1
|
Simons AP, Lenfestey A, Chaves LF. Density-dependence and different dimensions of changing weather shape adult abundance patterns of common mosquito species (Diptera: Culicidae) in Bloomington, Indiana, USA. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2025; 7:100242. [PMID: 39968057 PMCID: PMC11833637 DOI: 10.1016/j.crpvbd.2025.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
Understanding the factors driving changes in mosquito abundance are key to quantify the risk they pose as vectors of pathogens. Here, to study the impacts of weather changes and density-dependent regulation on mosquito species abundance, we used season long weekly time series of Aedes japonicus (Theobald), Aedes triseriatus (Say), Aedes vexans (Meigen), Anopheles punctipennis (Say), Coquillettidia perturbans (Walker), and Culex pipiens L., common mosquito species in the Bloomington, IN, USA, area. We use the forced Ricker model to estimate population growth and density-dependence parameters, as well as the forcing by weather variables. We found that weather factors important for the population dynamics of these species were different. We found that Cx. pipiens population dynamics was not associated with any weather variables, while Ae. japonicus, Ae. triseriatus and Cq. perturbans were forced by relative humidity, Ae. vexans by SD of rainfall, and An. punctipennis by the kurtosis of temperature. These results illustrate the diversity of ways in which mosquitoes can respond to changing weather patterns and highlight the need for a more nuanced understanding of how mosquitoes respond to climate change by coupling field studies with mathematical modeling.
Collapse
Affiliation(s)
- Aidan Patrick Simons
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, 47408, USA
| | - Amanda Lenfestey
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, 47408, USA
| | - Luis Fernando Chaves
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, 47408, USA
- Department of Geography, Indiana University, Bloomington, IN, 47401, USA
| |
Collapse
|
2
|
Cao D, Ma B, Cao Z, Xu X, Zhang X, Xiang Y. The receptor VLDLR binds Eastern Equine Encephalitis virus through multiple distinct modes. Nat Commun 2024; 15:6866. [PMID: 39127734 PMCID: PMC11316819 DOI: 10.1038/s41467-024-51293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Eastern Equine Encephalitis virus (EEEV) is an alphavirus that can cause severe diseases in infected humans. The very low-density lipoprotein receptor (VLDLR) was recently identified as a receptor of EEEV. Herein, we performed cryo-electron microscopy structural and biochemistry studies on the specific interactions between EEEV and VLDLR. Our results show that VLDLR binds EEEV at three different sites A, B and C through its membrane-distal LDLR class A (LA) repeats. Site A is located in the cleft in between the E1-E2 heterodimers. Site B is located near the connecting β ribbon of E2 and is in proximity to site A, while site C is on the domain B of E2. The binding of VLDLR LAs to EEEV is in complex modes, including the LA1-2 and LA3-5 mediated two major modes. Disruption of the LA1-2 mediated binding significantly affect the cell attachment of EEEV. However, the mutation W132G of VLDLR impairs the binding of LA3, drives the switch of the binding modes, and significantly enhances the attachment of EEEV to the cell. The W132G variant of VLDLR could be identified in human genome and SNP sequences, implying that people with similar mutations in VLDLR may be highly susceptible to EEEV infection.
Collapse
Affiliation(s)
- Duanfang Cao
- National Laboratory of Biomacromolecules, Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, 100101, P.R. China
| | - Bingting Ma
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, P.R. China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, 030001, P.R. China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, P.R. China
| | - Ziyi Cao
- National Laboratory of Biomacromolecules, Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xiaoyu Xu
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, P.R. China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, 030001, P.R. China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, P.R. China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, 100101, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Ye Xiang
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, P.R. China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, 030001, P.R. China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, P.R. China.
