1
|
Sato S, Kefalov VJ. Characterization of zebrafish rod and cone photoresponses. Sci Rep 2025; 15:13413. [PMID: 40251282 PMCID: PMC12008237 DOI: 10.1038/s41598-025-96058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/25/2025] [Indexed: 04/20/2025] Open
Abstract
Zebrafish is a popular species widely used in vision research. The zebrafish retina has one rod and four cone subtypes (UV-, blue-, green-, and red-sensitive) with 40%-rod 60%-cone ratio, making it suitable for comparable studies of rods and cones in health and disease. However, the basic photoresponse properties of the four zebrafish cone subtypes have not been described yet. Here, we established a method for collecting flash photoresponses from zebrafish rods and cones by recording membrane current with a suction electrode. Photoreceptor subtypes could be distinguished based on their characteristic morphology and spectral sensitivity. Rods showed 40-220-fold higher photosensitivity than cones. In the four cone subtypes, green-sensitive cones showed the highest sensitivity, 5.5-fold higher than that of red cones. Unexpectedly, rods produced smaller flash responses than cones despite their larger outer segments. Dim flash response analysis showed the quickest response kinetics in blue- and red-sensitive cones, with responses about 2-fold faster than the responses of UV- and green-sensitive cones, and 6.6-fold faster than the rod responses. We also obtained pharmacologically isolated photoreceptor voltage responses (a-wave) from isolated zebrafish retinas using ex vivo electroretinography (ERG). Dim flashes evoked rod-only responses, while bright flashes evoked two-component responses with a slow rod component and a fast cone component. Red- and green-sensitive cones were the dominant sources of the overall cone response. These studies provide a foundation for the use of zebrafish rods and cones to study the fundamental mechanisms that modulate the function of vertebrate photoreceptors in health and disease.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Ophthalmology, Gavin Herbert Eye Institute-Center for Translational Vision Research, University of California, Irvine, Irvine, USA.
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute-Center for Translational Vision Research, University of California, Irvine, Irvine, USA.
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Sato S, Kefalov V. Characterization of zebrafish rod and cone photoresponses. RESEARCH SQUARE 2025:rs.3.rs-5984163. [PMID: 40162217 PMCID: PMC11952657 DOI: 10.21203/rs.3.rs-5984163/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Zebrafish is a popular species widely used in vision research. The zebrafish retina has one rod and four cone subtypes (UV-, blue-, green-, and red-sensitive) with 40%-rod 60%-cone ratio, making it suitable for comparable studies of rods and cones in health and disease. However, the basic photoresponse properties of the four zebrafish cone subtypes have not been described yet. Here, we established a method for collecting flash photoresponses from zebrafish rods and cones by recording membrane current with a suction electrode. Photoreceptor subtypes could be distinguished based on their characteristic morphology and spectral sensitivity. Rods showed 40-220-fold higher photosensitivity than cones. In the four cone subtypes, green-sensitive cones showed the highest sensitivity, 5.5-fold higher than that of red cones. Unexpectedly, rods produced smaller flash responses than cones despite their larger outer segments. Dim flash response analysis showed the quickest response kinetics in blue- and red-sensitive cones, with responses about 2-fold faster than the responses of UV- and green-sensitive cones, and 6.6-fold faster than the rod responses. We also obtained pharmacologically isolated photoreceptor voltage responses (a-wave) from isolated zebrafish retinas using ex vivo electroretinography (ERG). Dim flashes evoked rod-only responses, while bright flashes evoked two-component responses with a slow rod component and a fast cone component. Red- and green-sensitive cones were the dominant sources of the overall cone response. These studies provide a foundation for the use of zebrafish rods and cones to study the fundamental mechanisms that modulate the function of vertebrate photoreceptors in health and disease.
Collapse
|
3
|
Sharkova M, Aparicio G, Mouzaaber C, Zolessi FR, Hocking JC. Photoreceptor calyceal processes accompany the developing outer segment, adopting a stable length despite a dynamic core. J Cell Sci 2024; 137:jcs261721. [PMID: 38477343 PMCID: PMC11058337 DOI: 10.1242/jcs.261721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Vertebrate photoreceptors detect light through a large cilium-based outer segment, which is filled with photopigment-laden membranous discs. Surrounding the base of the outer segment are microvilli-like calyceal processes (CPs). Although CP disruption has been associated with altered outer segment morphology and photoreceptor degeneration, the role of the CPs remains elusive. Here, we used zebrafish as a model to characterize CPs. We quantified CP parameters and report a strong disparity in outer segment coverage between photoreceptor subtypes. CP length is stable across light and dark conditions, yet heat-shock inducible expression of tagged actin revealed rapid turnover of the CP actin core. Detailed imaging of the embryonic retina uncovered substantial remodeling of the developing photoreceptor apical surface, including a transition from dynamic tangential processes to vertically oriented CPs immediately prior to outer segment formation. Remarkably, we also found a direct connection between apical extensions of the Müller glia and retinal pigment epithelium, arranged as bundles around the ultraviolet sensitive cones. In summary, our data characterize the structure, development and surrounding environment of photoreceptor microvilli in the zebrafish retina.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gonzalo Aparicio
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, 11400, Uruguay
- Institut Pasteur Montevideo, Uruguay
| | - Constantin Mouzaaber
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Flavio R. Zolessi
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, 11400, Uruguay
- Institut Pasteur Montevideo, Uruguay
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Magaña-Hernández L, Wagh AS, Fathi JG, Robles JE, Rubio B, Yusuf Y, Rose EE, Brown DE, Perry PE, Hamada E, Anastassov IA. Ultrastructural Characteristics and Synaptic Connectivity of Photoreceptors in the Simplex Retina of Little Skate ( Leucoraja erinacea). eNeuro 2023; 10:ENEURO.0226-23.2023. [PMID: 37827837 PMCID: PMC10614115 DOI: 10.1523/eneuro.0226-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
The retinas of the vast majority of vertebrate species are termed "duplex," that is, they contain both rod and cone photoreceptor neurons in different ratios. The retina of little skate (Leucoraja erinacea) is a rarity among vertebrates because it contains only a single photoreceptor cell type and is thus "simplex." This unique retina provides us with an important comparative model and an exciting opportunity to study retinal circuitry within the context of a visual system with a single photoreceptor cell type. What is perhaps even more intriguing is the fact that the Leucoraja retina is able use that single photoreceptor cell type to function under both scotopic and photopic ranges of illumination. Although some ultrastructural characteristics of skate photoreceptors have been examined previously, leading to a general description of them as "rods" largely based on outer segment (OS) morphology and rhodopsin expression, a detailed study of the fine anatomy of the entire cell and its synaptic connectivity is still lacking. To address this gap in knowledge, we performed serial block-face electron microscopy imaging and examined the structure of skate photoreceptors and their postsynaptic partners. We find that skate photoreceptors exhibit unusual ultrastructural characteristics that are either common to rods or cones in other vertebrates (e.g., outer segment architecture, synaptic ribbon number, terminal extensions), or are somewhere in between those of a typical vertebrate rod or cone (e.g., number of invaginating contacts, clustering of multiple ribbons over a single synaptic invagination). We suggest that some of the ultrastructural characteristics we observe may play a role in the ability of the skate retina to function across scotopic and photopic ranges of illumination. Our findings have the potential to reveal as yet undescribed principles of vertebrate retinal design.
