1
|
Quinn OI, Jenkins C, Greig DR, Neale S, Jorgensen F, Yanshi, Inns T, Allison L, Browning L, Douglas A, Balasegram S. An outbreak of Shiga Toxin-producing Escherichia coli Serotype O145:H28 Associated with Domestic Travel and Consumption of Unpasteurized Cheese, UK, 2023. J Food Prot 2025; 88:100470. [PMID: 39978549 DOI: 10.1016/j.jfp.2025.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Unpasteurized dairy products carry an inherent risk of being contaminated with STEC and/or other zoonotic gastrointestinal pathogens. In November 2023, a genetically linked and geographically dispersed outbreak of 36 cases of Shiga toxin-producing Escherichia coli (STEC) O145:H28 was detected by the foodborne gastrointestinal pathogens surveillance systems at the UK Health Security Agency, using whole genome sequencing. Reported symptoms included diarrhoea (81%), bloody diarrhoea (65%), vomiting (84%), and 47% of cases were admitted to hospital. A review of the completed enhanced surveillance questionnaires (n = 29) revealed 18 cases reporting travelling first class on trains operated by the same company prior to onset of symptoms, of which 16/18 consumed the same meal which included an unpasteurized cheese. Microbiological testing of the cheese products did not detect the outbreak strain; however, STEC O145:H28 was detected in two bovine fecal samples collected at the dairy farm where the unpasteurized cheese was produced. Analysis of the genome sequencing data confirmed that the 36 human STEC O145 isolates and the two bovine STEC O145 isolates fell within the same 5 SNP single linkage cluster. These findings indicated that the cattle were the likely source of the human infections, via the consumption of contaminated unpasteurized cheese. The food business operator voluntarily recalled the implicated product from sale. Vulnerable groups, such as those who are very young, elderly, pregnant, or immunocompromised, should avoid consuming raw drinking milk and cheeses. Due to advances in clinical molecular diagnostics and enhanced epidemiological surveillance, notifications of foodborne outbreaks of STEC other than serogroups O157 are increasing in the UK. Further improvements in microbiological methods for detecting STEC on the farm and in food are essential for the presale identification of contaminated food items and to reduce the risks to public health.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanshi
- UK Health Security Agency, London NW9 5AT, UK
| | - Thomas Inns
- UK Health Security Agency, London NW9 5AT, UK
| | - Lesley Allison
- Scottish E. coli O157/STEC Reference Laboratory, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | | | - Amy Douglas
- UK Health Security Agency, London NW9 5AT, UK
| | | |
Collapse
|
2
|
Loor-Giler A, Robayo-Chico M, Puga-Torres B, Hernandez-Alomia F, Santander-Parra S, Piantino Ferreira A, Muslin C, Nuñez L. Escherichia coli O157:H7, a Common Contaminant of Raw Milk from Ecuador: Isolation and Molecular Identification. Foods 2025; 14:410. [PMID: 39942004 PMCID: PMC11816838 DOI: 10.3390/foods14030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Escherichia coli (E. coli), especially the Shiga toxin-producing O157:H7 strain, poses severe health risks. In rural Ecuador, raw milk consumption heightens contamination risks. This study analyzed 633 raw milk samples from Pichincha and Manabí to assess E. coli O157:H7 prevalence. The samples were enriched using BHI broth, and then specific culture media were used to isolate E. coli O157:H7. The pathogen in the enriched raw milk was identified, and the isolates were specifically confirmed through the application of a newly designed qPCR assay. The novel qPCR assay demonstrated remarkable sensitivity, capable of detecting up to one copy of genetic material, and specificity (no amplification of other bacteria). An extremely high E. coli O157:H7 prevalence of 0.63 (n = 401) was detected, where the province with the highest number of positive samples was Manabí with 72.8% (n = 225/309) and 54.3% (n = 179/324) for Pichincha. In both provinces, the presence of E. coli O157:H7 contamination exhibited a favorable correlation with small-scale farms and elevated temperatures. This research provides valuable data on the microbiological contamination of E. coli O157:H7 present in raw milk, in addition to an improved method that has been demonstrated to be faster, more sensitive, and more specific than conventional and previously published methods, highlighting the associated risk of food-borne infections and pointing out potential shortcomings in the regulation of agricultural practices and the need for periodic monitoring of bacterial contamination levels with updated methods.
