1
|
Retore YI, Lucini F, Simionatto S, Rossato L. Synergistic Antifungal Activity of Pentamidine and Auranofin Against Multidrug-Resistant Candida auris. Mycopathologia 2025; 190:41. [PMID: 40360957 DOI: 10.1007/s11046-025-00948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/17/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Candida auris is a significant clinical concern due to its ability to cause outbreaks in healthcare settings and its common resistance to current treatments. This highlights the need for alternative therapies. Drug repurposing offers a promising approach, and the combination of pentamidine (antiprotozoal) and auranofin (anti-rheumatic) has shown potential antifungal activity against Candida species, including C. auris. This study aimed to evaluate the antifungal activity of pentamidine and auranofin, both individually and in combination, against C. auris. METHODS Minimum Inhibitory Concentrations (MICs) were determined following CLSI guidelines, and drug interactions were assessed using the checkerboard microdilution method. Additional evaluations included growth inhibition, antibiofilm activity, cell damage, sorbitol protection, and efflux pump inhibition. Nucleotide leakage and cell membrane permeability were analyzed using biochemical assays. In vivo efficacy was tested using a Tenebrio molitor larvae model infected with C. auris. RESULTS The MICs of pentamidine against C. auris ranged from 16 to 128 μg/mL, showing fungicidal activity. The combination with auranofin had a synergistic effect (FICI: 0.37) and exhibited a fungistatic effect in growth inhibition assays. Auranofin was most effective at inhibiting biofilm formation. Pentamidine impaired mitochondrial function, leading to cellular respiration issues and membrane damage. Efflux pump assays indicated activation by both drugs, potentially influencing resistance. In vivo tests showed both drugs significantly improved survival rates in infected larvae compared to fluconazole. CONCLUSION In conclusion, pentamidine and auranofin, either individually or in combination, are promising treatments for C. auris and warrant further research into optimal dosing and combination strategies.
Collapse
Affiliation(s)
- Yasmim Isabel Retore
- Health Sciences Research Laboratory, Universidade Federal of Grande Dourados, Rodovia Dourados - Itahum km 12, Cidade Universitária, Dourados, Mato Grosso do Sul, CEP: 79804970, Brazil
| | - Fabíola Lucini
- Health Sciences Research Laboratory, Universidade Federal of Grande Dourados, Rodovia Dourados - Itahum km 12, Cidade Universitária, Dourados, Mato Grosso do Sul, CEP: 79804970, Brazil
| | - Simone Simionatto
- Health Sciences Research Laboratory, Universidade Federal of Grande Dourados, Rodovia Dourados - Itahum km 12, Cidade Universitária, Dourados, Mato Grosso do Sul, CEP: 79804970, Brazil
| | - Luana Rossato
- Health Sciences Research Laboratory, Universidade Federal of Grande Dourados, Rodovia Dourados - Itahum km 12, Cidade Universitária, Dourados, Mato Grosso do Sul, CEP: 79804970, Brazil.
| |
Collapse
|
2
|
Gomes RMODS, Silva KJGD, Theodoro RC. Group I introns: Structure, splicing and their applications in medical mycology. Genet Mol Biol 2024; 47Suppl 1:e20230228. [PMID: 38525907 DOI: 10.1590/1678-4685-gmb-2023-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/02/2024] [Indexed: 03/26/2024] Open
Abstract
Group I introns are small RNAs (250-500 nt) capable of catalyzing their own splicing from the precursor RNA. They are widely distributed across the tree of life and have intricate relationships with their host genomes. In this work, we review its basic structure, self-splicing and its mechanisms of gene mobility. As they are widely found in unicellular eukaryotes, especially fungi, we gathered information regarding their possible impact on the physiology of fungal cells and the possible application of these introns in medical mycology.
Collapse
Affiliation(s)
| | | | - Raquel Cordeiro Theodoro
- Universidade Federal do Rio Grande do Norte, Instituto de Medicina Tropical do Rio Grande do Norte, Natal, RN, Brazil
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular de Genética, Natal, RN, Brazil
| |
Collapse
|
3
|
Pirani RM, Arias CF, Charles K, Chung AK, Curlis JD, Nicholson DJ, Vargas M, Cox CL, McMillan WO, Logan ML. A high-quality genome for the slender anole (Anolis apletophallus): an emerging model for field studies of tropical ecology and evolution. G3 (BETHESDA, MD.) 2023; 14:jkad248. [PMID: 37875105 PMCID: PMC10755174 DOI: 10.1093/g3journal/jkad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/22/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
The slender anole, Anolis apletophallus, is a small arboreal lizard of the rainforest understory of central and eastern Panama. This species has been the subject of numerous ecological and evolutionary studies over the past 60 years as a result of attributes that make it especially amenable to field and laboratory science. Slender anoles are highly abundant, short-lived (nearly 100% annual turnover), easy to manipulate in both the lab and field, and are ubiquitous in the forests surrounding the Smithsonian Tropical Research Institute in Panama, where researchers have access to high-quality laboratory facilities. Here, we present a high-quality genome for the slender anole, which is an important new resource for studying this model species. We assembled and annotated the slender anole genome by combining 3 technologies: Oxford Nanopore, 10× Genomics Linked-Reads, and Dovetail Omni-C. We compared this genome with the recently published brown anole (Anolis sagrei) and the canonical green anole (Anolis carolinensis) genomes. Our genome is the first assembled for an Anolis lizard from mainland Central or South America, the regions that host the majority of diversity in the genus. This new reference genome is one of the most complete genomes of any anole assembled to date and should facilitate deeper studies of slender anole evolution, as well as broader scale comparative genomic studies of both mainland and island species. In turn, such studies will further our understanding of the well-known adaptive radiation of Anolis lizards.
Collapse
Affiliation(s)
- Renata M Pirani
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Carlos F Arias
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20013, USA
| | - Kristin Charles
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Albert K Chung
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-2016, USA
| | - John David Curlis
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Daniel J Nicholson
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
- University of Texas, Arlington, TX 76019, USA
| | - Marta Vargas
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Christian L Cox
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL 33199, USA
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Michael L Logan
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| |
Collapse
|
4
|
Mukhopadhyay J, Wai A, Hausner G. The mitogenomes of Leptographium aureum, Leptographium sp., and Grosmannia fruticeta: expansion by introns. Front Microbiol 2023; 14:1240407. [PMID: 37637121 PMCID: PMC10448965 DOI: 10.3389/fmicb.2023.1240407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Many members of the Ophiostomatales are of economic importance as they are bark-beetle associates and causative agents for blue stain on timber and in some instances contribute towards tree mortality. The taxonomy of these fungi has been challenging due to the convergent evolution of many traits associated with insect dispersal and a limited number of morphological characters that happen to be highly pleomorphic. This study examines the mitochondrial genomes for three members of Leptographium sensu lato [Leptographium aureum (also known as Grosmannia aurea), Grosmannia fruticeta (also known as Leptographium fruticetum), and Leptographium sp. WIN(M)1376)]. Methods Illumina sequencing combined with gene and intron annotations and phylogenetic analysis were performed. Results Sequence analysis showed that gene content and gene synteny are conserved but mitochondrial genome sizes were variable: G. fruticeta at 63,821 bp, Leptographium sp. WIN(M)1376 at 81,823 bp and L. aureum at 104,547 bp. The variation in size is due to the number of introns and intron-associated open reading frames. Phylogenetic analysis of currently available mitochondrial genomes for members of the Ophiostomatales supports currently accepted generic arrangements within this order and specifically supports the separation of members with Leptographium-like conidiophores into two genera, with L. aureum grouping with Leptographium and G. fruticeta aligning with Grosmannia. Discussion Mitochondrial genomes are promising sequences for resolving evolutionary relationships within the Ophiostomatales.