Collapse
Affiliation(s)
| | - Abhiniti S Wagh
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Jessamyn G Fathi
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Julio E Robles
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Beatriz Rubio
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Yaqoub Yusuf
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Erin E Rose
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Daniel E Brown
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Priscilla E Perry
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Elizabeth Hamada
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Ivan A Anastassov
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| |
Collapse
|
5
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Endogenous functioning and light response of the retinal clock in vertebrates. PROGRESS IN BRAIN RESEARCH 2022; 273:49-69. [DOI: 10.1016/bs.pbr.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zang J, Gesemann M, Keim J, Samardzija M, Grimm C, Neuhauss SCF. Circadian regulation of vertebrate cone photoreceptor function. eLife 2021; 10:e68903. [PMID: 34550876 PMCID: PMC8494479 DOI: 10.7554/elife.68903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
Eukaryotes generally display a circadian rhythm as an adaption to the reoccurring day/night cycle. This is particularly true for visual physiology that is directly affected by changing light conditions. Here we investigate the influence of the circadian rhythm on the expression and function of visual transduction cascade regulators in diurnal zebrafish and nocturnal mice. We focused on regulators of shut-off kinetics such as Recoverins, Arrestins, Opsin kinases, and Regulator of G-protein signaling that have direct effects on temporal vision. Transcript as well as protein levels of most analyzed genes show a robust circadian rhythm-dependent regulation, which correlates with changes in photoresponse kinetics. Electroretinography demonstrates that photoresponse recovery in zebrafish is delayed in the evening and accelerated in the morning. Functional rhythmicity persists in continuous darkness, and it is reversed by an inverted light cycle and disrupted by constant light. This is in line with our finding that orthologous gene transcripts from diurnal zebrafish and nocturnal mice are often expressed in an anti-phasic daily rhythm.
Collapse
Affiliation(s)
- Jingjing Zang
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| | - Matthias Gesemann
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| | - Jennifer Keim
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Stephan CF Neuhauss
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| |
Collapse
|
8
|
Zang J, Neuhauss SCF. Biochemistry and physiology of zebrafish photoreceptors. Pflugers Arch 2021; 473:1569-1585. [PMID: 33598728 PMCID: PMC8370914 DOI: 10.1007/s00424-021-02528-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones, adapted to low and bright light conditions, respectively. They both show a peculiar morphology, with long outer segments, comprised of ordered stacks of disc-shaped membranes. These discs host numerous proteins, many of which contribute to the visual transduction cascade. This pathway converts the light stimulus into a biological signal, ultimately modulating synaptic transmission. Recently, the zebrafish (Danio rerio) has gained popularity for studying the function of vertebrate photoreceptors. In this review, we introduce this model system and its contribution to our understanding of photoreception with a focus on the cone visual transduction cascade.
Collapse
Affiliation(s)
- Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland
| | - Stephan C F Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland.
| |
Collapse
|
9
|
Giarmarco MM, Brock DC, Robbings BM, Cleghorn WM, Tsantilas KA, Kuch KC, Ge W, Rutter KM, Parker ED, Hurley JB, Brockerhoff SE. Daily mitochondrial dynamics in cone photoreceptors. Proc Natl Acad Sci U S A 2020; 117:28816-28827. [PMID: 33144507 PMCID: PMC7682359 DOI: 10.1073/pnas.2007827117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cone photoreceptors in the retina are exposed to intense daylight and have higher energy demands in darkness. Cones produce energy using a large cluster of mitochondria. Mitochondria are susceptible to oxidative damage, and healthy mitochondrial populations are maintained by regular turnover. Daily cycles of light exposure and energy consumption suggest that mitochondrial turnover is important for cone health. We investigated the three-dimensional (3D) ultrastructure and metabolic function of zebrafish cone mitochondria throughout the day. At night retinas undergo a mitochondrial biogenesis event, corresponding to an increase in the number of smaller, simpler mitochondria and increased metabolic activity in cones. In the daytime, endoplasmic reticula (ER) and autophagosomes associate more with mitochondria, and mitochondrial size distribution across the cluster changes. We also report dense material shared between cone mitochondria that is extruded from the cell at night, sometimes forming extracellular structures. Our findings reveal an elaborate set of daily changes to cone mitochondrial structure and function.
Collapse
Affiliation(s)
| | - Daniel C Brock
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Brian M Robbings
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | | | | - Kellie C Kuch
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - William Ge
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Kaitlyn M Rutter
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Edward D Parker
- Department of Ophthalmology, University of Washington, Seattle, WA 98195
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Department of Ophthalmology, University of Washington, Seattle, WA 98195
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, WA 98195;
- Department of Ophthalmology, University of Washington, Seattle, WA 98195
| |
Collapse
|
10
|
Öncül H, Ayhan E. Retinal nerve fiber layer, retinal pigment epithelium, and choroidal thickness in vitiligo patients. J Cosmet Dermatol 2020; 19:3032-3037. [PMID: 32515874 DOI: 10.1111/jocd.13367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Vitiligo is one of the common pigmentary disorders affecting the ocular structures. AIM To determine the retinal nerve fiber layer (RNFL), retinal pigment epithelium (RPE), and choroidal thickness (CT) in vitiligo patients and to evaluate the relationship between choroidal thickness and vitiligo subtypes. METHODS The right eyes of 106 participants (51 vitiligo, 55 nonvitiligo) were included in the study. All of the participants underwent detailed eye examinations and spectral-domain optical coherence tomography (SD-OCT) examinations. CT was measured manually with enhanced depth imaging optical coherence tomography (Edi-OCT) (subfoveal [SubF], nasal n500 µm [N1], n1500 µm [N2]), and temporal (t500 µm [T1], t1500 µm [T2]). RESULTS In vitiligo patients, CT values were significantly lower in the SubF, N1, N2, T1, and T2 areas compared to the control group (P = .001, P = .011, P = .002, P = .005, P ˂ .001, respectively). Periorbital involvement did not affect CT (P = .355, P = .746, P = .443, P = .633, P = .558, respectively). However, in patients with periorbital region involvement, the CT was significantly reduced if the lesion had a universal character (P ˂ .001, P = .001, P = .011, P ˂ .001, P = .002, respectively). It was observed that RPE thickness decreased in vitiligo, but this difference was not statistically significant (P = .140). RNFL thickness was unaffected in all quadrants. A positive correlation (r = .286, r = .280, respectively) was observed between the Vitiligo Area Severity Index (VASI) and age and disease duration. A negative correlation (r = -.360, r = -.316, r = -.315, r = -.313, respectively) was found in the CT of the SubF, N1, N2, T1, and T2 areas. CONCLUSION Vitiligo patients should be closely monitored for possible posterior ocular segment disorders.
