1
|
Haghmorad D, Soltanmohammadi A, Jadid Tavaf M, Zargarani S, Yazdanpanah E, Shadab A, Yousefi B. The protective role of interaction between vitamin D, sex hormones and calcium in multiple sclerosis. Int J Neurosci 2024; 134:735-753. [PMID: 36369838 DOI: 10.1080/00207454.2022.2147431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder that causes disability and paralysis, especially among young adults. Although interactions of several factors, such as viral infections, autoimmunity, genetic and environmental factors, performance a role in the beginning and progression of the disease, the exact cause of MS is unknown to date. Different immune cells such as Th1 and Th17 play an impressive role in the immunopathogenesis of MS, while, regulatory cells such as Th2 and Treg diminish the severity of the illness. Sex hormones have a vital role in many autoimmune disorders, including multiple sclerosis. Testosterone, estrogen and progesterone have various roles in the progress of MS, which higher prevalence of disease in women and more severe in men reveals the importance of sex hormones' role in this disease. Vitamin D after chemical changes in the body, as an active hormone called calcitriol, plays an important role in regulating immune responses and improves MS by modulating the immune system. The optimum level of calcium in the body with vitamin D modulates immune responses and calcium as an essential ion in the body plays a key role in the treatment of autoimmune diseases. The interaction between vitamin D and sex hormones has protective and therapeutic effects against MS and functional synergy between estrogen and calcitriol occurs in disease recovery. Moreover, vitamin D and calcium interact with each other to regulate the immune system and shift them to anti-inflammatory responses.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Azita Soltanmohammadi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Jadid Tavaf
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Simin Zargarani
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Department of Immunology and Allergy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
2
|
Alruwaili M, Al-kuraishy HM, Alexiou A, Papadakis M, ALRashdi BM, Elhussieny O, Saad HM, Batiha GES. Pathogenic Role of Fibrinogen in the Neuropathology of Multiple Sclerosis: A Tale of Sorrows and Fears. Neurochem Res 2023; 48:3255-3269. [PMID: 37442896 PMCID: PMC10514123 DOI: 10.1007/s11064-023-03981-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating neurodegenerative disease of the central nervous system (CNS) due to injury of the myelin sheath by immune cells. The clotting factor fibrinogen is involved in the pathogenesis of MS by triggering microglia and the progress of neuroinflammation. Fibrinogen level is correlated with MS severity; consequently, inhibition of the fibrinogen cascade may reduce MS neuropathology. Thus, this review aimed to clarify the potential role of fibrinogen in the pathogenesis of MS and how targeting of fibrinogen affects MS neuropathology. Accumulation of fibrinogen in the CNS may occur independently or due to disruption of blood-brain barrier (BBB) integrity in MS. Fibrinogen acts as transduction and increases microglia activation which induces the progression of inflammation, oxidative stress, and neuronal injury. Besides, brain fibrinogen impairs the remyelination process by inhibiting the differentiation of oligodendrocyte precursor cells. These findings proposed that fibrinogen is associated with MS neuropathology through interruption of BBB integrity, induction of neuroinflammation, and demyelination with inhibition of the remyelination process by suppressing oligodendrocytes. Therefore, targeting of fibrinogen and/or CD11b/CD18 receptors by metformin and statins might decrease MS neuropathology. In conclusion, inhibiting the expression of CD11b/CD18 receptors by metformin and statins may decrease the pro-inflammatory effect of fibrinogen on microglia which is involved in the progression of MS.
Collapse
Affiliation(s)
- Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Barakat M. ALRashdi
- Biology Department, College of Science, Jouf University, Sakaka, 41412 Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Egypt
| |
Collapse
|
3
|
Pérez AS, Casado SE, Payero MÁ, Pueyo ÁE, Bernabé ÁGA, Zamora NP, Ruiz PD, González AML. [Translated Article] Disease-modifying treatments for patients with multiple sclerosis in Spain. FARMACIA HOSPITALARIA 2023; 47:T155-T160. [PMID: 37394376 DOI: 10.1016/j.farma.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 07/04/2023] Open
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system and long-term disabling. Different disease-modifying treatments are available. These patients, despite being generally young, have high comorbidity and risk of polymedication due to their complex symptomatology and disability. OBJECTIVE PRIMARY To determine the type of disease-modifying treatment in patients seen in Spanish hospital pharmacy departments. SECONDARY OBJECTIVES to determine concomitant treatments, determine the prevalence of polypharmacy, identify the prevalence of interactions and analyze pharmacotherapeutic complexity. METHOD Observational, cross-sectional, multicentre study. All patients with a diagnosis of multiple sclerosis and active disease-modifying treatment who were seen in outpatient clinics or day hospitals during the second week of February 2021 were included. Modifying treatment, comorbidities and concomitant treatments were collected to determine multimorbidity pattern, polypharmacy, pharmacotherapeutic complexity (Medication Regimen Complexity Index) and drug-drug interactions. RESULTS 1407 patients from 57 centres in 15 autonomous communities were included. The most frequent form of disease presentation was the relapsing remitting form (89.3%). The most prescribed disease-modifying treatment was dimethyl fumarate (19.1%), followed by teriflunomide (14.0%). Of the parenteral disease-modifying treatments, the two most prescribed were glatiramer acetate and natalizumab with 11.1% and 10.8%. 24.7% of the patients had 1 comorbidity and 39.8% had at least 2 comorbidities. 13.3% belonged to at least one of the defined patterns of multimorbidity and 16.5% belonged to 2 or more patterns. The concomitant treatments prescribed were psychotropic drugs (35.5%); antiepileptic drugs (13.9%) and antihypertensive drugs and drugs for cardiovascular pathologies (12.4%). The presence of polypharmacy was 32.7% and extreme polypharmacy 8.1%. The prevalence of interactions was 14.8%. Median pharmacotherapeutic complexity was 8.0 (IQR: 3.3-15.0). CONCLUSIONS We have described the disease-modifying treatment of patients with multiple sclerosis seen in Spanish pharmacy services and characterized concomitant treatments, the prevalence of polypharmacy, interactions, and their complexity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pilar Diaz Ruiz