| |
Collapse
|
3
|
Maia LJ, Silva AB, de Oliveira CH, Campos FS, da Silva LA, de Abreu FVS, Ribeiro BM. Sylvatic Mosquito Viromes in the Cerrado Biome of Minas Gerais, Brazil: Discovery of New Viruses and Implications for Arbovirus Transmission. Viruses 2024; 16:1276. [PMID: 39205250 PMCID: PMC11359572 DOI: 10.3390/v16081276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Studies on animal virome have mainly concentrated on chordates and medically significant invertebrates, often overlooking sylvatic mosquitoes, constituting a major part of mosquito species diversity. Despite their potential role in arbovirus transmission, the viromes of sylvatic mosquitoes remain largely unexplored. These mosquitoes may also harbor insect-specific viruses (ISVs), affecting arboviral transmission dynamics. The Cerrado biome, known for rapid deforestation and its status as a biodiversity hotspot, offers an ideal setting for investigating mosquito viromes due to potential zoonotic spillover risks from land use changes. This study aimed to characterize the viromes of sylvatic mosquitoes collected from various locations within Minas Gerais state, Brazil. The total RNA was extracted from mosquito pools of Psorophora albipes, Sabethes albiprivus, Sa. chloropterus, Psorophora ferox, and Coquillettidia venezuelensis species, followed by high-throughput sequencing (HTS). Bioinformatic analysis included quality control, contig assembly, and viral detection. Sequencing data analysis revealed 11 near-complete viral genomes (new viruses are indicated with asterisks) across seven viral families and one unassigned genus. These included: Xinmoviridae (Ferox mosquito mononega-like virus* and Albipes mosquito Gordis-like virus*), Phasmaviridae (Sabethes albiprivus phasmavirus*), Lispiviridae (Pedras lispivirus variant MG), Iflaviridae (Sabethes albiprivus iflavivirus*), Virgaviridae (Buriti virga-like virus variant MG and Sabethes albiprivus virgavirus 1*), Flaviviridae (Psorophora ferox flavivirus*), Mesoniviridae (Alphamesonivirus cavallyense variant MG), and the genus Negevirus (Biggie virus variant MG virus and Coquillettidia venezuelensis negevirus*). Moreover, the presence of ISVs and potential novel arboviruses underscores the need for ongoing surveillance and control strategies to mitigate the risk of emerging infectious diseases.
Collapse
Affiliation(s)
- Luis Janssen Maia
- Laboratório de Baculovírus, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), Brasília 70910-900, Brazil; (L.J.M.); (L.A.d.S.)
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, Brazil;
| | - Arthur Batista Silva
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, Brazil;
| | - Cirilo Henrique de Oliveira
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais (IFNMG), Salinas 39560-000, Brazil;
- Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Unimontes, Montes Claros 39401-089, Brazil
- Centro Colaborador de Entomologia/Lacoi/IFNMG/Secretaria Municipal de Saúde de Salinas, Salinas 39560-000, Brazil
| | - Fabricio Souza Campos
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, Brazil;
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - Leonardo Assis da Silva
- Laboratório de Baculovírus, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), Brasília 70910-900, Brazil; (L.J.M.); (L.A.d.S.)
| | - Filipe Vieira Santos de Abreu
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais (IFNMG), Salinas 39560-000, Brazil;
- Centro Colaborador de Entomologia/Lacoi/IFNMG/Secretaria Municipal de Saúde de Salinas, Salinas 39560-000, Brazil
| | - Bergmann Morais Ribeiro
- Laboratório de Baculovírus, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), Brasília 70910-900, Brazil; (L.J.M.); (L.A.d.S.)