Collapse
Affiliation(s)
- Hasan Öncül
- Department of Ophthalmology, University of Health Sciences Gazi Yaşargil Education Research Hospital, Diyarbakir, Turkey
| | - Erhan Ayhan
- Department of Dermatology, University of Health Sciences Gazi Yaşargil Education Research Hospital, Diyarbakir, Turkey
| |
Collapse
|
11
|
Frau S, Novales Flamarique I, Keeley PW, Reese BE, Muñoz-Cueto JA. Straying from the flatfish retinal plan: Cone photoreceptor patterning in the common sole (Solea solea) and the Senegalese sole (Solea senegalensis). J Comp Neurol 2020; 528:2283-2307. [PMID: 32103501 DOI: 10.1002/cne.24893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 11/09/2022]
Abstract
The retinas of nonmammalian vertebrates have cone photoreceptor mosaics that are often organized as highly patterned lattice-like distributions. In fishes, the two main lattice-like patterns are composed of double cones and single cones that are either assembled as interdigitized squares or as alternating rows. The functional significance of such orderly patterning is unknown. Here, the cone mosaics in two species of Soleidae flatfishes, the common sole and the Senegalese sole, were characterized and compared to those from other fishes to explore variability in cone patterning and how it may relate to visual function. The cone mosaics of the common sole and the Senegalese sole consisted of single, double, and triple cones in formations that differed from the traditional square mosaic pattern reported for other flatfishes in that no evidence of higher order periodicity was present. Furthermore, mean regularity indices for single and double cones were conspicuously lower than those of other fishes with "typical" square and row mosaics, but comparable to those of goldfish, a species with lattice-like periodicity in its cone mosaic. Opsin transcripts detected by quantitative polymerase chain reaction (sws1, sws2, rh2.3, rh2.4, lws, and rh1) were uniformly expressed across the retina of the common sole but, in the Senegalese sole, sws2, rh2.4, and rh1 were more prevalent in the dorsal retina. Microspectrophotometry revealed five visual pigments in the retina of the common sole [S(472), M(523), M(536), L(559), and rod(511)] corresponding to the repertoire of transcripts quantified except for sws1. Overall, these results indicate a loss of cone mosaic patterning in species that are primarily nocturnal or dwell in low light environments as is the case for the common sole and the Senegalese sole. The corollary is that lattice-like patterning of the cone mosaic may improve visual acuity. Ecological and physiological correlates derived from observations across multiple fish taxa that live in low light environments and do not possess lattice-like cone mosaics are congruent with this claim.
Collapse
Affiliation(s)
- Sara Frau
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, The European University of the Seas (SEA-EU), Puerto Real, Spain
| | - Iñigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA.,Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California, USA
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, The European University of the Seas (SEA-EU), Puerto Real, Spain
| |
Collapse
|
12
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
13
|
Circadian regulation of phosphodiesterase 6 genes in zebrafish differs between cones and rods: Implications for photopic and scotopic vision. Vision Res 2019; 166:43-51. [PMID: 31855667 DOI: 10.1016/j.visres.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022]
Abstract
A correlation is known to exist between visual sensitivity and oscillations in red opsinand rhodopsin gene expression in zebrafish, both regulated by the clock gene. This indicates that an endogenous circadian clock regulates behavioural visual sensitivity, apart from the regulation exerted by the pineal organ. However, the specific mechanisms for cones (photopic vision) and rods (scotopic vision) are poorly understood. In this work, we performed gene expression, cosinor and immunohistochemical analyses to investigate other key genes involved in light perception, encoding the different subunits of phosphodiesterase pde6 and transducin GαT, in constant lighting conditions and compared to normal light-dark conditions. We found that cones display prominent circadian oscillations in mRNA levels for the inhibitory subunit gene pde6ha that could contribute to the regulation of photopic sensitivity by preventing overstimulation in photopic conditions. In rods, the mRNA levels of the inhibitory subunit gene pde6ga oscillate under normal conditions and dampen down in constant light but continue oscillating in constant darkness. There is an increase in total relative expression for pde6gb in constant conditions. These observations, together with previous data, suggest a complex regulation of the scotopic sensitivity involving endogenous and non-endogenous components, possibly present also in other teleost species. The GαT genes do not display mRNA oscillations and therefore may not be essential for the circadian regulation of photosensitivity. In summary, our results support different regulation for the zebrafish photopic and scotopic sensitivities and suggest circadian regulation of pde6ha as a key factor regulating photopic sensitivity, while the regulatory mechanisms in rods appear to be more complex.
Collapse
|
14
|
A High-Throughput Assay for Congenital and Age-Related Eye Diseases in Zebrafish. Biomedicines 2019; 7:biomedicines7020028. [PMID: 30979021 PMCID: PMC6631034 DOI: 10.3390/biomedicines7020028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/19/2023] Open
Abstract
Debilitating visual impairment caused by cataracts or microphthalmia is estimated to affect roughly 20 million people in the United States alone. According to the National Eye Institute, by 2050 that number is expected to more than double to roughly 50 million. The identification of candidate disease-causing alleles for cataracts and microphthalmia has been accelerated with advanced sequencing technologies creating a need for verification of the pathophysiology of these genes. Zebrafish pose many advantages as a high-throughput model for human eye disease. By 5 days post-fertilization, zebrafish have quantifiable behavioral responses to visual stimuli. Their small size, many progeny, and external fertilization allows for rapid screening for vision defects. We have adapted the OptoMotor Response to assay visual impairment in zebrafish models of cataracts and microphthalmia. This research demonstrates an inexpensive, high-throughput method for analyzing candidate genes involved in visual impairment.
Collapse
|
15
|
Sandkam B, Dalton B, Breden F, Carleton K, Handling editor: Becky Fuller. Reviewing guppy color vision: integrating the molecular and physiological variation in visual tuning of a classic system for sensory drive. Curr Zool 2018; 64:535-545. [PMID: 30108634 PMCID: PMC6084590 DOI: 10.1093/cz/zoy047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022] Open
Abstract
Sensory drive predicts coevolution of mate choice signals with the sensory systems detecting those signals. Guppies are a classic model for sensory drive as mate preferences based on coloration differ across individuals and populations. A large body of work has identified variation in color vision, yet we lack a direct tie between how such variation in color vision influences variation in color preference. Here we bring together studies that have investigated guppy vision over the past 40 years to: (1) highlight our current understanding of where variation occurs in the guppy color vision pathway and (2) suggest future avenues of research into sources of visual system variation that could influence guppy color preference. This will allow researchers to design careful studies that couple measures of color preference with measures of visual system variation from the same individual or population. Such studies will finally provide important answers as to what sets the direction and speed of mate preference evolution via sensory drive.