- Servicio de Farmacia, Hospital Universitario Ntra, Sra. de Candelaria, Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
4
|
Pérez AS, Casado SE, Álvarez Payero M, Escolano Pueyo ÁE, Arévalo Bernabé ÁG, Padullés Zamora N, Diaz Ruiz P, López González AM. Disease-modifying treatments for patients with multiple sclerosis in Spain. FARMACIA HOSPITALARIA 2023; 47:155-160. [PMID: 37142541 DOI: 10.1016/j.farma.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 05/06/2023] Open
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system and long-term disabling. Different disease-modifying treatments are available. These patients, despite being generally young, have high comorbidity and risk of polymedication due to their complex symptomatology and disability. OBJECTIVE PRIMARY To determine the type of disease-modifying treatment in patients seen in Spanish hospital pharmacy departments. SECONDARY OBJECTIVES To determine concomitant treatments, determine the prevalence of polypharmacy, identify the prevalence of interactions and analyse pharmacotherapeutic complexity. METHOD Observational, cross-sectional, multicentre study. All patients with a diagnosis of multiple sclerosis and active disease-modifying treatment who were seen in outpatient clinics or day hospitals during the second week of February 2021 were included. Modifying treatment, comorbidities and concomitant treatments were collected to determine multimorbidity pattern, polypharmacy, pharmacotherapeutic complexity (Medication Regimen Complexity Index) and drug-drug interactions. RESULTS 1,407 patients from 57 centres in 15 autonomous communities were included. The most frequent form of disease presentation was the relapsing remitting form (89.3%). The most prescribed disease-modifying treatment was dimethyl fumarate (19.1%), followed by teriflunomide (14.0%). Of the parenteral disease-modifying treatments, the two most prescribed were glatiramer acetate and natalizumab with 11.1% and 10.8%. 24.7% of the patients had one comorbidity and 39.8% had at least 2 comorbidities. 13.3% belonged to at least one of the defined patterns of multimorbidity and 16.5% belonged to 2 or more patterns. The concomitant treatments prescribed were psychotropic drugs (35.5%); antiepileptic drugs (13.9%) and antihypertensive drugs and drugs for cardiovascular pathologies (12.4%). The presence of polypharmacy was 32.7% and extreme polypharmacy 8.1%. The prevalence of interactions was 14.8%. Median pharmacotherapeutic complexity was 8.0 (IQR: 3.3 -- 15.0). CONCLUSIONS We have described the disease-modifying treatment of patients with multiple sclerosis seen in Spanish pharmacy services and characterised concomitant treatments, the prevalence of polypharmacy, interactions, and their complexity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pilar Diaz Ruiz
- Servicio de Farmacia, Hospital Universitario Nuestra Sra. de Candelaria, Santa Cruz de Tenerife, España
| | | |
Collapse
|
5
|
Kalinowska-Lyszczarz A, Tillema JM, Tobin WO, Guo Y, Weigand SD, Metz I, Brück W, Lassmann H, Giraldo-Chica M, Port JD, Lucchinetti CF. Long-term clinical, imaging and cognitive outcomes association with MS immunopathology. Ann Clin Transl Neurol 2023; 10:339-352. [PMID: 36759436 PMCID: PMC10014012 DOI: 10.1002/acn3.51723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE In this observational study on a cohort of biopsy-proven central nervous system demyelinating disease consistent with MS, we examined the relationship between early-active demyelinating lesion immunopattern (IP) with subsequent clinical course, radiographic progression, and cognitive function. METHODS Seventy-five patients had at least one early-active lesion on biopsy and were pathologically classified into three immunopatterns based on published criteria. The median time from biopsy at follow-up was 11 years, median age at biopsy - 41, EDSS - 4.0. At last follow-up, the median age was 50, EDSS - 3.0. Clinical examination, cognitive assessment (CogState battery), and 3-Tesla-MRI (MPRAGE/FLAIR/T2/DIR/PSIR/DTI) were obtained. RESULTS IP-I was identified in 14/75 (19%), IP-II was identified in 41/75 (56%), and IP-III was identified in 18/75 (25%) patients. Patients did not differ significantly by immunopattern in clinical measures at onset or last follow-up. The proportions of disease courses after a median of 11 years were similar across immunopatterns, relapsing-remitting being most common (63%), followed by monophasic (32%). No differences in volumetric or DTI measures were found. CogState performance was similar for most tasks. A slight yet statistically significant difference was identified for episodic memory scores, with IP-III patients recalling one word less on average. INTERPRETATION In this study, immunopathological heterogeneity of early-active MS lesions identified at biopsy does not correlate with different long-term clinical, neuroimaging or cognitive outcomes. This could be explained by the fact that while active white matter lesions are pathological substrates for relapses, MS progression is driven by mechanisms converging across immunopatterns, regardless of pathogenic mechanisms driving the acute demyelinated plaque.
