1
|
DeMontigny W, Bachvaroff T. The nuclear and mitochondrial genomes of amoebophrya sp. ex Karlodinium veneficum. G3 (BETHESDA, MD.) 2025; 15:jkaf030. [PMID: 39950409 PMCID: PMC12005148 DOI: 10.1093/g3journal/jkaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/29/2025] [Indexed: 04/18/2025]
Abstract
Dinoflagellates are a diverse group of microplankton that include free-living, symbiotic, and parasitic species. Amoebophrya, a basal lineage of parasitic dinoflagellates, infects a variety of marine microorganisms, including harmful-bloom-forming algae. Although there are currently 3 published Amoebophrya genomes, this genus has considerable genomic diversity. We add to the growing genomic data for Amoebophrya with an annotated genome assembly for Amoebophrya sp. ex Karlodinium veneficum. This species appears to translate all 3 canonical stop codons contextually. Stop codons are present in the open reading frames of about half of the predicted gene models, including genes essential for cellular function. The in-frame stop codons are likely translated by suppressor tRNAs that were identified in the assembly. We also assembled the mitochondrial genome, which has remained elusive in the previous Amoebophrya genome assemblies. The mitochondrial genome assembly consists of many fragments with high sequence identity in the genes but low sequence identity in intergenic regions. Nuclear and mitochondrially-encoded proteins indicate that Amoebophrya sp. ex K. veneficum does not have a bipartite electron transport chain, unlike previously analyzed Amoebophrya species. This study highlights the importance of analyzing multiple genomes from highly diverse genera such as Amoebophrya.
Collapse
Affiliation(s)
- Wesley DeMontigny
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD 20742, USA
| | - Tsvetan Bachvaroff
- Institute for Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Baltimore, MD 21202, USA
| |
Collapse
|
2
|
Trubitsina NP, Zemlyanko OM, Matveenko AG, Bondarev SA, Moskalenko SE, Maksiutenko EM, Zudilova AA, Rogoza TM, Zhouravleva GA. Prion-Dependent Lethality of sup35 Missense Mutations Is Caused by Low GTPase Activity of the Mutant eRF3 Protein. Int J Mol Sci 2025; 26:3434. [PMID: 40244414 PMCID: PMC11989363 DOI: 10.3390/ijms26073434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The essential SUP35 gene encodes yeast translation termination factor Sup35/eRF3. The N-terminal domain of Sup35 is also responsible for Sup35 prionization that leads to generation of the [PSI+] prion. Previously we isolated different types of sup35 mutations (missense and nonsense) and demonstrated that sup35 nonsense mutations (sup35-n) are incompatible with the [PSI+] prion, leading to lethality of sup35-n [PSI+] haploid cells. Here, we show that sup35 missense mutations (sup35-m) within conservative regions of the Sup35 C-domain result in lethality of [PSI+] cells because of weak activity of Sup35/eRF3 as a translation termination factor. Mutant Sup35 maintain their ability to be incorporated into pre-existing [PSI+] aggregates and to form amyloid aggregates in vitro, while sup35-m mutations do not influence the [PSI+] prion induction and stability. All these mutations (D363N, R372K, T378I) are located in the conservative GTPase region of Sup35, decreasing the GTPase activity of mutated proteins. We propose that such low activity of mutant Sup35 combined with aggregation of Sup35 constituting the [PSI+] prion is not sufficient to maintain the viability of yeast cells.
Collapse
Affiliation(s)
- Nina P. Trubitsina
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Olga M. Zemlyanko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrew G. Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Svetlana E. Moskalenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Evgeniia M. Maksiutenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Anna A. Zudilova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Tatiana M. Rogoza
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Lino BR, Williams SJ, Castor ME, Van Deventer JA. Reaching New Heights in Genetic Code Manipulation with High Throughput Screening. Chem Rev 2024; 124:12145-12175. [PMID: 39418482 PMCID: PMC11879460 DOI: 10.1021/acs.chemrev.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
Collapse
Affiliation(s)
- Briana R. Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J. Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle E. Castor
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Kolakada D, Fu R, Biziaev N, Shuvalov A, Lore M, Campbell AE, Cortázar MA, Sajek MP, Hesselberth JR, Mukherjee N, Alkalaeva E, Coban Akdemir ZH, Jagannathan S. Systematic analysis of nonsense variants uncovers peptide release rate as a novel modifier of nonsense-mediated mRNA decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575080. [PMID: 38260612 PMCID: PMC10802582 DOI: 10.1101/2024.01.10.575080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nonsense variants underlie many genetic diseases. The phenotypic impact of nonsense variants is determined by nonsense-mediated mRNA decay (NMD), which degrades transcripts with premature termination codons (PTCs). Despite its clinical importance, the factors controlling transcript-specific and context-dependent variation in NMD activity remain poorly understood. Through analysis of human genetic datasets, we discovered that the amino acid preceding the PTC strongly influences NMD activity. Notably, glycine codons promote robust NMD efficiency and show striking enrichment before PTCs but depletion before normal termination codons (NTCs). This glycine-PTC enrichment is particularly pronounced in genes tolerant to loss-of-function variants, suggesting evolutionary selection or neutrality conferred by efficient elimination of truncated proteins from non-essential genes. Using biochemical assays and massively parallel reporter analysis, we demonstrated that the peptide release rate during translation termination varies substantially with the identity of the preceding amino acid and serves as the primary determinant of NMD activity. We propose a "window of opportunity" model where translation termination kinetics modulate NMD efficiency. By revealing how sequence context shapes NMD activity through translation termination dynamics, our findings provide a mechanistic framework for improved clinical interpretation of nonsense variants.
