1
|
Xie Z, Zhao S, Li Y, Deng Y, Shi Y, Chen X, Li Y, Li H, Chen C, Wang X, Liu E, Tu Y, Shi P, Tong J, Gutierrez-Beltran E, Li J, Bozhkov PV, Qian W, Zhou M, Wang W. Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition. NATURE PLANTS 2023; 9:1481-1499. [PMID: 37640933 DOI: 10.1038/s41477-023-01499-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Phenolic acids (PAs) secreted by donor plants suppress the growth of their susceptible plant neighbours. However, how structurally diverse ensembles of PAs are perceived by plants to mediate interspecific competition remains a mystery. Here we show that a plant stress granule (SG) marker, RNA-BINDING PROTEIN 47B (RBP47B), is a sensor of PAs in Arabidopsis. PAs, including salicylic acid, 4-hydroxybenzoic acid, protocatechuic acid and so on, directly bind RBP47B, promote its phase separation and trigger SG formation accompanied by global translation inhibition. Salicylic acid-induced global translation inhibition depends on RBP47 family members. RBP47s regulate the proteome rather than the absolute quantity of SG. The rbp47 quadruple mutant shows a reduced sensitivity to the inhibitory effect of the PA mixture as well as to that of PA-rich rice when tested in a co-culturing ecosystem. In this Article, we identified the long sought-after PA sensor as RBP47B and illustrated that PA-induced SG-mediated translational inhibition was one of the PA perception mechanisms.
Collapse
Affiliation(s)
- Zhouli Xie
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Shuai Zhao
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Yuhua Deng
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yabo Shi
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoyuan Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yue Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Haiwei Li
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Changtian Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Enhui Liu
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Yuchen Tu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Peng Shi
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Jinjin Tong
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Emilio Gutierrez-Beltran
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, University of Sevilla, Sevilla, Spain
| | - Jiayu Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Weiqiang Qian
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
2
|
Ruiz-Solaní N, Salguero-Linares J, Armengot L, Santos J, Pallarès I, van Midden KP, Phukkan UJ, Koyuncu S, Borràs-Bisa J, Li L, Popa C, Eisele F, Eisele-Bürger AM, Hill SM, Gutiérrez-Beltrán E, Nyström T, Valls M, Llamas E, Vilchez D, Klemenčič M, Ventura S, Coll NS. Arabidopsis metacaspase MC1 localizes in stress granules, clears protein aggregates, and delays senescence. THE PLANT CELL 2023; 35:3325-3344. [PMID: 37401663 PMCID: PMC10473220 DOI: 10.1093/plcell/koad172] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Stress granules (SGs) are highly conserved cytoplasmic condensates that assemble in response to stress and contribute to maintaining protein homeostasis. These membraneless organelles are dynamic, disassembling once the stress is no longer present. Persistence of SGs due to mutations or chronic stress has been often related to age-dependent protein-misfolding diseases in animals. Here, we find that the metacaspase MC1 is dynamically recruited into SGs upon proteotoxic stress in Arabidopsis (Arabidopsis thaliana). Two predicted disordered regions, the prodomain and the 360 loop, mediate MC1 recruitment to and release from SGs. Importantly, we show that MC1 has the capacity to clear toxic protein aggregates in vivo and in vitro, acting as a disaggregase. Finally, we demonstrate that overexpressing MC1 delays senescence and this phenotype is dependent on the presence of the 360 loop and an intact catalytic domain. Together, our data indicate that MC1 regulates senescence through its recruitment into SGs and this function could potentially be linked to its remarkable protein aggregate-clearing activity.
Collapse
Affiliation(s)
- Nerea Ruiz-Solaní
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jose Salguero-Linares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Laia Armengot
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Katarina P van Midden
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ujjal J Phukkan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Júlia Borràs-Bisa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Liang Li
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Crina Popa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Frederik Eisele
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Anna Maria Eisele-Bürger
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Sandra Malgrem Hill
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Emilio Gutiérrez-Beltrán
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla and Consejo Superior de Investigaciones Científicas), 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| | - Thomas Nyström
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Ernesto Llamas
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, Cologne D-50674, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08001, Spain
| |
Collapse
|
3
|
Maruri-Lopez I, Chodasiewicz M. Involvement of small molecules and metabolites in regulation of biomolecular condensate properties. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102385. [PMID: 37348448 DOI: 10.1016/j.pbi.2023.102385] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/24/2023]
Abstract
Biomolecular condensate (BMCs) formation facilitates the grouping of molecules, including proteins, nucleic acids, and small molecules, creating specific microenvironments with particular functions. They are often assembled through liquid-liquid phase separation (LLPS), a phenomenon that arises when specific proteins, nucleic acids, and small molecules demix from the aqueous environment into another phase with different physiochemical properties. BMCs assemble and disassemble in response to external and internal stimuli such as temperature, molecule concentration, ionic strength, pH, and cellular redox state. Likewise, the nature of the regulatory stimuli may affect the lifespan, morphology, and content of BMCs. In humans, compelling evidence points to the critical role of BMCs in diseases. By contrast, the link between BMC formation, stress resistance, and cell survival has not been revealed in plants. Recent studies have pointed out the nascent roles of small molecules in the assembly and dynamics of BMCs; however, this is still an emerging field of study. This review briefly highlights the most significant efforts to identify the molecular mechanisms between small molecules and BMC formation and regulation in plants and other organisms. We then discuss (i) how small molecules exert control over the BMC assembly and dynamics in plants and (ii) how small molecules can influence the formation and material properties of plant BMCs. Finally, we propose novel alternatives that might help to understand the relationship between chemicals and condensation dynamics and their possible application to plant biotechnology.
Collapse
Affiliation(s)
- Israel Maruri-Lopez
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Monika Chodasiewicz
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Huang W, Zhang L, Zhu Y, Chen J, Zhu Y, Lin F, Chen X, Huang J. A genetic screen in Arabidopsis reveals the identical roles for RBP45d and PRP39a in 5' cryptic splice site selection. FRONTIERS IN PLANT SCIENCE 2022; 13:1086506. [PMID: 36618610 PMCID: PMC9813592 DOI: 10.3389/fpls.2022.1086506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Cryptic splice sites in eukaryotic genome are generally dormant unless activated by mutation of authentic splice sites or related splicing factors. How cryptic splice sites are used remains unclear in plants. Here, we identified two cryptic splicing regulators, RBP45d and PRP39a that are homologs of yeast U1 auxiliary protein Nam8 and Prp39, respectively, via genetic screening for suppressors of the virescent sot5 mutant, which results from a point mutation at the 5' splice site (5' ss) of SOT5 intron 7. Loss-of-function mutations in RBP45d and PRP39a significantly increase the level of a cryptically spliced variant that encodes a mutated but functional sot5 protein, rescuing sot5 to the WT phenotype. We furtherly demonstrated that RBP45d and PRP39a interact with each other and also with the U1C, a core subunit of U1 snRNP. We found that RBP45d directly binds to the uridine (U)-rich RNA sequence downstream the 5' ss of SOT5 intron 7. However, other RBP45/47 members do not function redundantly with RBP45d, at least in regulation of cryptic splicing. Taken together, RBP45d promotes U1 snRNP to recognize the specific 5' ss via binding to intronic U-rich elements in plants.
Collapse
Affiliation(s)
- Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liqun Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yajuan Zhu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yawen Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Fengru Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaomei Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
5
|
Wang L, Xu D, Scharf K, Frank W, Leister D, Kleine T. The RNA-binding protein RBP45D of Arabidopsis promotes transgene silencing and flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1397-1415. [PMID: 34919766 DOI: 10.1111/tpj.15637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
RNA-directed DNA methylation (RdDM) helps to defend plants against invasive nucleic acids. In the canonical form of RdDM, 24-nt small interfering RNAs (siRNAs) are produced by DICER-LIKE 3 (DCL3). The siRNAs are loaded onto ARGONAUTE (AGO) proteins leading ultimately to de novo DNA methylation. Here, we introduce the Arabidopsis thaliana prors1 (LUC) transgenic system, in which 24-nt siRNAs are generated to silence the promoter-LUC construct. A forward genetic screen performed with this system identified, besides known components of RdDM (NRPD2A, RDR2, AGO4 and AGO6), the RNA-binding protein RBP45D. RBP45D is involved in CHH (where H is A, C or T) DNA methylation, and maintains siRNA production originating from the LUC transgene. RBP45D is localized to the nucleus, where it is associated with small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). RNA-Seq analysis showed that in CRISPR/Cas-mediated rbp-ko lines FLOWERING LOCUS C (FLC) mRNA levels are upregulated and several loci differentially spliced, among them FLM. In consequence, loss of RBP45D delays flowering, presumably mediated by the release of FLC levels and/or alternative splicing of FLM. Moreover, because levels and processing of transcripts of known RdDM genes are not altered in rbp-ko lines, RBP45D should have a more direct function in transgene silencing, probably independent of the canonical RdDM pathway. We suggest that RBP45D facilitates siRNA production by stabilizing either the precursor RNA or the slicer protein. Alternatively, RBP45D could be involved in chromatin modifications, participate in retention of Pol IV transcripts and/or in Pol V-dependent lncRNA retention in chromatin to enable their scaffold function.