Collapse
Affiliation(s)
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Gomes RMODS, da Silva KJG, Ferreira LC, Arantes TD, Theodoro RC. Distribution and Polymorphisms of Group I Introns in Mitochondrial Genes from Cryptococcus neoformans and Cryptococcus gattii. J Fungi (Basel) 2023; 9:629. [PMID: 37367565 DOI: 10.3390/jof9060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The species complexes Cryptococcus neoformans and Cryptococcus gattii are the causative agents of cryptococcosis. Virulence and susceptibility to antifungals may vary within each species according to the fungal genotype. Therefore, specific and easily accessible molecular markers are required to distinguish cryptic species and/or genotypes. Group I introns are potential markers for this purpose because they are polymorphic concerning their presence and sequence. Therefore, in this study, we evaluated the presence of group I introns in the mitochondrial genes cob and cox1 in different Cryptococcus isolates. Additionally, the origin, distribution, and evolution of these introns were investigated by phylogenetic analyses, including previously sequenced introns for the mtLSU gene. Approximately 80.5% of the 36 sequenced introns presented homing endonucleases, and phylogenetic analyses revealed that introns occupying the same insertion site form monophyletic clades. This suggests that they likely share a common ancestor that invaded the site prior to species divergence. There was only one case of heterologous invasion, probably through horizontal transfer to C. decagattii (VGIV genotype) from another fungal species. Our results showed that the C. neoformans complex has fewer introns compared to C. gattii. Additionally, there is significant polymorphism in the presence and size of these elements, both among and within genotypes. As a result, it is impossible to differentiate the cryptic species using a single intron. However, it was possible to differentiate among genotypes within each species complex, by combining PCRs of mtLSU and cox1 introns, for C. neoformans species, and mtLSU and cob introns for C. gattii species.
Collapse
Affiliation(s)
| | | | - Leonardo Capistrano Ferreira
- Institute of Tropical Medicine, Universidade Federal do Rio Grande do Norte, Natal 59064-741, RN, Brazil
- Department of Biochemistry, Center of Bioscience, Universidade Federal do Rio Grande do Norte, Natal 59064-741, RN, Brazil
| | - Thales Domingos Arantes
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil
| | - Raquel Cordeiro Theodoro
- Institute of Tropical Medicine, Universidade Federal do Rio Grande do Norte, Natal 59064-741, RN, Brazil
- Department of Cell Biology and Genetics, Center of Bioscience, Universidade Federal do Rio Grande do Norte, Natal 59064-741, RN, Brazil
| |
Collapse
|
6
|
Lin J, Xiao X, Liang Y, Zhao H, Yu Y, Yuan P, Lu S, Ding X. Repurposing non-antifungal drugs auranofin and pentamidine in combination as fungistatic antifungal agents against C. albicans. Front Cell Infect Microbiol 2022; 12:1065962. [PMID: 36590591 PMCID: PMC9798428 DOI: 10.3389/fcimb.2022.1065962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infection is a serious global health issue, causing approximately 1.5 million mortalities annually. However, clinically available anti-fungal drugs are limited, especially for multidrug-resistant fungal infections. Therefore, new antifungal drugs are urgently needed to address this clinical challenge. In this study, we proposed two non-antifungal drugs, auranofin and pentamidine, in combination to fight against multidrug-resistant C. albicans. The insufficient antifungal activity of anti-rheumatic drug auranofin is partially due to fungal membrane barrier preventing the drug uptake, and anti-protozoal drug pentamidine was used here to improve the permeability of membrane. The auranofin/pentamidine combination displayed synergistic inhibitory effect against both drug-susceptible and drug-resistant C. albicans, as well as biofilm, and significantly reduced the minimum inhibitory concentration of each drug. At non-antifungal concentration, pentamidine can disrupt the membrane integrity and increase membrane permeability, leading to enhanced cellular uptake of auranofin in C. albicans. This repurposing strategy using the combination of non-antifungal drugs with complementary antifungal mechanism may provide a novel approach for discovery of antifungal drugs to fight against multidrug-resistant fungal infections.
Collapse
Affiliation(s)
- Jiaying Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xueyi Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yijing Liang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingxiao Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China,*Correspondence: Peiyan Yuan, ; Sha Lu, ; Xin Ding,
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Peiyan Yuan, ; Sha Lu, ; Xin Ding,
| | - Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China,*Correspondence: Peiyan Yuan, ; Sha Lu, ; Xin Ding,
| |
Collapse
|
7
|
Hijazi I, Knupp J, Chang A. Retrograde signaling mediates an adaptive survival response to endoplasmic reticulum stress in Saccharomyces cerevisiae. J Cell Sci 2020; 133:jcs.241539. [PMID: 32005698 DOI: 10.1242/jcs.241539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
One major cause of endoplasmic reticulum (ER) stress is homeostatic imbalance between biosynthetic protein folding and protein folding capacity. Cells utilize mechanisms such as the unfolded protein response (UPR) to cope with ER stress. Nevertheless, when ER stress is prolonged or severe, cell death may occur, accompanied by production of mitochondrial reactive oxygen species (ROS). Using a yeast model (Saccharomyces cerevisiae), we describe an innate, adaptive response to ER stress to increase select mitochondrial proteins, O2 consumption and cell survival. The mitochondrial response allows cells to resist additional ER stress. The ER stress-induced mitochondrial response is mediated by activation of retrograde (RTG) signaling to enhance anapleurotic reactions of the tricarboxylic acid cycle. Mitochondrial response to ER stress is accompanied by inactivation of the conserved TORC1 pathway, and activation of Snf1/AMPK, the conserved energy sensor and regulator of metabolism. Our results provide new insight into the role of respiration in cell survival in the face of ER stress, and should help in developing therapeutic strategies to limit cell death in disorders linked to ER stress.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Imadeddin Hijazi
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| | - Jeffrey Knupp
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| | - Amy Chang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Zubaer A, Wai A, Hausner G. The fungal mitochondrial Nad5 pan-genic intron landscape. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:835-842. [PMID: 31698975 DOI: 10.1080/24701394.2019.1687691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An intron landscape was prepared for the fungal mitochondrial nad5 gene. A hundred and eighty-eight fungal species were examined and a total of 265 introns were noted to be located in 29 intron insertion sites within the examined nad5 genes. Two hundred and sixty-three introns could be classified as group I types and two group II introns were noted. One additional group II intron module was identified nested within a composite group I intron. Based on features related to RNA secondary structures, introns can be classified into different subtypes and it was observed that intron insertion-sites are biased towards phase 0 and they appear to be specific to an intron type. Intron landscapes could be used as a guide map to predict the location of fungal mtDNA mobile introns, which are composite elements that include a ribozyme component and in some instances open reading frames encoding homing endonucleases or reverse transcriptases and all of these have applications in biotechnology.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
9
|
Reddy K, Jenquin JR, Cleary JD, Berglund JA. Mitigating RNA Toxicity in Myotonic Dystrophy using Small Molecules. Int J Mol Sci 2019; 20:E4017. [PMID: 31426500 PMCID: PMC6720693 DOI: 10.3390/ijms20164017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
This review, one in a series on myotonic dystrophy (DM), is focused on the development and potential use of small molecules as therapeutics for DM. The complex mechanisms and pathogenesis of DM are covered in the associated reviews. Here, we examine the various small molecule approaches taken to target the DNA, RNA, and proteins that contribute to disease onset and progression in myotonic dystrophy type 1 (DM1) and 2 (DM2).