Collapse
Affiliation(s)
- Alicja Kalinowska-Lyszczarz
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Imke Metz
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Wien, Austria
| | - Monica Giraldo-Chica
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John D Port
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
6
|
Gasterich N, Bohn A, Sesterhenn A, Nebelo F, Fein L, Kaddatz H, Nyamoya S, Kant S, Kipp M, Weiskirchen R, Zendedel A, Beyer C, Clarner T. Lipocalin 2 attenuates oligodendrocyte loss and immune cell infiltration in mouse models for multiple sclerosis. Glia 2022; 70:2188-2206. [PMID: 35856297 DOI: 10.1002/glia.24245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is a central nervous system disease characterized by both degenerative and inflammatory processes. Various mediators are involved in the interplay of degeneration and innate immunity on one hand and peripheral adaptive immunity on the other hand. The secreted protein lipocalin 2 (LCN2) is an inflammatory modulator in a variety of pathologies. Although elevated intrathecal levels of LCN2 have been reported in MS patients, it's functional role is widely unknown. Here, we identified a subpopulation of astrocytes as a source of LCN2 in MS lesions and respective animal models. We investigated the functional role of LCN2 for both autoimmune and degenerative aspects in three MS mouse models including both wild type (WT) and Lcn2-/- mouse strains. While the experimental autoimmune encephalomyelitis (EAE) model reflects primary autoimmunity, the cuprizone model reflects selective oligodendrocyte loss and demyelination. In addition, we included a combinatory Cup/EAE model in which primary cytodegeneration is followed by inflammatory lesions within the forebrain. While in the EAE model, the disease outcome was comparable in between the two mouse strains, cuprizone intoxicated Lcn2-/- animals showed an increased loss of oligodendrocytes. In the Cup/EAE model, Lcn2-/- animals showed increased inflammation when compared to WT mice. Together, our results highlight LCN2 as a potentially protective molecule in MS lesion formation, which might be able to limit loss of oligodendrocytes immune-cell invasion. Despite these findings, it is not yet clear which glial cell phenotype (and to which extent) contributes to the observed neuroprotective effects, that is, microglia and/or astroglia or even endothelial cells in the brain.
Collapse
Affiliation(s)
- Natalie Gasterich
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Amelie Bohn
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Anika Sesterhenn
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Frederik Nebelo
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Lena Fein
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Hannes Kaddatz
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Stella Nyamoya
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Sebastian Kant
- RWTH University Hospital Aachen, Institute of Molecular and Cellular Anatomy, Aachen, Germany
| | - Markus Kipp
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Ralf Weiskirchen
- RWTH University Hospital Aachen, Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Aachen, Germany
| | - Adib Zendedel
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Cordian Beyer
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Tim Clarner
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| |
Collapse
|
7
|
Scalabrino G. Epidermal Growth Factor in the CNS: A Beguiling Journey from Integrated Cell Biology to Multiple Sclerosis. An Extensive Translational Overview. Cell Mol Neurobiol 2022; 42:891-916. [PMID: 33151415 PMCID: PMC8942922 DOI: 10.1007/s10571-020-00989-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews the wealth of papers dealing with the different effects of epidermal growth factor (EGF) on oligodendrocytes, astrocytes, neurons, and neural stem cells (NSCs). EGF induces the in vitro and in vivo proliferation of NSCs, their migration, and their differentiation towards the neuroglial cell line. It interacts with extracellular matrix components. NSCs are distributed in different CNS areas, serve as a reservoir of multipotent cells, and may be increased during CNS demyelinating diseases. EGF has pleiotropic differentiative and proliferative effects on the main CNS cell types, particularly oligodendrocytes and their precursors, and astrocytes. EGF mediates the in vivo myelinotrophic effect of cobalamin on the CNS, and modulates the synthesis and levels of CNS normal prions (PrPCs), both of which are indispensable for myelinogenesis and myelin maintenance. EGF levels are significantly lower in the cerebrospinal fluid and spinal cord of patients with multiple sclerosis (MS), which probably explains remyelination failure, also because of the EGF marginal role in immunology. When repeatedly administered, EGF protects mouse spinal cord from demyelination in various experimental models of autoimmune encephalomyelitis. It would be worth further investigating the role of EGF in the pathogenesis of MS because of its multifarious effects.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy.
| |
Collapse
|
8
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
9
|
Modulating the Ubiquitin–Proteasome System: A Therapeutic Strategy for Autoimmune Diseases. Cells 2022; 11:cells11071093. [PMID: 35406655 PMCID: PMC8997991 DOI: 10.3390/cells11071093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease associated with the central nervous system (CNS). Autoimmunity is caused by an abnormal immune response to self-antigens, which results in chronic inflammation and tissue death. Ubiquitination is a post-translational modification in which ubiquitin molecules are attached to proteins by ubiquitinating enzymes, and then the modified proteins are degraded by the proteasome system. In addition to regulating proteasomal degradation of proteins, ubiquitination also regulates other cellular functions that are independent of proteasomal degradation. It plays a vital role in intracellular protein turnover and immune signaling and responses. The ubiquitin–proteasome system (UPS) is primarily responsible for the nonlysosomal proteolysis of intracellular proteins. The 26S proteasome is a multicatalytic adenosine-triphosphate-dependent protease that recognizes ubiquitin covalently attached to particular proteins and targets them for degradation. Damaged, oxidized, or misfolded proteins, as well as regulatory proteins that govern many essential cellular functions, are removed by this degradation pathway. When this system is affected, cellular homeostasis is altered, resulting in the induction of a range of diseases. This review discusses the biochemistry and molecular biology of the UPS, including its role in the development of MS and proteinopathies. Potential therapies and targets involving the UPS are also addressed.