Collapse
Affiliation(s)
- Liangsheng Wang
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Duorong Xu
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Kristin Scharf
- Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Chang P, Hsieh HY, Tu SL. The U1 snRNP component RBP45d regulates temperature-responsive flowering in Arabidopsis. THE PLANT CELL 2022; 34:834-851. [PMID: 34791475 PMCID: PMC8824692 DOI: 10.1093/plcell/koab273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Precursor messenger RNA (Pre-mRNA) splicing is a crucial step in gene expression whereby the spliceosome produces constitutively and alternatively spliced transcripts. These transcripts not only diversify the transcriptome, but also play essential roles in plant development and responses to environmental changes. Much evidence indicates that regulation at the pre-mRNA splicing step is important for flowering time control; however, the components and detailed mechanism underlying this process remain largely unknown. Here, we identified the splicing factor RNA BINDING PROTEIN 45d (RBP45d), a member of the RBP45/47 family in Arabidopsis thaliana. Using sequence comparison and biochemical analysis, we determined that RBP45d is a component of the U1 small nuclear ribonucleoprotein (U1 snRNP) with functions distinct from other family members. RBP45d associates with the U1 snRNP by interacting with pre-mRNA-processing factor 39a (PRP39a) and directly regulates alternative splicing (AS) for a specific set of genes. Plants with loss of RBP45d and PRP39a function exhibited defects in temperature-induced flowering, potentially due to the misregulation of temperature-sensitive AS of FLOWERING LOCUS M as well as the accumulation of the flowering repressor FLOWERING LOCUS C. Taken together, RBP45d is a U1 snRNP component in plants that functions with PRP39a in temperature-mediated flowering.
Collapse
Affiliation(s)
- Ping Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Science, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hsin-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Science, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
7
|
The Multifunctional Faces of T-Cell Intracellular Antigen 1 in Health and Disease. Int J Mol Sci 2022; 23:ijms23031400. [PMID: 35163320 PMCID: PMC8836218 DOI: 10.3390/ijms23031400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein that is expressed in many tissues and in the vast majority of species, although it was first discovered as a component of human cytotoxic T lymphocytes. TIA1 has a dual localization in the nucleus and cytoplasm, where it plays an important role as a regulator of gene-expression flux. As a multifunctional master modulator, TIA1 controls biological processes relevant to the physiological functioning of the organism and the development and/or progression of several human pathologies. This review summarizes our current knowledge of the molecular aspects and cellular processes involving TIA1, with relevance for human pathophysiology.
Collapse
|
8
|
Duggal Y, Kurasz JE, Fontaine BM, Marotta NJ, Chauhan SS, Karls AC, Weinert EE. Cellular Effects of 2',3'-Cyclic Nucleotide Monophosphates in Gram-Negative Bacteria. J Bacteriol 2022; 204:e0020821. [PMID: 34662237 PMCID: PMC8765455 DOI: 10.1128/jb.00208-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Organismal adaptations to environmental stimuli are governed by intracellular signaling molecules such as nucleotide second messengers. Recent studies have identified functional roles for the noncanonical 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) in both eukaryotes and prokaryotes. In Escherichia coli, 2',3'-cNMPs are produced by RNase I-catalyzed RNA degradation, and these cyclic nucleotides modulate biofilm formation through unknown mechanisms. The present work dissects cellular processes in E. coli and Salmonella enterica serovar Typhimurium that are modulated by 2',3'-cNMPs through the development of cell-permeable 2',3'-cNMP analogs and a 2',3'-cyclic nucleotide phosphodiesterase. Utilization of these chemical and enzymatic tools, in conjunction with phenotypic and transcriptomic investigations, identified pathways regulated by 2',3'-cNMPs, including flagellar motility and biofilm formation, and by oligoribonucleotides with 3'-terminal 2',3'-cyclic phosphates, including responses to cellular stress. Furthermore, interrogation of metabolomic and organismal databases has identified 2',3'-cNMPs in numerous organisms and homologs of the E. coli metabolic proteins that are involved in key eukaryotic pathways. Thus, the present work provides key insights into the roles of these understudied facets of nucleotide metabolism and signaling in prokaryotic physiology and suggest broad roles for 2',3'-cNMPs among bacteria and eukaryotes. IMPORTANCE Bacteria adapt to environmental challenges by producing intracellular signaling molecules that control downstream pathways and alter cellular processes for survival. Nucleotide second messengers serve to transduce extracellular signals and regulate a wide array of intracellular pathways. Recently, 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) were identified as contributing to the regulation of cellular pathways in eukaryotes and prokaryotes. In this study, we define previously unknown cell processes that are affected by fluctuating 2',3'-cNMP levels or RNA oligomers with 2',3'-cyclic phosphate termini in E. coli and Salmonella Typhimurium, providing a framework for studying novel signaling networks in prokaryotes. Furthermore, we utilize metabolomics databases to identify additional prokaryotic and eukaryotic species that generate 2',3'-cNMPs as a resource for future studies.
Collapse
Affiliation(s)
- Yashasvika Duggal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | - Nick J. Marotta
- Molecular, Cellular and Integrative Biosciences Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Shikha S. Chauhan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anna C. Karls
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Emily E. Weinert
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
9
|
Yan Y, Gan J, Tao Y, Okita TW, Tian L. RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:882596. [PMID: 35783947 PMCID: PMC9240754 DOI: 10.3389/fpls.2022.882596] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
To cope with abiotic environmental stress, plants rapidly change their gene expression transcriptionally and post-transcriptionally, the latter by translational suppression of selected proteins and the assembly of cytoplasmic stress granules (SGs) that sequester mRNA transcripts. RNA-binding proteins (RBPs) are the major players in these post-transcriptional processes, which control RNA processing in the nucleus, their export from the nucleus, and overall RNA metabolism in the cytoplasm. Because of their diverse modular domain structures, various RBP types dynamically co-assemble with their targeted RNAs and interacting proteins to form SGs, a process that finely regulates stress-responsive gene expression. This review summarizes recent findings on the involvement of RBPs in adapting plants to various abiotic stresses via modulation of specific gene expression events and SG formation. The relationship of these processes with the stress hormone abscisic acid (ABA) is discussed.
Collapse
Affiliation(s)
- Yanyan Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jianghuang Gan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yilin Tao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Thomas W. Okita,
| | - Li Tian
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Li Tian,
| |
Collapse
|
10
|
Zhang W, Zhu Z, Du P, Zhang C, Yan H, Wang W, Li W. NtRBP45, a nuclear RNA-binding protein of Nicotiana tabacum, facilitates post-transcriptional gene silencing. PLANT DIRECT 2020; 4:e00294. [PMID: 33615112 PMCID: PMC7880056 DOI: 10.1002/pld3.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The tobacco RBP45 is a nuclear RNA binding protein (RBP). In this study, we identified that the gene expression of NtRBP45 was significantly up-regulated upon the Tobacco mosaic virus infection and the central region of the protein accounted for its nuclear localization. In particular, using a green fluorescent protein-based transient suppression assay, we uncovered that the transiently overexpressed NtRBP45 was able to enhance local post-transcriptional gene silencing (PTGS), facilitate siRNA accumulation, and compromise the RNA silencing suppression mediated by Tomato aspermy virus 2b protein. Deletion mutagenesis showed that both the N- and C-terminal regions of NtRBP45 were necessary for enhancing PTGS. The data overall indicated a novel RNA silencing factor that might participate in antiviral defense.
Collapse
Affiliation(s)
- Wangbin Zhang
- College of Plant ScienceTarim UniversityAlarPR China
- Southern Xinjiang Key Laboratory of IPMTarim UniversityAlarPR China
| | - Zongcai Zhu
- College of Plant ScienceTarim UniversityAlarPR China
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Peixiu Du
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Chao Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Hailin Yan
- College of Plant ScienceTarim UniversityAlarPR China
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Wenguo Wang
- Key Laboratory of Development and Application of Rural Renewable EnergyMinistry of Agriculture and Rural AffairsChengduPR China
| | - Weimin Li
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| |
Collapse
|
11
|
Characterization of Local and Systemic Impact of Whitefly ( Bemisia tabaci) Feeding and Whitefly-Transmitted Tomato Mottle Virus Infection on Tomato Leaves by Comprehensive Proteomics. Int J Mol Sci 2020; 21:ijms21197241. [PMID: 33008056 PMCID: PMC7583044 DOI: 10.3390/ijms21197241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 11/23/2022] Open
Abstract
Tomato mottle virus (ToMoV) is a single-stranded DNA (ssDNA) begomovirus transmitted to solanaceous crops by the whitefly species complex (Bemisia tabaci), causing stunted growth, leaf mottling, and reduced yield. Using a genetic repertoire of seven genes, ToMoV pathogenesis includes the manipulation of multiple plant biological processes to circumvent antiviral defenses. To further understand the effects of whitefly feeding and whitefly-transmitted ToMoV infection on tomato plants (Solanum lycopersicum ‘Florida Lanai’), we generated comprehensive protein profiles of leaves subjected to feeding by either viruliferous whiteflies harboring ToMoV, or non-viruliferous whiteflies, or a no-feeding control. The effects of whitefly feeding and ToMoV infection were measured both locally and systemically by sampling either a mature leaf directly from the site of clip-cage confined whitefly feeding, or from a newly formed leaf 10 days post feeding (dpf). At 3 dpf, tomato’s response to ToMoV included proteins associated with translation initiation and elongation as well as plasmodesmata dynamics. In contrast, systemic impacts of ToMoV on younger leaves 10 dpf were more pronounced and included a virus-specific change in plant proteins associated with mRNA maturation and export, RNA-dependent DNA methylation, and other antiviral plant processes. Our analysis supports previous findings and provides novel insight into tomato’s local and systemic response to whitefly feeding and ToMoV infection.