Collapse
Affiliation(s)
- Anthony Loor-Giler
- Laboratorios de Investigación, Dirección General de Investigación, Universidad de las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador;
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador;
| | - Marcela Robayo-Chico
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador;
| | - Byron Puga-Torres
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Jerónimo Leyton s/n y Gilberto Gatto Sobral, Quito EC 170521, Ecuador;
| | - Fernanda Hernandez-Alomia
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito EC 170125, Ecuador;
| | - Silvana Santander-Parra
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Antigua Vía a Nayon S/N, Quito EC 170124, Ecuador; (S.S.-P.); (C.M.)
| | - Antonio Piantino Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo 05508-270, SP, Brazil;
| | - Claire Muslin
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Antigua Vía a Nayon S/N, Quito EC 170124, Ecuador; (S.S.-P.); (C.M.)
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Americas, Quito EC 170124, Ecuador
| | - Luis Nuñez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Antigua Vía a Nayon S/N, Quito EC 170124, Ecuador; (S.S.-P.); (C.M.)
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Americas, Quito EC 170124, Ecuador
| |
Collapse
|
3
|
Heinsbroek E, Blakey E, Simpson A, Verlander NQ, Greig DR, Jorgensen F, Nelson A, Douglas A, Balasegaram S, Jenkins C, Elson R. An outbreak of Shiga toxin-producing Escherichia coli serotype O103:H2 associated with unpasteurized soft cheese, England and Wales, 2022. Epidemiol Infect 2025; 152:e172. [PMID: 39840652 PMCID: PMC11822579 DOI: 10.1017/s0950268824001523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/19/2024] [Accepted: 10/08/2024] [Indexed: 01/23/2025] Open
Abstract
In July 2022, a genetically linked and geographically dispersed cluster of 12 cases of Shiga toxin-producing Escherichia coli (STEC) O103:H2 was detected by the UK Health Security Agency using whole genome sequencing. Review of food history questionnaires identified cheese (particularly an unpasteurized brie-style cheese) and mixed salad leaves as potential vehicles. A case-control study was conducted to investigate exposure to these products. Case food history information was collected by telephone. Controls were recruited using a market research panel and self-completed an online questionnaire. Univariable and multivariable analyses were undertaken using Firth Logistic Regression. Eleven cases and 24 controls were included in the analysis. Consumption of the brie-style cheese of interest was associated with illness (OR 57.5, 95% confidence interval: 3.10-1,060). Concurrently, the production of the brie-style cheese was investigated. Microbiological sample results for the cheese products and implicated dairy herd did not identify the outbreak strain, but did identify the presence of stx genes and STEC, respectively. Together, epidemiological, microbiological, and environmental investigations provided evidence that the brie-style cheese was the vehicle for this outbreak. Production of unpasteurized dairy products was suspended by the business operator, and a review of practices was performed.
Collapse
Affiliation(s)
- Ellen Heinsbroek
- Field Service East of England, Health Protection Operations, UK Health Security Agency, Cambridge, UK
| | - Eleanor Blakey
- Field Service East of England, Health Protection Operations, UK Health Security Agency, Cambridge, UK
| | - Alex Simpson
- Gastrointestinal Infections and Food Safety (One Health) Division, Clinical and Public Health Group, UK Health Security Agency, London, UK
| | - Neville Q Verlander
- Statistics Unit, Statistics, Modelling and Economics Department, UK Health Security Agency, London, UK
| | - David R. Greig
- Gastrointestinal Bacteria Reference Unit (GBRU), Public Health Microbiology Division, Specialised Microbiology & Laboratories Directorate, UK Health Security Agency, London, UK
| | - Frieda Jorgensen
- Food, Water and Environmental Microbiology Services, Porton Laboratory, UK Health Security Agency, Salisbury, UK
| | - Andrew Nelson
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Amy Douglas
- Gastrointestinal Infections and Food Safety (One Health) Division, Clinical and Public Health Group, UK Health Security Agency, London, UK
| | - Sooria Balasegaram
- Gastrointestinal Infections and Food Safety (One Health) Division, Clinical and Public Health Group, UK Health Security Agency, London, UK
- Field Service South East and London, Health Protection Operations, UK Health Security Agency, London, UK
| | - Claire Jenkins
- Gastrointestinal Infections and Food Safety (One Health) Division, Clinical and Public Health Group, UK Health Security Agency, London, UK