Collapse
|
10
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Shephard MK, Heir G. Orofacial Pain in the Medically Complex Patient. CONTEMPORARY ORAL MEDICINE 2019:2135-2185. [DOI: 10.1007/978-3-319-72303-7_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Audiovestibular Symptoms in Systemic Autoimmune Diseases. J Immunol Res 2018; 2018:5798103. [PMID: 30211232 PMCID: PMC6120292 DOI: 10.1155/2018/5798103] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/11/2018] [Accepted: 07/04/2018] [Indexed: 12/16/2022] Open
Abstract
Immune-mediated inner ear disease can be primary, when the autoimmune response is against the inner ear, or secondary. The latter is characterized by the involvement of the ear in the presence of systemic autoimmune conditions. Sensorineural hearing loss is the most common audiovestibular symptom associated with systemic autoimmune diseases, although conductive hearing impairment may also be present. Hearing loss may present in a sudden, slowly, rapidly progressive or fluctuating form, and is mostly bilateral and asymmetric. Hearing loss shows a good response to corticosteroid therapy that may lead to near-complete hearing restoration. Vestibular symptoms, tinnitus, and aural fullness can be found in patients with systemic autoimmune diseases; they often mimic primary inner ear disorders such as Menière's disease and mainly affect both ears simultaneously. Awareness of inner ear involvement in systemic autoimmune diseases is essential for the good response shown to appropriate treatment. However, it is often misdiagnosed due to variable clinical presentation, limited knowledge, sparse evidence, and lack of specific diagnostic tests. The aim of this review is to analyse available evidence, often only reported in the form of case reports due to the rarity of some of these conditions, of the different clinical presentations of audiological and vestibular symptoms in systemic autoimmune diseases.
Collapse
|
13
|
Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon? Front Pharmacol 2018; 9:52. [PMID: 29467654 PMCID: PMC5808178 DOI: 10.3389/fphar.2018.00052] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors-P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we deeply discuss P2X7 receptor dual function and its pharmacological modulation in the context of different pathologies, and we also highlight the P2X7 receptor as a potential target to treat inflammatory related diseases.
Collapse
Affiliation(s)
- Luiz E B Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Cleide Gonçalves da Silva
- Division of Vascular Surgery, Department of Surgery, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Alvarez-Payero M, Valeiras-Muñoz C, Lion-Vázquez S, Piñeiro-Corrales G, Muñoz-García D, Midaglia L. Experience with fampridine in clinical practice: analysis of a possible marker of clinical response. Int J Neurosci 2017; 127:915-922. [PMID: 28054826 DOI: 10.1080/00207454.2017.1279614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF THE STUDY Approximately 85% of patients with multiple sclerosis experience reduced mobility, which negatively affects quality of life. Fampridine is the first symptomatic treatment aimed at improving gait. We analyzed effectiveness and tolerance in clinical practice. We also sought a prevalent gait pattern in responders as a potential clinical response marker. MATERIAL AND METHODS Six-month prospective study of fampridine in patients with multiple sclerosis. Response was evaluated using the Timed 25-Foot Walk Test (T25FW) and the 12-Item Multiple Sclerosis Walking Scale (MSWS-12). Response was defined as increased gait speed (≥20%) and decreased MSWS-12 score (≥4 points). RESULTS Fifty-five patients (67.3% women; mean age, 51.7 [11.1] years) with a baseline Expanded Disability Status Scale (EDSS) score of 5.8. Gait pattern was paraparetic (40%), hemiparetic (21.8%) and ataxic (38.2%). Of all patients, 70.9% demonstrated clinical benefit based on response criteria established, at the 14-d follow-up, 61.8% at 3 months and 45.5% at 6 months. A similar response pattern was observed in the MSWS-12. A significant decrease in the mean (SD) EDSS score was observed in responders at 6 months (6.1 [0.9] vs. 5.64 [0.1], p < 0.05). Adverse effects were recorded in 50.9%, although most were mild-moderate and resolved completely. We did not identify a prevalent gait pattern among responders. After a washout period, some patients received fampridine a second time obtaining response recovery. CONCLUSIONS In our patients' cohort, fampridine proved clinical benefit, being safe and well tolerated in most cases. We did not identify a gait pattern that was predictive of clinical response.
