuropsychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mircea Polosan
- Grenoble Alpes University, Grenoble Institute of Neuroscience, INSERM U1216, Hôpital Grenoble Alpes, Grenoble, France
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marine Delavest
- Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Lariboisière-Fernand Widal, INSERM U705 CNRS UMR 8206, Paris, France
- Paris Diderot University, Paris, France
| | - Frank Bellivier
- Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Lariboisière-Fernand Widal, INSERM U705 CNRS UMR 8206, Paris, France
- Paris Diderot University, Paris, France
| | - Nora Hamdani
- INSERM U955, Mondor Institute for Biomedical Research, Team 15, Translational Psychiatry, Créteil, France
- Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Mondor, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Marc-Antoine d'Albis
- UNIACT Lab, Psychiatry Team, NeuroSpin Neuroimaging Platform, CEA Saclay, Gif-sur-Yvette, France
- INSERM U955, Mondor Institute for Biomedical Research, Team 15, Translational Psychiatry, Créteil, France
- Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Mondor, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- INSERM U955, Mondor Institute for Biomedical Research, Team 15, Translational Psychiatry, Créteil, France
- Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Mondor, Créteil, France
- Fondation FondaMental, Créteil, France
- Faculté de Médecine de Créteil, Université Paris Est Créteil, Créteil, France
| | - Josselin Houenou
- UNIACT Lab, Psychiatry Team, NeuroSpin Neuroimaging Platform, CEA Saclay, Gif-sur-Yvette, France
- INSERM U955, Mondor Institute for Biomedical Research, Team 15, Translational Psychiatry, Créteil, France
- Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Mondor, Créteil, France
- Fondation FondaMental, Créteil, France
- Faculté de Médecine de Créteil, Université Paris Est Créteil, Créteil, France
| |
Collapse
|
18
|
Chronic lithium exposure attenuates ketamine-induced mania-like behavior and c-Fos expression in the forebrain of mice. Pharmacol Biochem Behav 2021; 202:173108. [PMID: 33450292 DOI: 10.1016/j.pbb.2021.173108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 02/05/2023]
Abstract
Ketamine, a dissociative anaesthetic, has been used in the treatment of major depressive disorder (MDD) as a rapid acting antidepressant drug. Recent studies have shown that ketamine may increase the potential risk of treatment-induced mania in MDD patients. Lithium is a well-known mood stabilizer and has been widely used for the treatment of mania. It is not fully understood which forebrain regions are involved in ketamine- and lithium-induced expression of c-Fos. Therefore, our aim was to investigate the effect of chronic lithium treatment on mania-like behavior and c-Fos expression in the mouse forebrain activated by a single administration of ketamine. In the open field test, our results showed that ketamine significantly increased the total distance and total cumulative duration of movement in mice, while chronic lithium could attenuate these effects of ketamine. In addition, acute ketamine induced higher c-Fos expression in the lateral septal nucleus, hypothalamus, amygdala, and hippocampus of mice in the treatment group compared to those in the control group. However, chronic lithium inhibited the significant increase in c-Fos-immunoreactive neurons following acute ketamine administration in the dentate gyrus of the hippocampus, field CA1 of the hippocampus, dorsal subiculum, ventral subiculum, ventral subiculum, central amygdaloid nucleus and basolateral amygdaloid nucleus. In summary, our research shows that pretreatment with lithium moderates the effects of acute ketamine administration on mania-like behavior and c-Fos expression in the forebrain. These findings could be helpful in better understanding the episodes of mania related to ketamine treatment for MDD and bipolar disorder.
Collapse
|
19
|
Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Truong TT, Liu ZS, Panizzutti B, Richardson MF, Gray L, Berk M, Dean OM, Walder K. Transcriptional Effects of Psychoactive Drugs on Genes Involved in Neurogenesis. Int J Mol Sci 2020; 21:ijms21218333. [PMID: 33172123 PMCID: PMC7672551 DOI: 10.3390/ijms21218333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Although neurogenesis is affected in several psychiatric diseases, the effects and mechanisms of action of psychoactive drugs on neurogenesis remain unknown and/or controversial. This study aims to evaluate the effects of psychoactive drugs on the expression of genes involved in neurogenesis. Neuronal-like cells (NT2-N) were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), or valproate (0.5 mM) for 24 h. Genome wide mRNA expression was quantified and analysed using gene set enrichment analysis, with the neurogenesis gene set retrieved from the Gene Ontology database and the Mammalian Adult Neurogenesis Gene Ontology (MANGO) database. Transcription factors that are more likely to regulate these genes were investigated to better understand the biological processes driving neurogenesis. Targeted metabolomics were performed using gas chromatography-mass spectrometry. Six of the eight drugs decreased the expression of genes involved in neurogenesis in both databases. This suggests that acute treatment with these psychoactive drugs negatively regulates the expression of genes involved in neurogenesis in vitro. SOX2 and three of its target genes (CCND1, BMP4, and DKK1) were also decreased after treatment with quetiapine. This can, at least in part, explain the mechanisms by which these drugs decrease neurogenesis at a transcriptional level in vitro. These results were supported by the finding of increased metabolite markers of mature neurons following treatment with most of the drugs tested, suggesting increased proportions of mature relative to immature neurons consistent with reduced neurogenesis.
Collapse
Affiliation(s)
- Chiara C. Bortolasci
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
- Correspondence:
| | - Briana Spolding
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Srisaiyini Kidnapillai
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Timothy Connor
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Trang T.T. Truong
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Zoe S.J. Liu
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Bruna Panizzutti
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Mark F. Richardson
- School of Life and Environmental Sciences, Genomics Centre, Deakin University, Geelong 3220, Australia;
| | - Laura Gray
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville 3052, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville 3052, Australia
- Orygen Youth Health Research Centre, Parkville 3052, Australia
| | - Olivia M. Dean
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| |
Collapse
|
20
|
Abstract
OBJECTIVES A narrative review of past, present, and future of lithium use in psychiatry. METHODS The most important references on the topic were reviewed with special emphasis on the author's works. RESULTS The history of medical and psychiatric use of lithium dates back to more than one and a half-century ago. However, modern psychiatric history began with the publication of John Cade, in 1949, showing a therapeutic effect of lithium in mania. Currently, lithium is a drug of choice as a mood-stabilizer for the maintenance treatment of the bipolar disorder. The second most important use of lithium is probably augmentation of antidepressants in treatment-resistant depression. In addition to its mood-stabilizing properties, lithium exerts anti-suicidal, immunomodulatory, and neuroprotective action. The drug may protect against dementia and some promising effects of lithium in neurodegenerative disorders have been observed. CONCLUSION Given the clinical and biological properties of lithium, this drug is presently greatly underutilized in mood disorders. Therefore, the efforts should be undertaken for challenging a skepticism about the use of lithium and optimizing its long-term administration. In such a way, more patients with mood disorders can become the beneficiaries of lithium's therapeutic action. KEY POINTS Lithium is a drug of choice as a mood-stabiliser for the maintenance treatment of bipolar disorder. Augmentation of antidepressants by lithium is one of the best strategies in treatment-resistant depression. Lithium exerts anti-suicidal, immunomodulatory, and neuroprotective action and may protect against dementia. Despite the evidence for the efficacy and added favourable properties, lithium is greatly underutilised in mood disorders. Challenging a scepticism about the use of lithium and optimising its long-term administration can make more patients with mood disorders the beneficiaries of lithium's therapeutic action.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.,Department of Psychiatric Nursing, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
21
|
Person-based similarity in brain structure and functional connectivity in bipolar disorder. J Affect Disord 2020; 276:38-44. [PMID: 32697714 PMCID: PMC7568424 DOI: 10.1016/j.jad.2020.06.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bipolar disorder shows significant variability in clinical presentation. Here we adopt a personalized approach to quantify the brain structural and functional similarity of each individual patient to other patients and to healthy individuals. METHODS Brain morphometric and resting-state functional connectivity measures from two independent samples of patients with bipolar disorder and healthy individuals (total number of participants=215) were modeled as single vectors to generated individualized morphometric and connectivity profiles. These profiles were then used to compute a person-based similarity indices which quantified the similarity in neuroimaging profiles amongst patients and between patients and health individuals. RESULTS The morphometric and connectivity profiles of patients showed within-diagnosis similarity which was comparable to that observed in healthy individuals. They also showed minimal deviance from those of healthy individuals; the correlation between the profiles of patients and healthy individuals was high (range: 0.71-0.94, p<10-5). The degree of similarity between imaging profiles was associated with IQ (for cortical thickness) and age (functional integration) rather than clinical variables. Patients who were prescribed lithium, compared to those who were not, showed greater similarity to healthy individuals in terms of network integration (t = 2.2, p = 0.03). LIMITATIONS We focused on patients with Bipolar disorder, type I only. CONCLUSIONS High inter-individual similarity in neuroimaging profiles was observed amongst patients with bipolar disorder and between patients and healthy individuals. We infer that brain alterations associated with bipolar disorder may be nested within the normal biological diversity consistent with the high prevalence of mood symptoms in the general population.
Collapse
|
22
|
Accumulation of Lithium in the Hippocampus of Patients With Bipolar Disorder: A Lithium-7 Magnetic Resonance Imaging Study at 7 Tesla. Biol Psychiatry 2020; 88:426-433. [PMID: 32340717 DOI: 10.1016/j.biopsych.2020.02.1181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Lithium (Li) is a first-line treatment for bipolar disorder (BD). To study its cerebral distribution and association with plasma concentrations, we used 7Li magnetic resonance imaging at 7T in euthymic patients with BD treated with Li carbonate for at least 2 years. METHODS Three-dimensional 7Li magnetic resonance imaging scans (N = 21) were acquired with an ultra-short echo-time sequence using a non-Cartesian k-space sampling scheme. Lithium concentrations ([Li]) were estimated using a phantom replacement approach accounting for differential T1 and T2 relaxation effects. In addition to the determination of mean regional [Li] from 7 broad anatomical areas, voxel- and parcellation-based group analyses were conducted for the first time for 7Li magnetic resonance imaging. RESULTS Using unprecedented spatial sensitivity and specificity, we were able to confirm the heterogeneity of the brain Li distribution and its interindividual variability, as well as the strong correlation between plasma and average brain [Li] ([Li]B ≈ 0.40 × [Li]P, R = .74). Remarkably, our statistical analysis led to the identification of a well-defined and significant cluster corresponding closely to the left hippocampus for which high Li content was displayed consistently across our cohort. CONCLUSIONS This observation could be of interest considering 1) the major role of the hippocampus in emotion processing and regulation, 2) the consistent atrophy of the hippocampus in untreated patients with BD, and 3) the normalization effect of Li on gray matter volumes. This study paves the way for the elucidation of the relationship between Li cerebral distribution and its therapeutic response, notably in newly diagnosed patients with BD.