Collapse
Affiliation(s)
- Benjamin Sandkam
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | - Brian Dalton
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Karen Carleton
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | | |
Collapse
|
16
|
Meshalkina DA, Kysil EV, Warnick JE, Demin KA, Kalueff AV. Adult zebrafish in CNS disease modeling: a tank that's half-full, not half-empty, and still filling. Lab Anim (NY) 2018; 46:378-387. [PMID: 28984854 DOI: 10.1038/laban.1345] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/18/2017] [Indexed: 01/17/2023]
Abstract
The zebrafish (Danio rerio) is increasingly used in a broad array of biomedical studies, from cancer research to drug screening. Zebrafish also represent an emerging model organism for studying complex brain diseases. The number of zebrafish neuroscience studies is exponentially growing, significantly outpacing those conducted with rodents or other model organisms. Yet, there is still a substantial amount of resistance in adopting zebrafish as a first-choice model system. Studies of the repertoire of zebrafish neural and behavioral functions continue to reveal new opportunities for understanding the pathobiology of various CNS deficits. Although some of these models are well established in zebrafish, including models for anxiety, depression, and addiction, others are less recognized, for example, models of autism and obsessive-compulsive states. However, mounting data indicate that a wide spectrum of CNS diseases can be modeled in adult zebrafish. Here, we summarize recent findings using zebrafish CNS assays, discuss model limitations and the existing challenges, as well as outline future directions of research in this field.
Collapse
Affiliation(s)
- Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana, USA
| | - Elana V Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Jason E Warnick
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana, USA.,Department of Behavioral Sciences, Arkansas Tech University, Russellville, Arkansas, USA
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana, USA
| | - Allan V Kalueff
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China.,Laboratory of Biological Psychiatry, ITBM, St. Petersburg State University, St. Petersburg, Russia.,Ural Federal University, Ekaterinburg, Russia.,ZENEREI Research Center, Slidell, Louisiana, USA
| |
Collapse
|
17
|
Campbell LJ, Jensen AM. Phosphodiesterase Inhibitors Sildenafil and Vardenafil Reduce Zebrafish Rod Photoreceptor Outer Segment Shedding. Invest Ophthalmol Vis Sci 2017; 58:5604-5615. [PMID: 29094165 PMCID: PMC5667398 DOI: 10.1167/iovs.17-21958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose The vertebrate rod photoreceptor undergoes daily growth and shedding to renew the rod outer segment (ROS), a modified cilium that contains the phototransduction machinery. It has been demonstrated that ROS shedding is regulated by the light–dark cycle; however, we do not yet have a satisfactory understanding of the molecular mechanisms that underlie this regulation. Given that phototransduction relies on the hydrolysis of cGMP via phosphodiesterase 6 (PDE6), we examined ROS growth and shedding in zebrafish treated with cGMP-specific PDE inhibitors. Methods We used transgenic zebrafish that express an inducible, transmembrane-bound mCherry protein, which forms a stripe in the ROS following a heat shock pulse and serves as a marker of ROS renewal. Zebrafish were reared in constant darkness or treated with PDE inhibitors following heat shock. Measurements of growth and shedding were analyzed in confocal z-stacks collected from treated retinas. Results As in dark-reared zebrafish, shedding was reduced in larvae and adults treated with the PDE5/6 inhibitors sildenafil and vardenafil but not with the PDE5 inhibitor tadalafil. In addition, vardenafil noticeably affected rod inner segment morphology. The inhibitory effect of sildenafil on shedding was reversible with drug removal. Finally, cones were more sensitive than rods to the toxic effects of sildenafil and vardenafil. Conclusions We show that pharmacologic inhibition of PDE6 mimics the inhibition of shedding by prolonged constant darkness. The data show that the influence of the light–dark cycle on ROS renewal is regulated, in part, by initiating the shedding process through activation of the phototransduction machinery.
Collapse
Affiliation(s)
- Leah J Campbell
- Biology Department, University of Massachusetts, Amherst, Massachusetts, United States
| | - Abbie M Jensen
- Biology Department, University of Massachusetts, Amherst, Massachusetts, United States.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
18
|
Lewis TR, Zareba M, Link BA, Besharse JC. Cone myoid elongation involves unidirectional microtubule movement mediated by dynein-1. Mol Biol Cell 2017; 29:180-190. [PMID: 29142075 PMCID: PMC5909930 DOI: 10.1091/mbc.e17-08-0525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/03/2022] Open
Abstract
Using structured illumination microscopy and photoconvertible tubulin in zebrafish photoreceptors, it is shown that microtubules move together during myoid elongation, a dark adaptive process in cone photoreceptors. Additionally, cytoplasmic dynein-1, localized at the base of the elongating myoid, mediates this unidirectional movement of microtubules. Teleosts and amphibians exhibit retinomotor movements, morphological changes in photoreceptors regulated by light and circadian rhythms. Cone myoid elongation occurs during dark adaptation, leading to the positioning of the cone outer segment closer to the retinal pigment epithelium. Although it has been shown that microtubules are essential for cone myoid elongation, the underlying mechanism has not been established. In this work, we generated a transgenic line of zebrafish expressing a photoconvertible form of α-tubulin (tdEOS-tubulin) specifically in cone photoreceptors. Using superresolution structured illumination microscopy in conjunction with both pharmacological and genetic manipulation, we show that cytoplasmic dynein-1, which localizes to the junction between the ellipsoid and myoid, functions to shuttle microtubules from the ellipsoid into the myoid during the course of myoid elongation. We propose a novel model by which stationary complexes of cytoplasmic dynein-1 are responsible for the shuttling of microtubules between the ellipsoid and myoid is the underlying force for the morphological change of myoid elongation.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mariusz Zareba
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Joseph C Besharse
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226 .,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
19
|
Kopperud KL, Grace MS. Circadian Rhythms of Retinomotor Movement in a Marine Megapredator, the Atlantic Tarpon, Megalops atlanticus. Int J Mol Sci 2017; 18:E2068. [PMID: 28956858 PMCID: PMC5666750 DOI: 10.3390/ijms18102068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022] Open
Abstract
Many ecologically and economically important marine fish species worldwide spend portions of their lives in coastal regions that are increasingly inundated by artificial light at night. However, while extensive research illustrates the harmful effects of inappropriate light exposure on biological timing in humans, rodents and birds, comparable studies on marine fish are virtually nonexistent. This study aimed to assess the effects of light on biological clock function in the marine fish retina using the Atlantic tarpon (Megalops atlanticus) as a model. Using anti-opsin immunofluorescence, we observed robust rhythms of photoreceptor outer segment position (retinomotor movement) over the course of the daily light-dark cycle: cone outer segments were contracted toward the inner retina and rods were elongated during the day; the opposite occurred at night. Phase shifting the daily light-dark cycle caused a corresponding shift of retinomotor movement timing, and cone retinomotor movement persisted in constant darkness, indicating control by a circadian clock. Constant light abolished retinomotor movements of both photoreceptor types. Thus, abnormally-timed light exposure may disrupt normal M. atlanticus clock function and harm vision, which in turn may affect prey capture and predator avoidance. These results should help inform efforts to mitigate the effects of coastal light pollution on organisms in marine ecosystems.