Collapse
Affiliation(s)
| | - Candelas Valeiras-Muñoz
- b Nursing , Multiple Sclerosis Unit , Complejo Hospitalario Universitario de Vigo , Vigo , Spain
| | - Susana Lion-Vázquez
- c Rehabilitation Department , Complejo Hospitalario Universitario de Vigo , Vigo , Spain
| | | | - Delicias Muñoz-García
- d Neurology Department , Multiple Sclerosis Unit , Complejo Hospitalario Universitario de Vigo , Vigo , Spain
| | - Luciana Midaglia
- d Neurology Department , Multiple Sclerosis Unit , Complejo Hospitalario Universitario de Vigo , Vigo , Spain
| |
Collapse
|
15
|
Weil MT, Möbius W, Winkler A, Ruhwedel T, Wrzos C, Romanelli E, Bennett JL, Enz L, Goebels N, Nave KA, Kerschensteiner M, Schaeren-Wiemers N, Stadelmann C, Simons M. Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models of Demyelinating Diseases. Cell Rep 2016. [PMID: 27346352 DOI: 10.1016/j.celrep.2016.06.008;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Breakdown of myelin sheaths is a pathological hallmark of several autoimmune diseases of the nervous system. We employed autoantibody-mediated animal models of demyelinating diseases, including a rat model of neuromyelitis optica (NMO), to target myelin and found that myelin lamellae are broken down into vesicular structures at the innermost region of the myelin sheath. We demonstrated that myelin basic proteins (MBP), which form a polymer in between the myelin membrane layers, are targeted in these models. Elevation of intracellular Ca(2+) levels resulted in MBP network disassembly and myelin vesiculation. We propose that the aberrant phase transition of MBP molecules from their cohesive to soluble and non-adhesive state is a mechanism triggering myelin breakdown in NMO and possibly in other demyelinating diseases.
Collapse
Affiliation(s)
- Marie-Theres Weil
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany
| | - Anne Winkler
- Department of Neuropathology, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany
| | - Claudia Wrzos
- Department of Neuropathology, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Elisa Romanelli
- Institute of Clinical Neuroimmunology and Biomedical Center, Ludwig-Maximillians University, 80539 Munich, Germany
| | - Jeffrey L Bennett
- Departments of Neurology, University of Denver, Denver, CO 80045, USA
| | - Lukas Enz
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Norbert Goebels
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology and Biomedical Center, Ludwig-Maximillians University, 80539 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Nicole Schaeren-Wiemers
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Christine Stadelmann
- Department of Neuropathology, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Mikael Simons
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Institute of Neuronal Cell Biology, Technical University Munich, 80805 Munich, Germany; German Center for Neurodegenerative Disease (DZNE), 6250 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
16
|
Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models of Demyelinating Diseases. Cell Rep 2016; 16:314-322. [PMID: 27346352 PMCID: PMC4949381 DOI: 10.1016/j.celrep.2016.06.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/22/2016] [Accepted: 05/26/2016] [Indexed: 11/23/2022] Open
Abstract
Breakdown of myelin sheaths is a pathological hallmark of several autoimmune diseases of the nervous system. We employed autoantibody-mediated animal models of demyelinating diseases, including a rat model of neuromyelitis optica (NMO), to target myelin and found that myelin lamellae are broken down into vesicular structures at the innermost region of the myelin sheath. We demonstrated that myelin basic proteins (MBP), which form a polymer in between the myelin membrane layers, are targeted in these models. Elevation of intracellular Ca(2+) levels resulted in MBP network disassembly and myelin vesiculation. We propose that the aberrant phase transition of MBP molecules from their cohesive to soluble and non-adhesive state is a mechanism triggering myelin breakdown in NMO and possibly in other demyelinating diseases.
Collapse
|
17
|
Demyelination induces transport of ribosome-containing vesicles from glia to axons: evidence from animal models and MS patient brains. Mol Biol Rep 2016; 43:495-507. [DOI: 10.1007/s11033-016-3990-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/19/2016] [Indexed: 01/30/2023]
|
18
|
The Therapeutic Potential of the Ketogenic Diet in Treating Progressive Multiple Sclerosis. Mult Scler Int 2015; 2015:681289. [PMID: 26839705 PMCID: PMC4709725 DOI: 10.1155/2015/681289] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/02/2015] [Indexed: 01/04/2023] Open
Abstract
Until recently, multiple sclerosis has been viewed as an entirely inflammatory disease without acknowledgment of the significant neurodegenerative component responsible for disease progression and disability. This perspective is being challenged by observations of a dissociation between inflammation and neurodegeneration where the neurodegenerative component may play a more significant role in disease progression. In this review, we explore the relationship between mitochondrial dysfunction and neurodegeneration in multiple sclerosis. We review evidence that the ketogenic diet can improve mitochondrial function and discuss the potential of the ketogenic diet in treating progressive multiple sclerosis for which no treatment currently exists.