Collapse
|
23
|
Steardo L, Manchia M, Carpiniello B, Pisanu C, Steardo L, Squassina A. Clinical, genetic, and brain imaging predictors of risk for bipolar disorder in high-risk individuals. Expert Rev Mol Diagn 2020; 20:327-333. [PMID: 32054361 DOI: 10.1080/14737159.2020.1727743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Early detection and intervention in bipolar disorder (BD) might reduce illness severity, slow its progression, and, in specific cases, even ward off the full-blown disorder. Therefore, identifying at-risk individuals and targeting them promptly before the illness onset is of the utmost importance. In the last decades, there has been a significant effort aimed at identifying genetic and molecular factors able to modulate risk and pharmacological outcomes.Areas covered: We performed a narrative review of articles aimed at identifying clinical, genetics, molecular, and brain imaging markers of BD specifically focusing on samples of individuals at high-risk for BD. Special emphasis was put on studies applying an integrative design, e.g. studies combining different markers such as genetic and brain imaging.Expert opinion: Findings from studies in risk individuals are still too sparse to allow drawing definite conclusions. However, the high potentiality of longitudinal studies in individuals considered at risk to develop BD supports the need for more efforts. Future investigations should focus on more homogeneous subpopulations and evaluate the cross-linking between clinical, genetic, and brain morphostructural/functional neuroimaging characteristics as predictors of risk for BD.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
24
|
Abé C, Liberg B, Song J, Bergen SE, Petrovic P, Ekman CJ, Sellgren CM, Ingvar M, Landén M. Longitudinal Cortical Thickness Changes in Bipolar Disorder and the Relationship to Genetic Risk, Mania, and Lithium Use. Biol Psychiatry 2020; 87:271-281. [PMID: 31635761 DOI: 10.1016/j.biopsych.2019.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a highly heritable psychiatric disorder characterized by episodes of manic and depressed mood states and associated with cortical brain abnormalities. Although the course of BD is often progressive, longitudinal brain imaging studies are scarce. It remains unknown whether brain abnormalities are static traits of BD or result from pathological changes over time. Moreover, the genetic effect on implicated brain regions remains unknown. METHODS Patients with BD and healthy control (HC) subjects underwent structural magnetic resonance imaging at baseline (123 patients, 83 HC subjects) and after 6 years (90 patients, 61 HC subjects). Cortical thickness maps were generated using FreeSurfer. Using linear mixed effects models, we compared longitudinal changes in cortical thickness between patients with BD and HC subjects across the whole brain. We related our findings to genetic risk for BD and tested for effects of demographic and clinical variables. RESULTS Patients showed abnormal cortical thinning of temporal cortices and thickness increases in visual/somatosensory brain areas. Thickness increases were related to genetic risk and lithium use. Patients who experienced hypomanic or manic episodes between time points showed abnormal thinning in inferior frontal cortices. Cortical changes did not differ between diagnostic BD subtypes I and II. CONCLUSIONS In the largest longitudinal BD study to date, we detected abnormal cortical changes with high anatomical resolution. We delineated regional effects of clinical symptoms, genetic factors, and medication that may explain progressive brain changes in BD. Our study yields important insights into disease mechanisms and suggests that neuroprogression plays a role in BD.
Collapse
Affiliation(s)
- Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sarah E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Predrag Petrovic
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carl Johan Ekman
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Ingvar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County, Stockholm, Sweden
| |
Collapse
|
25
|
Nogovitsyn N, Muller M, Souza R, Hassel S, Arnott SR, Davis AD, Hall GB, Harris JK, Zamyadi M, Metzak PD, Ismail Z, Downar J, Parikh SV, Soares CN, Addington JM, Milev R, Harkness KL, Frey BN, Lam RW, Strother SC, Rotzinger S, Kennedy SH, MacQueen GM. Hippocampal tail volume as a predictive biomarker of antidepressant treatment outcomes in patients with major depressive disorder: a CAN-BIND report. Neuropsychopharmacology 2020; 45:283-291. [PMID: 31610545 PMCID: PMC6901577 DOI: 10.1038/s41386-019-0542-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/06/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023]
Abstract
Finding a clinically useful neuroimaging biomarker that can predict treatment response in patients with major depressive disorder (MDD) is challenging, in part because of poor reproducibility and generalizability of findings across studies. Previous work has suggested that posterior hippocampal volumes in depressed patients may be associated with antidepressant treatment outcomes. The primary purpose of this investigation was to examine further whether posterior hippocampal volumes predict remission following antidepressant treatment. Magnetic resonance imaging (MRI) scans from 196 patients with MDD and 110 healthy participants were obtained as part of the first study in the Canadian Biomarker Integration Network in Depression program (CAN-BIND 1) in which patients were treated for 16 weeks with open-label medication. Hippocampal volumes were measured using both a manual segmentation protocol and FreeSurfer 6.0. Baseline hippocampal tail (Ht) volumes were significantly smaller in patients with depression compared to healthy participants. Larger baseline Ht volumes were positively associated with remission status at weeks 8 and 16. Participants who achieved early sustained remission had significantly greater Ht volumes compared to those who did not achieve remission by week 16. Ht volume is a prognostic biomarker for antidepressant treatment outcomes in patients with MDD.
Collapse
Affiliation(s)
- Nikita Nogovitsyn
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Meghan Muller
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Roberto Souza
- 0000 0004 1936 7697grid.22072.35Department of Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Stefanie Hassel
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada ,0000 0004 1936 7697grid.22072.35Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB Canada
| | - Stephen R. Arnott
- 0000 0001 2157 2938grid.17063.33Rotman Research Institute, Baycrest, Toronto, ON Canada
| | - Andrew D. Davis
- 0000 0004 1936 8227grid.25073.33Department of Psychology, Neuroscience & Behaviour, McMaster University, and St. Joseph’s Healthcare Hamilton, Hamilton, ON Canada
| | - Geoffrey B. Hall
- 0000 0004 1936 8227grid.25073.33Department of Psychology, Neuroscience & Behaviour, McMaster University, and St. Joseph’s Healthcare Hamilton, Hamilton, ON Canada
| | - Jacqueline K. Harris
- grid.17089.37Department of Computer Science, University of Alberta, Edmonton, AB Canada
| | - Mojdeh Zamyadi
- 0000 0001 2157 2938grid.17063.33Rotman Research Institute, Baycrest, Toronto, ON Canada
| | - Paul D. Metzak
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada ,0000 0004 1936 7697grid.22072.35Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB Canada
| | - Zahinoor Ismail
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Jonathan Downar
- 0000 0001 2157 2938grid.17063.33Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,0000 0004 0474 0428grid.231844.8Krembil Research Institute and Centre for Mental Health, University Health Network, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON Canada
| | - Sagar V. Parikh
- 0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Claudio N. Soares
- 0000 0004 1936 8331grid.410356.5Department of Psychiatry, Queen’s University and Providence Care Hospital, Kingston, ON Canada
| | - Jean M. Addington
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada ,0000 0004 1936 7697grid.22072.35Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB Canada
| | - Roumen Milev
- 0000 0004 1936 8331grid.410356.5Department of Psychiatry, Queen’s University and Providence Care Hospital, Kingston, ON Canada ,0000 0004 1936 8331grid.410356.5Department of Psychology, Queen’s University, Kingston, ON Canada
| | - Kate L. Harkness
- 0000 0004 1936 8331grid.410356.5Department of Psychology, Queen’s University, Kingston, ON Canada
| | - Benicio N. Frey
- 0000 0004 1936 8227grid.25073.33Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON Canada ,Mood Disorders Program and Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON Canada
| | - Raymond W. Lam
- 0000 0001 2288 9830grid.17091.3eDepartment of Psychiatry, University of British Columbia, Vancouver, BC Canada
| | - Stephen C. Strother
- 0000 0001 2157 2938grid.17063.33Rotman Research Institute, Baycrest and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Susan Rotzinger
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, St. Michael’s Hospital, University of Toronto, Toronto, ON Canada
| | - Sidney H. Kennedy
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, St. Michael’s Hospital, University of Toronto, Toronto, ON Canada ,grid.415502.7Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON Canada
| | - Glenda M. MacQueen
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| |
Collapse
|
26
|
Van Gestel H, Franke K, Petite J, Slaney C, Garnham J, Helmick C, Johnson K, Uher R, Alda M, Hajek T. Brain age in bipolar disorders: Effects of lithium treatment. Aust N Z J Psychiatry 2019; 53:1179-1188. [PMID: 31244332 DOI: 10.1177/0004867419857814] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Bipolar disorders increase the risk of dementia and show biological and brain alterations, which resemble accelerated aging. Lithium may counter some of these processes and lower the risk of dementia. However, until now no study has specifically investigated the effects of Li on brain age. METHODS We acquired structural magnetic resonance imaging scans from 84 participants with bipolar disorders (41 with and 43 without Li treatment) and 45 controls. We used a machine learning model trained on an independent sample of 504 controls to estimate the individual brain ages of study participants, and calculated BrainAGE by subtracting chronological from the estimated brain age. RESULTS BrainAGE was significantly greater in non-Li relative to Li or control participants, F(2, 125) = 10.22, p < 0.001, with no differences between the Li treated and control groups. The estimated brain age was significantly higher than the chronological age in the non-Li (4.28 ± 6.33 years, matched t(42) = 4.43, p < 0.001), but not the Li-treated group (0.48 ± 7.60 years, not significant). Even Li-treated participants with partial prophylactic treatment response showed lower BrainAGE than the non-Li group, F(1, 64) = 4.80, p = 0.03. CONCLUSIONS Bipolar disorders were associated with greater, whereas Li treatment with lower discrepancy between brain and chronological age. These findings support the neuroprotective effects of Li, which were sufficiently pronounced to affect a complex, multivariate measure of brain structure. The association between Li treatment and BrainAGE was independent of long-term thymoprophylactic response and thus may generalize beyond bipolar disorders, to neurodegenerative disorders.