Collapse
|
12
|
Abstract
To investigate factors influencing pre-mRNA splicing in plants, we conducted a forward genetic screen using an alternatively-spliced GFP reporter gene in Arabidopsis thaliana. This effort generated a collection of sixteen mutants impaired in various splicing-related proteins, many of which had not been recovered in any prior genetic screen or implicated in splicing in plants. The factors are predicted to act at different steps of the spliceosomal cycle, snRNP biogenesis pathway, transcription, and mRNA transport. We have described eleven of the mutants in recent publications. Here we present the final five mutants, which are defective, respectively, in RNA-BINDING PROTEIN 45D (rbp45d), DIGEORGE SYNDROME CRITICAL REGION 14 (dgcr14), CYCLIN-DEPENDENT KINASE G2 (cdkg2), INTERACTS WITH SPT6 (iws1) and CAP BINDING PROTEIN 80 (cbp80). We provide RNA-sequencing data and analyses of differential gene expression and alternative splicing patterns for the cbp80 mutant and for several previously published mutants, including smfa and new alleles of cwc16a, for which such information was not yet available. Sequencing of small RNAs from the cbp80 mutant highlighted the necessity of wild-type CBP80 for processing of microRNA (miRNA) precursors into mature miRNAs. Redundancy tests of paralogs encoding several of the splicing factors revealed their functional non-equivalence in the GFP reporter gene system. We discuss the cumulative findings and their implications for the regulation of pre-mRNA splicing efficiency and alternative splicing in plants. The mutant collection provides a unique resource for further studies on a coherent set of splicing factors and their roles in gene expression, alternative splicing and plant development.
Collapse
|
13
|
Chen MX, Sun C, Zhang KL, Song YC, Tian Y, Chen X, Liu YG, Ye NH, Zhang J, Qu S, Zhu FY. SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant. BMC PLANT BIOLOGY 2019; 19:445. [PMID: 31651235 PMCID: PMC6813987 DOI: 10.1186/s12870-019-2018-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/05/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Apple is one of the most popular fruit crops world-wide and its skin color is an important quality consideration essential for commercial value. However, the strategy on genetic breeding for red skin apple and the genetic basis of skin color differentiation is very limited and still largely unknown. RESULTS Here, we reported a bud sport mutant of Fuji apple with red skin color and enhanced anthocyanins accumulation. Quantitative SWATH-MS (sequential window acquisition of all theoretical spectra-mass spectrometry) proteomics investigations revealed proteome changes in the apple red skin bud mutation and a total of 451 differentially expressed proteins were identified in apple skin. The mutant showed significantly increased expression levels of photosynthesis-related proteins, stress-related proteins as well as anthocyanins biosynthesis pathway. On the other hand, substantial downregulation of mitogen-activated protein kinase 4 (MAPK4) and mevalonate kinase (MVK) were detected, indicating a promising role for the red skin color development in the mutant. Furthermore, we also hypothesize that a post-transcriptional regulation of the skin color formation occurs in the mutant through the advanced SWATH-MS analysis. CONCLUSION Our work provides important information on the application of proteomic methods for analysing proteomes changes in Fuji apple and highlights a clade of regulatory proteins potentially contributing for the molecular breeding of fruit skin color.
Collapse
Affiliation(s)
- Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Chao Sun
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 8210095 China
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Yu-Chen Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Yuan Tian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Xi Chen
- Medical Research Institute, Wuhan University and SpecAlly Life Technology Co., Ltd, Wuhan, China
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong China
| | - Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 8210095 China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| |
Collapse
|
14
|
Chou HL, Tian L, Washida H, Fukuda M, Kumamaru T, Okita TW. The rice storage protein mRNAs as a model system for RNA localization in higher plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:203-211. [PMID: 31084873 DOI: 10.1016/j.plantsci.2019.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The transport and targeting of mRNAs to specific intracellular locations is a ubiquitous process in prokaryotic and eukaryotic organisms. Despite the prevalent nature of RNA localization in guiding development, differentiation, cellular movement and intracellular organization of biochemical activities, only a few examples exist in higher plants. Here, we summarize past studies on mRNA-based protein targeting to specific subdomains of the cortical endoplasmic reticulum (ER) using the rice storage protein mRNAs as a model. Such studies have demonstrated that there are multiple pathways of RNA localization to the cortical ER that are controlled by cis-determinants (zipcodes) on the mRNA. These zipcode sequences are recognized by specific RNA binding proteins organized into multi-protein complexes. The available evidence suggests mRNAs are transported to their destination sites by co-opting membrane trafficking factors. Lastly, we discuss the major gaps in our knowledge on RNA localization and how information on the targeting of storage protein mRNAs can be used to further our understanding on how plant mRNAs are organized into regulons to facilitate protein localization and formation of multi-protein complexes.
Collapse
Affiliation(s)
- Hong-Li Chou
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States
| | - Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States
| | - Haruhiko Washida
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States
| | - Masako Fukuda
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States; Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshihiro Kumamaru
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States.
| |
Collapse
|
15
|
Guo J, Zhang G, Song Y, Li Z, Ma S, Niu N, Wang J. Comparative proteomic analysis of multi-ovary wheat under heterogeneous cytoplasm suppression. BMC PLANT BIOLOGY 2019; 19:175. [PMID: 31046676 PMCID: PMC6498644 DOI: 10.1186/s12870-019-1778-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND DUOII is a multi-ovary wheat (Triticum aestivum L.) line with two or three pistils and three stamens in each floret. The multi-ovary trait of DUOII is controlled by a dominant gene, whose expression can be suppressed by the heterogeneous cytoplasm of TeZhiI (TZI), a line with the nucleus of common wheat and the cytoplasm of Aegilops. Crosses between female DUOII plants and male TZI plants resulted in multi-ovary F1s; whereas, the reciprocal crosses resulted in mono-ovary F1s. Although the multi-ovary trait is inherited as single trait controlled by a dominant allele in lines with a Triticum cytoplasm, the mechanism by which the special heterogeneous cytoplasm suppresses the expression of multi-ovary is not well understood. RESULTS Observing the developmental process, we found that the critical stage of additional pistil primordium development was when the young spikes were 2-6 mm long. Then, we compared the quantitative proteomic profiles of 2-6 mm long young spikes obtained from the reciprocal crosses between DUOII and TZI. A total of 90 differentially expressed proteins were identified and analyzed based on their biological functions. These proteins had obvious functional pathways mainly implicated in chloroplast metabolism, nuclear and cell division, plant respiration, protein metabolism, and flower development. Importantly, we identified two key proteins, Flowering Locus K Homology Domain and PEPPER, which are known to play an essential role in the specification of pistil organ identity. By drawing relationships between the 90 differentially expressed proteins, we found that these proteins revealed a complex network which is associated with multi-ovary gene expression under heterogeneous cytoplasmic suppression. CONCLUSIONS Our proteomic analysis has identified certain differentially expressed proteins in 2-6 mm long young spikes, which was the critical stage of additional primordium development. This paper provided a universal proteomic profiling involved in the cytoplasmic suppression of wheat floral meristems; and our findings have laid a solid foundation for further mechanistic studies on the underlying mechanisms that control the heterogeneous cytoplasm-induced suppression of the nuclear multi-ovary gene in wheat.
Collapse
Affiliation(s)
- Jialin Guo
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Gaisheng Zhang
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yulong Song
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Zheng Li
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Shoucai Ma
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Na Niu
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Junwei Wang
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
16
|
Kosmacz M, Gorka M, Schmidt S, Luzarowski M, Moreno JC, Szlachetko J, Leniak E, Sokolowska EM, Sofroni K, Schnittger A, Skirycz A. Protein and metabolite composition of Arabidopsis stress granules. THE NEW PHYTOLOGIST 2019; 222:1420-1433. [PMID: 30664249 DOI: 10.1111/nph.15690] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 05/06/2023]
Abstract
Stress granules (SGs) are evolutionary conserved aggregates of proteins and untranslated mRNAs formed in response to stress. Despite their importance for stress adaptation, no complete proteome composition has been reported for plant SGs. In this study, we addressed the existing gap. Importantly, we also provide evidence for metabolite sequestration within the SGs. To isolate SGs we used Arabidopsis seedlings expressing green fluorescent protein (GFP) fusion of the SGs marker protein, Rbp47b, and an experimental protocol combining differential centrifugation with affinity purification (AP). SGs isolates were analysed using mass spectrometry-based proteomics and metabolomics. A quarter of the identified proteins constituted known or predicted SG components. Intriguingly, the remaining proteins were enriched in key enzymes and regulators, such as cyclin-dependent kinase A (CDKA), that mediate plant responses to stress. In addition to proteins, nucleotides, amino acids and phospholipids also accumulated in SGs. Taken together, our results indicated the presence of a preexisting SG protein interaction network; an evolutionary conservation of the proteins involved in SG assembly and dynamics; an important role for SGs in moderation of stress responses by selective storage of proteins and metabolites.
Collapse
Affiliation(s)
- Monika Kosmacz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Michał Gorka
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Stephan Schmidt
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Juan C Moreno
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jagoda Szlachetko
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Ewa Leniak
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | | | - Kostika Sofroni
- Department of Developmental Biology, University of Hamburg, 22069, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, 22069, Hamburg, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| |
Collapse
|
17
|
Tian L, Chou HL, Zhang L, Okita TW. Targeted Endoplasmic Reticulum Localization of Storage Protein mRNAs Requires the RNA-Binding Protein RBP-L. PLANT PHYSIOLOGY 2019; 179:1111-1131. [PMID: 30659066 PMCID: PMC6393789 DOI: 10.1104/pp.18.01434] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 05/18/2023]
Abstract
The transport and targeting of glutelin and prolamine mRNAs to distinct subdomains of the cortical endoplasmic reticulum is a model for mRNA localization in plants. This process requires a number of RNA-binding proteins (RBPs) that recognize and bind to mRNA cis-localization (zipcode) elements to form messenger ribonucleoprotein complexes, which then transport the RNAs to their destination sites at the cortical endoplasmic reticulum. Here, we present evidence that the rice (Oryza sativa) RNA-binding protein, RBP-L, like its interacting RBP-P partner, specifically binds to glutelin and prolamine zipcode RNA sequences and is required for proper mRNA localization in rice endosperm cells. A transfer DNA insertion in the 3' untranslated region resulted in reduced expression of the RBP-L gene to 10% to 25% of that in the wild-type. Reduced amounts of RBP-L caused partial mislocalization of glutelin and prolamine RNAs and conferred other general growth defects, including dwarfism, late flowering, and smaller seeds. Transcriptome analysis showed that RBP-L knockdown greatly affected the expression of prolamine family genes and several classes of transcription factors. Collectively, these results indicate that RBP-L, like RBP-P, is a key RBP involved in mRNA localization in rice endosperm cells. Moreover, distinct from RBP-P, RBP-L exhibits additional regulatory roles in development, either directly through its binding to corresponding RNAs or indirectly through its effect on transcription factors.