Collapse
|
19
|
Ploughman M, Manning OJ, Beaulieu S, Harris C, Hogan SH, Mayo N, Fisk JD, Sadovnick AD, O'Connor P, Morrow SA, Metz LM, Smyth P, Allderdice PW, Scott S, Marrie RA, Stefanelli M, Godwin M. Predictors of chronic cerebrospinal venous insufficiency procedure use among older people with multiple sclerosis: a national case-control study. BMC Health Serv Res 2015; 15:161. [PMID: 25881078 PMCID: PMC4424567 DOI: 10.1186/s12913-015-0835-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/06/2015] [Indexed: 11/17/2022] Open
Abstract
Background Following the initial reports of Chronic Cerebrospinal Venous Insufficiency (CCSVI) and the purported curative potential of venoplasty, (coined the ‘liberation’ procedure) Canadians living with multiple sclerosis (MS) began to travel abroad to receive the unregulated procedure, often placing them at odds with their health providers. The purpose of this study was to determine the factors influencing older MS patients’ decision to undergo the procedure in order to develop more specific and targeted health information. Methods We performed secondary analysis of data collected as part of the ‘Canadian Survey of Health Lifestyle and Aging with MS’ from people over the age of 55 years with MS symptoms for 20 or more years. The survey consisted of self-reported information on impairments, disability, participation, demographics, personal and environmental factors. In order to compare respondents who underwent the procedure to those who did not and to develop a predictive model, we created a comparison group using a case–control algorithm, controlling for age, gender and education, and matching procedure cases to controls 1:3. We used multivariate stepwise least likelihood regression of ‘a priori’ variables to determine predictive factors. Results The prevalence of the ‘liberation’ procedure in our sample was 12.8% (95/743), substantially lower than reported in previous studies of complementary/alternative treatments in MS. The predictive model contained five factors; living alone (Odds ratio 0.24, 95%CI 0.09-0.63), diagnosis of anxiety (Odds ratio 0.29, 95%CI 0.10 - 0.84), rating of neurologist’s helpfulness (Odds ratio 0.56, 95%CI 0.44 -0 .71), Body Mass Index (Odds ratio 0.93, 95%CI, 0.89 - 0.98) and perceived physical impact of MS (Odds ratio 1.02, 95%CI 1.01 - 1.04). Conclusions Predictive factors differed from previous studies of complementary/alternative treatment use likely due to both the invasiveness of the procedure and the advanced age of our study cohort. Our findings suggest that health professionals should target information on the risks and benefits of unregulated procedures to those patients who feel dissatisfied with their neurologist and they should include family members in discussions since they may be providing the logistical support to travel abroad and undergo the ‘liberation’ procedure. Our findings may be applicable to others with chronic disabling conditions who contemplate the user-pay unregulated invasive procedures available to them. Electronic supplementary material The online version of this article (doi:10.1186/s12913-015-0835-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle Ploughman
- Recovery and Performance Laboratory, Rehabilitation Research Unit, Faculty of Medicine, Memorial University, Rm 400, L.A. Miller Centre, 100 Forest Rd, St. John's, NL, Canada.
| | - Olivia J Manning
- Recovery and Performance Laboratory, Rehabilitation Research Unit, Faculty of Medicine, Memorial University, Rm 400, L.A. Miller Centre, 100 Forest Rd, St. John's, NL, Canada.
| | | | - Chelsea Harris
- Recovery and Performance Laboratory, Rehabilitation Research Unit, Faculty of Medicine, Memorial University, Rm 400, L.A. Miller Centre, 100 Forest Rd, St. John's, NL, Canada.
| | - Stephen H Hogan
- Recovery and Performance Laboratory, Rehabilitation Research Unit, Faculty of Medicine, Memorial University, Rm 400, L.A. Miller Centre, 100 Forest Rd, St. John's, NL, Canada.
| | - Nancy Mayo
- Clinical Epidemiology, McGill University, Montreal, QC, Canada.
| | - John D Fisk
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - A Dessa Sadovnick
- Department of Medical Genetics and Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Paul O'Connor
- Department of Neurology, St. Michaels Regional Hospital, Toronto, ON, Canada.
| | | | - Luanne M Metz
- Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| | - Penelope Smyth
- Department of Neurology, University of Alberta, Edmonton, AB, Canada.
| | - Penelope W Allderdice
- Recovery and Performance Laboratory, Rehabilitation Research Unit, Faculty of Medicine, Memorial University, Rm 400, L.A. Miller Centre, 100 Forest Rd, St. John's, NL, Canada.
| | - Susan Scott
- Clinical Epidemiology, McGill University, Montreal, QC, Canada.
| | - Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Mark Stefanelli
- Department of Neurology, Faculty of Medicine, Memorial University, St. John's, NL, Canada.
| | - Marshall Godwin
- Primary Health Care Research Unit, Faculty of Medicine, Memorial University, St. John's, NL, Canada.
| |
Collapse
|
20
|
Bamm VV, Lanthier DK, Stephenson EL, Smith GST, Harauz G. In vitro study of the direct effect of extracellular hemoglobin on myelin components. Biochim Biophys Acta Mol Basis Dis 2014; 1852:92-103. [PMID: 25463632 DOI: 10.1016/j.bbadis.2014.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/26/2014] [Accepted: 10/09/2014] [Indexed: 01/04/2023]
Abstract
There is a relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of dilated veins in MS plaques. The sources of this iron can be varied, but capillary and venous hemorrhages leading to blood extravasation have been recorded, and could result in the release of hemoglobin extracellularly. Extracellular hemoglobin oxidizes quickly and is known to become a reactive molecule that triggers low-density lipoprotein oxidation and plays a pivotal role in atherogenesis. In MS, it could lead to local oxidative stress, inflammation, and tissue damage. Here, we investigated whether extracellular hemoglobin and its breakdown products can cause direct oxidative damage to myelin components in a peroxidative environment such as occurs in inflamed tissue. Oxidation of lipids was assessed by the formation of fluorescent peroxidized lipid-protein covalent adducts, by the increase in conjugated diene and malondialdehyde. Oxidation of proteins was analyzed by the change in protein mass. The results suggest that the globin radical could be a trigger of myelin basic protein oxidative cross-linking, and that heme transferred to the lipids is involved in lipid peroxidation. This study provides new insight into the mechanism by which hemoglobin exerts its pathological oxidative activity towards myelin components. This work supports further research into the vascular pathology in MS, to gain insight into the origin and role of iron deposits in disease pathogenesis, or in stimulation of different comorbidities such as cardiovascular disease.