Collapse
Affiliation(s)
- Holly Van Gestel
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Katja Franke
- Structural Brain Mapping Group, Department of Psychiatry, Jena University Hospital, Jena, Germany
| | - Joanne Petite
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Julie Garnham
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Carl Helmick
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Kyle Johnson
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
27
|
Robertson OD, Coronado NG, Sethi R, Berk M, Dodd S. Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry 2019; 13:1032-1049. [PMID: 30690898 DOI: 10.1111/eip.12775] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
AIM Neuropsychiatric disorders including depression, bipolar and schizophrenia frequently exhibit a neuroprogressive course from prodrome to chronicity. There are a range of agents exhibiting capacity to attenuate biological mechanisms associated with neuroprogression. This review will update the evidence for putative neuroprotective agents including clinical efficacy, mechanisms of action and limitations in current assessment tools, and identify novel agents with neuroprotective potential. METHOD Data for this review were sourced from online databases PUBMED, Embase and Web of Science. Only data published since 2012 were included in this review, no data were excluded based on language or publication origin. RESULTS Each of the agents reviewed inhibit one or multiple pathways of neuroprogression including: inflammatory gene expression and cytokine release, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophin dysregulation and apoptotic signalling. Some demonstrate clinical efficacy in preventing neural damage or loss, relapse or cognitive/functional decline. Agents include: the psychotropic medications lithium, second generation antipsychotics and antidepressants; other pharmacological agents such as minocycline, aspirin, cyclooxygenase-2 inhibitors, statins, ketamine and alpha-2-delta ligands; and others such as erythropoietin, oestrogen, leptin, N-acetylcysteine, curcumin, melatonin and ebselen. CONCLUSIONS Signals of evidence of clinical neuroprotection are evident for a number of candidate agents. Adjunctive use of multiple agents may present a viable avenue to clinical realization of neuroprotection. Definitive prospective studies of neuroprotection with multimodal assessment tools are required.
Collapse
Affiliation(s)
- Oliver D Robertson
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia
| | - Nieves G Coronado
- Unidad de Gestión Clinica Salud Mental, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Rickinder Sethi
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Drobinin V, Slaney C, Garnham J, Propper L, Uher R, Alda M, Hajek T. Larger right inferior frontal gyrus volume and surface area in participants at genetic risk for bipolar disorders. Psychol Med 2019; 49:1308-1315. [PMID: 30058502 DOI: 10.1017/s0033291718001903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Larger grey matter volume of the inferior frontal gyrus (IFG) is among the most replicated biomarkers of genetic risk for bipolar disorders (BD). However, the IFG is a heterogeneous prefrontal region, and volumetric findings can be attributable to changes in cortical thickness (CT), surface area (SA) or gyrification. Here, we investigated the morphometry of IFG in participants at genetic risk for BD. METHODS We quantified the IFG cortical grey matter volume in 29 affected, 32 unaffected relatives of BD probands, and 42 controls. We then examined SA, CT, and cortical folding in subregions of the IFG. RESULTS We found volumetric group differences in the right IFG, with the largest volumes in unaffected high-risk and smallest in control participants (F2,192 = 3.07, p = 0.01). The volume alterations were localized to the pars triangularis of the IFG (F2,97 = 4.05, p = 0.02), with no differences in pars opercularis or pars orbitalis. Pars triangularis volume was highly correlated with its SA [Pearson r(101) = 0.88, p < 0.001], which significantly differed between the groups (F2,97 = 4.45, p = 0.01). As with volume, the mean SA of the pars triangularis was greater in unaffected (corrected p = 0.02) and affected relatives (corrected p = 0.05) compared with controls. We did not find group differences in pars triangularis CT or gyrification. CONCLUSIONS These findings strengthen prior knowledge about the volumetric findings in this region and provide a new insight into the localization and topology of IFG alterations. The unique nature of rIFG morphology in BD, with larger volume and SA early in the course of illness, could have practical implications for detection of participants at risk for BD.
Collapse
Affiliation(s)
- V Drobinin
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - C Slaney
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - J Garnham
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - L Propper
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - R Uher
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - M Alda
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - T Hajek
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| |
Collapse
|
29
|
Plotnikov E, Losenkov I, Epimakhova E, Bohan N. Protective Effects of Pyruvic Acid Salt Against Lithium Toxicity and Oxidative Damage in Human Blood Mononuclear Cells. Adv Pharm Bull 2019; 9:302-306. [PMID: 31380257 PMCID: PMC6664125 DOI: 10.15171/apb.2019.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/03/2019] [Accepted: 04/14/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: Aim of present work was to study cytoprotective properties of lithium pyruvate, as a prospective pharmacological agent. Pyruvate has a lot of potential benefits due to positive influence on cell metabolism. Lithium is "gold-standard" mood-stabilizer. Combination of both may lead advantages.
Methods: Lithium pyruvate was tested as cytoprotector on human blood mononuclears under induced oxidative stress. Cells were obtained from healthy donors and patients with alcoholism. The detection of cell viability, apoptosis and determination of oxidative stress level were conducted by flow cytometry.
Results: Lithium pyruvate showed excellent cytoprotective properties in normal and oxidation conditions. This effect was independent from cell donor health status. It was shown on cells from healthy donors and alcoholics patients.
Conclusion: Obtained results allow considering lithium pyruvate as potential normothymic agents (mood stabilizer) with excellent cytoprotective properties.
Collapse
Affiliation(s)
- Evgenii Plotnikov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, 634014, Tomsk, Aleutskaya 4, Russia.,Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 634050, Tomsk, Lenin av., 30, Russia
| | - Innokenty Losenkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, 634014, Tomsk, Aleutskaya 4, Russia
| | - Elena Epimakhova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, 634014, Tomsk, Aleutskaya 4, Russia
| | - Nikolay Bohan
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, 634014, Tomsk, Aleutskaya 4, Russia
| |
Collapse
|
30
|
Jamea AA, Alblowi M, Alghamdi J, Alosaimi FD, Al-Bader F, Bashir S. Volumetric and Shape Analysis of the Subcortical Regions in Schizophrenia Patients: A Pilot Study. J Clin Imaging Sci 2019; 9:1. [PMID: 30788185 PMCID: PMC6380120 DOI: 10.4103/jcis.jcis_61_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/04/2018] [Indexed: 11/30/2022] Open
Abstract
Objective: Investigation of brain structure in disease has been enhanced by developments in shape analysis methods that can identify subtle regional surface distortions. High-resolution magnetic resonance (MR) imaging was used to compare volumetric and shape analysis in schizophrenia (SCZ) patients and healthy controls (CON). Methods: T1-weighted, 1-mm thick MR images were acquired for 15 patients with SCZ and 15 age-matched healthy controls using subcortical volume and shape analysis, which we believe to be complimentary to volumetric measures. Results: SCZ patients showed significant shape differences compared to healthy controls in the right hippocampus (P < 0.005), left and right putamen (P < 0.044 and P < 0.031), left caudate (P < 0.029), right pallidum (P < 0.019), and left thalamus (P < 0.033). Conclusion: Our results provide evidence for subcortical neuroanatomical changes in patients with SCZ. Hence, shape analysis may aid in the identification of structural biomarkers for identifying individuals of SCZ.
Collapse
Affiliation(s)
- Abdullah Abu Jamea
- Department of Radiology and Medical Imaging, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed Alblowi
- Department of Psychiatry, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jamaan Alghamdi
- Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad D Alosaimi
- Department of Psychiatry, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Al-Bader
- Department of Radiology and Medical Imaging, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
31
|
Hajek T, Franke K, Kolenic M, Capkova J, Matejka M, Propper L, Uher R, Stopkova P, Novak T, Paus T, Kopecek M, Spaniel F, Alda M. Brain Age in Early Stages of Bipolar Disorders or Schizophrenia. Schizophr Bull 2019; 45:190-198. [PMID: 29272464 PMCID: PMC6293219 DOI: 10.1093/schbul/sbx172] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The greater presence of neurodevelopmental antecedants may differentiate schizophrenia from bipolar disorders (BD). Machine learning/pattern recognition allows us to estimate the biological age of the brain from structural magnetic resonance imaging scans (MRI). The discrepancy between brain and chronological age could contribute to early detection and differentiation of BD and schizophrenia. METHODS We estimated brain age in 2 studies focusing on early stages of schizophrenia or BD. In the first study, we recruited 43 participants with first episode of schizophrenia-spectrum disorders (FES) and 43 controls. In the second study, we included 96 offspring of bipolar parents (48 unaffected, 48 affected) and 60 controls. We used relevance vector regression trained on an independent sample of 504 controls to estimate the brain age of study participants from structural MRI. We calculated the brain-age gap estimate (BrainAGE) score by subtracting the chronological age from the brain age. RESULTS Participants with FES had higher BrainAGE scores than controls (F(1, 83) = 8.79, corrected P = .008, Cohen's d = 0.64). Their brain age was on average 2.64 ± 4.15 years greater than their chronological age (matched t(42) = 4.36, P < .001). In contrast, participants at risk or in the early stages of BD showed comparable BrainAGE scores to controls (F(2,149) = 1.04, corrected P = .70, η2 = 0.01) and comparable brain and chronological age. CONCLUSIONS Early stages of schizophrenia, but not early stages of BD, were associated with advanced BrainAGE scores. Participants with FES showed neurostructural alterations, which made their brains appear 2.64 years older than their chronological age. BrainAGE scores could aid in early differential diagnosis between BD and schizophrenia.