Collapse
Affiliation(s)
- Kristin L Kopperud
- College of Science, Florida Institute of Technology, 150 West University Blvd, Melbourne, FL 32901, USA.
| | - Michael S Grace
- College of Science, Florida Institute of Technology, 150 West University Blvd, Melbourne, FL 32901, USA.
| |
Collapse
|
20
|
Shi L, Ko ML, Ko GYP. Retinoschisin Facilitates the Function of L-Type Voltage-Gated Calcium Channels. Front Cell Neurosci 2017; 11:232. [PMID: 28848397 PMCID: PMC5550728 DOI: 10.3389/fncel.2017.00232] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Modulation of ion channels by extracellular proteins plays critical roles in shaping synaptic plasticity. Retinoschisin (RS1) is an extracellular adhesive protein secreted from photoreceptors and bipolar cells, and it plays an important role during retinal development, as well as in maintaining the stability of retinal layers. RS1 is known to form homologous octamers and interact with molecules on the plasma membrane including phosphatidylserine, sodium-potassium exchanger complex, and L-type voltage-gated calcium channels (LTCCs). However, how this physical interaction between RS1 and ion channels might affect the channel gating properties is unclear. In retinal photoreceptors, two major LTCCs are Cav1.3 (α1D) and Cav1.4 (α1F) with distinct biophysical properties, functions and distributions. Cav1.3 is distributed from the inner segment (IS) to the synaptic terminal and is responsible for calcium influx to the photoreceptors and overall calcium homeostasis. Cav1.4 is only expressed at the synaptic terminal and is responsible for neurotransmitter release. Mutations of the gene encoding Cav1.4 cause X-linked incomplete congenital stationary night blindness type 2 (CSNB2), while null mutations of Cav1.3 cause a mild decrease of retinal light responses in mice. Even though RS1 is known to maintain retinal architecture, in this study, we present that RS1 interacts with both Cav1.3 and Cav1.4 and regulates their activations. RS1 was able to co-immunoprecipitate with Cav1.3 and Cav1.4 from porcine retinas, and it increased the LTCC currents and facilitated voltage-dependent activation in HEK cells co-transfected with RS1 and Cav1.3 or Cav1.4, thus providing evidence of a functional interaction between RS1 and LTCCs. The interaction between RS1 and Cav1.3 did not change the calcium-dependent inactivation of Cav1.3. In mice lacking RS1, the expression of Cav1.3 and Cav1.4 in the retina decreased, while in mice with Cav1.4 deletion, the retinal level of RS1 decreased. These results provide important evidence that RS1 is not only an adhesive protein promoting cell-cell adhesion, it is essential for anchoring other membrane proteins including ion channels and enhancing their function in the retina.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege Station, TX, United States
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege Station, TX, United States
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege Station, TX, United States.,Texas A&M Institute for Neuroscience, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
21
|
Wilk MA, Huckenpahler AL, Collery RF, Link BA, Carroll J. The Effect of Retinal Melanin on Optical Coherence Tomography Images. Transl Vis Sci Technol 2017; 6:8. [PMID: 28392975 PMCID: PMC5381330 DOI: 10.1167/tvst.6.2.8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/13/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose We assessed the effect of melanin on the appearance of hyperreflective outer retinal bands in optical coherence tomography (OCT) images. Methods A total of 23 normal subjects and 51 patients with albinism were imaged using the Bioptigen high-resolution spectral-domain OCT. In addition, three wild type, three albino (slc45a2b4/b4), and eight tyrosinase mosaic zebrafish were imaged with the hand-held Bioptigen Envisu R2200 OCT. To identify pigmented versus nonpigmented regions in the tyrosinase mosaic zebrafish, en face summed volume projections of the retinal pigment epithelium (RPE) were created from volume scans. Longitudinal reflectivity profiles were generated from B-scans to assess the width and maximum intensity of the RPE band in fish, or the presence of one or two RPE/Bruch's membrane (BrM) bands in humans. Results The foveal RPE/BrM appeared as two bands in 71% of locations in patients with albinism and 45% of locations in normal subjects (P = 0.0003). Pigmented zebrafish retinas had significantly greater RPE reflectance, and pigmented regions of mosaic zebrafish also had significantly broader RPE bands than all other groups. Conclusions The hyperreflective outer retinal bands in OCT images are highly variable in appearance. We showed that melanin is a major contributor to the intensity and width of the RPE band on OCT. One should use caution in extrapolating findings from OCT images of one or even a few individuals to define the absolute anatomic correlates of the hyperreflective outer retinal bands in OCT images. Translational Relevance Melanin affects the appearance of the outer retinal bands in OCT images. Use of animal models may help dissect the anatomic correlates of the complex reflective signals in OCT retinal images.
Collapse
Affiliation(s)
- Melissa A Wilk
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Current affiliation: HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, USA
| | - Alison L Huckenpahler
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ross F Collery
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
22
|
Lagman D, Franzén IE, Eggert J, Larhammar D, Abalo XM. Evolution and expression of the phosphodiesterase 6 genes unveils vertebrate novelty to control photosensitivity. BMC Evol Biol 2016; 16:124. [PMID: 27296292 PMCID: PMC4906994 DOI: 10.1186/s12862-016-0695-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/01/2016] [Indexed: 02/25/2023] Open
Abstract
Background Phosphodiesterase 6 (PDE6) is a protein complex that hydrolyses cGMP and acts as the effector of the vertebrate phototransduction cascade. The PDE6 holoenzyme consists of catalytic and inhibitory subunits belonging to two unrelated gene families. Rods and cones express distinct genes from both families: PDE6A and PDE6B code for the catalytic and PDE6G the inhibitory subunits in rods while PDE6C codes for the catalytic and PDE6H the inhibitory subunits in cones. We performed phylogenetic and comparative synteny analyses for both gene families in genomes from a broad range of animals. Furthermore, gene expression was investigated in zebrafish. Results We found that both gene families expanded from one to three members in the two rounds of genome doubling (2R) that occurred at the base of vertebrate evolution. The PDE6 inhibitory subunit gene family appears to be unique to vertebrates and expanded further after the teleost-specific genome doubling (3R). We also describe a new family member that originated in 2R and has been lost in amniotes, which we have named pde6i. Zebrafish has retained two additional copies of the PDE6 inhibitory subunit genes after 3R that are highly conserved, have high amino acid sequence identity, are coexpressed in the same photoreceptor type as their amniote orthologs and, interestingly, show strikingly different daily oscillation in gene expression levels. Conclusions Together, these data suggest specialisation related to the adaptation to different light intensities during the day-night cycle, most likely maintaining the regulatory function of the PDE inhibitory subunits in the phototransduction cascade. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0695-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Lagman
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Ilkin E Franzén
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Joel Eggert
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Xesús M Abalo
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden.