Collapse
Affiliation(s)
- Kaalak Reddy
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA.
| | - Jana R Jenquin
- Center for NeuroGenetics and Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32608, USA
| | - John D Cleary
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - J Andrew Berglund
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA.
- Center for NeuroGenetics and Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
10
|
Nixon SA, Saez NJ, Herzig V, King GF, Kotze AC. The antitrypanosomal diarylamidines, diminazene and pentamidine, show anthelmintic activity against Haemonchus contortus in vitro. Vet Parasitol 2019; 270:40-46. [PMID: 31213240 DOI: 10.1016/j.vetpar.2019.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
Parasitic nematodes pose a major threat to livestock production worldwide. The blood-feeding parasite Haemonchus contortus is a key small-ruminant pathogen that causes anaemia, and thereby seriously impacts animal health and production. Control of this parasite relies largely upon broad-spectrum anthelmintics, but new drugs are urgently needed to combat the threat of widespread multidrug resistance. Repurposing drugs can accelerate the development pipeline by reducing costs and risks, and can be an effective way of quickly bringing new antiparasitic drugs to market. Diarylamidine compounds such as pentamidine and diminazene have been employed in the treatment of trypanosomiasis and leishmaniasis in both human and veterinary settings, but their activity against parasitic worms has not yet been reported. We screened a small panel of diarylamidine compounds against H. contortus to assess their potential to be repurposed as anthelmintic drugs. Pentamidine and diminazene inhibited H. contortus larval development at low micromolar concentrations (IC50 4.9 μM and 16.1 μM, respectively, in a drug-susceptible isolate) with no existing cross-resistance in two multidrug resistant isolates and a monepantel-resistant isolate. Combinations of pentamidine with commercial anthelmintics showed additive activity, with no significant synergism detected. Pentamidine and diminazene showed different life-stage patterns of activity; both were active against early stage larvae in development assays, but only diminazene was active against the infective L3 stage in migration assays. This suggests some differences in uptake of the two drugs across the nematode cuticle, or differences in the nature and expression patterns of their molecular targets. As pentamidine and diminazene have been reported to be potent inhibitors of mammalian acid-sensing ion channels (ASIC), we tested the activity of known ASIC inhibitors against H. contortus to probe whether these channels may represent potential anthelmintic targets in nematodes. Remarkably, the spider-venom peptide Hi1a, a potent inhibitor of ASIC1a, inhibited H. contortus larval development with an IC50 of 22.9 ± 1.9 μM. This study highlights the potential use of diarylamidines as anthelmintics, although their activity needs to be confirmed in vivo. In addition, our demonstration that ASIC inhibitors have anthelmintic activity raises the possibility that this family of ion channels may represent a novel anthelmintic target.
Collapse
Affiliation(s)
- Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4067, Australia
| | - Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew C Kotze
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
11
|
Zaccone G, Lauriano ER, Capillo G, Kuciel M. Air- breathing in fish: Air- breathing organs and control of respiration: Nerves and neurotransmitters in the air-breathing organs and the skin. Acta Histochem 2018; 120:630-641. [PMID: 30266194 DOI: 10.1016/j.acthis.2018.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In fishes, exploitation of aerial gas exchange has evolved independently many times, involving a variety of air-breathing organs. Indeed, air-breathing occurs in at least 49 known families of fish (Graham, 1997). Many amphibious vertebrates, at some stage of their development are actually trimodal breathers that use various combinations of respiratory surfaces to breath both water (skin and/or gill) and air (skin and/or lung). The present review examines the evolutionary implications of air-breathing organs in fishes and the morphology of the peripheral receptors and the neurotransmitter content of the cells involved in the control of air-breathing. Control of breathing, whether gill ventilation or air-breathing, is influenced by feedback from peripheral and/or central nervous system receptors that respond to changes in PO2, PCO2 and/or pH. Although the specific chemoreceptors mediating the respiratory reflexes have not been conclusively identified, studies in water-breathing teleosts have implicated the neuroepithelial cells (NECs) existing in gill tissues as the O2 sensitive chemoreceptors that initiate the cardiorespiratory reflexes in aquatic vertebrates. Some of the air-breathing fishes, such as Protopterus, Polypterus and Amia have been shown to have NECs in the gills and/or lungs, although the role of these receptors and their innervation in the control of breathing is not known. NECs have been also reported in the specialized respiratory epithelia of accessory respiratory organs (ARO's) of some catfish species and in the gill and skin of the mudskipper Periophthalmodon schlosseri. Unlike teleosts matching an O2-oriented ventilation to ambient O2 levels, lungfishes have central and peripheral H+/CO2 receptors that control the acid-base status of the blood.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168, Messina, Italy.
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Gioele Capillo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Michał Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagiellonian University, Kopernika 15, 30-501 Kraków, Poland.
| |
Collapse
|
12
|
López-Morató M, Brook JD, Wojciechowska M. Small Molecules Which Improve Pathogenesis of Myotonic Dystrophy Type 1. Front Neurol 2018; 9:349. [PMID: 29867749 PMCID: PMC5968088 DOI: 10.3389/fneur.2018.00349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults for which there is currently no treatment. The pathogenesis of this autosomal dominant disorder is associated with the expansion of CTG repeats in the 3'-UTR of the DMPK gene. DMPK transcripts with expanded CUG repeats (CUGexpDMPK) are retained in the nucleus forming multiple discrete foci, and their presence triggers a cascade of toxic events. Thus far, most research emphasis has been on interactions of CUGexpDMPK with the muscleblind-like (MBNL) family of splicing factors. These proteins are sequestered by the expanded CUG repeats of DMPK RNA leading to their functional depletion. As a consequence, abnormalities in many pathways of RNA metabolism, including alternative splicing, are detected in DM1. To date, in vitro and in vivo efforts to develop therapeutic strategies for DM1 have mostly been focused on targeting CUGexpDMPK via reducing their expression and/or preventing interactions with MBNL1. Antisense oligonucleotides targeted to the CUG repeats in the DMPK transcripts are of particular interest due to their potential capacity to discriminate between mutant and normal transcripts. However, a growing number of reports describe alternative strategies using small molecule chemicals acting independently of a direct interaction with CUGexpDMPK. In this review, we summarize current knowledge about these chemicals and we describe the beneficial effects they caused in different DM1 experimental models. We also present potential mechanisms of action of these compounds and pathways they affect which could be considered for future therapeutic interventions in DM1.