Collapse
Affiliation(s)
- Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| | - Katja Franke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Marian Kolenic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Jana Capkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Matejka
- National Institute of Mental Health, Klecany, Czech Republic.,Psychiatric Hospital Bohnice, Prague, Czech Republic
| | - Lukas Propper
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Tomas Novak
- National Institute of Mental Health, Klecany, Czech Republic
| | - Tomas Paus
- Rotman Research Institute and Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada.,Center for Developing Brain, Child Mind Institute, New York, NY
| | | | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
32
|
Lithium, Stress, and Resilience in Bipolar Disorder: Deciphering this key homeostatic synaptic plasticity regulator. J Affect Disord 2018; 233:92-99. [PMID: 29310970 DOI: 10.1016/j.jad.2017.12.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/30/2017] [Accepted: 12/19/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Lithium is the lightest metal and the only mood stabilizer that has been used for over half a century for the treatment of bipolar disorder (BD). As a small ion, lithium is omnipresent, and consequently, its molecular mechanisms and targets are widespread. Currently, lithium is a crucial pharmacotherapy for the treatment of acute mood episodes, prophylactic therapy, and suicide prevention in BD. Besides, lithium blood level is the most widely used biomarker in clinical psychiatry. The concept of stress in BD characterizes short- and long-term deleterious effects at multiple levels (from genes to behaviors) and the ability to establish homeostatic regulatory mechanisms to either prevent or reverse these effects. Within this concept, lithium has consistently shown anti-stress effects, by normalizing components across several levels associated with BD-induced impairments in cellular resilience and plasticity. METHODS A literature search for biomarkers associated with lithium effects at multiple targets, with a particular focus on those related to clinical outcomes was performed. An extensive search of the published literature using PubMed, Medline and Google Scholar was performed. Example search terms included lithium, plasticity, stress, efficacy, and neuroimaging. Articles determined by the author to focus on lithium's impact on neural plasticity markers (central and periphery) and clinical outcomes were examined in greater depth. Relevant papers were evaluated, selected and included in this review. RESULTS Lithium induces neurotrophic and neuroprotective effects in a wide range of preclinical and translational models. Lithium's neurotrophic effects are related to the enhancement of cellular proliferation, differentiation, growth, and regeneration, whereas its neuroprotective effects limit the progression of neuronal atrophy or cell death following the onset of BD. Lithium's neurotrophic and neuroprotective effects seem most pronounced in the presence of pathology, which again supports its pivotal role as an active homeostatic regulator. LIMITATIONS Few studies associated with clinical outcomes. Due to space limitations, the author was unable to detail all findings, in special those originated from preclinical studies. CONCLUSIONS These results support a potential role for biomarkers involved in neuroprotection and activation of plasticity pathways in lithium's clinical response. Evidence supporting this model comes from results evaluating macroscopic and microscopic brain structure as well neurochemical findings in vivo from cellular to sub-synaptic (molecules and intracellular signaling) compartments using central and peripheral biomarkers. Challenges to precisely decipher lithium's biological mechanisms involved in its therapeutic profile include the complex nature of the illness and clinical subtypes, family history and comorbid conditions. In the context of personalized medicine, it is necessary to validate predictive biomarkers of response to lithium by designing longitudinal clinical studies during mood episodes and associated clinical dimensions in BD.
Collapse
|
33
|
Sani G, Simonetti A, Janiri D, Banaj N, Ambrosi E, De Rossi P, Ciullo V, Arciniegas DB, Piras F, Spalletta G. Association between duration of lithium exposure and hippocampus/amygdala volumes in type I bipolar disorder. J Affect Disord 2018; 232:341-348. [PMID: 29510351 DOI: 10.1016/j.jad.2018.02.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/17/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prior studies on the effects of lithium on limbic and subcortical gray matter volumes are mixed. It is possible that discrepant findings may be explained by the duration of lithium exposure. We investigated this issue in individuals with type I bipolar disorder (BP-I). METHODS Limbic and subcortical gray matter volume was measured using FreeSurfer in 60 subjects: 15 with BP-I without prior lithium exposure [no-exposure group (NE)]; 15 with BP-I and lithium exposure < 24 months [short-exposure group (SE)]; 15 with BP-I and lithium exposure > 24 months [long-exposure group (LE)]; and 15 healthy controls (HC). RESULTS No differences in limbic and subcortical gray matter volumes were found between LE and HC. Hippocampal and amygdalar volumes were larger bilaterally in both LE and HC when compared to NE. Amygdalar volumes were larger bilaterally in SE when compared to NE but did not differ from LE. Hippocampal volumes were smaller bilaterally in SE when compared to LE and HC but did not differ from NE. No between-group differences on subcortical gray matter or other limbic structure volumes were observed. LIMITATIONS Cross-sectional design and concurrent treatment with other medications limit attribution of between-group differences to lithium exposure alone. CONCLUSIONS The effect of lithium exposure on limbic and subcortical gray matter volumes appears to be time-dependent and relatively specific to the hippocampus and the amygdala, with short-term effects on the amygdala and long-term effects on both structures. These results support the clinical importance of long-term lithium treatment in BP-I.
Collapse
Affiliation(s)
- Gabriele Sani
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy; Centro Lucio Bini, Rome, Italy; School of Medicine, Mood Disorder Program, Tufts University, Boston, MA, USA
| | - Alessio Simonetti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Centro Lucio Bini, Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Delfina Janiri
- Psychiatry Residency Training Program, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Nerisa Banaj
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Elisa Ambrosi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Pietro De Rossi
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Valentina Ciullo
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy; Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Italy
| | - David B Arciniegas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fabrizio Piras
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Gianfranco Spalletta
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy.
| |
Collapse
|
34
|
Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, Versace A, Bilderbeck AC, Uhlmann A, Mwangi B, Krämer B, Overs B, Hartberg CB, Abé C, Dima D, Grotegerd D, Sprooten E, Bøen E, Jimenez E, Howells FM, Delvecchio G, Temmingh H, Starke J, Almeida JRC, Goikolea JM, Houenou J, Beard LM, Rauer L, Abramovic L, Bonnin M, Ponteduro MF, Keil M, Rive MM, Yao N, Yalin N, Najt P, Rosa PG, Redlich R, Trost S, Hagenaars S, Fears SC, Alonso-Lana S, van Erp TGM, Nickson T, Chaim-Avancini TM, Meier TB, Elvsåshagen T, Haukvik UK, Lee WH, Schene AH, Lloyd AJ, Young AH, Nugent A, Dale AM, Pfennig A, McIntosh AM, Lafer B, Baune BT, Ekman CJ, Zarate CA, Bearden CE, Henry C, Simhandl C, McDonald C, Bourne C, Stein DJ, Wolf DH, Cannon DM, Glahn DC, Veltman DJ, Pomarol-Clotet E, Vieta E, Canales-Rodriguez EJ, Nery FG, Duran FLS, Busatto GF, Roberts G, Pearlson GD, Goodwin GM, Kugel H, Whalley HC, Ruhe HG, Soares JC, Fullerton JM, Rybakowski JK, Savitz J, Chaim KT, Fatjó-Vilas M, Soeiro-de-Souza MG, Boks MP, Zanetti MV, Otaduy MCG, Schaufelberger MS, Alda M, Ingvar M, Phillips ML, Kempton MJ, Bauer M, Landén M, Lawrence NS, et alHibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, Versace A, Bilderbeck AC, Uhlmann A, Mwangi B, Krämer B, Overs B, Hartberg CB, Abé C, Dima D, Grotegerd D, Sprooten E, Bøen E, Jimenez E, Howells FM, Delvecchio G, Temmingh H, Starke J, Almeida JRC, Goikolea JM, Houenou J, Beard LM, Rauer L, Abramovic L, Bonnin M, Ponteduro MF, Keil M, Rive MM, Yao N, Yalin N, Najt P, Rosa PG, Redlich R, Trost S, Hagenaars S, Fears SC, Alonso-Lana S, van Erp TGM, Nickson T, Chaim-Avancini TM, Meier TB, Elvsåshagen T, Haukvik UK, Lee WH, Schene AH, Lloyd AJ, Young AH, Nugent A, Dale AM, Pfennig A, McIntosh AM, Lafer B, Baune BT, Ekman CJ, Zarate CA, Bearden CE, Henry C, Simhandl C, McDonald C, Bourne C, Stein DJ, Wolf DH, Cannon DM, Glahn DC, Veltman DJ, Pomarol-Clotet E, Vieta E, Canales-Rodriguez EJ, Nery FG, Duran FLS, Busatto GF, Roberts G, Pearlson GD, Goodwin GM, Kugel H, Whalley HC, Ruhe HG, Soares JC, Fullerton JM, Rybakowski JK, Savitz J, Chaim KT, Fatjó-Vilas M, Soeiro-de-Souza MG, Boks MP, Zanetti MV, Otaduy MCG, Schaufelberger MS, Alda M, Ingvar M, Phillips ML, Kempton MJ, Bauer M, Landén M, Lawrence NS, van Haren NEM, Horn NR, Freimer NB, Gruber O, Schofield PR, Mitchell PB, Kahn RS, Lenroot R, Machado-Vieira R, Ophoff RA, Sarró S, Frangou S, Satterthwaite TD, Hajek T, Dannlowski U, Malt UF, Arolt V, Gattaz WF, Drevets WC, Caseras X, Agartz I, Thompson PM, Andreassen OA. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry 2018; 23:932-942. [PMID: 28461699 PMCID: PMC5668195 DOI: 10.1038/mp.2017.73] [Show More Authors] [Citation(s) in RCA: 493] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Despite decades of research, the pathophysiology of bipolar disorder (BD) is still not well understood. Structural brain differences have been associated with BD, but results from neuroimaging studies have been inconsistent. To address this, we performed the largest study to date of cortical gray matter thickness and surface area measures from brain magnetic resonance imaging scans of 6503 individuals including 1837 unrelated adults with BD and 2582 unrelated healthy controls for group differences while also examining the effects of commonly prescribed medications, age of illness onset, history of psychosis, mood state, age and sex differences on cortical regions. In BD, cortical gray matter was thinner in frontal, temporal and parietal regions of both brain hemispheres. BD had the strongest effects on left pars opercularis (Cohen's d=-0.293; P=1.71 × 10-21), left fusiform gyrus (d=-0.288; P=8.25 × 10-21) and left rostral middle frontal cortex (d=-0.276; P=2.99 × 10-19). Longer duration of illness (after accounting for age at the time of scanning) was associated with reduced cortical thickness in frontal, medial parietal and occipital regions. We found that several commonly prescribed medications, including lithium, antiepileptic and antipsychotic treatment showed significant associations with cortical thickness and surface area, even after accounting for patients who received multiple medications. We found evidence of reduced cortical surface area associated with a history of psychosis but no associations with mood state at the time of scanning. Our analysis revealed previously undetected associations and provides an extensive analysis of potential confounding variables in neuroimaging studies of BD.