| | - Richard Elson
- Gastrointestinal Infections and Food Safety (One Health) Division, Clinical and Public Health Group, UK Health Security Agency, London, UK
| |
Collapse
|
4
|
Rugji J, Erol Z, Taşçı F, Musa L, Hamadani A, Gündemir MG, Karalliu E, Siddiqui SA. Utilization of AI - reshaping the future of food safety, agriculture and food security - a critical review. Crit Rev Food Sci Nutr 2024:1-45. [PMID: 39644464 DOI: 10.1080/10408398.2024.2430749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Artificial intelligence is an emerging technology which harbors a suite of mechanisms that have the potential to be leveraged for reaping value across multiple domains. Lately, there is an increased interest in embracing applications associated with Artificial Intelligence to positively contribute to food safety. These applications such as machine learning, computer vision, predictive analytics algorithms, sensor networks, robotic inspection systems, and supply chain optimization tools have been established to contribute to several domains of food safety such as early warning of outbreaks, risk prediction, detection and identification of food associated pathogens. Simultaneously, the ambition toward establishing a sustainable food system has motivated the adoption of cutting-edge technologies such as Artificial Intelligence to strengthen food security. Given the myriad challenges confronting stakeholders in their endeavors to safeguard food security, Artificial Intelligence emerges as a promising tool capable of crafting holistic management strategies for food security. This entails maximizing crop yields, mitigating losses, and trimming operational expenses. AI models present notable benefits in efficiency, precision, uniformity, automation, pattern identification, accessibility, and scalability for food security endeavors. The escalation in the global trend for adopting alternative protein sources such as edible insects and microalgae as a sustainable food source reflects a growing recognition of the need for sustainable and resilient food systems to address the challenges of population growth, environmental degradation, and food insecurity. Artificial Intelligence offers a range of capabilities to enhance food safety in the production and consumption of alternative proteins like microalgae and edible insects, contributing to a sustainable and secure food system.
Collapse
Affiliation(s)
- Jerina Rugji
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zeki Erol
- Department of Food Hygiene and Technology, Necmettin Erbakan University, Ereğli, Konya, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ambreen Hamadani
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Esa Karalliu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| | | |
Collapse
|
5
|
Ribeiro LF, Rossi GAM, Sato RA, de Souza Pollo A, Cardozo MV, do Amaral LA, Fairbrother JM. Epidemiology, Virulence and Antimicrobial Resistance of Escherichia coli Isolated from Small Brazilian Farms Producers of Raw Milk Fresh Cheese. Microorganisms 2024; 12:1739. [PMID: 39203581 PMCID: PMC11357254 DOI: 10.3390/microorganisms12081739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
This study aimed to identify contamination sources in raw milk and cheese on small farms in Brazil by isolating Escherichia coli at various stages of milk production and cheese manufacturing. The study targeted EAEC, EIEC, ETEC, EPEC, STEC, and ExPEC pathotypes, characterizing isolates for the presence of virulence genes, phylogroups, antimicrobial susceptibility, and phylogenetic relationships using PFGE and MLST. The presence of antimicrobial resistance genes and serogroups was also determined. Three categories of E. coli were identified: pathogenic, commensal, and ceftriaxone-resistant (ESBL) strains. Pathogenic EPEC, STEC, and ExPEC isolates were detected in milk and cheese samples. Most isolates belonged to phylogroups A and B1 and were resistant to antimicrobials such as nalidixic acid, ampicillin, kanamycin, streptomycin, sulfisoxazole, and tetracycline. Genetic analysis revealed that E. coli with identical virulence genes were present at different stages within the same farm. The most frequently identified serogroup was O18, and MLST identified ST131 associated with pathogenic isolates. The study concluded that E. coli was present at multiple points in milk collection and cheese production, with significant phylogroups and high antimicrobial resistance. These findings highlight the public health risk posed by contamination in raw milk and fresh cheese, emphasizing the need to adopt hygienic practices to control these microorganisms.