Collapse
Affiliation(s)
- Marta López-Morató
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - John David Brook
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Marzena Wojciechowska
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Polish Academy of Sciences, Department of Molecular Genetics, Institute of Bioorganic Chemistry, Poznan, Poland
| |
Collapse
|
13
|
Wang Y, Sun Y, Xiong Z, He K, Feng J, Zhang X. Baseline sensitivity and biochemical responses of Valsa mali to propamidine. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 147:90-95. [PMID: 29933998 DOI: 10.1016/j.pestbp.2018.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/30/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
In the current study, baseline sensitivity of Valsa mali to propamidine was determined using 80 strains collected from apple orchards in Shaanxi Province, China. The median effective concentration (EC50) values for propamidine inhibiting mycelial growth ranged from 0.086 to 0.852 μg/mL, with a mean of 0.405 ± 0.137 μg/mL. After treated with propamidine, mycelia were contorted with an increased number of branches, loss of fruiting body production, and decreased cell membrane permeability. Moreover, the enzyme activities of the complexes I, II, IV and ATPase in the mitochondrial respiratory chain were increased significantly, while the enzyme activities of complexes III decreased. Importantly, both on detached leaves and branches of apple trees, propamidine applied at 100 μg/mL exhibited over 75% protective and curative efficacies, which were even better than the efficacies obtained by carbendazim at the same concentration. These results indicated that propamidine could be used as an alternative compound in controlling Valsa canker and mitochondrial respiratory chains might be correlated with the action mode of propamidine. This study encourages further investigation for the action mechanism of propamidine against plant pathogens and the information could be valuable for synthesis of new antifungal drugs with novel modes of action.
Collapse
Affiliation(s)
- Yong Wang
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yang Sun
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Zi Xiong
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Kai He
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Juntao Feng
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Xing Zhang
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Abstract
Inhibition of tRNA aminoacylation has proven to be an effective antimicrobial strategy, impeding an essential step of protein synthesis. Mupirocin, the well-known selective inhibitor of bacterial isoleucyl-tRNA synthetase, is one of three aminoacylation inhibitors now approved for human or animal use. However, design of novel aminoacylation inhibitors is complicated by the steadfast requirement to avoid off-target inhibition of protein synthesis in human cells. Here we review available data regarding known aminoacylation inhibitors as well as key amino-acid residues in aminoacyl-tRNA synthetases (aaRSs) and nucleotides in tRNA that determine the specificity and strength of the aaRS-tRNA interaction. Unlike most ligand-protein interactions, the aaRS-tRNA recognition interaction represents coevolution of both the tRNA and aaRS structures to conserve the specificity of aminoacylation. This property means that many determinants of tRNA recognition in pathogens have diverged from those of humans-a phenomenon that provides a valuable source of data for antimicrobial drug development.
Collapse
Affiliation(s)
- Joanne M Ho
- a Department of BioSciences , Rice University , Houston , TX , United States
| | | | - Dieter Söll
- c Departments of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , United States.,d Department of Chemistry , Yale University , New Haven , CT , United States
| | | |
Collapse
|
15
|
Panozzo C, Laleve A, Tribouillard-Tanvier D, Ostojić J, Sellem CH, Friocourt G, Bourand-Plantefol A, Burg A, Delahodde A, Blondel M, Dujardin G. Chemicals or mutations that target mitochondrial translation can rescue the respiratory deficiency of yeast bcs1 mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2297-2307. [PMID: 28888990 DOI: 10.1016/j.bbamcr.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 11/28/2022]
Abstract
Bcs1p is a chaperone that is required for the incorporation of the Rieske subunit within complex III of the mitochondrial respiratory chain. Mutations in the human gene BCS1L (BCS1-like) are the most frequent nuclear mutations resulting in complex III-related pathologies. In yeast, the mimicking of some pathogenic mutations causes a respiratory deficiency. We have screened chemical libraries and found that two antibiotics, pentamidine and clarithromycin, can compensate two bcs1 point mutations in yeast, one of which is the equivalent of a mutation found in a human patient. As both antibiotics target the large mtrRNA of the mitoribosome, we focused our analysis on mitochondrial translation. We found that the absence of non-essential translation factors Rrf1 or Mif3, which act at the recycling/initiation steps, also compensates for the respiratory deficiency of yeast bcs1 mutations. At compensating concentrations, both antibiotics, as well as the absence of Rrf1, cause an imbalanced synthesis of respiratory subunits which impairs the assembly of the respiratory complexes and especially that of complex IV. Finally, we show that pentamidine also decreases the assembly of complex I in nematode mitochondria. It is well known that complexes III and IV exist within the mitochondrial inner membrane as supramolecular complexes III2/IV in yeast or I/III2/IV in higher eukaryotes. Therefore, we propose that the changes in mitochondrial translation caused by the drugs or by the absence of translation factors, can compensate for bcs1 mutations by modifying the equilibrium between illegitimate, and thus inactive, and active supercomplexes.
Collapse
Affiliation(s)
- C Panozzo
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Laleve
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - D Tribouillard-Tanvier
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - J Ostojić
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - C H Sellem
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - G Friocourt
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Bourand-Plantefol
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Burg
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Delahodde
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - M Blondel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - G Dujardin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France.
| |
Collapse
|
16
|
Antileishmanial Mechanism of Diamidines Involves Targeting Kinetoplasts. Antimicrob Agents Chemother 2016; 60:6828-6836. [PMID: 27600039 DOI: 10.1128/aac.01129-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/28/2016] [Indexed: 02/08/2023] Open
Abstract
Leishmaniasis is a disease caused by pathogenic Leishmania parasites; current treatments are toxic and expensive, and drug resistance has emerged. While pentamidine, a diamidine-type compound, is one of the treatments, its antileishmanial mechanism of action has not been investigated in depth. Here we tested several diamidines, including pentamidine and its analog DB75, against Leishmania donovani and elucidated their antileishmanial mechanisms. We identified three promising new antileishmanial diamidine compounds with 50% effective concentrations (EC50s) of 3.2, 3.4, and 4.5 μM, while pentamidine and DB75 exhibited EC50s of 1.46 and 20 μM, respectively. The most potent antileishmanial inhibitor, compound 1, showed strong DNA binding properties, with a shift in the melting temperature (ΔTm) of 24.2°C, whereas pentamidine had a ΔTm value of 2.1°C, and DB75 had a ΔTm value of 7.7°C. Additionally, DB75 localized in L. donovani kinetoplast DNA (kDNA) and mitochondria but not in nuclear DNA (nDNA). For 2 new diamidines, strong localization signals were observed in kDNA at 1 μM, and at higher concentrations, the signals also appeared in nuclei. All tested diamidines showed selective and dose-dependent inhibition of kDNA, but not nDNA, replication, likely by inhibiting L. donovani topoisomerase IB. Overall, these results suggest that diamidine antileishmanial compounds exert activity by accumulating toward and blocking replication of parasite kDNA.