Collapse
Affiliation(s)
- D P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA,Janssen Research & Development, San Diego, CA, USA
| | - L T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| | - N T Doan
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - N Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - J W Cheung
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - C R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA,Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - A Versace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - A C Bilderbeck
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK
| | - A Uhlmann
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa,MRC Unit on Anxiety and Stress Disorders, Groote Schuur Hospital (J-2), University of Cape Town, Cape Town, South Africa
| | - B Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - B Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - B Overs
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - C B Hartberg
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C Abé
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden
| | - D Dima
- Department of Psychology, City University London, London, UK,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - D Grotegerd
- Department of Psychiatry, University of Münster, Münster, Germany
| | - E Sprooten
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Bøen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - E Jimenez
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - F M Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - G Delvecchio
- IRCCS "E. Medea" Scientific Institute, San Vito al Tagliamento, Italy
| | - H Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - J Starke
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - J R C Almeida
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - J M Goikolea
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - J Houenou
- INSERM U955 Team 15 ‘Translational Psychiatry’, University Paris East, APHP, CHU Mondor, Fondation FondaMental, Créteil, France,NeuroSpin, UNIACT Lab, Psychiatry Team, CEA Saclay, Gif Sur Yvette, France
| | - L M Beard
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - L Rauer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - L Abramovic
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Bonnin
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - M F Ponteduro
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - M Keil
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - M M Rive
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - N Yao
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - N Yalin
- Centre for Affective Disorders, King’s College London, London, UK
| | - P Najt
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - P G Rosa
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - R Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - S Trost
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - S Hagenaars
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - S C Fears
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA,West Los Angeles Veterans Administration, Los Angeles, CA, USA
| | - S Alonso-Lana
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - T G M van Erp
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - T Nickson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - T M Chaim-Avancini
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - T B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA,Laureate Institute for Brain Research, Tulsa, OK, USA
| | - T Elvsåshagen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - U K Haukvik
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Adult Psychiatry, University of Oslo, Oslo, Norway
| | - W H Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A H Schene
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - A J Lloyd
- Academic Psychiatry and Northern Centre for Mood Disorders, Newcastle University/Northumberland Tyne & Wear NHS Foundation Trust, Newcastle, UK
| | - A H Young
- Centre for Affective Disorders, King’s College London, London, UK
| | - A Nugent
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - A M Dale
- MMIL, Department of Radiology, University of California San Diego, San Diego, CA, USA,Department of Cognitive Science, Neurosciences and Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - A Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - B Lafer
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - B T Baune
- Department of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - C J Ekman
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden
| | - C A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - C E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Henry
- INSERM U955 Team 15 ‘Translational Psychiatry’, University Paris East, APHP, CHU Mondor, Fondation FondaMental, Créteil, France,Institut Pasteur, Unité Perception et Mémoire, Paris, France
| | - C Simhandl
- Bipolar Center Wiener Neustadt, Wiener Neustadt, Austria
| | - C McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - C Bourne
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK,Department of Psychology & Counselling, Newman University, Birmingham, UK
| | - D J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa,MRC Unit on Anxiety and Stress Disorders, Groote Schuur Hospital (J-2), University of Cape Town, Cape Town, South Africa
| | - D H Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - D M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - D C Glahn
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - D J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - E Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - E Vieta
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - E J Canales-Rodriguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - F G Nery
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - F L S Duran
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - G F Busatto
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - G Roberts
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - G D Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - G M Goodwin
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK
| | - H Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - H C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - H G Ruhe
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK,Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - J K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - J Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA,Faculty of Community Medicine, The University of Tulsa, Tulsa, OK, USA
| | - K T Chaim
- Department of Radiology, University of São Paulo, São Paulo, Brazil,LIM44-Laboratory of Magnetic Resonance in Neuroradiology, University of São Paulo, São Paulo, Brazil
| | - M Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - M G Soeiro-de-Souza
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - M P Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M V Zanetti
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - M C G Otaduy
- Department of Radiology, University of São Paulo, São Paulo, Brazil,LIM44-Laboratory of Magnetic Resonance in Neuroradiology, University of São Paulo, São Paulo, Brazil
| | - M S Schaufelberger
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - M Ingvar
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - M L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M J Kempton
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - M Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M Landén
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden,Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Gothenburg University, Goteborg, Sweden
| | - N S Lawrence
- Department of Psychology, University of Exeter, Exeter, UK
| | - N E M van Haren
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N R Horn
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - N B Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - O Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - P R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - P B Mitchell
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - R S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R Lenroot
- Neuroscience Research Australia, Sydney, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - R Machado-Vieira
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - R A Ophoff
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - S Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - S Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T D Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - T Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada,National Institute of Mental Health, Klecany, Czech Republic
| | - U Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - U F Malt
- Division of Clinical Neuroscience, Department of Research and Education, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - V Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - W F Gattaz
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - W C Drevets
- Janssen Research & Development, Titusville, NJ, USA
| | - X Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - I Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - P M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - O A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,NORMENT, KG Jebsen Centre for Psychosis Research—TOP Study, Oslo University Hospital, Ullevål, Building 49, Kirkeveien 166, PO Box 4956, Nydalen, 0424, Oslo, Norway. E-mail:
| |
Collapse
|
35
|
Szulc A, Wiedlocha M, Waszkiewicz N, Galińska-Skok B, Marcinowicz P, Gierus J, Mosiolek A. Proton magnetic resonance spectroscopy changes after lithium treatment. Systematic review. Psychiatry Res Neuroimaging 2018; 273:1-8. [PMID: 29414126 DOI: 10.1016/j.pscychresns.2018.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/10/2017] [Accepted: 01/12/2018] [Indexed: 01/03/2023]
Abstract
1H MRS is widely used in the research of mental disorders. It enables evaluation of concentration or ratios of several metabolites, which play important roles in brain metabolism: N-acetylaspartate (NAA), choline containing compounds, myo-inositol and glutamate, glutamine and GABA (together as Glx complex or separately). Specifically in bipolar disorder brain metabolite abnormalities include mostly NAA reduces and Glx increases in different brain regions. Bipolar disorder is associated with impairment in neurotrophic and cellular plasticity, resilience pathways and in neuroprotective processes. Lithium, which is commonly used in BD treatment, modulates neurotransmitter release, reduces oxidative stress and apoptosis, induces angiogenesis, neurogenesis and neurotrophic response. Thus brain metabolite abnormalities may elucidate the mechanisms of this processes. In the present article we systematically reviewed 26 studies - the majority of them investigated bipolar disorder ( 7 follow-up and all 11 cross-sectional studies). Moreover we dispute whether the influence of lithium on brain metabolites in bipolar disorder could explain the background of its potential neuroprotective action. The results of our literature review do not equivocally confirm Lithium's influence the metabolite changes in the brain. The majority of the follow-up studies do not support the initially assumed influence of Lithium on the increase of NAA level in various brain structures. The results of studies are inconclusive with regard to levels of Glx or Glu and Lithium intake, rather point a lack of relationship. The above results were reviewed according to the most recent theories in the field accounting for the impact of lithium (1)HMRS measures.
Collapse
Affiliation(s)
- Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | | | | | - Beata Galińska-Skok
- Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland
| | - Piotr Marcinowicz
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | - Jacek Gierus
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | - Anna Mosiolek
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland; Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland
| |
Collapse
|
36
|
Kim YK, Na KS. Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 28648568 DOI: 10.1016/j.pnpbp.2017.06.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mood disorders are a highly prevalent group of mental disorders causing substantial socioeconomic burden. There are various methodological approaches for identifying the underlying mechanisms of the etiology, symptomatology, and therapeutics of mood disorders; however, neuroimaging studies have provided the most direct evidence for mood disorder neural substrates by visualizing the brains of living individuals. The prefrontal cortex, hippocampus, amygdala, thalamus, ventral striatum, and corpus callosum are associated with depression and bipolar disorder. Identifying the distinct and common contributions of these anatomical regions to depression and bipolar disorder have broadened and deepened our understanding of mood disorders. However, the extent to which neuroimaging research findings contribute to clinical practice in the real-world setting is unclear. As traditional or non-machine learning MRI studies have analyzed group-level differences, it is not possible to directly translate findings from research to clinical practice; the knowledge gained pertains to the disorder, but not to individuals. On the other hand, a machine learning approach makes it possible to provide individual-level classifications. For the past two decades, many studies have reported on the classification accuracy of machine learning-based neuroimaging studies from the perspective of diagnosis and treatment response. However, for the application of a machine learning-based brain MRI approach in real world clinical settings, several major issues should be considered. Secondary changes due to illness duration and medication, clinical subtypes and heterogeneity, comorbidities, and cost-effectiveness restrict the generalization of the current machine learning findings. Sophisticated classification of clinical and diagnostic subtypes is needed. Additionally, as the approach is inevitably limited by sample size, multi-site participation and data-sharing are needed in the future.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
37
|
Global grey matter volume in adult bipolar patients with and without lithium treatment: A meta-analysis. J Affect Disord 2018; 225:599-606. [PMID: 28886501 DOI: 10.1016/j.jad.2017.08.078] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/20/2017] [Accepted: 08/27/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The goal of this meta-analysis was to quantitatively summarize the evidence available on the differences in grey matter volume between lithium-treated and lithium-free bipolar patients. METHODS A systematic search was conducted in Cochrane Central, Embase, MEDLINE, and PsycINFO databases for original peer-reviewed journal articles that reported on global grey matter volume in lithium-medicated and lithium-free bipolar patients. Standard mean difference and Hedges' g were used to calculate effect size in a random-effects model. Risk of publication bias was assessed using Egger's test and quality of evidence was assessed using standard criteria. RESULTS There were 15 studies with a total of 854 patients (368 lithium-medicated, 486 lithium-free) included in the meta-analysis. Global grey matter volume was significantly larger in lithium-treated bipolar patients compared to lithium-free patients (SMD: 0.17, 95% CI: 0.01-0.33; z = 2.11, p = 0.035). Additionally, there was a difference in global grey matter volume between groups in studies that employed semi-automated segmentation methods (SMD: 0.66, 95% CI: 0.01-1.31; z = 1.99, p = 0.047), but no significant difference in studies that used fully-automated segmentation. No publication bias was detected (bias coefficient = - 0.65, p = 0.46). LIMITATIONS Variability in imaging methods and lack of high-quality evidence limits the interpretation of the findings. CONCLUSIONS Results suggest that lithium-treated patients have a greater global grey matter volume than those who were lithium-free. Further study of the relationship between lithium and grey matter volume may elucidate the therapeutic potential of lithium in conditions characterized by abnormal changes in brain structure.