Collapse
Affiliation(s)
- Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Hong-Li Chou
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Laining Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
18
|
Tian L, Chou HL, Zhang L, Hwang SK, Starkenburg SR, Doroshenk KA, Kumamaru T, Okita TW. RNA-Binding Protein RBP-P Is Required for Glutelin and Prolamine mRNA Localization in Rice Endosperm Cells. THE PLANT CELL 2018; 30:2529-2552. [PMID: 30190374 PMCID: PMC6241268 DOI: 10.1105/tpc.18.00321] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 05/18/2023]
Abstract
In developing rice (Oryza sativa) endosperm, mRNAs of the major storage proteins, glutelin and prolamine, are transported and anchored to distinct subdomains of the cortical endoplasmic reticulum. RNA binding protein RBP-P binds to both glutelin and prolamine mRNAs, suggesting a role in some aspect of their RNA metabolism. Here, we show that rice lines expressing mutant RBP-P mislocalize both glutelin and prolamine mRNAs. Different mutant RBP-P proteins exhibited varying degrees of reduced RNA binding and/or protein-protein interaction properties, which may account for the mislocalization of storage protein RNAs. In addition, partial loss of RBP-P function conferred a broad phenotypic variation ranging from dwarfism, chlorophyll deficiency, and sterility to late flowering and low spikelet fertility. Transcriptome analysis highlighted the essential role of RBP-P in regulating storage protein genes and several essential biological processes during grain development. Overall, our data demonstrate the significant roles of RBP-P in glutelin and prolamine mRNA localization and in the regulation of genes important for plant growth and development through its RNA binding activity and cooperative regulation with interacting proteins.
Collapse
Affiliation(s)
- Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Hong-Li Chou
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Laining Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Seon-Kap Hwang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | | | - Kelly A Doroshenk
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | | | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
19
|
Kosmacz M, Luzarowski M, Kerber O, Leniak E, Gutiérrez-Beltrán E, Moreno JC, Gorka M, Szlachetko J, Veyel D, Graf A, Skirycz A. Interaction of 2',3'-cAMP with Rbp47b Plays a Role in Stress Granule Formation. PLANT PHYSIOLOGY 2018; 177:411-421. [PMID: 29618637 PMCID: PMC5933139 DOI: 10.1104/pp.18.00285] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/26/2018] [Indexed: 05/14/2023]
Abstract
2',3'-cAMP is an intriguing small molecule that is conserved among different kingdoms. 2',3'-cAMP is presumably produced during RNA degradation, with increased cellular levels observed especially under stress conditions. Previously, we observed the presence of 2',3'-cAMP in Arabidopsis (Arabidopsis thaliana) protein complexes isolated from native lysate, suggesting that 2',3'-cAMP has potential protein partners in plants. Here, affinity purification experiments revealed that 2',3'-cAMP associates with the stress granule (SG) proteome. SGs are aggregates composed of protein and mRNA, which enable cells to selectively store mRNA for use in response to stress such as heat whereby translation initiation is impaired. Using size-exclusion chromatography and affinity purification analyses, we identified Rbp47b, the key component of SGs, as a potential interacting partner of 2',3'-cAMP. Furthermore, SG formation was promoted in 2',3'-cAMP-treated Arabidopsis seedlings, and interactions between 2',3'-cAMP and RNA-binding domains of Rbp47b, RRM2 and RRM3, were confirmed in vitro using microscale thermophoresis. Taken together, these results (1) describe novel small-molecule regulation of SG formation, (2) provide evidence for the biological role of 2',3'-cAMP, and (3) demonstrate an original biochemical pipeline for the identification of protein-metabolite interactors.
Collapse
Affiliation(s)
- Monika Kosmacz
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Olga Kerber
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Ewa Leniak
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Emilio Gutiérrez-Beltrán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| | - Juan Camilo Moreno
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Michał Gorka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jagoda Szlachetko
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Daniel Veyel
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
20
|
Pieczynski M, Kruszka K, Bielewicz D, Dolata J, Szczesniak M, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z. A Role of U12 Intron in Proper Pre-mRNA Splicing of Plant Cap Binding Protein 20 Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:475. [PMID: 29755485 PMCID: PMC5932401 DOI: 10.3389/fpls.2018.00475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/27/2018] [Indexed: 05/30/2023]
Abstract
The nuclear cap-binding complex (CBC) is composed of two cap-binding proteins: CBP20 and CBP80. The CBP20 gene structure is highly conserved across land plant species. All studied CBP20 genes contain eight exons and seven introns, with the fourth intron belonging to the U12 class. This highly conserved U12 intron always divides the plant CBP20 gene into two parts: one part encodes the core domain containing the RNA binding domain (RBD), and the second part encodes the tail domain with a nuclear localization signal (NLS). In this study, we investigate the importance of the U12 intron in the Arabidopsis thaliana CBP20 gene by moving it to different intron locations of the gene. Relocation of the U12 intron resulted in a significant decrease in the U12 intron splicing efficiency and the accumulation of wrongly processed transcripts. These results suggest that moving the U12 intron to any other position of the A. thaliana CBP20 gene disturbs splicing, leading to substantial downregulation of the level of properly spliced mRNA and CBP20 protein. Moreover, the replacement of the U12 intron with a U2 intron leads to undesired alternative splicing events, indicating that the proper localization of the U12 intron in the CBP20 gene secures correct CBP20 pre-mRNA maturation and CBP20 protein levels in a plant. Surprisingly, our results also show that the efficiency of U12 splicing depends on intron length. In conclusion, our study emphasizes the importance of proper U12 intron localization in plant CBP20 genes for correct pre-mRNA processing.
Collapse
Affiliation(s)
- Marcin Pieczynski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Michal Szczesniak
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Wojciech Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
21
|
Systems Approaches to Map In Vivo RNA–Protein Interactions in Arabidopsis thaliana. RNA TECHNOLOGIES 2018. [PMCID: PMC7122672 DOI: 10.1007/978-3-319-92967-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proteins that specifically interact with mRNAs orchestrate mRNA processing steps all the way from transcription to decay. Thus, these RNA-binding proteins represent an important control mechanism to double check which proportion of nascent pre-mRNAs is ultimately available for translation into distinct proteins. Here, we discuss recent progress to obtain a systems-level understanding of in vivo RNA–protein interactions in the reference plant Arabidopsis thaliana using protein-centric and RNA-centric methods as well as combined protein binding site and structure probing.
Collapse
|
22
|
Köster T, Marondedze C, Meyer K, Staiger D. RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome. TRENDS IN PLANT SCIENCE 2017; 22:512-526. [PMID: 28412036 DOI: 10.1016/j.tplants.2017.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
RNA-protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture - where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.
Collapse
Affiliation(s)
- Tino Köster
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Cambridge, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katja Meyer
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
23
|
Muthuramalingam M, Wang Y, Li Y, Mahalingam R. Interacting protein partners of Arabidopsis RNA-binding protein AtRBP45b. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:327-334. [PMID: 28039930 DOI: 10.1111/plb.12540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/29/2016] [Indexed: 05/19/2023]
Abstract
RNA binding proteins, important players in post-transcriptional gene regulation, usually exist in ribonuclear complexes. However, even in model systems like Arabidopsis characterisation of RBP associated proteins is limited. In this study, we investigated the interacting proteins of the Arabidopsis AtRBP45b, which is involved in stress signalling. In vivo localisation of AtRBP45b was conducted using 35S-GFP. FLAG-tagged AtRBP45b under control of the 35S promoter in the Atrbp45b-1 mutant background was used to pull down AtRBP45b interacting proteins. Yeast two-hybrid analysis, fluorescence energy resonance transfer assays were used to confirm the veracity of the AtRBP45b interacting proteins. In planta GFP-tagging indicated AtRBP45b is localised to the nucleus and the cytosol. AtRBP45b protein has a N-terminal proline-rich region and a C-terminal glutamine-rich domain that are usually involved in protein-protein interactions. Co-immunoprecipitation followed by mass spectrometry-based protein sequencing led to identification of 30 proteins that interacted with AtRBP45b. Using information from interactome databases (BIOGRID, INTACT and STRING), pull-down assays and localisation data, 12 putative interacting proteins were selected for yeast two-hybrid analysis. Cap-binding protein (CBP20, At5g44200) and polyA-binding protein (PAB8, At1g49760) were shown to interact with AtRBP45b. Based on its interacting partners we speculate that AtRBP45b may play an important role in RNA metabolism, especially in aspects related to mRNA stability and translation initiation during stress conditions in plants.
Collapse
Affiliation(s)
- M Muthuramalingam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Y Wang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, USA
| | - Y Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - R Mahalingam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
- USDA-ARS, Cereal Crops Research Unit, Madison, WI, USA
| |
Collapse
|
24
|
Mäkinen K, Lõhmus A, Pollari M. Plant RNA Regulatory Network and RNA Granules in Virus Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:2093. [PMID: 29312371 PMCID: PMC5732267 DOI: 10.3389/fpls.2017.02093] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/24/2017] [Indexed: 05/18/2023]
Abstract
Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual components contribute to these processes. In this review we discuss the roles of cellular RNA regulatory mechanisms and RNA granules in plant virus infection in the light of current knowledge and compare the findings to those made in animal virus studies.