| |
Collapse
|
4
|
Radl J, Martínez Villegas L, Smith JS, Tirpak RA, Perry KI, Wetmore D, Tunis E, Smithberger J, Schuellerman H, Magistrado D, Winston RJ, Short SM. Mosquito abundance and diversity in central Ohio, USA vary among stormwater wetlands, retention ponds, and detention ponds and their associated environmental parameters. PLoS One 2024; 19:e0305399. [PMID: 38917214 PMCID: PMC11198753 DOI: 10.1371/journal.pone.0305399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Mosquitoes (Diptera: Culicidae) are one of the most impactful pests to human society, both as a nuisance and a potential vector of human and animal pathogens. Mosquito larvae develop in still aquatic environments. Eliminating these habitats near high human density or managing them to reduce the suitability for mosquitoes will reduce mosquito populations in these human environments and decrease the overall negative impact of mosquitoes on humans. One common source of standing water in urban and suburban environments is the water that pools in stormwater control measures. Previous studies have shown that some stormwater control measures generate large numbers of mosquitoes while others harbor none, and the reason for this difference remains unclear. Our study focuses on elucidating the factors that cause a stormwater control measure to be more or less suitable for mosquitoes. During the summers of 2021 and 2022, we collected and identified mosquito larvae from thirty stormwater control measures across central Ohio to assess variation in mosquito abundance and diversity among sites. Our goal was to determine if specific types of stormwater control measures (retention ponds, detention ponds, or constructed wetlands) harbored different abundances of mosquitoes or different community structures. We also assessed environmental parameters of these sites to elucidate their effects on mosquito abundance and diversity. Overall, we recorded the highest number of mosquito larvae and species in constructed wetlands. However, these sites were dominated by the innocuous species, Culex territans. Conversely, detention ponds held fewer mosquitoes but a higher proportion of known vector species, including Culex pipiens and Aedes vexans. The total number of mosquitoes across all sites was correlated with higher vegetation, more shade, lower water temperatures, and lower pH, suggesting stormwater control measures with these features may also be hotspots for mosquito proliferation.
Collapse
Affiliation(s)
- James Radl
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Luis Martínez Villegas
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Joseph S. Smith
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - R. Andrew Tirpak
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Kayla I. Perry
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Deirdre Wetmore
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, United States of America
| | - Elena Tunis
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jack Smithberger
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Henry Schuellerman
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Dom Magistrado
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Ryan J. Winston
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, United States of America
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
5
|
Hill V, Koch RT, Bialosuknia SM, Ngo K, Zink SD, Koetzner CA, Maffei JG, Dupuis AP, Backenson PB, Oliver J, Bransfield AB, Misencik MJ, Petruff TA, Shepard JJ, Warren JL, Gill MS, Baele G, Vogels CBF, Gallagher G, Burns P, Hentoff A, Smole S, Brown C, Osborne M, Kramer LD, Armstrong PM, Ciota AT, Grubaugh ND. Dynamics of eastern equine encephalitis virus during the 2019 outbreak in the Northeast United States. Curr Biol 2023; 33:2515-2527.e6. [PMID: 37295427 PMCID: PMC10316540 DOI: 10.1016/j.cub.2023.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA.
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sean M Bialosuknia
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Kiet Ngo
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Steven D Zink
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Cheri A Koetzner
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Joseph G Maffei
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Alan P Dupuis
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - P Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY 12237, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY 13202, USA; Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY 13408, USA
| | - Angela B Bransfield
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Michael J Misencik
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Tanya A Petruff
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - John J Shepard
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Joshua L Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; Public Health Modeling Unit, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mandev S Gill
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven BE-3000, Belgium
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Glen Gallagher
- Massachusetts Department of Public Health, Boston, MA 02108, USA; Rhode Island State Health Laboratory, Rhode Island Department of Health, Providence, RI 02904, USA
| | - Paul Burns
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Aaron Hentoff
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Catherine Brown
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Matthew Osborne
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Laura D Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12237, USA
| | - Philip M Armstrong
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY 13408, USA.
| | - Alexander T Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12237, USA.
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Laojun S, Changbunjong T, Sumruayphol S, Chaiphongpachara T. Molecular and morphometric differentiation of secondary filariasis vector Coquillettidia mosquitoes (Diptera: Culicidae) in Thailand. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105452. [PMID: 37257802 DOI: 10.1016/j.meegid.2023.105452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Coquillettidia mosquitoes are important nuisance-biting pests and a vector of brugian filariasis in Thailand. However, comprehensive information about these mosquitoes remains unavailable such as molecular and morphometric differences among species. The lack of vector knowledge on Coquillettidia species could affect future disease control. This study aims to investigate differences in molecular variations based on mitochondrial cytochrome oxidase subunit I (COI) gene and wing geometric traits of three Coquillettidia species, namely Cq. crassipes, Cq. nigrosignata, and Cq. ochracea in Thailand. The results of molecular analyses revealed the differences among three Coquillettidia species. The genetic difference measure based on the Kimura two-parameter model among three Coquillettidia species showed low intraspecific distances (0%-3.05%) and large interspecific distances (10.10%-12.41%). The values of intra- and inter-genetic differences of three Coquillettidia species did not overlap which showed the existence of a barcoding gap indicating the efficiency of the identification based on the COI gene. As with molecular analysis, the landmark-based geometric morphometrics approach based on wing shape analysis indicated three distinct species groups which were supported by the high total performance score of cross-validated classification (97.16%). These results provide the first evidence of taxonomic signal based on molecular and wing geometric differences to support species identification and biological variations of Coquillettidia mosquitoes in Thailand for understanding these rare vector mosquitoes in depth and leading to effective further mosquito control.