Collapse
|
38
|
An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. Int J Mol Sci 2017; 18:ijms18122679. [PMID: 29232923 PMCID: PMC5751281 DOI: 10.3390/ijms18122679] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Lithium has been used for the treatment of bipolar disorder (BD) for the last sixty or more years, and recent studies with more reliable designs and updated guidelines have recommended lithium to be the treatment of choice for acute manic, mixed and depressive episodes of BD, along with long-term prophylaxis. Lithium’s specific mechanism of action in mood regulation is progressively being clarified, such as the direct inhibition on glycogen synthase kinase 3β, and its various effects on neurotrophic factors, neurotransmitters, oxidative metabolism, apoptosis, second messenger systems, and biological systems are also being revealed. Furthermore, lithium has been proposed to exert its treatment effects through mechanisms associated with neuronal plasticity. In this review, we have overviewed the clinical aspects of lithium use for BD, and have focused on the neuroprotective and neurotrophic effects of lithium.
Collapse
|
39
|
Abstract
This article focuses on some aspects of recent progress in the neurobiology and treatment of bipolar disorder (BD) in adults. A molecular-genetic approach to the etiopathogenesis of the illness resulted in the findings of a genetic overlap between BD and other major psychiatric disorders. Furthermore, a poly-gene-environmental interaction in the development of the illness has been demonstrated. For the management of BD, new drugs with putative mood-stabilizing properties have been introduced in the past two decades. However, none of these can surpass lithium, the prototype mood-stabilizer, still considered the most specific drug for BD. Recent research on lithium, besides providing new data on the neurobiology of BD, has confirmed anti-suicidal, immunomodulatory, and neuroprotective properties of this drug.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
40
|
Saito S, Fujii K, Ozeki Y, Ohmori K, Honda G, Mori H, Kato K, Kuroda J, Aoki A, Asahi H, Sato H, Shimoda K, Akiyama K. Cognitive function, treatment response to lithium, and social functioning in Japanese patients with bipolar disorder. Bipolar Disord 2017; 19:552-562. [PMID: 28691278 DOI: 10.1111/bdi.12521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/07/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Patients with bipolar disorder often suffer from cognitive impairment that significantly influences their functional outcome. However, it remains unknown whether lithium has a central role in cognition and functional outcome. We examined whether cognition and functional outcome were predicted by demographic and clinical variables, including the response to lithium, in lithium-treated patients with bipolar disorder. METHODS We evaluated 96 lithium-treated euthymic patients with bipolar disorder and 196 age- and-gender-matched healthy controls, using the Brief Assessment of Cognition in Schizophrenia (BACS). The patients were also assessed using the Social Functioning Scale (SFS) and "The Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder" (Alda) scale, which was evaluated as either a continuous measure of the total scale or a dichotomous criterion. RESULTS Multiple regression analysis revealed two key findings: first, that the premorbid intelligence quotient, age, and number of mood episodes were predictors of the BACS composite score; and, second, that the BACS composite score, negative symptoms, and continuous measure on the total Alda scale (but not its dichotomy) predicted the total SFS score. Structural equation modeling (SEM) was used to confirm these findings, and additionally revealed that the Alda scale was significantly associated with negative symptoms and also the number of mood episodes, regardless of how it was evaluated. CONCLUSIONS SEM delineated how demographic and clinical variables, cognitive performance, and response to lithium treatment were causally associated with, and converged on, social function. The putative role of the Alda scale for social function warrants further study.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan.,Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Kumiko Fujii
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Yuji Ozeki
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Kenichi Ohmori
- Shiseikai, Takizawa Hospital, Utsunomiya, Tochigi, Japan
| | - Gyo Honda
- Seiseido Kohseikai, Mori Hospital, Utsunomiya, Tochigi, Japan
| | - Harunobu Mori
- Seiseido Kohseikai, Mori Hospital, Utsunomiya, Tochigi, Japan
| | - Kazuko Kato
- Sakura La Mental Clinic, Utsunomiya, Tochigi, Japan
| | | | - Akiko Aoki
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | | | | | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| |
Collapse
|
41
|
Ascoli BM, Colombo R, Géa LP, Terraciano PB, Pizzato SB, de Oliveira FS, Cirne-Lima E, Kapczinski F, Rosa AR. Cell therapy in the treatment of bipolar mania in an animal model: a proof of concept study. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2017; 39:196-201. [DOI: 10.1590/2237-6089-2016-0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/14/2017] [Indexed: 11/22/2022]
Abstract
Abstract Introduction The rationale of mesenchymal stem cells (MSCs) as a novel therapeutic approach in certain neurodegenerative diseases is based on their ability to promote neurogenesis. Hippocampal atrophy has been related to bipolar disorder (BD) in preclinical, imaging and postmortem studies. Therefore, the development of new strategies to stimulate the neurogenesis process in BD is crucial. Objectives To investigate the behavioral and neurochemical changes induced by transplantation of MSCs in a model of mania-like behavior induced by lisdexamfetamine dimesylate (LDX). Methods Wistar rats (n=65) received one oral daily dose of LDX (10 mg/kg) or saline for 14 days. On the 8th day of treatment, the animals additionally received intrahippocampal saline or MSC (1 µL containing 25,000 cells) or lithium (47.5 mg/kg) as an internal experimental control. Two hours after the last administration, behavioral and neurochemical analyses were performed. Results LDX-treated rats had increased locomotor activity compared to saline-saline rats (p=0.004), and lithium reversed LDX-related hyperactive behavior (p<0.001). In contrast, the administration of MSCs did not change hyperlocomotion, indicating no effects of this treatment on LDX-treated rats (p=0.979). We did not find differences between groups in BDNF levels (p>0.05) in the hippocampus of rats. Conclusion Even though these results suggest that a single intrahippocampal injection of MSCs was not helpful to treat hyperactivity induced by LDX and neither influenced BDNF secretion, we cannot rule out the possible therapeutic effects of MSCs. Further research is required to determine direct effects of LDX on brain structures as well as in other pathophysiological targets related to BD.
Collapse
Affiliation(s)
- Bruna M. Ascoli
- Hospital de Clínicas de Porto Alegre, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Rafael Colombo
- Hospital de Clínicas de Porto Alegre, Brazil; Universidade de Caxias do Sul, Brazil
| | - Luiza P. Géa
- Hospital de Clínicas de Porto Alegre, Brazil; UFRGS, Brazil
| | | | | | | | | | - Flávio Kapczinski
- Hospital de Clínicas de Porto Alegre, Brazil; Universidade Federal do Rio Grande do Sul, Brazil; UFRGS, Brazil
| | - Adriane R. Rosa
- Hospital de Clínicas de Porto Alegre, Brazil; Universidade Federal do Rio Grande do Sul, Brazil; UFRGS, Brazil; UFRGS, Brazil
| |
Collapse
|
42
|
Schaeffer EL, Catanozi S, West MJ, Gattaz WF. Stereological investigation of the CA1 pyramidal cell layer in untreated and lithium-treated 3xTg-AD and wild-type mice. Ann Anat 2017; 209:51-60. [DOI: 10.1016/j.aanat.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022]
|
43
|
Hibar DP, Westlye LT, van Erp TGM, Rasmussen J, Leonardo CD, Faskowitz J, Haukvik UK, Hartberg CB, Doan NT, Agartz I, Dale AM, Gruber O, Krämer B, Trost S, Liberg B, Abé C, Ekman CJ, Ingvar M, Landén M, Fears SC, Freimer NB, Bearden CE, Sprooten E, Glahn DC, Pearlson GD, Emsell L, Kenney J, Scanlon C, McDonald C, Cannon DM, Almeida J, Versace A, Caseras X, Lawrence NS, Phillips ML, Dima D, Delvecchio G, Frangou S, Satterthwaite TD, Wolf D, Houenou J, Henry C, Malt UF, Bøen E, Elvsåshagen T, Young AH, Lloyd AJ, Goodwin GM, Mackay CE, Bourne C, Bilderbeck A, Abramovic L, Boks MP, van Haren NEM, Ophoff RA, Kahn RS, Bauer M, Pfennig A, Alda M, Hajek T, Mwangi B, Soares JC, Nickson T, Dimitrova R, Sussmann JE, Hagenaars S, Whalley HC, McIntosh AM, Thompson PM, Andreassen OA. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry 2016; 21:1710-1716. [PMID: 26857596 PMCID: PMC5116479 DOI: 10.1038/mp.2015.227] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 11/29/2022]
Abstract
Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case-control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen's d=-0.232; P=3.50 × 10-7) and thalamus (d=-0.148; P=4.27 × 10-3) and enlarged lateral ventricles (d=-0.260; P=3.93 × 10-5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.