Collapse
Affiliation(s)
- Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Danielle K Lanthier
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Erin L Stephenson
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Graham S T Smith
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
21
|
Bamm VV, Harauz G. Hemoglobin as a source of iron overload in multiple sclerosis: does multiple sclerosis share risk factors with vascular disorders? Cell Mol Life Sci 2014; 71:1789-98. [PMID: 24504127 PMCID: PMC11113400 DOI: 10.1007/s00018-014-1570-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/12/2022]
Abstract
Although iron is known to be essential for the normal development and health of the central nervous system, abnormal iron deposits are found in and around multiple sclerosis (MS) lesions that themselves are closely associated with the cerebral vasculature. However, the origin of this excess iron is unknown, and it is not clear whether this is one of the primary causative events in the pathogenesis of MS, or simply another consequence of the long-lasting inflammatory conditions. Here, applying a systems biology approach, we propose an additional way for understanding the neurodegenerative component of the disease caused by chronic subclinical extravasation of hemoglobin, in combination with multiple other factors including, but not limited to, dysfunction of different cellular protective mechanisms against extracellular hemoglobin reactivity and oxidative stress. Moreover, such considerations could also shed light on and explain the higher susceptibility of MS patients to a wide range of cardiovascular disorders.
Collapse
Affiliation(s)
- Vladimir V. Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
22
|
Fox RJ, Salter AR, Tyry T, Sun J, You X, Laforet G, Campagnolo D. Treatment discontinuation and disease progression with injectable disease-modifying therapies: findings from the north american research committee on multiple sclerosis database. Int J MS Care 2014; 15:194-201. [PMID: 24453783 DOI: 10.7224/1537-2073.2012-034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Injectable first-line disease-modifying therapies (DMTs) for multiple sclerosis (MS) are generally prescribed for continuous use. Accordingly, the various factors that influence patient persistence with treatment and that can lead some patients to switch medications or discontinue treatment may affect clinical outcomes. Using data from the North American Research Committee on Multiple Sclerosis (NARCOMS) database, this study evaluated participants' reasons for discontinuation of injectable DMTs as well as the relationship between staying on therapy and sustained patient-reported disease progression and annualized relapse rates. Participants selected their reason(s) for discontinuation from among 16 possible options covering the categories of efficacy, safety, tolerability, and burden, with multiple responses permitted. Both unadjusted data and data adjusted for baseline age, disease duration, disability, and sex were evaluated. Discontinuation profiles varied among DMTs. Participants on intramuscular interferon beta-1a (IM IFNβ-1a) and glatiramer acetate (GA) reported the fewest discontinuations based on safety concerns, although GA was associated with reports of higher burden and lower efficacy than other therapies. Difficulties with tolerability were more often reported as a reason for discontinuing subcutaneous (SC) IFNβ-1a than as a reason for discontinuing IM IFNβ-1a, GA, or SC IFNβ-1b. In the persistent therapy cohort, less patient-reported disability progression was reported with IM IFNβ-1a treatment than with SC IFNβ-1a, IFNβ-1b, or GA. These findings have relevance to clinical decision making and medication compliance in MS patient care.
Collapse
Affiliation(s)
- Robert J Fox
- Mellen Center for Multiple Sclerosis, Neurological Institute, and the Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA (RJF); the University of Alabama at Birmingham, Birmingham, AL, USA (ARS); Barrow Neurological Institute of St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA (TT); Biogen Idec Inc, Weston, MA, USA (JS, XY, GL, DC); the University of Massachusetts Medical School, Worcester, MA, USA (GL); and the University of Arizona College of Medicine, Phoenix, AZ, USA (DC)
| | - Amber R Salter
- Mellen Center for Multiple Sclerosis, Neurological Institute, and the Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA (RJF); the University of Alabama at Birmingham, Birmingham, AL, USA (ARS); Barrow Neurological Institute of St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA (TT); Biogen Idec Inc, Weston, MA, USA (JS, XY, GL, DC); the University of Massachusetts Medical School, Worcester, MA, USA (GL); and the University of Arizona College of Medicine, Phoenix, AZ, USA (DC)
| | - Tuula Tyry
- Mellen Center for Multiple Sclerosis, Neurological Institute, and the Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA (RJF); the University of Alabama at Birmingham, Birmingham, AL, USA (ARS); Barrow Neurological Institute of St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA (TT); Biogen Idec Inc, Weston, MA, USA (JS, XY, GL, DC); the University of Massachusetts Medical School, Worcester, MA, USA (GL); and the University of Arizona College of Medicine, Phoenix, AZ, USA (DC)
| | - Jennifer Sun
- Mellen Center for Multiple Sclerosis, Neurological Institute, and the Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA (RJF); the University of Alabama at Birmingham, Birmingham, AL, USA (ARS); Barrow Neurological Institute of St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA (TT); Biogen Idec Inc, Weston, MA, USA (JS, XY, GL, DC); the University of Massachusetts Medical School, Worcester, MA, USA (GL); and the University of Arizona College of Medicine, Phoenix, AZ, USA (DC)
| | - Xiaojun You
- Mellen Center for Multiple Sclerosis, Neurological Institute, and the Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA (RJF); the University of Alabama at Birmingham, Birmingham, AL, USA (ARS); Barrow Neurological Institute of St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA (TT); Biogen Idec Inc, Weston, MA, USA (JS, XY, GL, DC); the University of Massachusetts Medical School, Worcester, MA, USA (GL); and the University of Arizona College of Medicine, Phoenix, AZ, USA (DC)
| | - Genevieve Laforet
- Mellen Center for Multiple Sclerosis, Neurological Institute, and the Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA (RJF); the University of Alabama at Birmingham, Birmingham, AL, USA (ARS); Barrow Neurological Institute of St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA (TT); Biogen Idec Inc, Weston, MA, USA (JS, XY, GL, DC); the University of Massachusetts Medical School, Worcester, MA, USA (GL); and the University of Arizona College of Medicine, Phoenix, AZ, USA (DC)
| | - Denise Campagnolo
- Mellen Center for Multiple Sclerosis, Neurological Institute, and the Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA (RJF); the University of Alabama at Birmingham, Birmingham, AL, USA (ARS); Barrow Neurological Institute of St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA (TT); Biogen Idec Inc, Weston, MA, USA (JS, XY, GL, DC); the University of Massachusetts Medical School, Worcester, MA, USA (GL); and the University of Arizona College of Medicine, Phoenix, AZ, USA (DC)
| |
Collapse
|
23
|
Vassall KA, Bessonov K, De Avila M, Polverini E, Harauz G. The effects of threonine phosphorylation on the stability and dynamics of the central molecular switch region of 18.5-kDa myelin basic protein. PLoS One 2013; 8:e68175. [PMID: 23861868 PMCID: PMC3702573 DOI: 10.1371/journal.pone.0068175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/24/2013] [Indexed: 12/02/2022] Open
Abstract
The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence -T92-P93-R94-T95-P96-P97-P98-S99-) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72-S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global structure of the peptides through altered electrostatic interactions. The results support the hypothesis that the central conserved segment of MBP constitutes a molecular switch in which the conformation and/or intermolecular interactions are mediated by phosphorylation/dephosphorylation at T92 and T95.