Collapse
|
17
|
Couvillion MT, Soto IC, Shipkovenska G, Churchman LS. Synchronized mitochondrial and cytosolic translation programs. Nature 2016; 533:499-503. [PMID: 27225121 PMCID: PMC4964289 DOI: 10.1038/nature18015] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/18/2016] [Indexed: 01/21/2023]
Abstract
Oxidative phosphorylation (OXPHOS) is fundamental for life. OXPHOS complexes pose a unique challenge for the cell, because their subunits are encoded on two different genomes, the nuclear genome and the mitochondrial genome. Genomic approaches designed to study nuclear/cytosolic and bacterial gene expression have not been broadly applied to the mitochondrial system; thus the co-regulation of OXPHOS genes remains largely unexplored. Here we globally monitored mitochondrial and nuclear gene expression processes in Saccharomyces cerevisiae during mitochondrial biogenesis, when OXPHOS complexes are synthesized. Nuclear- and mitochondrial-encoded OXPHOS transcript levels do not increase concordantly. Instead, we observe that mitochondrial and cytosolic translation are rapidly and dynamically regulated in a strikingly synchronous fashion. Furthermore, the coordinated translation programs are controlled unidirectionally through the intricate and dynamic control of cytosolic translation. Thus the nuclear genome carefully directs the coordination of mitochondrial and cytosolic translation to orchestrate the timely synthesis of each OXPHOS complex, representing an unappreciated regulatory layer shaping the mitochondrial proteome. Our whole-cell genomic profiling approach establishes a foundation for global gene regulatory studies of mitochondrial biology.
Collapse
Affiliation(s)
- Mary T Couvillion
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Iliana C Soto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gergana Shipkovenska
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - L Stirling Churchman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
18
|
Örs ŞT, Akdoğan E, Dunn CD. Mutation of the mitochondrial large ribosomal RNA can provide pentamidine resistance to Saccharomyces cerevisiae. Mitochondrion 2014; 18:7-11. [DOI: 10.1016/j.mito.2014.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/24/2014] [Accepted: 08/13/2014] [Indexed: 12/16/2022]
|
19
|
Coonrod LA, Nakamori M, Wang W, Carrell S, Hilton CL, Bodner MJ, Siboni RB, Docter AG, Haley MM, Thornton CA, Berglund JA. Reducing levels of toxic RNA with small molecules. ACS Chem Biol 2013; 8:2528-37. [PMID: 24028068 DOI: 10.1021/cb400431f] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myotonic dystrophy (DM) is one of the most common forms of muscular dystrophy. DM is an autosomal dominant disease caused by a toxic gain of function RNA. The toxic RNA is produced from expanded noncoding CTG/CCTG repeats, and these CUG/CCUG repeats sequester the Muscleblind-like (MBNL) family of RNA binding proteins. The MBNL proteins are regulators of alternative splicing, and their sequestration has been linked with mis-splicing events in DM. A previously reported screen for small molecules found that pentamidine was able to improve splicing defects associated with DM. Biochemical experiments and cell and mouse model studies of the disease indicate that pentamidine and related compounds may work through binding the CTG*CAG repeat DNA to inhibit transcription. Analysis of a series of methylene linker analogues of pentamidine revealed that heptamidine reverses splicing defects and rescues myotonia in a DM1 mouse model.
Collapse
Affiliation(s)
| | - Masayuki Nakamori
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Wenli Wang
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Samuel Carrell
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | | | | | | | | | | | - Charles A. Thornton
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | | |
Collapse
|
20
|
Moll I, Fabbretti A, Brandi L, Gualerzi CO. Inhibitors Targeting Riboswitches and Ribozymes. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
21
|
Xu C, Wang C, Sun X, Zhang R, Gleason ML, Eiji T, Sun G. Multiple group I introns in the small-subunit rDNA of Botryosphaeria dothidea: implication for intraspecific genetic diversity. PLoS One 2013; 8:e67808. [PMID: 23844098 PMCID: PMC3699495 DOI: 10.1371/journal.pone.0067808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022] Open
Abstract
Botryosphaeria dothidea is a widespread and economically important pathogen on various fruit trees, and it often causes die-back and canker on limbs and fruit rot. In characterizing intraspecies genetic variation within this fungus, group I introns, rich in rDNA of fungi, may provide a productive region for exploration. In this research, we analysed complete small subunit (SSU) ribosomal DNA (rDNA) sequences of 37 B. dothidea strains, and found four insertions, designated Bdo.S943, Bdo.S1199-A, Bdo.S1199-B and Bdo.S1506, at three positions. Sequence analysis and structure prediction revealed that both Bdo.S943 and Bdo.S1506 belonged to subgroup IC1 of group I introns, whereas Bdo.S1199-A and Bdo.S1199-B corresponded to group IE introns. Moreover, Bdo.S1199-A was found to host an open reading frame (ORF) for encoding the homing endonuclease (HE), whereas Bdo.S1199-B, an evolutionary descendant of Bdo.S1199-A, included a degenerate HE. The above four introns were novel, and were the first group I introns observed and characterized in this species. Differential distribution of these introns revealed that all strains could be separated into four genotypes. Genotype III (no intron) and genotype IV (Bdo.S1199-B) were each found in only one strain, whereas genotype I (Bdo.S1199-A) and genotype II (Bdo.S943 and Bdo.S1506) occurred in 95% of the strains. There is a correlation between B. dothidea genotypes and hosts or geographic locations. Thus, these newly discovered group I introns can help to advance understanding of genetic differentiation within B. dothidea.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunsheng Wang
- Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyao Sun
- Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rong Zhang
- Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Mark L. Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Tanaka Eiji
- Ishikawa Prefectural University, Ishikawa, Japan
| | - Guangyu Sun
- Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
22
|
Tran T, Disney MD. Identifying the preferred RNA motifs and chemotypes that interact by probing millions of combinations. Nat Commun 2013; 3:1125. [PMID: 23047683 PMCID: PMC3533436 DOI: 10.1038/ncomms2119] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022] Open
Abstract
RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here, we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (among a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole and pyridinium chemotypes allow for specific recognition of RNA motifs. As targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses.
Collapse
Affiliation(s)
- Tuan Tran
- The Department of Chemistry, University at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
23
|
T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob Agents Chemother 2012; 56:5892-7. [PMID: 22948882 DOI: 10.1128/aac.05954-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-2307, an arylamidine compound, has been previously reported to have broad-spectrum in vitro and in vivo antifungal activities against clinically significant pathogens, including Candida species, Cryptococcus neoformans, and Aspergillus species, and is now undergoing clinical trials. Here we investigated the mechanism of action of T-2307 using yeast cells and mitochondria isolated from yeast and rat liver. Nonfermentative growth of Candida albicans and Saccharomyces cerevisiae in glycerol medium, in which yeasts relied on mitochondrial respiratory function, was inhibited at 0.001 to 0.002 μg/ml (0.002 to 0.004 μM) of T-2307. However, fermentative growth in dextrose medium was not inhibited by T-2307. Microscopic examination using Mitotracker fluorescent dye, a cell-permeant mitochondrion-specific probe, demonstrated that T-2307 impaired the mitochondrial function of C. albicans and S. cerevisiae at concentrations near the MIC in glycerol medium. T-2307 collapsed the mitochondrial membrane potential in mitochondria isolated from S. cerevisiae at 20 μM. On the other hand, in isolated rat liver mitochondria, T-2307 did not have any effect on the mitochondrial membrane potential at 10 mM. Moreover, T-2307 had little inhibitory and stimulatory effect on mitochondrial respiration in rat liver mitochondria. In conclusion, T-2307 selectively disrupted yeast mitochondrial function, and it was also demonstrated that the fungal mitochondrion is an attractive antifungal target.