Collapse
Affiliation(s)
- Laryssa Freitas Ribeiro
- Mário Palmério University Center (UniFucamp), Av. Brasil Oeste, 1900, Jardim Zenith, Monte Carmelo 38500-000, MG, Brazil;
| | | | - Rafael Akira Sato
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Andressa de Souza Pollo
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Marita Vedovelli Cardozo
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Luiz Augusto do Amaral
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - John Morris Fairbrother
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, 3200 rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
6
|
Greig DR, Quinn OI, Rodwell EV, Olonade I, Swift C, Douglas A, Balasegram S, Jenkins C. Genomic analysis of an outbreak of Shiga toxin-producing Escherichia coli O183:H18 in the United Kingdom, 2023. Microb Genom 2024; 10:001243. [PMID: 38771013 PMCID: PMC11165631 DOI: 10.1099/mgen.0.001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
In June 2023, UKHSA surveillance systems detected an outbreak of severe gastrointestinal symptoms caused by a rare serotype of Shiga toxin-producing Escherichia coli, STEC O183:H18. There were 26 cases aged 6 months to 74 years (42 % cases were aged 0-9 years), distributed across the UK with onset dates range between 22 May 2023 and 4 July 2023. The epidemiological and food chain investigations were inconclusive, although meat products made from beef mince were implicated as a potential vehicle. The outbreak strain belonged to sequence type (ST) 657 and harboured a Shiga toxin (stx) subtype stx2a located on a prophage that was unique in the UKHSA stx-encoding bacteriophage database. Plasmid encoded, putative virulence genes subA, ehxA, saa, iha, lpfA and iss were detected, however, the established STEC virulence genes involved in attachment to the gut mucosa (eae and aggR) were absent. The acquisition of stx across the global population structure of ST657 appeared to correspond with the presence of subA, ehxA, saa, iha, lpfA and iss. During the outbreak investigation, we used long read sequencing to characterise the plasmid and prophage content of this atypical STEC, to look for evidence to explain its recent emergence. Although we were unable to determine source and transmission route of the outbreak strain, the genomic analysis revealed potential clues as to how novel strains for STEC evolve. With the implementation of PCR capable of detecting all STEC, and genome sequencing for typing and virulence profiling, we have the tools to enable us to monitor the changing landscape of STEC. Improvements in the standardised collection of epidemiological data and trace-back strategies within the food industry, will ensure we have a surveillance system capable of alerting us to emerging threats to public health.
Collapse
Affiliation(s)
- David R. Greig
- Gastrointestinal Bacteria Reference Unit, Public Health Microbiology, UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Orlagh I. Quinn
- Gastrointestinal Infections & Food Safety (One Health), Clinical & Public Health, UK Health Security Agency, London, UK
| | - Ella V. Rodwell
- Gastrointestinal Bacteria Reference Unit, Public Health Microbiology, UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Israel Olonade
- Gastrointestinal Bacteria Reference Unit, Public Health Microbiology, UK Health Security Agency, London, UK
| | - Craig Swift
- Gastrointestinal Bacteria Reference Unit, Public Health Microbiology, UK Health Security Agency, London, UK
| | - Amy Douglas
- Gastrointestinal Infections & Food Safety (One Health), Clinical & Public Health, UK Health Security Agency, London, UK
| | - Sooria Balasegram
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Gastrointestinal Infections & Food Safety (One Health), Clinical & Public Health, UK Health Security Agency, London, UK
| | - Claire Jenkins
- Gastrointestinal Bacteria Reference Unit, Public Health Microbiology, UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Yesil M, Kasler DR, Huang E, Yousef AE. Thermal Inactivation of Escherichia Phage OSYSP and Host Strain Escherichia coli O157:H7 EDL933: A Comparative Kinetic Analysis. J Food Prot 2024; 87:100215. [PMID: 38182094 DOI: 10.1016/j.jfp.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Lytic bacteriophages are promising biocontrol agents against pathogenic bacteria for food and therapeutic applications. Investigating the feasibility of combining phage and physical lethal agents, such as heat, as an effective hurdle combination could lead to beneficial applications. The current research was initiated to compare the thermal inactivation kinetics of a lytic phage (Escherichia phage OSYSP) and its host (Shiga toxin-producing Escherichia coli O157:H7 EDL933), considering they have different critical thermal targets in their structures. To provide a basis for comparison, thermal inactivation kinetics were determined on suspensions of these agents in buffered peptone water using a thermally controlled circulating water bath. Results showed that the bacteriophage virions have a remarkable heat resistance (p < 0.05) compared to their host cells. The D-values of the populations of phage (PFU/mL) and EDL933 strain (CFU/mL) were 166.7 and 7.3 min at 55°C, compared to 44.4 and 0.3 min at 60°C, respectively. Additionally, D-values were significantly (p < 0.05) more influenced by temperature changes in the case of E. coli O157:H7 EDL933 (z-value 3.7°C) compared to that for phage OSYSP (z-value 7.7°C). When the phage suspension was heat-treated in a thermal cycler instead of a water bath, no significant differences between the two treatment procedures (p > 0.05) in estimating virus D- and z-values were observed. Based on these findings, it may be feasible to combine phage OSYSP with mild heat during processing of food to selectively inactivate E. coli O157:H7 EDL933 and subsequently maintain product safety during storage by the surviving phage population; however, the feasibility of this application needs to be investigated. Additionally, the relatively heat-resistant phage OSYSP could qualify as a biological indicator to validate thermal treatments of minimally processed foods in which E. coli O157:H7 EDL933 is the pathogen-of-concern.