Collapse
Affiliation(s)
- Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Ra-jabhat University, Samut Songkhram 75000, Thailand
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Suchada Sumruayphol
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Ra-jabhat University, Samut Songkhram 75000, Thailand.
| |
Collapse
|
7
|
Williamson LE, Bandyopadhyay A, Bailey K, Sirohi D, Klose T, Julander JG, Kuhn RJ, Crowe JE. Structural constraints link differences in neutralization potency of human anti-Eastern equine encephalitis virus monoclonal antibodies. Proc Natl Acad Sci U S A 2023; 120:e2213690120. [PMID: 36961925 PMCID: PMC10068833 DOI: 10.1073/pnas.2213690120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/26/2023] Open
Abstract
Selection and development of monoclonal antibody (mAb) therapeutics against pathogenic viruses depends on certain functional characteristics. Neutralization potency, or the half-maximal inhibitory concentration (IC50) values, is an important characteristic of candidate therapeutic antibodies. Structural insights into the bases of neutralization potency differences between antiviral neutralizing mAbs are lacking. In this report, we present cryo-electron microscopy (EM) reconstructions of three anti-Eastern equine encephalitis virus (EEEV) neutralizing human mAbs targeting overlapping epitopes on the E2 protein, with greater than 20-fold differences in their respective IC50 values. From our structural and biophysical analyses, we identify several constraints that contribute to the observed differences in the neutralization potencies. Cryo-EM reconstructions of EEEV in complex with these Fab fragments reveal structural constraints that dictate intravirion or intervirion cross-linking of glycoprotein spikes by their IgG counterparts as a mechanism of neutralization. Additionally, we describe critical features for the recognition of EEEV by these mAbs including the epitope-paratope interaction surface, occupancy, and kinetic differences in on-rate for binding to the E2 protein. Each constraint contributes to the extent of EEEV inhibition for blockade of virus entry, fusion, and/or egress. These findings provide structural and biophysical insights into the differences in mechanism and neutralization potencies of these antibodies, which help inform rational design principles for candidate vaccines and therapeutic antibodies for all icosahedral viruses.
Collapse
Affiliation(s)
- Lauren E. Williamson
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN37232
| | - Abhishek Bandyopadhyay
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Kevin Bailey
- Institute for Antiviral Research, Utah State University, Logan, UT84335
| | - Devika Sirohi
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Thomas Klose
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | | | - Richard J. Kuhn
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - James E. Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN37232
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
8
|
Hill V, Koch RT, Bialosuknia SM, Ngo K, Zink SD, Koetzner CA, Maffei JG, Dupuis AP, Backenson PB, Oliver J, Bransfield AB, Misencik MJ, Petruff TA, Shepard JJ, Warren JL, Gill MS, Baele G, Vogels CB, Gallagher G, Burns P, Hentoff A, Smole S, Brown C, Osborne M, Kramer LD, Armstrong PM, Ciota AT, Grubaugh ND. Dynamics of Eastern equine encephalitis virus during the 2019 outbreak in the Northeast United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286851. [PMID: 36945576 PMCID: PMC10029029 DOI: 10.1101/2023.03.06.23286851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, like previous years, cases were driven by frequent short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Robert T. Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Sean M. Bialosuknia
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Kiet Ngo
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Steven D. Zink
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Cheri A. Koetzner
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Joseph G. Maffei
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Alan P. Dupuis
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - P. Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY, USA
- Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY, USA
| | - Angela B. Bransfield
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Michael J. Misencik
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Tanya A. Petruff
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - John J. Shepard
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Mandev S. Gill
- Department of Statistics, University of Georgia, Athens, GA, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Glen Gallagher
- Massachusetts Department of Public Health, Boston, MA, USA
- Rhode Island State Health Laboratory, Rhode Island Department of Health, Providence, RI, USA