Collapse
|
24
|
Use of ribosomal introns as new markers of genetic diversity in Exophiala dermatitidis. Fungal Biol 2011; 115:1038-50. [DOI: 10.1016/j.funbio.2011.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 11/21/2022]
|
25
|
Pessayre D, Fromenty B, Berson A, Robin MA, Lettéron P, Moreau R, Mansouri A. Central role of mitochondria in drug-induced liver injury. Drug Metab Rev 2011; 44:34-87. [PMID: 21892896 DOI: 10.3109/03602532.2011.604086] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A frequent mechanism for drug-induced liver injury (DILI) is the formation of reactive metabolites that trigger hepatitis through direct toxicity or immune reactions. Both events cause mitochondrial membrane disruption. Genetic or acquired factors predispose to metabolite-mediated hepatitis by increasing the formation of the reactive metabolite, decreasing its detoxification, or by the presence of critical human leukocyte antigen molecule(s). In other instances, the parent drug itself triggers mitochondrial membrane disruption or inhibits mitochondrial function through different mechanisms. Drugs can sequester coenzyme A or can inhibit mitochondrial β-oxidation enzymes, the transfer of electrons along the respiratory chain, or adenosine triphosphate (ATP) synthase. Drugs can also destroy mitochondrial DNA, inhibit its replication, decrease mitochondrial transcripts, or hamper mitochondrial protein synthesis. Quite often, a single drug has many different effects on mitochondrial function. A severe impairment of oxidative phosphorylation decreases hepatic ATP, leading to cell dysfunction or necrosis; it can also secondarily inhibit ß-oxidation, thus causing steatosis, and can also inhibit pyruvate catabolism, leading to lactic acidosis. A severe impairment of β-oxidation can cause a fatty liver; further, decreased gluconeogenesis and increased utilization of glucose to compensate for the inability to oxidize fatty acids, together with the mitochondrial toxicity of accumulated free fatty acids and lipid peroxidation products, may impair energy production, possibly leading to coma and death. Susceptibility to parent drug-mediated mitochondrial dysfunction can be increased by factors impairing the removal of the toxic parent compound or by the presence of other medical condition(s) impairing mitochondrial function. New drug molecules should be screened for possible mitochondrial effects.
Collapse
Affiliation(s)
- Dominique Pessayre
- INSERM, U, Centre de Recherche Bichat Beaujon CRB, Faculté de Médecine Xavier-Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Minnick MF, Hicks LD, Battisti JM, Raghavan R. Pentamidine inhibits Coxiella burnetii growth and 23S rRNA intron splicing in vitro. Int J Antimicrob Agents 2011; 36:380-2. [PMID: 20599360 DOI: 10.1016/j.ijantimicag.2010.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/28/2010] [Accepted: 05/27/2010] [Indexed: 01/26/2023]
Abstract
Coxiella burnetii is the bacterial agent of Q fever in humans. Acute Q fever generally manifests as a flu-like illness and is typically self-resolving. In contrast, chronic Q fever usually presents with endocarditis and is often life-threatening without appropriate antimicrobial therapy. Unfortunately, available options for the successful treatment of chronic Q fever are both limited and protracted (>18 months). Pentamidine, an RNA splice inhibitor used to treat fungal and protozoal infections, was shown to reduce intracellular growth of Coxiella by ca. 73% at a concentration of 1 microM (ca. 0.6 microg/mL) compared with untreated controls, with no detectable toxic effects on host cells. Bacterial targets of pentamidine include Cbu.L1917 and Cbu.L1951, two group I introns that disrupt the 23S rRNA gene of Coxiella, as demonstrated by the drug's ability to inhibit intron RNA splicing in vitro. Since both introns are highly conserved amongst all eight genotypes of the pathogen, pentamidine is predicted to be efficacious against numerous strains of C. burnetii. To our knowledge, this is the first report describing antibacterial activity for this antifungal/antiprotozoal agent.
Collapse
Affiliation(s)
- Michael F Minnick
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
Mitochondrial dysfunction is a major mechanism of liver injury. A parent drug or its reactive metabolite can trigger outer mitochondrial membrane permeabilization or rupture due to mitochondrial permeability transition. The latter can severely deplete ATP and cause liver cell necrosis, or it can instead lead to apoptosis by releasing cytochrome c, which activates caspases in the cytosol. Necrosis and apoptosis can trigger cytolytic hepatitis resulting in lethal fulminant hepatitis in some patients. Other drugs severely inhibit mitochondrial function and trigger extensive microvesicular steatosis, hypoglycaemia, coma, and death. Milder and more prolonged forms of drug-induced mitochondrial dysfunction can also cause macrovacuolar steatosis. Although this is a benign liver lesion in the short-term, it can progress to steatohepatitis and then to cirrhosis. Patient susceptibility to drug-induced mitochondrial dysfunction and liver injury can sometimes be explained by genetic or acquired variations in drug metabolism and/or elimination that increase the concentration of the toxic species (parent drug or metabolite). Susceptibility may also be increased by the presence of another condition, which also impairs mitochondrial function, such as an inborn mitochondrial cytopathy, beta-oxidation defect, certain viral infections, pregnancy, or the obesity-associated metabolic syndrome. Liver injury due to mitochondrial dysfunction can have important consequences for pharmaceutical companies. It has led to the interruption of clinical trials, the recall of several drugs after marketing, or the introduction of severe black box warnings by drug agencies. Pharmaceutical companies should systematically investigate mitochondrial effects during lead selection or preclinical safety studies.
Collapse
|
28
|
Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci U S A 2009; 106:18551-6. [PMID: 19822739 DOI: 10.1073/pnas.0903234106] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy (DM) is a genetic disorder caused by the expression (as RNA) of expanded CTG or CCTG repeats. The alternative splicing factor MBNL1 is sequestered to the expanded RNA repeats, resulting in missplicing of a subset of pre-mRNAs linked to symptoms found in DM patients. Current data suggest that if MBNL1 is released from sequestration, disease symptoms may be alleviated. We identified the small molecules pentamidine and neomycin B as compounds that disrupt MBNL1 binding to CUG repeats in vitro. We show in cell culture that pentamidine was able to reverse the missplicing of 2 pre-mRNAs affected in DM, whereas neomycin B had no effect. Pentamidine also significantly reduced the formation of ribonuclear foci in tissue culture cells, releasing MBNL1 from the foci in the treated cells. Furthermore, pentamidine partially rescued splicing defects of 2 pre-mRNAs in mice expressing expanded CUG repeats.
Collapse
|
29
|
Zhang L, Leibowitz MJ, Zhang Y. Antisense oligonucleotides effectively inhibit the co-transcriptional splicing of a Candida group I intron in vitro and in vivo: Implications for antifungal therapeutics. FEBS Lett 2009; 583:734-8. [PMID: 19185575 DOI: 10.1016/j.febslet.2009.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/02/2009] [Accepted: 01/15/2009] [Indexed: 11/27/2022]
Abstract
Self-splicing of group I intron from the 26S rRNA of Candida albicans is essential for maturation of the host RNA. Here, we demonstrated that the co-transcriptional splicing of the intron in vitro was blocked by antisense oligonucleotides (AONs) targeting the P3-P7 core of the intron. The core-targeted AON effectively and specifically inhibited the intron splicing from its host RNA in living C. albicans. Furthermore, flow cytometry experiments showed that the growth inhibition was caused by a fungicidal effect. For the first time, we showed that an AON targeting the ribozyme core folding specifically inhibits the endogenous ribozyme splicing in living cells and specifically kills the intron-containing fungal strains, which sheds light on the development of antifungal drugs in the future.