| |
Collapse
|
23
|
Hang CY, Kitahashi T, Parhar IS. Neuronal Organization of Deep Brain Opsin Photoreceptors in Adult Teleosts. Front Neuroanat 2016; 10:48. [PMID: 27199680 PMCID: PMC4846651 DOI: 10.3389/fnana.2016.00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/13/2016] [Indexed: 11/13/2022] Open
Abstract
Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the need to better understand light detection (or photoreception) systems in vertebrates. Photopigments, which comprise light-absorbing chromophores bound to a variety of G-protein coupled receptor opsins, are responsible for visual and non-visual photoreception. Non-visual opsin photopigments in the retina of mammals and extra-retinal tissues of non-mammals play an important role in non-image-forming functions of light, e.g., biological rhythms and seasonal reproduction. This review highlights the role of opsin photoreceptors in the deep brain, which could involve conserved neurochemical systems that control different time- and light-dependent physiologies in in non-mammalian vertebrates including teleost fish.
Collapse
Affiliation(s)
- Chong Yee Hang
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Takashi Kitahashi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| |
Collapse
|
24
|
Abstract
Ocular clocks, first identified in the retina, are also found in the retinal pigment epithelium (RPE), cornea, and ciliary body. The retina is a complex tissue of many cell types and considerable effort has gone into determining which cell types exhibit clock properties. Current data suggest that photoreceptors as well as inner retinal neurons exhibit clock properties with photoreceptors dominating in nonmammalian vertebrates and inner retinal neurons dominating in mice. However, these differences may in part reflect the choice of circadian output, and it is likely that clock properties are widely dispersed among many retinal cell types. The phase of the retinal clock can be set directly by light. In nonmammalian vertebrates, direct light sensitivity is commonplace among body clocks, but in mice only the retina and cornea retain direct light-dependent phase regulation. This distinguishes the retina and possibly other ocular clocks from peripheral oscillators whose phase depends on the pace-making properties of the hypothalamic central brain clock, the suprachiasmatic nuclei (SCN). However, in mice, retinal circadian oscillations dampen quickly in isolation due to weak coupling of its individual cell-autonomous oscillators, and there is no evidence that retinal clocks are directly controlled through input from other oscillators. Retinal circadian regulation in both mammals and nonmammalian vertebrates uses melatonin and dopamine as dark- and light-adaptive neuromodulators, respectively, and light can regulate circadian phase indirectly through dopamine signaling. The melatonin/dopamine system appears to have evolved among nonmammalian vertebrates and retained with modification in mammals. Circadian clocks in the eye are critical for optimum visual function where they play a role fine tuning visual sensitivity, and their disruption can affect diseases such as glaucoma or retinal degeneration syndromes.
Collapse
Affiliation(s)
- Joseph C Besharse
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
25
|
Scott CA, Marsden AN, Slusarski DC. Automated, high-throughput, in vivo analysis of visual function using the zebrafish. Dev Dyn 2016; 245:605-13. [PMID: 26890697 DOI: 10.1002/dvdy.24398] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post-fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. RESULTS To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. CONCLUSIONS This automated method along with VIZN allows rapid, high-throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small-molecule drug screens. Developmental Dynamics 245:605-613, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Autumn N Marsden
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
26
|
Abstract
Visual defects affect a large proportion of humanity, have a significant negative impact on quality of life, and cause significant economic burden. The wide variety of visual disorders and the large number of gene mutations responsible require a flexible animal model system to carry out research for possible causes and cures for the blinding conditions. With eyes similar to humans in structure and function, zebrafish are an important vertebrate model organism that is being used to study genetic and environmental eye diseases, including myopia, glaucoma, retinitis pigmentosa, ciliopathies, albinism, and diabetes. This review details the use of zebrafish in modeling human ocular diseases.
Collapse
Affiliation(s)
- Brian A Link
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| | - Ross F Collery
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| |
Collapse
|
27
|
Zhang QX, Lu RW, Messinger JD, Curcio CA, Guarcello V, Yao XC. In vivo optical coherence tomography of light-driven melanosome translocation in retinal pigment epithelium. Sci Rep 2014; 3:2644. [PMID: 24025778 PMCID: PMC3770963 DOI: 10.1038/srep02644] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/27/2013] [Indexed: 01/23/2023] Open
Abstract
Optical coherence tomography (OCT) may revolutionize fundamental investigation and clinical management of age-related macular degeneration and other eye diseases. However, quantitative OCT interpretation is hampered due to uncertain sub-cellular correlates of reflectivity in the retinal pigment epithelium (RPE) and photoreceptor. The purpose of this study was twofold: 1) to test OCT correlates in the RPE, and 2) to demonstrate the feasibility of longitudinal OCT monitoring of sub-cellular RPE dynamics. A high resolution OCT was constructed to achieve dynamic imaging of frog eyes, in which light-driven translocation of RPE melanosomes occurred within the RPE cell body and apical processes. Comparative histological examination of dark- and light-adapted eyes indicated that the RPE melanin granule, i.e., melanosome, was a primary OCT correlate. In vivo OCT imaging of RPE melanosomes opens the opportunity for quantitative assessment of RPE abnormalities associated with disease, and enables longitudinal investigation of RPE kinetics correlated with visual function.
Collapse
Affiliation(s)
- Qiu-Xiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | | | | | | |
Collapse
|
28
|
Wasfy MM, Matsui JI, Miller J, Dowling JE, Perkins BD. myosin 7aa(-/-) mutant zebrafish show mild photoreceptor degeneration and reduced electroretinographic responses. Exp Eye Res 2014; 122:65-76. [PMID: 24698764 DOI: 10.1016/j.exer.2014.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 01/20/2023]
Abstract
Mutations in myosin VIIa (MYO7A) cause Usher Syndrome 1B (USH1B), a disease characterized by the combination of sensorineural hearing loss and visual impairment termed retinitis pigmentosa (RP). Although the shaker-1 mouse model of USH1B exists, only minor defects in the retina have been observed during its lifespan. Previous studies of the zebrafish mariner mutant, which also carries a mutation in myo7aa, revealed balance and hearing defects in the mutants but the retinal phenotype has not been described. We found elevated cell death in the outer nuclear layer (ONL) of myo7aa(-/-) mutants. While myo7aa(-/-) mutants retained visual behaviors in the optokinetic reflex (OKR) assay, electroretinogram (ERG) recordings revealed a significant decrease in both a- and b-wave amplitudes in mutant animals, but not a change in ERG threshold sensitivity. Immunohistochemistry showed mislocalization of rod and blue cone opsins and reduced expression of rod-specific markers in the myo7aa(-/-) ONL, providing further evidence that the photoreceptor degeneration observed represents the initial stages of the RP. Further, constant light exposure resulted in widespread photoreceptor degeneration and the appearance of large holes in the retinal pigment epithelium (RPE). No differences were observed in the retinomotor movements of the photoreceptors or in melanosome migration within the RPE, suggesting that myo7aa(-/-) does not function in these processes in teleosts. These results indicate that the zebrafish myo7aa(-/-) mutant is a useful animal model for the RP seen in humans with USH1B.