Collapse
Affiliation(s)
- Kenrick A. Vassall
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kyrylo Bessonov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Miguel De Avila
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
24
|
Bessonov K, Vassall KA, Harauz G. Parameterization of the proline analogue Aze (azetidine-2-carboxylic acid) for molecular dynamics simulations and evaluation of its effect on homo-pentapeptide conformations. J Mol Graph Model 2012; 39:118-25. [PMID: 23261881 DOI: 10.1016/j.jmgm.2012.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/11/2012] [Accepted: 11/17/2012] [Indexed: 12/24/2022]
Abstract
We have parameterized and evaluated the proline homologue Aze (azetidine-2-carboxylic acid) for the gromos56a3 force-field for use in molecular dynamics simulations using GROMACS. Using bi-phasic cyclohexane/water simulation systems and homo-pentapeptides, we measured the Aze solute interaction potential energies, ability to hydrogen bond with water, and overall compaction, for comparison to Pro, Gly, and Lys. Compared to Pro, Aze has a slightly higher H-bonding potential, and stronger electrostatic but weaker non-electrostatic interactions with water. The 20-ns simulations revealed the preferential positioning of Aze and Pro at the interface of the water and cyclohexane layers, with Aze spending more time in the aqueous layer. We also demonstrated through simulations of the homo-pentapeptides that Aze has a greater propensity than Pro to undergo trans→cis peptide bond isomerization, which results in a severe 180° bend in the polypeptide chain. The results provide evidence for the hypothesis that the misincorporation of Aze within proline-rich regions of proteins could disrupt the formation of poly-proline type II structures and compromise events such as recognition and binding by SH3-domains.
Collapse
Affiliation(s)
- Kyrylo Bessonov
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| | | | | |
Collapse
|
25
|
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) with unknown etiology. It was recently suggested that autoimmunity, which had long been considered to be destructive in MS, might also play a protective role in the CNS of MS patients. Neurotrophins are polypeptides belonging to the neurotrophic factor family. While neurotrophins mediate cell survival and proliferation in the nervous system, they are also expressed within peripheral blood mononuclear cells fraction (PBMCs) of immunological system. In MS additional neurotrophic support from PBMCs might compensate relative neurotrophins deficiency in the damaged CNS tissue that needs to be repaired. Failure to produce the adequate neurotrophins concentrations might result in decreased protection of the CNS, consequently leading to increased atrophy, which is the main determinant of MS patients' end-point disability. There are several lines of evidence, both from clinical research and animal models, suggesting that neurotrophins play a pivotal role in neuroprotective and neuroregenerative processes that are often defective in the course of MS. It seems that neuroprotective strategies might be used as potentially valuable add-on therapies, alongside traditional immunomodulatory treatment in multiple sclerosis.
Collapse
|
26
|
Lynch MA, Mills KHG. Immunology meets neuroscience--opportunities for immune intervention in neurodegenerative diseases. Brain Behav Immun 2012; 26:1-10. [PMID: 21664452 DOI: 10.1016/j.bbi.2011.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/05/2011] [Accepted: 05/24/2011] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammatory changes are characteristic of many, if not all, neurodegenerative diseases but the extent to which the immune system is involved in the pathogenesis of these diseases is unclear. The findings of several studies during the past decade has established that there is a well-developed communication between the central nervous system (CNS) and the peripheral immune system, but also has revealed that the immune system in the CNS is much more sophisticated that previously acknowledged. In this mini-review, we discuss two major neurodegenerative disorders, Alzheimer's disease (AD) and multiple sclerosis (MS), and consider whether the therapies most likely to succeed are those that are identified by studying the marriage of neuroscience and immunology.
Collapse
Affiliation(s)
- Marina A Lynch
- Trinity Institute for Neuroscience, Trinity College, Dublin, Ireland.
| | | |
Collapse
|