Collapse
Affiliation(s)
- Libin Zhang
- State Key Laboratory of Virology and Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | |
Collapse
|
30
|
Sun T, Zhang Y. Pentamidine binds to tRNA through non-specific hydrophobic interactions and inhibits aminoacylation and translation. Nucleic Acids Res 2008; 36:1654-64. [PMID: 18263620 PMCID: PMC2275129 DOI: 10.1093/nar/gkm1180] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The selective and potent inhibition of mitochondrial translation in Saccharomyces cerevisiae by pentamidine suggests a novel antimicrobial action for this drug. Electrophoresis mobility shift assay, T1 ribonuclease footprinting, hydroxyl radical footprinting and isothermal titration calorimetry collectively demonstrated that pentamidine non-specifically binds to two distinct classes of sites on tRNA. The binding was driven by favorable entropy changes indicative of a large hydrophobic interaction, suggesting that the aromatic rings of pentamidine are inserted into the stacked base pairs of tRNA helices. Pentamidine binding disrupts the tRNA secondary structure and masks the anticodon loop in the tertiary structure. Consistently, we showed that pentamidine specifically inhibits tRNA aminoacylation but not the cognate amino acid adenylation. Pentamidine inhibited protein translation in vitro with an EC(50) equivalent to that binds to tRNA and inhibits tRNA aminoacylation in vitro, but drastically higher than that inhibits translation in vivo, supporting the established notion that the antimicrobial activity of pentamidine is largely due to its selective accumulation by the pathogen rather than by the host cell. Therefore, interrupting tRNA aminoacylation by the entropy-driven non-specific binding is an important mechanism of pentamidine in inhibiting protein translation, providing new insights into the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | |
Collapse
|
31
|
In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother 2008; 52:1318-24. [PMID: 18227186 DOI: 10.1128/aac.01159-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro and in vivo antifungal activities of T-2307, a novel arylamidine, were evaluated and compared with those of fluconazole, voriconazole, micafungin, and amphotericin B. T-2307 exhibited broad-spectrum activity against clinically significant pathogens, including Candida species (MIC range, 0.00025 to 0.0078 microg/ml), Cryptococcus neoformans (MIC range, 0.0039 to 0.0625 microg/ml), and Aspergillus species (MIC range, 0.0156 to 4 microg/ml). Furthermore, T-2307 exhibited potent activity against fluconazole-resistant and fluconazole-susceptible-dose-dependent Candida albicans strains as well as against azole-susceptible strains. T-2307 exhibited fungicidal activity against some Candida and Aspergillus species and against Cryptococcus neoformans. In mouse models of disseminated candidiasis, cryptococcosis, and aspergillosis, the 50% effective doses of T-2307 were 0.00755, 0.117, and 0.391 mg.kg(-1).dose(-1), respectively. This agent was considerably more active than micafungin and amphotericin B against candidiasis and than amphotericin B against cryptococcosis, and its activity was comparable to the activities of micafungin and amphotericin B against aspergillosis. The results of preclinical in vitro and in vivo evaluations performed thus far indicate that T-2307 could represent a potent injectable agent for the treatment of candidiasis, cryptococcosis, and aspergillosis.
Collapse
|
32
|
Raghavan R, Miller SR, Hicks LD, Minnick MF. The unusual 23S rRNA gene of Coxiella burnetii: two self-splicing group I introns flank a 34-base-pair exon, and one element lacks the canonical omegaG. J Bacteriol 2007; 189:6572-9. [PMID: 17644584 PMCID: PMC2045182 DOI: 10.1128/jb.00812-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the presence and characteristics of two self-splicing group I introns in the sole 23S rRNA gene of Coxiella burnetii. The two group I introns, Cbu.L1917 and Cbu.L1951, are inserted at sites 1917 and 1951 (Escherichia coli numbering), respectively, in the 23S rRNA gene of C. burnetii. Both introns were found to be self-splicing in vivo and in vitro even though the terminal nucleotide of Cbu.L1917 is adenine and not the canonical conserved guanine, termed OmegaG, found in Cbu.L1951 and all other group I introns described to date. Predicted secondary structures for both introns were constructed and revealed that Cbu.L1917 and Cbu.L1951 were group IB2 and group IA3 introns, respectively. We analyzed strains belonging to eight genomic groups of C. burnetii to determine sequence variation and the presence or absence of the elements and found both introns to be highly conserved (>/=99%) among them. Although phylogenetic analysis did not identify the specific identities of donors, it indicates that the introns were likely acquired independently; Cbu.L1917 was acquired from other bacteria like Thermotoga subterranea and Cbu.L1951 from lower eukaryotes like Acanthamoeba castellanii. We also confirmed the fragmented nature of mature 23S rRNA in C. burnetii due to the presence of an intervening sequence. The presence of three selfish elements in C. burnetii's 23S rRNA gene is very unusual for an obligate intracellular bacterium and suggests a recent shift to its current lifestyle from a previous niche with greater opportunities for lateral gene transfer.
Collapse
Affiliation(s)
- Rahul Raghavan
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Lanteri CA, Trumpower BL, Tidwell RR, Meshnick SR. DB75, a novel trypanocidal agent, disrupts mitochondrial function in Saccharomyces cerevisiae. Antimicrob Agents Chemother 2004; 48:3968-74. [PMID: 15388460 PMCID: PMC521894 DOI: 10.1128/aac.48.10.3968-3974.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/23/2004] [Accepted: 06/06/2004] [Indexed: 11/20/2022] Open
Abstract
The aromatic diamidines represent a class of compounds with broad-spectrum antimicrobial activity; however, their development is hindered by a lack of understanding of their mechanism of antimicrobial action. DB75 [2,5-bis(4-amidinophenyl)furan] is a trypanocidal aromatic diamidine that was originally developed as a structural analogue of the antitrypanosomal agent pentamidine. DB289, a novel orally active prodrug of DB75, is undergoing phase IIb clinical trials for early-stage human African trypanosomiasis, Pneumocystis jiroveci carinii pneumonia, and malaria. The purpose of this study was to investigate mechanisms of action of DB75 using Saccharomyces cerevisiae as a model organism. The results of this investigation suggest that DB75 inhibits mitochondrial function. Yeast cells relying upon mitochondrial metabolism for energy production are especially sensitive to DB75. DB75 localizes (by fluorescence) within the mitochondria of living yeast cells and collapses the mitochondrial membrane potential in isolated yeast mitochondria. Furthermore, addition of DB75 to yeast cells or isolated rat liver mitochondria results in immediate uncoupling of oxidative phosphorylation and subsequent inhibition of respiration. We conclude that the mitochondrion is a cellular target of DB75 in yeast cells and anticipate that the results of this study will aid in the target-based design of new antimicrobial aromatic diamidines.