Collapse
Affiliation(s)
- Meagan M Wasfy
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jonathan I Matsui
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jessica Miller
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - John E Dowling
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Brian D Perkins
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Emran F, Dowling JE. Circadian Rhythms and Vision in Zebrafish. THE RETINA AND CIRCADIAN RHYTHMS 2014:171-193. [DOI: 10.1007/978-1-4614-9613-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
30
|
Huang CCY, Ko ML, Ko GYP. A new functional role for mechanistic/mammalian target of rapamycin complex 1 (mTORC1) in the circadian regulation of L-type voltage-gated calcium channels in avian cone photoreceptors. PLoS One 2013; 8:e73315. [PMID: 23977383 PMCID: PMC3747127 DOI: 10.1371/journal.pone.0073315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/19/2013] [Indexed: 01/10/2023] Open
Abstract
In the retina, the L-type voltage-gated calcium channels (L-VGCCs) are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC) signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.
Collapse
Affiliation(s)
- Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Michael Lee Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Gladys Yi-Ping Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Yammouni R, Bozzano A, Douglas RH. A latitudinal cline in the efficacy of endogenous signals: evidence derived from retinal cone contraction in fish. ACTA ACUST UNITED AC 2011; 214:501-8. [PMID: 21228209 DOI: 10.1242/jeb.048538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Like many physiological systems synchronised to the light:dark cycle, retinomotor movements in 'lower' vertebrates are controlled by both the ambient illumination and input from endogenous circadian oscillators. In the present study, we examine the relative influence of these two signals in various species of teleost fish with different latitudes of origin. We find equatorial species show very strong endogenous control. The cones of the glowlight tetra, for example, continue to go through undiminished cycles of contraction and relaxation that mirror the previous light:dark cycle for at least two weeks in continual darkness. To quantify the relative effectiveness of the ambient light compared with endogenous signals in causing cone contraction, the degree to which seven teleost species responded to light during the dark phase of their light:dark cycle was examined. In this situation the retina receives conflicting instructions; while the light is acting directly to cause light adaptation, any endogenous signal tends to keep the retinal elements dark adapted. The further from the equator a species originated, the more its cones contracted in response to such illumination, suggesting animals from higher latitudes make little use of endogenous oscillators and rely more on ambient illumination to control behaviours. Equatorial species, however, rely on internal pacemakers to a much greater degree and are relatively insensitive to exogenous light signals. Because these data are consistent with published observations in systems as diverse as melatonin synthesis in Arctic reindeer and the behaviour of regional populations of Drosophila, latitudinal clines in the efficacy of circadian oscillators may be a common feature among animals.
Collapse
Affiliation(s)
- Robert Yammouni
- Henry Wellcome Laboratory for Vision Sciences, Department of Optometry and Visual Science, City University London, Northampton Square, London, EC1V 0HB, UK
| | | | | |
Collapse
|
32
|
|
33
|
Abstract
The retina displays numerous processes that follow a circadian rhythm. These processes are coordinated through the direct action of light on photoreceptive molecules and, in the absence of light, through autocrine/paracrine actions of extracellular neuromodulators. We previously described the expression of the genes encoding the secreted heparin-binding growth factors, midkine-a (mdka) and midkine-b (mdkb), in the retina of the zebrafish. Here, we provide evidence that the expression of mdka and mdkb follows a daily rhythm, which is independent of the presence or absence of light, and we propose that the expression of mdka is regulated by the circadian clock. Both qualitative and quantitative measures show that for mdka, the levels of mRNA and protein decrease during the night and increase during the subjective day. Qualitative measures show that the expression of mdkb increases during the second half of the subjective night and decreases during the second half of the subjective day. Within horizontal cells, the two midkine paralogs show asynchronous circadian regulation. Though intensely studied in the contexts of physiology and disease, this is the first study to provide evidence for the circadian regulation of midkines in the vertebrate nervous system.
Collapse
|
34
|
Abstract
Vision mediating photoreceptor cells are specialized light-sensitive neurons in the outer layer of the vertebrate retina. The human retina contains approximately 130 million of such photoreceptors, which enable images of the external environment to be captured at high resolution and high sensitivity. Rod and cone photoreceptor subtypes are further specialized for sensing light in low and high illumination, respectively. To enable visual function, these photoreceptors have developed elaborate morphological domains for the detection of light (outer segments), for changing cell shape (inner segments), and for communication with neighboring retinal neurons (synaptic terminals). Furthermore, rod and cone subtypes feature unique morphological variations of these specialized characteristics. Here, we review the major aspects of vertebrate photoreceptor morphology and key genetic mechanisms that drive their formation. These mechanisms are necessary for cell differentiation as well as function. Their defects lead to cell death.
Collapse
Affiliation(s)
- Breandán Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| | | |
Collapse
|
35
|
Abstract
Ion channels are the gatekeepers to neuronal excitability. Retinal neurons of vertebrates and invertebrates, neurons of the suprachiasmatic nucleus (SCN) of vertebrates, and pinealocytes of non-mammalian vertebrates display daily rhythms in their activities. The interlocking transcription-translation feedback loops with specific post-translational modulations within individual cells form the molecular clock, the basic mechanism that maintains the autonomic approximately 24-h rhythm. The molecular clock regulates downstream output signaling pathways that further modulate activities of various ion channels. Ultimately, it is the circadian regulation of ion channel properties that govern excitability and behavior output of these neurons. In this review, we focus on the recent development of research in circadian neurobiology mainly from 1980 forward. We will emphasize the circadian regulation of various ion channels, including cGMP-gated cation channels, various voltage-gated calcium and potassium channels, Na(+)/K(+)-ATPase, and a long-opening cation channel. The cellular mechanisms underlying the circadian regulation of these ion channels and their functions in various tissues and organisms will also be discussed. Despite the magnitude of chronobiological studies in recent years, the circadian regulation of ion channels still remains largely unexplored. Through more investigation and understanding of the circadian regulation of ion channels, the future development of therapeutic strategies for the treatment of sleep disorders, cardiovascular diseases, and other illnesses linked to circadian misalignment will benefit.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | |
Collapse
|
36
|
Ko ML, Shi L, Ko GYP. Circadian controls outweigh acute illumination effects on the activity of extracellular signal-regulated kinase (ERK) in the retina. Neurosci Lett 2009; 451:74-8. [PMID: 19111596 PMCID: PMC2667620 DOI: 10.1016/j.neulet.2008.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/02/2008] [Accepted: 12/16/2008] [Indexed: 11/26/2022]
Abstract
Extracellular signal-regulated kinase (ERK) participates in numerous cellular functions including circadian-related activities. In the retina, the activity of ERK is under circadian control. However, it is not clear whether acute illumination changes or the circadian clocks in the retina have a larger impact on ERK activity, and the cellular distribution of activated ERK (pERK) as a function of circadian time in cone photoreceptors is not known. Chick embryos were exposed to the light or dark for various lengths of time after 12:12h light-dark (LD) cycles, or on the second day of constant darkness after LD entrainment. Retinas were excised after various exposure times and relative ERK activity was determined by western immunoblotting. We also performed immunohistochemical and immunocytochemical stainings on circadian entrained retina sections and dissociated retina cells. There is about a fourfold difference in ERK activity between retinas harvested at circadian time (CT) 4 and CT 16, and the internal circadian control of ERK activity in the retina overcomes external light exposure. Also, during the subjective night, pERK was more apparent in the outer segment of cones, while pERK distribution was more uniform throughout the photoreceptors during the subjective day. Our results imply that the activity of retinal ERK is influenced more by circadian oscillators than acute illumination changes. Hence, the circadian oscillators in retina photoreceptors play a major role in the regulation of photoreceptor physiology, which leads to the circadian control of light sensitivity in photoreceptors.