Collapse
|
25
|
Bhasin H, Hülskamp M. ANGUSTIFOLIA, a Plant Homolog of CtBP/BARS Localizes to Stress Granules and Regulates Their Formation. FRONTIERS IN PLANT SCIENCE 2017; 8:1004. [PMID: 28659951 PMCID: PMC5469197 DOI: 10.3389/fpls.2017.01004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/26/2017] [Indexed: 05/12/2023]
Abstract
The ANGUSTIFOLIA (AN) gene in Arabidopsis is important for a plethora of morphological phenotypes. Recently, AN was also reported to be involved in responses to biotic and abiotic stresses. It encodes a homolog of the animal C-terminal binding proteins (CtBPs). In contrast to animal CtBPs, AN does not appear to function as a transcriptional co-repressor and instead functions outside nucleus where it might be involved in Golgi-associated membrane trafficking. In this study, we report a novel and unexplored role of AN as a component of stress granules (SGs). Interaction studies identified several RNA binding proteins that are associated with AN. AN co-localizes with several messenger ribonucleoprotein granule markers to SGs in a stress dependent manner. an mutants exhibit an altered SG formation. We provide evidence that the NAD(H) binding domain of AN is relevant in this context as proteins carrying mutations in this domain localize to a much higher degree to SGs and strongly reduce AN dimerization and its interaction with one interactor but not the others. Finally, we show that AN is a negative regulator of salt and osmotic stress responses in Arabidopsis suggesting a functional relevance in SGs.
Collapse
|
26
|
Lokdarshi A, Conner WC, McClintock C, Li T, Roberts DM. Arabidopsis CML38, a Calcium Sensor That Localizes to Ribonucleoprotein Complexes under Hypoxia Stress. PLANT PHYSIOLOGY 2016; 170:1046-59. [PMID: 26634999 PMCID: PMC4734562 DOI: 10.1104/pp.15.01407] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/30/2015] [Indexed: 05/18/2023]
Abstract
During waterlogging and the associated oxygen deprivation stress, plants respond by the induction of adaptive programs, including the redirected expression of gene networks toward the synthesis of core hypoxia-response proteins. Among these core response proteins in Arabidopsis (Arabidopsis thaliana) is the calcium sensor CML38, a protein related to regulator of gene silencing calmodulin-like proteins (rgsCaMs). CML38 transcripts are up-regulated more than 300-fold in roots within 6 h of hypoxia treatment. Transfer DNA insertional mutants of CML38 show an enhanced sensitivity to hypoxia stress, with lowered survival and more severe inhibition of root and shoot growth. By using yellow fluorescent protein (YFP) translational fusions, CML38 protein was found to be localized to cytosolic granule structures similar in morphology to hypoxia-induced stress granules. Immunoprecipitation of CML38 from the roots of hypoxia-challenged transgenic plants harboring CML38pro::CML38:YFP followed by liquid chromatography-tandem mass spectrometry analysis revealed the presence of protein targets associated with messenger RNA ribonucleoprotein (mRNP) complexes including stress granules, which are known to accumulate as messenger RNA storage and triage centers during hypoxia. This finding is further supported by the colocalization of CML38 with the mRNP stress granule marker RNA Binding Protein 47 (RBP47) upon cotransfection of Nicotiana benthamiana leaves. Ruthenium Red treatment results in the loss of CML38 signal in cytosolic granules, suggesting that calcium is necessary for stress granule association. These results confirm that CML38 is a core hypoxia response calcium sensor protein and suggest that it serves as a potential calcium signaling target within stress granules and other mRNPs that accumulate during flooding stress responses.
Collapse
Affiliation(s)
- Ansul Lokdarshi
- Department of Biochemistry and Cellular and Molecular Biology (A.L., W.C.C., C.M., D.M.R.) and Program in Genome Science and Technology (T.L., D.M.R.), University of Tennessee, Knoxville, Tennessee 37996
| | - W Craig Conner
- Department of Biochemistry and Cellular and Molecular Biology (A.L., W.C.C., C.M., D.M.R.) and Program in Genome Science and Technology (T.L., D.M.R.), University of Tennessee, Knoxville, Tennessee 37996
| | - Carlee McClintock
- Department of Biochemistry and Cellular and Molecular Biology (A.L., W.C.C., C.M., D.M.R.) and Program in Genome Science and Technology (T.L., D.M.R.), University of Tennessee, Knoxville, Tennessee 37996
| | - Tian Li
- Department of Biochemistry and Cellular and Molecular Biology (A.L., W.C.C., C.M., D.M.R.) and Program in Genome Science and Technology (T.L., D.M.R.), University of Tennessee, Knoxville, Tennessee 37996
| | - Daniel M Roberts
- Department of Biochemistry and Cellular and Molecular Biology (A.L., W.C.C., C.M., D.M.R.) and Program in Genome Science and Technology (T.L., D.M.R.), University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
27
|
Lewinski M, Hallmann A, Staiger D. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Mol Genet Genomics 2015; 291:763-73. [DOI: 10.1007/s00438-015-1144-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/06/2015] [Indexed: 11/28/2022]
|
28
|
Gutierrez-Beltran E, Moschou PN, Smertenko AP, Bozhkov PV. Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis. THE PLANT CELL 2015; 27:926-43. [PMID: 25736060 PMCID: PMC4558657 DOI: 10.1105/tpc.114.134494] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/03/2015] [Accepted: 02/16/2015] [Indexed: 05/18/2023]
Abstract
Tudor Staphylococcal Nuclease (TSN or Tudor-SN; also known as SND1) is an evolutionarily conserved protein involved in the transcriptional and posttranscriptional regulation of gene expression in animals. Although TSN was found to be indispensable for normal plant development and stress tolerance, the molecular mechanisms underlying these functions remain elusive. Here, we show that Arabidopsis thaliana TSN is essential for the integrity and function of cytoplasmic messenger ribonucleoprotein (mRNP) complexes called stress granules (SGs) and processing bodies (PBs), sites of posttranscriptional gene regulation during stress. TSN associates with SGs following their microtubule-dependent assembly and plays a scaffolding role in both SGs and PBs. The enzymatically active tandem repeat of four SN domains is crucial for targeting TSN to the cytoplasmic mRNA complexes and is sufficient for the cytoprotective function of TSN during stress. Furthermore, our work connects the cytoprotective function of TSN with its positive role in stress-induced mRNA decapping. While stress led to a pronounced increase in the accumulation of uncapped mRNAs in wild-type plants, this increase was abrogated in TSN knockout plants. Taken together, our results establish TSN as a key enzymatic component of the catabolic machinery responsible for the processing of mRNAs in the cytoplasmic mRNP complexes during stress.
Collapse
Affiliation(s)
- Emilio Gutierrez-Beltran
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Andrei P Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5BN, United Kingdom
| | - Peter V Bozhkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| |
Collapse
|
29
|
Simpson CG, Lewandowska D, Liney M, Davidson D, Chapman S, Fuller J, McNicol J, Shaw P, Brown JWS. Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini-exon splicing reporter and affect alternative splicing of endogenous genes differentially. THE NEW PHYTOLOGIST 2014; 203:424-436. [PMID: 24749484 DOI: 10.1111/nph.12821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/14/2013] [Indexed: 06/03/2023]
Abstract
This paper examines the function of Arabidopsis thaliana AtPTB1 and AtPTB2 as plant splicing factors. The effect on splicing of overexpression of AtPTB1 and AtPTB2 was analysed in an in vivo protoplast transient expression system with a novel mini-exon splicing reporter. A range of mutations in pyrimidine-rich sequences were compared with and without AtPTB and NpU2AF65 overexpression. Splicing analyses of constructs in protoplasts and RNA from overexpression lines used high-resolution reverse transcription polymerase chain reaction (RT-PCR). AtPTB1 and AtPTB2 reduced inclusion/splicing of the potato invertase mini-exon splicing reporter, indicating that these proteins can repress plant intron splicing. Mutation of the polypyrimidine tract and closely associated Cytosine and Uracil-rich (CU-rich) sequences, upstream of the mini-exon, altered repression by AtPTB1 and AtPTB2. Coexpression of a plant orthologue of U2AF65 alleviated the splicing repression of AtPTB1. Mutation of a second CU-rich upstream of the mini-exon 3' splice site led to a decline in mini-exon splicing, indicating the presence of a splicing enhancer sequence. Finally, RT-PCR of AtPTB overexpression lines with c. 90 known alternative splicing (AS) events showed that AtPTBs significantly altered AS of over half the events. AtPTB1 and AtPTB2 are splicing factors that influence alternative splicing. This occurs in the potato invertase mini-exon via the polypyrimidine tract and associated pyrimidine-rich sequence.