Collapse
Affiliation(s)
- D P Hibar
- Imaging Genetics Center, University of Southern California, Los Angeles, CA, USA
| | - L T Westlye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - T G M van Erp
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - J Rasmussen
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - C D Leonardo
- Imaging Genetics Center, University of Southern California, Los Angeles, CA, USA
| | - J Faskowitz
- Imaging Genetics Center, University of Southern California, Los Angeles, CA, USA
| | - U K Haukvik
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - C B Hartberg
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - N T Doan
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - I Agartz
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - A M Dale
- MMIL, Department of Radiology, University of California, San Diego, CA, USA
- Department of Cognitive Science, Neurosciences and Psychiatry, University of California, San Diego, CA, USA
| | - O Gruber
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg August University Goettingen, Goettingen, Germany
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
| | - B Krämer
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg August University Goettingen, Goettingen, Germany
| | - S Trost
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg August University Goettingen, Goettingen, Germany
| | - B Liberg
- Department of Clinical Neuroscience, Section of Psychiatry, Karolinska Institutet, Stockholm, Sweden
| | - C Abé
- Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C J Ekman
- Department of Clinical Neuroscience, Section of Psychiatry, Karolinska Institutet, Stockholm, Sweden
| | - M Ingvar
- Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska MR Research Center, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - M Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S C Fears
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA, USA
| | - N B Freimer
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA, USA
| | - C E Bearden
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - the Costa Rica/Colombia Consortium for Genetic Investigation of Bipolar Endophenotypes
- Imaging Genetics Center, University of Southern California, Los Angeles, CA, USA
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- MMIL, Department of Radiology, University of California, San Diego, CA, USA
- Department of Cognitive Science, Neurosciences and Psychiatry, University of California, San Diego, CA, USA
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg August University Goettingen, Goettingen, Germany
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
- Department of Clinical Neuroscience, Section of Psychiatry, Karolinska Institutet, Stockholm, Sweden
- Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska MR Research Center, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neuroimaging Laboratory, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
- Department of Psychiatry, Brown University, Providence, RI, USA
- Department of Psychiatry, University of Pittsburgh, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- School of Psychology, University of Exeter, Exeter, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Neurospin, Uniact, I2BM, CEA Saclay, Saclay, France
- Inserm, U955, Equipe 15 Psychiatrie génétique, Créteil, France
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Department of Psychosomatic Medicine, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Research and Education, Oslo University Hospital, Oslo, Norway
- Norwegian Research Network On Mood Disorders, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Centre for Affective Disorders, King's College London, London, UK
- Academic Psychiatry and Regional Affective Disorders Service, Newcastle University, Newcastle, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychology and Counselling, Newman University, Birmingham, UK
- University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
- Department of Psychiatry, University Medical Centre Utrecht - Brain Centre Rudolf Magnus, Utrecht, The Netherlands
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
- Department of Psychiatry, Dalhousie University, Halifax, Canada
- National Institute of Mental Health, Klecany, Czech Republic
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - E Sprooten
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT, USA
| | - D C Glahn
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT, USA
| | - G D Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - L Emsell
- Clinical Neuroimaging Laboratory, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - J Kenney
- Clinical Neuroimaging Laboratory, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - C Scanlon
- Clinical Neuroimaging Laboratory, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - C McDonald
- Clinical Neuroimaging Laboratory, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - D M Cannon
- Clinical Neuroimaging Laboratory, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - J Almeida
- Department of Psychiatry, Brown University, Providence, RI, USA
| | - A Versace
- Department of Psychiatry, University of Pittsburgh, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - X Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - N S Lawrence
- School of Psychology, University of Exeter, Exeter, UK
| | - M L Phillips
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - D Dima
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Delvecchio
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T D Satterthwaite
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - D Wolf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - J Houenou
- Neurospin, Uniact, I2BM, CEA Saclay, Saclay, France
- Inserm, U955, Equipe 15 Psychiatrie génétique, Créteil, France
| | - C Henry
- Inserm, U955, Equipe 15 Psychiatrie génétique, Créteil, France
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
| | - U F Malt
- Department of Psychosomatic Medicine, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Research and Education, Oslo University Hospital, Oslo, Norway
| | - E Bøen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychosomatic Medicine, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Research Network On Mood Disorders, Oslo, Norway
| | - T Elvsåshagen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Department of Psychosomatic Medicine, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - A H Young
- Centre for Affective Disorders, King's College London, London, UK
| | - A J Lloyd
- Academic Psychiatry and Regional Affective Disorders Service, Newcastle University, Newcastle, UK
| | - G M Goodwin
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - C E Mackay
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - C Bourne
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychology and Counselling, Newman University, Birmingham, UK
| | - A Bilderbeck
- Department of Psychiatry, University of Oxford, Oxford, UK
- University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
| | - L Abramovic
- Department of Psychiatry, University Medical Centre Utrecht - Brain Centre Rudolf Magnus, Utrecht, The Netherlands
| | - M P Boks
- Department of Psychiatry, University Medical Centre Utrecht - Brain Centre Rudolf Magnus, Utrecht, The Netherlands
| | - N E M van Haren
- Department of Psychiatry, University Medical Centre Utrecht - Brain Centre Rudolf Magnus, Utrecht, The Netherlands
| | - R A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA, USA
- Department of Psychiatry, University Medical Centre Utrecht - Brain Centre Rudolf Magnus, Utrecht, The Netherlands
| | - R S Kahn
- Department of Psychiatry, University Medical Centre Utrecht - Brain Centre Rudolf Magnus, Utrecht, The Netherlands
| | - M Bauer
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | - A Pfennig
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - T Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - B Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - J C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - T Nickson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - R Dimitrova
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - J E Sussmann
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - S Hagenaars
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - H C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - P M Thompson
- Imaging Genetics Center, University of Southern California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - O A Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
44
|
Rive MM, Redlich R, Schmaal L, Marquand AF, Dannlowski U, Grotegerd D, Veltman DJ, Schene AH, Ruhé HG. Distinguishing medication-free subjects with unipolar disorder from subjects with bipolar disorder: state matters. Bipolar Disord 2016; 18:612-623. [PMID: 27870505 DOI: 10.1111/bdi.12446] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/01/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Recent studies have indicated that pattern recognition techniques of functional magnetic resonance imaging (fMRI) data for individual classification may be valuable for distinguishing between major depressive disorder (MDD) and bipolar disorder (BD). Importantly, medication may have affected previous classification results as subjects with MDD and BD use different classes of medication. Furthermore, almost all studies have investigated only depressed subjects. Therefore, we focused on medication-free subjects. We additionally investigated whether classification would be mood state independent by including depressed and remitted subjects alike. METHODS We applied Gaussian process classifiers to investigate the discriminatory power of structural MRI (gray matter volumes of emotion regulation areas) and resting-state fMRI (resting-state networks implicated in mood disorders: default mode network [DMN], salience network [SN], and lateralized frontoparietal networks [FPNs]) in depressed (n=42) and remitted (n=49) medication-free subjects with MDD and BD. RESULTS Depressed subjects with MDD and BD could be classified based on the gray matter volumes of emotion regulation areas as well as DMN functional connectivity with 69.1% prediction accuracy. Prediction accuracy using the FPNs and SN did not exceed chance level. It was not possible to discriminate between remitted subjects with MDD and BD. CONCLUSIONS For the first time, we showed that medication-free subjects with MDD and BD can be differentiated based on structural MRI as well as resting-state functional connectivity. Importantly, the results indicated that research concerning diagnostic neuroimaging tools distinguishing between MDD and BD should consider mood state as only depressed subjects with MDD and BD could be correctly classified. Future studies, in larger samples are needed to investigate whether the results can be generalized to medication-naïve or first-episode subjects.
Collapse
Affiliation(s)
- Maria M Rive
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Lianne Schmaal
- Department of Psychiatry and Neuroscience, Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - André F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Aart H Schene
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henricus G Ruhé
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Psychiatry, Mood and Anxiety Disorders, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
45
|
Malhi GS, Outhred T. Therapeutic Mechanisms of Lithium in Bipolar Disorder: Recent Advances and Current Understanding. CNS Drugs 2016; 30:931-49. [PMID: 27638546 DOI: 10.1007/s40263-016-0380-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lithium is the most effective and well established treatment for bipolar disorder, and it has a broad array of effects within cellular pathways. However, the specific processes through which therapeutic effects occur and are maintained in bipolar disorder remain unclear. This paper provides a timely update to an authoritative review of pertinent findings that was published in CNS Drugs in 2013. A literature search was conducted using the Scopus database, and was limited by year (from 2012). There has been a resurgence of interest in lithium therapy mechanisms, perhaps driven by technical advancements in recent years that permit the examination of cellular mechanisms underpinning the effects of lithium-along with the reuptake of lithium in clinical practice. Recent research has further cemented glycogen synthase kinase 3β (GSK3β) inhibition as a key mechanism, and the inter-associations between GSK3β-mediated neuroprotective, anti-oxidative and neurotransmission mechanisms have been further elucidated. In addition to highly illustrative cellular research, studies examining higher-order biological systems, such as circadian rhythms, as well as employing innovative animal and human models, have increased our understanding of how lithium-induced changes at the cellular level possibly translate to changes at behavioural and clinical levels. Neural circuitry research is yet to identify clear mechanisms of change in bipolar disorder in response to treatment with lithium, but important structural findings have demonstrated links to the modulation of cellular mechanisms, and peripheral marker and pharmacogenetic studies are showing promising findings that will likely inform the exploration for predictors of lithium treatment response. With a deeper understanding of lithium's therapeutic mechanisms-from the cellular to clinical levels of investigation-comes the opportunity to develop predictive models of lithium treatment response and identify novel drug targets, and recent findings have provided important leads towards these goals.