| | - Paul Burns
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Aaron Hentoff
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA, USA
| | | | | | - Laura D. Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Philip M. Armstrong
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Mackay AJ, Cara C, Kim CH, Stone CM. Update on the distribution of Culiseta melanura in regions of Illinois with prior eastern equine encephalitis virus activity. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2022; 47:230-234. [PMID: 36314679 DOI: 10.52707/1081-1710-47.2.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Andrew J Mackay
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL 61820,
| | - Corrado Cara
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL 61820
| |
Collapse
|
10
|
Spatial and Seasonal Patterns of the Mosquito Community in Central Oklahoma. Pathogens 2022; 11:pathogens11091007. [PMID: 36145439 PMCID: PMC9502914 DOI: 10.3390/pathogens11091007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Mosquitoes (Culicidae) are ubiquitous flying insects that function as vectors for several viruses that cause disease in humans. Mosquito abundance and diversity are influenced by landscape features and environmental factors such as temperature and precipitation and vary across seasons and years. The range and phenology of many mosquito species that vector viruses relevant to human health are changing. We sampled mosquito communities in central Oklahoma for four years at thirteen sites, collecting over 25,000 mosquitoes; among these, we identified 27 different species, including several that transmit human pathogens and were collected in suburban backyards. Community composition differed across the landscape and changed from early season to late season and year to year. This effort to describe mosquito communities in Oklahoma is a first step toward assessing and predicting arbovirus risk, an ongoing and dynamic public health challenge.
Collapse
|
11
|
Hasan SS, Dey D, Singh S, Martin M. The Structural Biology of Eastern Equine Encephalitis Virus, an Emerging Viral Threat. Pathogens 2021; 10:pathogens10080973. [PMID: 34451437 PMCID: PMC8400090 DOI: 10.3390/pathogens10080973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into the fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.
Collapse
Affiliation(s)
- S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201, USA
- Correspondence:
| | - Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| |
Collapse
|
12
|
Williamson LE, Gilliland T, Yadav PK, Binshtein E, Bombardi R, Kose N, Nargi RS, Sutton RE, Durie CL, Armstrong E, Carnahan RH, Walker LM, Kim AS, Fox JM, Diamond MS, Ohi MD, Klimstra WB, Crowe JE. Human Antibodies Protect against Aerosolized Eastern Equine Encephalitis Virus Infection. Cell 2020; 183:1884-1900.e23. [PMID: 33301709 DOI: 10.1016/j.cell.2020.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/23/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Eastern equine encephalitis virus (EEEV) is one of the most virulent viruses endemic to North America. No licensed vaccines or antiviral therapeutics are available to combat this infection, which has recently shown an increase in human cases. Here, we characterize human monoclonal antibodies (mAbs) isolated from a survivor of natural EEEV infection with potent (<20 pM) inhibitory activity of EEEV. Cryo-electron microscopy reconstructions of two highly neutralizing mAbs, EEEV-33 and EEEV-143, were solved in complex with chimeric Sindbis/EEEV virions to 7.2 Å and 8.3 Å, respectively. The mAbs recognize two distinct antigenic sites that are critical for inhibiting viral entry into cells. EEEV-33 and EEEV-143 protect against disease following stringent lethal aerosol challenge of mice with highly pathogenic EEEV. These studies provide insight into the molecular basis for the neutralizing human antibody response against EEEV and can facilitate development of vaccines and candidate antibody therapeutics.
Collapse
Affiliation(s)
- Lauren E Williamson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Theron Gilliland
- The Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 165261, USA
| | - Pramod K Yadav
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elad Binshtein
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel S Nargi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Clarissa L Durie
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erica Armstrong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren M Walker
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Arthur S Kim
- Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Julie M Fox
- Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William B Klimstra
- The Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 165261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 165261, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|