Collapse
Affiliation(s)
- Craig G Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Dominika Lewandowska
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Michele Liney
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Diane Davidson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sean Chapman
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John Fuller
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jim McNicol
- Biomathematics and Statistics Scotland, Invergowrie, Dundee, DD2 5DA, UK
| | - Paul Shaw
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John W S Brown
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
30
|
Qin X, Huang Q, Zhu L, Xiao H, Yao G, Huang W, Zhu R, Hu J, Zhu Y. Interaction with Cu²⁺ disrupts the RNA binding affinities of RNA recognition motif containing protein. Biochem Biophys Res Commun 2014; 444:116-20. [PMID: 24434156 DOI: 10.1016/j.bbrc.2014.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
Abstract
The glycine-rich proteins (GRP) containing RNA recognition motifs (RRM) are involved in the regulation of transcriptional and/or post-transcriptional events. Previous studies have established that GRP162 plays an important role in the restoration of fertility in Honglian cytoplasmic male sterile (HL-CMS) rice. In this study, the ion binding properties of rGRP162 were tested by isothermal titration calorimetry (ITC) and electrophoretic mobility shift assay (EMSA) was performed to test the interaction. Circular dichroism (CD) was carried out to detect the alteration of secondary structure in the presence and absence of Cu(2+). Furthermore, two RRM containing proteins, AtRBP45A and AtRBP47A, were expressed to validate the interaction. Results showed Cu(2+) and Fe(3+) bound GRP162, whereas Ca(2+), Mn(2+), Mg(2+) and K(+) did not. EMSA confirmed that interaction with Cu(2+) interrupted the biological activity of GRP162 by disrupting the secondary structure of the protein based on the results of CD. Moreover, the RNA binding activities of rAtRBP45A and rAtRBP47A were also impaired in the presence of Cu(2+). Data suggest that Cu(2+) in excess may disrupt RNA-binding proteins containing RRM that are essential for post-transcriptional regulation and may impair the development of plants or animals.
Collapse
Affiliation(s)
- Xiaojian Qin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Linlin Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Haijun Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Guoxin Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Renshan Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Wuhan University, Wuhan, China.
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Wuhan University, Wuhan, China.
| |
Collapse
|
31
|
Reddy AS, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants. THE PLANT CELL 2013; 25:3657-83. [PMID: 24179125 PMCID: PMC3877793 DOI: 10.1105/tpc.113.117523] [Citation(s) in RCA: 558] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Alternative splicing (AS) of precursor mRNAs (pre-mRNAs) from multiexon genes allows organisms to increase their coding potential and regulate gene expression through multiple mechanisms. Recent transcriptome-wide analysis of AS using RNA sequencing has revealed that AS is highly pervasive in plants. Pre-mRNAs from over 60% of intron-containing genes undergo AS to produce a vast repertoire of mRNA isoforms. The functions of most splice variants are unknown. However, emerging evidence indicates that splice variants increase the functional diversity of proteins. Furthermore, AS is coupled to transcript stability and translation through nonsense-mediated decay and microRNA-mediated gene regulation. Widespread changes in AS in response to developmental cues and stresses suggest a role for regulated splicing in plant development and stress responses. Here, we review recent progress in uncovering the extent and complexity of the AS landscape in plants, its regulation, and the roles of AS in gene regulation. The prevalence of AS in plants has raised many new questions that require additional studies. New tools based on recent technological advances are allowing genome-wide analysis of RNA elements in transcripts and of chromatin modifications that regulate AS. Application of these tools in plants will provide significant new insights into AS regulation and crosstalk between AS and other layers of gene regulation.
Collapse
Affiliation(s)
- Anireddy S.N. Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
- Address correspondence to
| | - Yamile Marquez
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| | - Maria Kalyna
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| |
Collapse
|
32
|
Silverman IM, Li F, Gregory BD. Genomic era analyses of RNA secondary structure and RNA-binding proteins reveal their significance to post-transcriptional regulation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 205-206:55-62. [PMID: 23498863 PMCID: PMC4079699 DOI: 10.1016/j.plantsci.2013.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 05/27/2023]
Abstract
The eukaryotic transcriptome is regulated both transcriptionally and post-transcriptionally. Transcriptional control was the major focus of early research efforts, while more recently post-transcriptional mechanisms have gained recognition for their significant regulatory importance. At the heart of post-transcriptional regulatory pathways are cis- and trans-acting features and factors including RNA secondary structure as well as RNA-binding proteins and their recognition sites on target RNAs. Recent advances in genomic methodologies have significantly improved our understanding of both RNA secondary structure and RNA-binding proteins and their regulatory effects within the eukaryotic transcriptome. In this review, we focus specifically on the collection of these regulatory moieties in plant transcriptomes. We describe the approaches for studying RNA secondary structure and RNA-protein interaction sites, with an emphasis on recent methodological advances that produce transcriptome-wide datasets. We discuss how these methods that include genome-wide RNA secondary structure determination and RNA-protein interaction site mapping are significantly improving our understanding of the functions of these two elements in post-transcriptional regulation. Finally, we delineate the need for additional genome-wide studies of RNA secondary structure and RNA-protein interactions in plants.
Collapse
Affiliation(s)
- Ian M. Silverman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fan Li
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Lee DH, Kim DS, Hwang BK. The pepper RNA-binding protein CaRBP1 functions in hypersensitive cell death and defense signaling in the cytoplasm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:235-248. [PMID: 22640562 DOI: 10.1111/j.1365-313x.2012.05063.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regulation of gene expression via post-transcriptional modification by RNA-binding proteins is crucial for plant disease and innate immunity. Here, we report the identification of the pepper (Capsicum annuum) RNA-binding protein1 gene (CaRBP1) as essential for hypersensitive cell death and defense signaling in the cytoplasm. CaRBP1 contains an RNA recognition motif and is rapidly and strongly induced in pepper by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaRBP1 displays in vitro RNA- and DNA-binding activity and in planta nucleocytoplasmic localization. Transient expression of CaRBP1 in pepper leaves triggers cell-death and defense responses. Notably, cytoplasmic localization of CaRBP1, mediated by the N-terminal region of CaRBP1, is essential for the hypersensitive cell-death response. Silencing of CaRBP1 in pepper plants significantly enhances susceptibility to avirulent Xcv infection. This is accompanied by compromised hypersensitive cell death, production of reactive oxygen species in oxidative bursts, expression of defense marker genes and accumulation of endogenous salicylic acid and jasmonic acid. Over-expression of CaRBP1 in Arabidopsis confers reduced susceptibility to infection by the biotrophic oomycete Hyaloperonospora arabidopsidis. Together, these results suggest that cytoplasmic localization of CaRBP1 is required for plant signaling of hypersensitive cell-death and defense responses.
Collapse
Affiliation(s)
- Dong Hyuk Lee
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | | | |
Collapse
|
34
|
Yeap WC, Ooi TEK, Namasivayam P, Kulaveerasingam H, Ho CL. EgRBP42 encoding an hnRNP-like RNA-binding protein from Elaeis guineensis Jacq. is responsive to abiotic stresses. PLANT CELL REPORTS 2012; 31:1829-1843. [PMID: 22699852 DOI: 10.1007/s00299-012-1297-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/31/2012] [Indexed: 06/01/2023]
Abstract
RNA-binding proteins (RBPs) have been implicated as regulatory proteins involved in the post-transcriptional processes of gene expression in plants under various stress conditions. In this study, we report the cloning and characterization of a gene, designated as EgRBP42, encoding a member of the plant heterogeneous nuclear ribonucleoprotein (hnRNP)-like RBP family from oil palm (Elaeis guineensis Jacq.). EgRBP42 consists of two N-terminal RNA recognition motifs and a glycine-rich domain at the C-terminus. The upstream region of EgRBP42 has multiple light-responsive, stress-responsive regulatory elements and regulatory elements associated with flower development. Real-time RT-PCR analysis of EgRBP42 showed that EgRBP42 was expressed in oil palm tissues tested, including leaf, shoot apical meristem, root, female inflorescence, male inflorescence and mesocarp with the lowest transcript level in the roots. EgRBP42 protein interacted with transcripts associated with transcription, translation and stress responses using pull-down assay and electrophoretic mobility shift assay. The accumulation of EgRBP42 and its interacting transcripts were induced by abiotic stresses, including salinity, drought, submergence, cold and heat stresses in leaf discs. Collectively, the data suggested that EgRBP42 is a RBP, which responds to various abiotic stresses and could be advantageous for oil palm under stress conditions. Key message EgRBP42 may be involved in the post-transcriptional regulation of stress-related genes important for plant stress response and adaptation.
Collapse
Affiliation(s)
- Wan-Chin Yeap
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia,
| | | | | | | | | |
Collapse
|
35
|
Wachter A, Rühl C, Stauffer E. The Role of Polypyrimidine Tract-Binding Proteins and Other hnRNP Proteins in Plant Splicing Regulation. FRONTIERS IN PLANT SCIENCE 2012; 3:81. [PMID: 22639666 PMCID: PMC3355609 DOI: 10.3389/fpls.2012.00081] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/11/2012] [Indexed: 05/18/2023]
Abstract
Alternative precursor mRNA splicing is a widespread phenomenon in multicellular eukaryotes and represents a major means for functional expansion of the transcriptome. While several recent studies have revealed an important link between splicing regulation and fundamental biological processes in plants, many important aspects, such as the underlying splicing regulatory mechanisms, are so far not well understood. Splicing decisions are in general based on a splicing code that is determined by the dynamic interplay of splicing-controlling factors and cis-regulatory elements. Several members of the group of heterogeneous nuclear ribonucleoprotein (hnRNP) proteins are well known regulators of splicing in animals and the comparatively few reports on some of their plant homologs revealed similar functions. This also applies to polypyrimidine tract-binding proteins, a thoroughly investigated class of hnRNP proteins with splicing regulatory functions in both animals and plants. Further examples from plants are auto- and cross-regulatory splicing circuits of glycine-rich RNA binding proteins and splicing enhancement by oligouridylate binding proteins. Besides their role in defining splice site choice, hnRNP proteins are also involved in multiple other steps of nucleic acid metabolism, highlighting the functional versatility of this group of proteins in higher eukaryotes.