Collapse
Affiliation(s)
- Gin S Malhi
- Academic Department of Psychiatry, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia. .,Sydney Medical School Northern, The University of Sydney, Sydney, NSW, 2006, Australia. .,CADE Clinic Level 3, Main Hospital Building, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.
| | - Tim Outhred
- Academic Department of Psychiatry, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, The University of Sydney, Sydney, NSW, 2006, Australia.,CADE Clinic Level 3, Main Hospital Building, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia
| |
Collapse
|
46
|
The role of white matter in personality traits and affective processing in bipolar disorder. J Psychiatr Res 2016; 80:64-72. [PMID: 27302871 PMCID: PMC7083163 DOI: 10.1016/j.jpsychires.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is characterized by affective processing bias and variations in personality traits. It is still unknown whether these features are linked to the same structural brain alterations. The aim of this study was to investigate relationships between specific personality traits, white matter (WM) properties, and affective processing in BD and HC. METHODS 24 healthy controls (HC) and 38 adults with BDI (HC: 29.47 ± 2.23 years, 15 females; BDI: 32.44 ± 1.84 years, 20 females) completed clinical scales and the Big Five Inventory. They were also administered the Affective Go/No-Go (AGN) and the Rapid Visual Processing (RVP) tasks of the Cambridge Neuropsychological Test Automated Battery. Diffusion Tensor Imaging (DTI) assessed the microstructure of WM tracts. RESULTS In BDI measures of WM properties were reduced across all major brain white matter tracts. As expected, individuals with BDI reported greater neuroticism, lower agreeableness and conscientiousness, and made a greater number of errors in response to affective stimuli in the AGN task compared to HC. High neuroticism scores were associated with faster AGN latency, and overall reduced AGN accuracy in both HC and BDI. Elevated FA values were associated with reduced neuroticism and increased cognitive processing in HC but not in BDI. CONCLUSIONS Our findings showed important potential links between personality, affective processing and WM integrity in BD. In the future therapeutic interventions for BD using brain stimulation protocols might benefit from the use of DTI to target pathways underlying abnormal affective processing.
Collapse
|
47
|
Brietzke E, Rosa AR, Pedrini M, Noto MN, Kapczinski F, Scott J. Challenges and developments in research of the early stages of bipolar disorder. ACTA ACUST UNITED AC 2016; 38:329-337. [PMID: 27533022 PMCID: PMC7111347 DOI: 10.1590/1516-4446-2016-1975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/09/2016] [Indexed: 01/02/2023]
Abstract
Recently, attention in the field of bipolar disorder (BD) has focused on prevention, including early detection and intervention, as these strategies have the potential to delay, lessen the severity, or even prevent full-blown episodes of BD. Although knowledge of the neurobiology of BD has advanced substantially in the last two decades, most research was conducted with chronic patients. The objective of this paper is to comprehensively review the literature regarding the early stages of BD, to explore recent discoveries on the neurobiology of these stages, and to discuss implications for research and clinical care. The following databases were searched: PubMed, PsycINFO, Cochrane Library, and SciELO. Articles published in English from inception to December 2015 were retrieved. Several research approaches were used, including examination of offspring studies, retrospective studies, prospective studies of clinical high-risk populations, and exploration of the progression after the first manic episode. Investigations with neuroimaging, cognition assessments, and biomarkers provide promising (although not definitive) evidence of alterations in the neural substrate during the at-risk stage. Research on BD should be expanded to encompass at-risk states and aligned with recent methodological progress in neuroscience.
Collapse
Affiliation(s)
- Elisa Brietzke
- Grupo de Pesquisa em Neurociência Comportamental e Molecular do Transtorno Bipolar, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.,Laboratório Interdisciplinar de Neurociências Clínicas (LINC), UNIFESP, São Paulo, SP, Brazil.,Programa de Intervenção em Estados Mentais de Risco (PRISMA), Departamento de Psiquiatria, UNIFESP, São Paulo, SP, Brazil
| | - Adriane R Rosa
- Laboratório de Psiquiatria Molecular, Instituto Nacional de Ciência e Tecnologia - Medicina Translacional (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina, Departamento de Psiquiatria, UFRGS, Porto Alegre, RS, Brazil.,Departamento de Farmacologia, UFRGS, Porto Alegre, RS, Brazil
| | - Mariana Pedrini
- Grupo de Pesquisa em Neurociência Comportamental e Molecular do Transtorno Bipolar, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.,Laboratório Interdisciplinar de Neurociências Clínicas (LINC), UNIFESP, São Paulo, SP, Brazil.,Programa de Intervenção em Estados Mentais de Risco (PRISMA), Departamento de Psiquiatria, UNIFESP, São Paulo, SP, Brazil
| | - Mariane N Noto
- Grupo de Pesquisa em Neurociência Comportamental e Molecular do Transtorno Bipolar, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.,Laboratório Interdisciplinar de Neurociências Clínicas (LINC), UNIFESP, São Paulo, SP, Brazil.,Programa de Intervenção em Estados Mentais de Risco (PRISMA), Departamento de Psiquiatria, UNIFESP, São Paulo, SP, Brazil
| | - Flavio Kapczinski
- Laboratório de Psiquiatria Molecular, Instituto Nacional de Ciência e Tecnologia - Medicina Translacional (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina, Departamento de Psiquiatria, UFRGS, Porto Alegre, RS, Brazil
| | - Jan Scott
- Academic Psychiatry, Institute of Neuroscience, Newcastle University, UK.,Centre for Affective Disorders, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
48
|
Abstract
Bipolar disorder is associated with subtle neuroanatomical deficits including lateral
ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed
white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging
studies to date and differential psychotropic medication use is potentially a substantial contributor to
this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers
evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are
associated with neuroanatomical variation. Most studies are negative and suffer from methodological
weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly
comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient
groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium
and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic
structures. These findings are further supported by the more methodologically robust studies which include large numbers of
patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative
effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or
antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological
difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure
in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by
preclinical studies.
Collapse
Affiliation(s)
- Colm McDonald
- National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
49
|
Leukocyte telomere length positively correlates with duration of lithium treatment in bipolar disorder patients. Eur Neuropsychopharmacol 2016; 26:1241-7. [PMID: 27084304 DOI: 10.1016/j.euroneuro.2016.03.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/12/2016] [Accepted: 03/24/2016] [Indexed: 12/17/2022]
Abstract
Bipolar disorder (BD) has been suggested to be associated with accelerated aging and premature cell senescence. While findings on shorter telomeres in BD are controversial, a recent study showed that long-term lithium treatment correlates with longer telomeres in BD. In our study, we sought to investigate the correlation between leukocyte telomere length (LTL) and long-term lithium treatment in a sample of 200 BD patients characterized for lithium response. We also compared data from two different methods commonly used to measure telomere length, quantitative PCR (qPCR) and quantitative fluorescence in situ hybridization (Q-FISH). We also measured, for the first time, the effect of lithium in vitro on the expression of the telomerase gene in human-derived neural progenitor cells (NPCs). Our findings showed that LTL correlated negatively with age (p=0.0002) and was independent of sex, diagnosis, age at onset, suicidal behavior, number of mood episodes, response to lithium and use of other psychotropic medications. After correcting for age, LTL was positively correlated with lithium treatment duration in patients treated for more than two years (n=150, R=0.17, p=0.037). There was a significant correlation between data measured with qPCR and Q-FISH (p=0.012, R=0.826). Lithium treatment increased telomerase expression in NPCs, though this effect was not statistically significant. Our data support previous findings showing that long-term lithium treatment associates with longer telomeres in BD, though this effect appeared to be independent from clinical response to the treatment. Moreover, we suggested for the first time that lithium increases the expression of telomerase gene in human neural progenitor cells.
Collapse
|
50
|
Abé C, Ekman CJ, Sellgren C, Petrovic P, Ingvar M, Landén M. Cortical thickness, volume and surface area in patients with bipolar disorder types I and II. J Psychiatry Neurosci 2016; 41:240-50. [PMID: 26645741 PMCID: PMC4915933 DOI: 10.1503/jpn.150093] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a common chronic psychiatric disorder mainly characterized by episodes of mania, hypomania and depression. The disorder is associated with cognitive impairments and structural brain abnormalities, such as lower cortical volumes in primarily frontal brain regions than healthy controls. Although bipolar disorder types I (BDI) and II (BDII) exhibit different symptoms and severity, previous studies have focused on BDI. Furthermore, the most frequently investigated measure in this population is cortical volume. The aim of our study was to investigate abnormalities in patients with BDI and BDII by simultaneously analyzing cortical volume, thickness and surface area, which yields more information about disease- and symptom-related neurobiology. METHODS We used MRI to measure cortical volume, thickness and area in patients with BDI and BDII as well as in healthy controls. The large study cohort enabled us to adjust for important confounding factors. RESULTS We included 81 patients with BDI, 59 with BDII and 85 controls in our analyses. Cortical volume, thickness and surface area abnormalities were present in frontal, temporal and medial occipital regions in patients with BD. Lithium and antiepileptic drug use had an effect on the observed differences in medial occipital regions. Patients with the subtypes BDI and BDII displayed common cortical abnormalities, such as lower volume, thickness and surface area than healthy controls in frontal brain regions but differed in temporal and medial prefrontal regions, where only those with BDI had abnormally low cortical volume and thickness. LIMITATIONS The group differences can be explained by progressive changes, but also by premorbid conditions. They could also have been influenced by unknown factors, such as social, environmental or genetic factors. CONCLUSION Our findings suggest diagnosis-related neurobiological differences between the BD subtypes, which could explain distinct symptoms and point to potential biomarkers that could inform the subtype diagnosis of BD.
Collapse
Affiliation(s)
- Christoph Abé
- Correspondence to: C. Abé, Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Nobelsväg 9, 17177 Stockholm, Sweden;
| | | | | | | | | | | |
Collapse
|