Collapse
Affiliation(s)
- Charlotte A Lanteri
- Department of Pathology and Laboratory Medicine, Room 805, Brinkhous-Bullitt Building, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| | | | | | | |
Collapse
|
36
|
Toffaletti DL, Nielsen K, Dietrich F, Heitman J, Perfect JR. Cryptococcus neoformans mitochondrial genomes from serotype A and D strains do not influence virulence. Curr Genet 2004; 46:193-204. [PMID: 15309505 DOI: 10.1007/s00294-004-0521-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 06/30/2004] [Accepted: 07/06/2004] [Indexed: 11/30/2022]
Abstract
Cryptococcus neoformans is an encapsulated pathogenic yeast producing meningoencephalitis. Two primary strains in genetic studies, serotype A H99 and serotype D JEC21, possess dramatic differences in virulence. Since it has been shown that mitochondrial gene expression is prominent at the site of the infection and there are significant differences between mitochondrial gene structure and regulation between the serotype A and D strains, this study used AD hybrids to move serotype A and D mitochondria under different genomic influences. When the serotype D MATa strain is involved in the mating crosses, there is uniparental transmission of mitochondrial DNA, but with the serotype A MATa strain, mitochondrial DNA can be inherited from either parent and recombination in the mitochondrial genome may also occur. In virulence studies between serotype A and D strains, it was found that the primary genetic control of the virulence composite for growth in the central nervous system is encoded in the nuclear DNA and not through mitochondrial DNA.
Collapse
Affiliation(s)
- Dena L Toffaletti
- Department of Medicine, Duke University Medical Center, PO Box 3353, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
37
|
Rodeheffer MS, Shadel GS. Multiple interactions involving the amino-terminal domain of yeast mtRNA polymerase determine the efficiency of mitochondrial protein synthesis. J Biol Chem 2003; 278:18695-701. [PMID: 12637560 PMCID: PMC2606056 DOI: 10.1074/jbc.m301399200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The amino-terminal domain (ATD) of Saccharomyces cerevisiae mitochondrial RNA polymerase has been shown to provide a functional link between transcription and post-transcriptional events during mitochondrial gene expression. This connection is mediated in large part by its interactions with the matrix protein Nam1p and, based on genetic phenotypes, the mitochondrial membrane protein Sls1p. These observations led us to propose previously that mtRNA polymerase, Nam1p, and Sls1p work together to coordinate transcription and translation of mtDNA-encoded gene products. Here we demonstrate by specific labeling of mitochondrial gene products in vivo that Nam1p and Sls1p indeed work together in a pathway that is required globally for efficient mitochondrial translation. Likewise, mutations in the ATD result in similar global reductions in mitochondrial translation efficiency and sensitivity to the mitochondrial translation inhibitor erythromycin. These data, coupled with the observation that the ATD is required to co-purify Sls1p in association with mtDNA nucleoids, suggest that efficient expression of mtDNA-encoded genes in yeast involves a complex series of interactions that localize active transcription complexes to the inner membrane in order to coordinate translation with transcription.
Collapse
Affiliation(s)
- Matthew S. Rodeheffer
- Department of Biochemistry and the Graduate Program in Biochemistry, Cell and Developmental Biology, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322-3050
| | - Gerald S. Shadel
- To whom correspondence should be addressed. Tel.: 404-727-3798; Fax: 404-727-3954; E-mail:
| |
Collapse
|
38
|
Zhang Y, Li Z, Pilch DS, Leibowitz MJ. Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding. Nucleic Acids Res 2002; 30:2961-71. [PMID: 12087182 PMCID: PMC117049 DOI: 10.1093/nar/gkf394] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The antimicrobial agent pentamidine inhibits the self-splicing of the group I intron Ca.LSU from the transcripts of the 26S rRNA gene of Candida albicans, but the mechanism of pentamidine inhibition is not clear. We show that preincubation of the ribozyme with pentamidine enhances the inhibitory effect of the drug and alters the folding of the ribozyme in a pattern varying with drug concentration. Pentamidine at 25 microM prevents formation of the catalytically active F band conformation of the precursor RNA and alters the ribonuclease T1 cleavage pattern of Ca.LSU RNA. The effects on cleavage suggest that pentamidine mainly binds to specific sites in or near asymmetric loops of helices P2 and P2.1 on the ribozyme, as well as to the tetraloop of P9.2 and the loosely paired helix P9, resulting in an altered structure of helix P7, which contains the active site. Positively charged molecules antagonize pentamidine inhibition of catalysis and relieve the drug effect on ribozyme folding, suggesting that pentamidine binds to a magnesium binding site(s) of the ribozyme to exert its inhibitory effect.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biotechnology, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | |
Collapse
|
39
|
Bryan AC, Rodeheffer MS, Wearn CM, Shadel GS. Sls1p is a membrane-bound regulator of transcription-coupled processes involved in Saccharomyces cerevisiae mitochondrial gene expression. Genetics 2002; 160:75-82. [PMID: 11805046 PMCID: PMC1461927 DOI: 10.1093/genetics/160.1.75] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial translation is largely membrane-associated in S. cerevisiae. Recently, we discovered that the matrix protein Nam1p binds the amino-terminal domain of yeast mtRNA polymerase to couple translation and/or RNA-processing events to transcription. To gain additional insight into these transcription-coupled processes, we performed a genetic screen for genes that suppress the petite phenotype of a point mutation in mtRNA polymerase (rpo41-R129D) when overexpressed. One suppressor identified in this screen was SLS1, which encodes a mitochondrial membrane protein required for assembly of respiratory-chain enzyme complexes III and IV. The mtRNA-processing defects associated with the rpo41-R129D mutation were corrected in the suppressed strain, linking Sls1p to a pathway that includes mtRNA polymerase and Nam1p. This was supported by the observation that SLS1 overexpression rescued the petite phenotype of a NAM1 null mutation. In contrast, overexpression of Nam1p did not rescue the petite phenotype of a SLS1 null mutation, indicating that Nam1p and Sls1p are not functionally redundant but rather exist in an ordered pathway. On the basis of these data, a model in which Nam1p coordinates the delivery of newly synthesized transcripts to the membrane, where Sls1p directs or regulates their subsequent handling by membrane-bound factors involved in translation, is proposed.
Collapse
Affiliation(s)
- Anthony C Bryan
- Department of Biochemistry, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
40
|
Zhang Y, Leibowitz MJ. Folding of the group I intron ribozyme from the 26S rRNA gene of Candida albicans. Nucleic Acids Res 2001; 29:2644-53. [PMID: 11410674 PMCID: PMC55740 DOI: 10.1093/nar/29.12.2644] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Preincubation of the group I intron Ca.LSU from Candida albicans at 37 degrees C in the absence of divalent cations results in partial folding of this intron. This is indicated by increased resistance to T1 ribonuclease cleavage of many G residues in most local helices, including P4-P6, as well as the non-local helix P7, where the G binding site is located. These changes correlate with increased gel mobility and activation of catalysis by precursor RNA containing this intron after preincubation. The presence of divalent cations or spermidine during preincubation results in formation of the predicted helices, as indicated by protection of additional G residues. However, addition of these cations during preincubation of the precursor RNA alters its gel mobility and eliminates the preincubation activation of precursor RNA seen in the absence of cations. These results suggest that, in the presence of divalent cations or spermidine, Ca.LSU folds into a more ordered, stable but misfolded conformation that is less able to convert into the catalytically active form than the ribozyme preincubated without cations. These results indicate that, like the group I intron of Tetrahymena, multiple folding pathways exist for Ca.LSU. However, it appears that the role cations play in the multiple folding pathways leading to the catalytically active form may differ between folding of these two group I introns.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biotechnology, College of Life Science, Wuhan University, Wuhan 430072, P.R. China
| | | |
Collapse
|
41
|
|