Collapse
Affiliation(s)
- Andreas Wachter
- Center for Plant Molecular Biology, University of TübingenTübingen, Germany
- *Correspondence: Andreas Wachter, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany. e-mail:
| | - Christina Rühl
- Center for Plant Molecular Biology, University of TübingenTübingen, Germany
| | - Eva Stauffer
- Center for Plant Molecular Biology, University of TübingenTübingen, Germany
| |
Collapse
|
36
|
Peal L, Jambunathan N, Mahalingam R. Phylogenetic and expression analysis of RNA-binding proteins with triple RNA recognition motifs in plants. Mol Cells 2011; 31:55-64. [PMID: 21120628 PMCID: PMC3906871 DOI: 10.1007/s10059-011-0001-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/17/2010] [Accepted: 09/29/2010] [Indexed: 11/27/2022] Open
Abstract
The superfamily of RNA binding proteins (RBPs) is vastly expanded in plants compared to other eukaryotes. A subfamily of RBPs that contain three RNA recognition motifs (RRMs) from the Arabidopsis (24), rice (19) and poplar (37) genomes was analyzed in this study. Phylogenetic analysis with full-length protein sequences of 80 RBPs identified nine clades. The largest clade, comprising 23 members, showed high homology to human RBPs involved in oxidative signaling. Digital northern analysis revealed that Arabidopsis RBPs are transcriptionally responsive to biotic, abiotic and hormonal treatments. Northern blot analysis of eight Arabidopsis RBPs belonging to the tobacco RBP45/47 family showed that these genes respond to ozone stress. AtRBP45b, which shows closest homology to the yeast oxidative stress regulatory protein, CSX1, was expressed in multiple tissues. Two novel splice variant forms of AtRBP45b were identified by 3'RACE analysis. Based on RT-PCR, splice variant AtRBP45b-SV1 was observed only in response to mechanical wounding caused by pathogen or chemical infiltrations and was not detectable in response to salt or temperature stress. Electrophoretic mobility shift assay demonstrated that recombinant full-length and splice variant forms of AtRBP45b bound synthetic RNA. Identifying in vivo RNA targets of AtRBP45b will aid in determining the precise functional role of these proteins during oxidative signaling.
Collapse
Affiliation(s)
- Lila Peal
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, USA
| | - Niranjani Jambunathan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, USA
- Present Address: Monsanto, Saint Louis, USA
| | - Ramamurthy Mahalingam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, USA
| |
Collapse
|
37
|
Labadorf A, Link A, Rogers MF, Thomas J, Reddy AS, Ben-Hur A. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii. BMC Genomics 2010; 11:114. [PMID: 20163725 PMCID: PMC2830987 DOI: 10.1186/1471-2164-11-114] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 02/17/2010] [Indexed: 11/12/2022] Open
Abstract
Background Genome-wide computational analysis of alternative splicing (AS) in several flowering plants has revealed that pre-mRNAs from about 30% of genes undergo AS. Chlamydomonas, a simple unicellular green alga, is part of the lineage that includes land plants. However, it diverged from land plants about one billion years ago. Hence, it serves as a good model system to study alternative splicing in early photosynthetic eukaryotes, to obtain insights into the evolution of this process in plants, and to compare splicing in simple unicellular photosynthetic and non-photosynthetic eukaryotes. We performed a global analysis of alternative splicing in Chlamydomonas reinhardtii using its recently completed genome sequence and all available ESTs and cDNAs. Results Our analysis of AS using BLAT and a modified version of the Sircah tool revealed AS of 498 transcriptional units with 611 events, representing about 3% of the total number of genes. As in land plants, intron retention is the most prevalent form of AS. Retained introns and skipped exons tend to be shorter than their counterparts in constitutively spliced genes. The splice site signals in all types of AS events are weaker than those in constitutively spliced genes. Furthermore, in alternatively spliced genes, the prevalent splice form has a stronger splice site signal than the non-prevalent form. Analysis of constitutively spliced introns revealed an over-abundance of motifs with simple repetitive elements in comparison to introns involved in intron retention. In almost all cases, AS results in a truncated ORF, leading to a coding sequence that is around 50% shorter than the prevalent splice form. Using RT-PCR we verified AS of two genes and show that they produce more isoforms than indicated by EST data. All cDNA/EST alignments and splice graphs are provided in a website at http://combi.cs.colostate.edu/as/chlamy. Conclusions The extent of AS in Chlamydomonas that we observed is much smaller than observed in land plants, but is much higher than in simple unicellular heterotrophic eukaryotes. The percentage of different alternative splicing events is similar to flowering plants. Prevalence of constitutive and alternative splicing in Chlamydomonas, together with its simplicity, many available public resources, and well developed genetic and molecular tools for this organism make it an excellent model system to elucidate the mechanisms involved in regulated splicing in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Adam Labadorf
- Computer Science Department, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | |
Collapse
|
38
|
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M. A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8. Mol Biol Rep 2009; 37:839-45. [PMID: 19672695 DOI: 10.1007/s11033-009-9636-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/21/2009] [Indexed: 12/29/2022]
Abstract
Plants are highly adapted to respond to a range of environmental stresses commonly by altering their gene expression and metabolism as a result of cell signalling which may be mediated by reactive oxygen species. The glycine-rich RNA-binding proteins ATGRP7 and ATGRP8 were rapidly upregulated in response to peroxide-induced oxidative stress and were amongst the most abundant RNA binding proteins isolated by oligo(dT) chromatography. The oligo(dT)-bound mRNP complexes were analysed proteomically, and were seen to contain potential isoforms of the ATGRP proteins; other proteins that contain an RNA Recognition Motif (RRM); and chloroplast RNA binding proteins. These findings suggest that ATGRP proteins have an evolutionarily conserved function in the regulation of gene expression at the posttranscriptional level in response to environmental stress.
Collapse
Affiliation(s)
- Fabian Schmidt
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Bailey-Serres J, Sorenson R, Juntawong P. Getting the message across: cytoplasmic ribonucleoprotein complexes. TRENDS IN PLANT SCIENCE 2009; 14:443-53. [PMID: 19616989 DOI: 10.1016/j.tplants.2009.05.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 05/20/2023]
Abstract
mRNA-ribonucleoprotein (mRNP) complexes mediate post-transcriptional control mechanisms in the cell nucleus and cytoplasm. Transcriptional control is paramount to gene expression but is followed by regulated nuclear pre-mRNA maturation and quality control processes that culminate in the export of a functional transcript to the cytoplasm. Once in the cytosol, mRNPs determine the activity of individual mRNAs through regulation of localization, translation, sequestration and turnover. Here, we review how quantitative assessment of mRNAs in distinct cytoplasmic mRNPs, such as polyribosomes (polysomes), has provided new perspectives on post-transcriptional regulation from the global to gene-specific level. In addition, we explore recent genetic and biochemical studies of cytoplasmic mRNPs that have begun to expose RNA-binding proteins in an integrated network that fine-tunes gene expression.
Collapse
Affiliation(s)
- J Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
| | | | | |
Collapse
|
40
|
Lorković ZJ. Role of plant RNA-binding proteins in development, stress response and genome organization. TRENDS IN PLANT SCIENCE 2009; 14:229-36. [PMID: 19285908 DOI: 10.1016/j.tplants.2009.01.007] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/18/2008] [Accepted: 01/08/2009] [Indexed: 05/20/2023]
Abstract
RNA-binding proteins (RBPs) in eukaryotes have crucial roles in all aspects of post-transcriptional gene regulation. They are important governors of diverse developmental processes by modulating expression of specific transcripts. The Arabidopsis (Arabidopsis thaliana) genome encodes for more than 200 different RBPs, most of which are plant specific and are therefore likely to perform plant-specific functions. Indeed, recent identification and analysis of plant RBPs clearly showed that, in addition to the important role in diverse developmental processes, they are also involved in adaptation of plants to various environmental conditions. Clearly, they act by regulating pre-mRNA splicing, polyadenylation, RNA stability and RNA export, as well as by influencing chromatin modification.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9/3, A-1030 Vienna, Austria.
| |
Collapse
|
41
|
Lorković ZJ, Barta A. Role of Cajal bodies and nucleolus in the maturation of the U1 snRNP in Arabidopsis. PLoS One 2008; 3:e3989. [PMID: 19098980 PMCID: PMC2600615 DOI: 10.1371/journal.pone.0003989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 11/21/2008] [Indexed: 01/31/2023] Open
Abstract
Background The biogenesis of spliceosomal snRNPs takes place in both the cytoplasm where Sm core proteins are added and snRNAs are modified at the 5′ and 3′ termini and in the nucleus where snRNP-specific proteins associate. U1 snRNP consists of U1 snRNA, seven Sm proteins and three snRNP-specific proteins, U1-70K, U1A, and U1C. It has been shown previously that after import to the nucleus U2 and U4/U6 snRNP-specific proteins first appear in Cajal bodies (CB) and then in splicing speckles. In addition, in cells grown under normal conditions U2, U4, U5, and U6 snRNAs/snRNPs are abundant in CBs. Therefore, it has been proposed that the final assembly of these spliceosomal snRNPs takes place in this nuclear compartment. In contrast, U1 snRNA in both animal and plant cells has rarely been found in this nuclear compartment. Methodology/Principal Findings Here, we analysed the subnuclear distribution of Arabidopsis U1 snRNP-specific proteins fused to GFP or mRFP in transiently transformed Arabidopsis protoplasts. Irrespective of the tag used, U1-70K was exclusively found in the nucleus, whereas U1A and U1C were equally distributed between the nucleus and the cytoplasm. In the nucleus all three proteins localised to CBs and nucleoli although to different extent. Interestingly, we also found that the appearance of the three proteins in nuclear speckles differ significantly. U1-70K was mostly found in speckles whereas U1A and U1C in ∼90% of cells showed diffuse nucleoplasmic in combination with CBs and nucleolar localisation. Conclusions/Significance Our data indicate that CBs and nucleolus are involved in the maturation of U1 snRNP. Differences in nuclear accumulation and distribution between U1-70K and U1A and U1C proteins may indicate that either U1-70K or U1A and U1C associate with, or is/are involved, in other nuclear processes apart from pre-mRNA splicing.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Department of Medical Biochemistry, Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
42
|
Weber C, Nover L, Fauth M. Plant stress granules and mRNA processing bodies are distinct from heat stress granules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:517-30. [PMID: 18643965 DOI: 10.1111/j.1365-313x.2008.03623.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Similar to the situation in mammalian cells and yeast, messenger ribonucleo protein (mRNP) homeostasis in plant cells depends on rapid transitions between three functional states, i.e. translated mRNPs in polysomes, stored mRNPs and mRNPs under degradation. Studies in mammalian cells showed that whenever the dynamic exchange of the components between these states is disrupted, stalled mRNPs accumulate in cytoplasmic aggregates, such as stress granules (SGs) or processing bodies (PBs). We identified PBs and SGs in plant cells by detection of DCP1, DCP2 and XRN4, as marker proteins for the 5'-->3' mRNA degradation pathway, and eIF4E, as well as the RNA binding proteins RBP47 and UBP1, as marker proteins for stored mRNPs in SGs. Cycloheximide-inhibited translation, stress treatments and mutants defective in mRNP homeostasis were used to study the dynamic transitions of mRNPs between SGs and PBs. SGs and PBs can be clearly discriminated from the previously described heat stress granules (HSGs), which evidently do not contain mRNPs. Thus, the role of HSGs as putative mRNP storage sites must be revised.