Collapse
Affiliation(s)
- Mustafa Yesil
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - David R Kasler
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - En Huang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Kirkland ME, Patfield S, Hughes AC, Hernlem B, He X. A novel Shiga toxin 2a neutralizing antibody therapeutic with low immunogenicity and high efficacy. Antimicrob Agents Chemother 2024; 68:e0059823. [PMID: 38047751 PMCID: PMC10777836 DOI: 10.1128/aac.00598-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
Shiga toxin-producing Escherichia coli infections are difficult to treat due to the risk of antibiotic-induced stress upregulating the production of toxins, medical treatment is consequently limited to supportive care to prevent the development of hemolytic uremic syndrome (HUS). Here, we introduce a potentially therapeutic humanized mouse monoclonal antibody (Hu-mAb 2-5) targeting Stx2a, the most common Shiga toxin subtype identified from outbreaks. We demonstrate that Hu-mAb 2-5 has low immunogenicity in healthy adults ex vivo and high neutralizing efficacy in vivo, protecting mice from mortality and HUS-related tissue damage.
Collapse
Affiliation(s)
- Marina E. Kirkland
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
- U.S. Department of Energy, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Stephanie Patfield
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| | - Anna C. Hughes
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| | - Bradley Hernlem
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| | - Xiaohua He
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| |
Collapse
|
9
|
Nadi WG, Taher EM, Awad AAN, Ahmed LI. Lactoferrin's potential application in enhancing yoghurt's microbial and sensory qualities, with emphasis on the starter culture activity. J DAIRY RES 2023; 90:403-408. [PMID: 38186209 DOI: 10.1017/s0022029923000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This research paper aimed to examine the antibacterial activity of lactoferrin (LF) as a potential natural alternative in the dairy sector, by measuring its minimum inhibitory concentration (MIC) against a number of common food-borne pathogens as well as Pseudomonas aeruginosa, one of the major dairy product spoiling microorganisms. Additionally, a viability experiment was applied to laboratory-manufactured set yoghurt to assess its impact on the activity of starter culture, sensory properties and STEC survivability. The findings demonstrated that LF exhibited significant antimicrobial activity, particularly against E. coli and S. typhimurium with MIC values of 0.0001 and 0.01 mg/ml, respectively. However, P. aeruginosa and B. cereus were quite resistant to LF requiring higher concentrations for MIC (2.5 mg/ml). By the third day of storage, LF at 0.0001 and 0.001 mg/ml significantly reduced the survivability of Shiga toxin-producing E. coli STEC by 70 and 91.6%, respectively, in the lab-manufactured yoghurt. Furthermore, LF enhanced the sensory properties of fortified yoghurt with a statistically significant difference in comparison to the control yoghurt group. There was no interference with the activity of the starter culture throughout the manufacturing process and the storage period. In conclusion, the potent antimicrobial effect of LF opens a new avenue for the dairy industry's potential applications of LF as a natural preservative without negatively influencing the sensory properties and starter culture activity of fermented products.