Collapse
Affiliation(s)
- Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| |
Collapse
|
37
|
Vallone D, Lahiri K, Dickmeis T, Foulkes NS. Zebrafish cell clocks feel the heat and see the light! Zebrafish 2008; 2:171-87. [PMID: 18248192 DOI: 10.1089/zeb.2005.2.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The zebrafish has rapidly become established as one of the most valuable vertebrate models for studying circadian clock function. A major initial attraction was its utility in large-scale genetic screens. It subsequently emerged that most zebrafish cells possess circadian clocks that can be entrained directly by exposure to temperature or light dark cycles, a property shared by several zebrafish cell lines. This is not the case for mammals, where the retina is the primary source of light input to the clock. Furthermore, mammalian cell culture clocks can only be entrained by acute culture treatments such as serum shocks. Thus, the zebrafish is proving invaluable to study light and temperature input to the vertebrate clock. In addition, the accessibility of its early developmental stages has placed the zebrafish at the forefront of studies aimed at understanding how the circadian clock is established during embryogenesis.
Collapse
Affiliation(s)
- Daniela Vallone
- Max-Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
38
|
Ko ML, Liu Y, Shi L, Trump D, Ko GYP. Circadian regulation of retinoschisin in the chick retina. Invest Ophthalmol Vis Sci 2008; 49:1615-21. [PMID: 18385082 PMCID: PMC2367121 DOI: 10.1167/iovs.07-1189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the circadian regulation and acute illumination effects on the expression and secretion of retinoschisin from vertebrate retinas. METHODS Retinas were studied on the second day of constant darkness (DD) after several days of entrainment to 12-hour light/12-hour dark (LD) cycles in ovo or in vitro. Quantitative real-time PCR and Western immunoblotting were used to examine the mRNA and protein expressions of retinoschisin at different circadian time points. Pharmacologic treatments in whole retina and dissociated retinal cell cultures were used to investigate the cellular mechanisms underlying the circadian regulation of retinoschisin content and secretion. Different illumination conditions were given to examine changes in retinoschisin content in association with acute light/dark adaptation. RESULTS The mRNA level, protein expression, and secretion of retinoschisin were under circadian control, all of which were higher at night and lower during the day. The Ras, MAP kinase Erk, CaMKII pathway served as part of the circadian output regulating the rhythmicity of retinoschisin. Blockage of L-type VGCCs dampened the retinoschisin rhythm, but inhibition of L-type VGCCs did not completely abolish the secretion of retinoschisin. The protein expression of retinoschisin also responded to acute illumination changes. CONCLUSIONS The mRNA and protein expression, as well as retinoschisin secretion, are under circadian control. L-type VGCCs play a role in the circadian regulation of retinoschisin, but the molecular mechanism underlying retinoschisin secretion does not depend on L-type VGCCs. Protein expression of retinoschisin in response to acute illumination changes depends on previous light exposure experience.
Collapse
Affiliation(s)
- Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Yilin Liu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Present affiliation: Department of Clinical Science, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Dorothy Trump
- Medical Genetics Research Group and Centre for Molecular Medicine, Faculty of Medical and Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
39
|
Emond MP, McNeil R, Cabana T, Guerra CG, Lachapelle P. Comparing the retinal structures and functions in two species of gulls (Larus delawarensis and Larus modestus) with significant nocturnal behaviours. Vision Res 2006; 46:2914-25. [PMID: 16647740 DOI: 10.1016/j.visres.2006.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 12/09/2005] [Accepted: 02/24/2006] [Indexed: 11/19/2022]
Abstract
Ring-billed gulls (Larus delawarensis) and gray gulls (Larus modestus) are two species active both by day and night. We have investigated the retinal adaptations that allow the diurnal and nocturnal behaviours of these two species. Electroretinograms and histological analyses show that both species have a duplex retina in which cones outnumber rods, but the number of rods appears sufficient to provide vision at night. Their retinas respond over the same scotopic dynamic range of 3.4logcdm(-2), which encompasses all of the light levels occurring at night in their photic environment. The amplitudes of the scotopic saturated a- and b-wave responses as well as the photopic saturated b-wave response and the photopic sensitivity parameter S are however higher in ring-billed gulls than in gray gulls. Moreover, the process of dark adaptation is about 30min faster in gray gulls than in ring-billed gulls. Our results suggest that both species have acquired in the course of their evolution functional adaptations that can be related to their specific photic environment.
Collapse
Affiliation(s)
- M P Emond
- Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Que., Canada.
| | | | | | | | | |
Collapse
|
40
|
Hodel C, Neuhauss SCF, Biehlmaier O. Time course and development of light adaptation processes in the outer zebrafish retina. ACTA ACUST UNITED AC 2006; 288:653-62. [PMID: 16721865 DOI: 10.1002/ar.a.20329] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinomotor movements are morphological changes in the outer retina in response to changing light conditions. They can be separated into two components: Migration of pigment granules within the microvilli of the retinal pigment epithelium (RPE) and positional changes in photoreceptor cells. These positional changes optimize exposure of the cone and rod photoreceptors to light. The aim of this study was to analyze both the time course of retinomotor movements in the adult zebrafish and the maturation of these processes in the developing fish. We show that retinomotor movements are used as a dark/light adaptation mechanism in zebrafish. In adult zebrafish, melanin granules of the RPE migrate with constant speed and reach the fully light adapted (LA) state approximately after 1 h. In contrast, about two thirds of double cone outer segment movements are finished in 5 min, and are fully completed in 10 to 20 min. During development there are three crucial stages leading to mature retinomotor movements in response to light: at 5 dpf (days post fertilization) the migration of pigment granules begins, at 20 dpf the pigment granules condense in the apical part of the RPE microvilli, and at 28 dpf, concomitant with the functional maturation of rods, the double cones contract as in adult retinas.
Collapse
Affiliation(s)
- Corinne Hodel
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | | |
Collapse
|