Collapse
Affiliation(s)
- Christian Weber
- Department of Molecular Cell Biology, Johann Wolfgang Goethe-University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
43
|
Abstract
The spliceosome is a large nuclear structure consisting of dynamically interacting RNAs and proteins. This chapter briefly reviews some of the known components and their interactions. Large-scale proteomics and gene expression studies may be required to unravel the many intricate mechanisms involved in splice site recognition and selection.
Collapse
|
44
|
Abstract
U12-dependent (U12) introns have persisted in the genomes of plants since the ancestral divergence between plants and metazoans. These introns, which are rare, are found in a range of genes that include essential functions in DNA replication and RNA metabolism and are implicated in regulating the expression of their host genes. U12 introns are removed from pre-mRNAs by a U12 intron-specific spliceosome. Although this spliceosome shares many properties with the more abundant U2-dependent (U2) intron spliceosome, four of the five small nuclear RNAs (snRNAs) required for splicing are different and specific for the unique splicing of U12 introns. Evidence in plants so far indicates that splicing signals of plant U12 introns and their splicing machinery are similar to U12 intron splicing in other eukaryotes. In addition to the high conservation of splicing signals, plant U12 introns also retain unique characteristic features of plant U2 introns, such as UA-richness, which suggests a requirement for plant-specific components for both the U2 and U12 splicing reaction. This chapter compares U12 and U2 splicing and reviews what is known about plant U12 introns and their possible role in gene expression.
Collapse
|
45
|
Abstract
SR proteins are a family of splicing factors important for splice site recognition and spliceosome assembly. Their ability to bind to RNA and to interact with proteins as well identifies them as important players in splice site choice and alternative splicing. Plants possess twice as many SR proteins as animals, and some of the subfamilies are plant specific. Arabidopsis SR proteins are involved in different aspects of plant growth and development as well as in responses to environmental cues. The plant-specific subfamilies have been shown to be regulated by alternative splicing events, which are highly conserved in evolution. The tight regulation of splicing factors by alternative splicing might allow coordinated responses of their target genes.
Collapse
|
46
|
Park JI, Endo M, Kazama T, Saito H, Hakozaki H, Takada Y, Kawagishi-Kobayashi M, Watanabe M. Molecular characterization of two anther-specific genes encoding putative RNA-binding proteins, AtRBP45s, in Arabidopsis thaliana. Genes Genet Syst 2007; 81:355-9. [PMID: 17159297 DOI: 10.1266/ggs.81.355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
RRM (RNA-recognition motif) domain is important for the post-transcriptional regulation of gene expression including RNA processing. In our previous study, we found one anther- and/or pollen-specific gene (LjRRM1, previously named as LjMfb-U93) in model legume, Lotus japonicus. Because of the richness of genomic information of another model plant, Arabidopsis thaliana, for functional analysis, we identified and characterized the orthologous genes in A. thaliana. By comparison of the partial nucleotide sequence of LjRRM1 to the public database, we identified three homologous genes (AtRBP45a, AtRBP45b, and AtRBP45c) in A. thaliana genome. Based on promoter analysis, both AtRBP45a and AtRBP45c were specifically expressed in immature anther tissues (tapetum cells) and mature pollen grains of transgenic plants. This expression pattern of AtRBP45a and AtRBP45c is quite similar to that of LjRRM1, indicating that AtRBP45a and AtRBP45c would be orthologous to LjRRM1. Because in another previous experiment, it was shown that proteins having RRM domains were related to pre-mRNA maturation, and as a conclusion, it is possible that LjRRM1, AtRBP45a, and AtRBP45c genes encoding RNA-binding proteins are functionally involved in the repression of translation in mature pollen grains in L. japonicus and A. thaliana.
Collapse
Affiliation(s)
- Jong-In Park
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Reddy ASN. Alternative splicing of pre-messenger RNAs in plants in the genomic era. ANNUAL REVIEW OF PLANT BIOLOGY 2007; 58:267-94. [PMID: 17222076 DOI: 10.1146/annurev.arplant.58.032806.103754] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Primary transcripts (precursor-mRNAs) with introns can undergo alternative splicing to produce multiple transcripts from a single gene by differential use of splice sites, thereby increasing the transcriptome and proteome complexity within and between cells and tissues. Alternative splicing in plants is largely an unexplored area of gene expression, as this phenomenon used to be considered rare. However, recent genome-wide computational analyses have revealed that alternative splicing in flowering plants is far more prevalent than previously thought. Interestingly, pre-mRNAs of many spliceosomal proteins, especially serine/arginine-rich (SR) proteins, are extensively alternatively spliced. Furthermore, stresses have a dramatic effect on alternative splicing of pre-mRNAs including those that encode many spliceosomal proteins. Although the mechanisms that regulate alternative splicing in plants are largely unknown, several reports strongly suggest a key role for SR proteins in spliceosome assembly and regulated splicing. Recent studies suggest that alternative splicing in plants is an important posttranscriptional regulatory mechanism in modulating gene expression and eventually plant form and function.
Collapse
Affiliation(s)
- Anireddy S N Reddy
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
48
|
The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 2004; 5:R102. [PMID: 15575968 PMCID: PMC545797 DOI: 10.1186/gb-2004-5-12-r102] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/06/2004] [Accepted: 10/20/2004] [Indexed: 12/02/2022] Open
Abstract
The database of Arabidopsis splicing related genes includes classification of genes encoding snRNAs and other splicing related proteins, together with information on gene structure, alternative splicing, gene duplications and phylogenetic relationships. A total of 74 small nuclear RNA (snRNA) genes and 395 genes encoding splicing-related proteins were identified in the Arabidopsis genome by sequence comparison and motif searches, including the previously elusive U4atac snRNA gene. Most of the genes have not been studied experimentally. Classification of these genes and detailed information on gene structure, alternative splicing, gene duplications and phylogenetic relationships are made accessible as a comprehensive database of Arabidopsis Splicing Related Genes (ASRG) on our website.
Collapse
|
49
|
Lewandowska D, Simpson CG, Clark GP, Jennings NS, Barciszewska-Pacak M, Lin CF, Makalowski W, Brown JWS, Jarmolowski A. Determinants of plant U12-dependent intron splicing efficiency. THE PLANT CELL 2004; 16:1340-52. [PMID: 15100401 PMCID: PMC423220 DOI: 10.1105/tpc.020743] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 02/25/2004] [Indexed: 05/18/2023]
Abstract
Factors affecting splicing of plant U12-dependent introns have been examined by extensive mutational analyses in an in vivo tobacco (Nicotiana tabacum) protoplast system using introns from three different Arabidopsis thaliana genes: CBP20, GSH2, and LD. The results provide evidence that splicing efficiency of plant U12 introns depends on a combination of factors, including UA content, exon bridging interactions between the U12 intron and flanking U2-dependent introns, and exon splicing enhancer sequences (ESEs). Unexpectedly, all three plant U12 introns required an adenosine at the upstream purine position in the branchpoint consensus UCCUURAUY. The exon upstream of the LD U12 intron is a major determinant of its higher level of splicing efficiency and potentially contains two ESE regions. These results suggest that in plants, U12 introns represent a level at which expression of their host genes can be regulated.
Collapse
Affiliation(s)
- Dominika Lewandowska
- Department of Gene Expression, Adam Mickiewicz University, Poznan 60-371, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Genetic studies have provided increasing evidence that proteins involved in all aspects of RNA metabolism, such as RNA processing, transport, stability, and translation, are required for plant development and for plants' responses to the environment. Such proteins act in floral transition, floral patterning, and signaling by abscisic acid, low temperature and circadian rhythms. Although some of these proteins belong to core RNA metabolic machineries, others may have more specialized cellular functions. Despite the limited knowledge of the underlying molecular mechanisms, posttranscriptional regulation is known to play a key role in the control of plant development.
Collapse
Affiliation(s)
- Yulan Cheng
- Developmental Genetics Program and Howard Hughes Medical Institute (HHMI), Skirball Institute of Biomolecular Medicine, 540 First Avenue, 4th Floor, New York, New York 10016, USA
| | - Xuemei Chen
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA,
| |
Collapse
|