Collapse
Affiliation(s)
- Walaa G Nadi
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Eman M Taher
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Abeer Abdel Nasser Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Lamiaa Ibrahim Ahmed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| |
Collapse
|
10
|
Milani G, Belloso Daza MV, Cortimiglia C, Bassi D, Cocconcelli PS. Genome engineering of Stx1-and Stx2-converting bacteriophages unveils the virulence of the dairy isolate Escherichia coli O174:H2 strain UC4224. Front Microbiol 2023; 14:1156375. [PMID: 37426006 PMCID: PMC10326431 DOI: 10.3389/fmicb.2023.1156375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
The past decade witnessed the emergence in Shiga toxin-producing Escherichia coli (STEC) infections linked to the consumption of unpasteurized milk and raw milk cheese. The virulence of STEC is primarily attributed to the presence of Shiga toxin genes (stx1 and stx2) carried by Stx-converting bacteriophages, along with the intimin gene eae. Most of the available information pertains to the "Top 7" serotypes associated with STEC infections. The objectives of this study were to characterize and investigate the pathogenicity potential of E. coli UC4224, a STEC O174:H2 strain isolated from semi-hard raw milk cheese and to develop surrogate strains with reduced virulence for use in food-related studies. Complete genome sequence analysis of E. coli UC4224 unveiled the presence of a Stx1a bacteriophage, a Stx2a bacteriophage, the Locus of Adhesion and Autoaggregation (LAA) pathogenicity island, plasmid-encoded virulence genes, and other colonization facilitators. In the Galleria mellonella animal model, E. coli UC4224 demonstrated high pathogenicity potential with an LD50 of 6 CFU/10 μL. Upon engineering E. coli UC4224 to generate single and double mutant derivatives by inactivating stx1a and/or stx2a genes, the LD50 increased by approximately 1 Log-dose in the single mutants and 2 Log-doses in the double mutants. However, infectivity was not completely abolished, suggesting the involvement of other virulence factors contributing to the pathogenicity of STEC O174:H2. Considering the possibility of raw milk cheese serving as a reservoir for STEC, cheesemaking model was developed to evaluate the survival of UC4224 and the adequacy of the respective mutants as reduced-virulence surrogates. All tested strains exhibited the ability to survive the curd cooking step at 48°C and multiplied (3.4 Log CFU) in cheese within the subsequent 24 h. These findings indicate that genomic engineering did not exert any unintended effect on the double stx1-stx2 mutant behaviour, making it as a suitable less-virulent surrogate for conducting studies during food processing.
Collapse
|
11
|
Kapoor S, Goel AD, Jain V. Milk-borne diseases through the lens of one health. Front Microbiol 2023; 14:1041051. [PMID: 37089537 PMCID: PMC10117966 DOI: 10.3389/fmicb.2023.1041051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Reviewing “zoonotic diseases” classically brings to mind human infections contracted in close association with animals, where outdoor occupations and afforested lands usually play a key role in the epidemiological triad. However, there is a very common, yet overlooked route of infection where humans may not come in direct contact with animals or implicated environments. Milk-borne diseases are a unique set of infections affecting all age groups and occupational categories of humans, causing 4% of all the foodborne diseases in the world. The infection reservoir may lie with milch animals and associated enzootic cycles, and the infectious agent is freely secreted into the animal’s milk. Commercial pooling and processing of milk create unique environmental challenges, where lapses in quality control could introduce infective agents during downstream processing and distribution. The infectious agent is finally brought to the doorstep of both rural and urban households through such animal products. The domestic hygiene of the household finally determines human infections. One health approach can target preventive measures like immunization in animals, pasteurization and stringent quality control during the commercial processing of milk, and finally, hygienic practices at the level of the consumer, to reduce the burden of milk-borne diseases. This review hopes to draw the attention of policymakers to this unique route of infection, because it can be easily regulated with cost-effective interventions, to ensure the safety of this precious food product, permeating the life and livelihood of humans from all walks of life.
Collapse
Affiliation(s)
- Sunandini Kapoor
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Akhil Dhanesh Goel
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Vidhi Jain
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
- *Correspondence: Vidhi Jain,
| |
Collapse
|
12
|
Kong J, Fan C, Liao X, Chen A, Yang S, Zhao L, Li H. Accurate detection of Escherichia coli O157:H7 and Salmonella enterica serovar typhimurium based on the combination of next-generation sequencing and droplet digital PCR. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|