Collapse
Affiliation(s)
- Divya Kolakada
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Mlana Lore
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy E. Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A. Cortázar
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marcin P. Sajek
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Jay R. Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Lead contact
| |
Collapse
|
5
|
Biziaev N, Shuvalov A, Salman A, Egorova T, Shuvalova E, Alkalaeva E. The impact of mRNA poly(A) tail length on eukaryotic translation stages. Nucleic Acids Res 2024; 52:7792-7808. [PMID: 38874498 PMCID: PMC11260481 DOI: 10.1093/nar/gkae510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The poly(A) tail plays an important role in maintaining mRNA stability and influences translation efficiency via binding with PABP. However, the impact of poly(A) tail length on mRNA translation remains incompletely understood. This study explores the effects of poly(A) tail length on human translation. We determined the translation rates in cell lysates using mRNAs with different poly(A) tails. Cap-dependent translation was stimulated by the poly(A) tail, however, it was largely independent of poly(A) tail length, with an exception observed in the case of the 75 nt poly(A) tail. Conversely, cap-independent translation displayed a positive correlation with poly(A) tail length. Examination of translation stages uncovered the dependence of initiation and termination on the presence of the poly(A) tail, but the efficiency of initiation remained unaffected by poly(A) tail extension. Further study unveiled that increased binding of eRFs to the ribosome with the poly(A) tail extension induced more efficient hydrolysis of peptidyl-tRNA. Building upon these findings, we propose a crucial role for the 75 nt poly(A) tail in orchestrating the formation of a double closed-loop mRNA structure within human cells which couples the initiation and termination phases of translation.
Collapse
Affiliation(s)
- Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ali Salman
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana Egorova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Shuvalov A, Klishin A, Biziaev N, Shuvalova E, Alkalaeva E. Functional Activity of Isoform 2 of Human eRF1. Int J Mol Sci 2024; 25:7997. [PMID: 39063238 PMCID: PMC11277123 DOI: 10.3390/ijms25147997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Eukaryotic release factor eRF1, encoded by the ETF1 gene, recognizes stop codons and induces peptide release during translation termination. ETF1 produces several different transcripts as a result of alternative splicing, from which two eRF1 isoforms can be formed. Isoform 1 codes well-studied canonical eRF1, and isoform 2 is 33 amino acid residues shorter than isoform 1 and completely unstudied. Using a reconstituted mammalian in vitro translation system, we showed that the isoform 2 of human eRF1 is also involved in translation. We showed that eRF1iso2 can interact with the ribosomal subunits and pre-termination complex. However, its codon recognition and peptide release activities have decreased. Additionally, eRF1 isoform 2 exhibits unipotency to UGA. We found that eRF1 isoform 2 interacts with eRF3a but stimulated its GTPase activity significantly worse than the main isoform eRF1. Additionally, we studied the eRF1 isoform 2 effect on stop codon readthrough and translation in a cell-free translation system. We observed that eRF1 isoform 2 suppressed stop codon readthrough of the uORFs and decreased the efficiency of translation of long coding sequences. Based on these data, we assumed that human eRF1 isoform 2 can be involved in the regulation of translation termination. Moreover, our data support previously stated hypotheses that the GTS loop is important for the multipotency of eRF1 to all stop codons. Whereas helix α1 of the N-domain eRF1 is proposed to be involved in conformational rearrangements of eRF1 in the A-site of the ribosome that occur after GTP hydrolysis by eRF3, which ensure hydrolysis of peptidyl-tRNA at the P site of the ribosome.
Collapse
Affiliation(s)
- Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Klishin
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.)
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.)
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Fu X, Huang Y, Shen Y. Improving the Efficiency and Orthogonality of Genetic Code Expansion. BIODESIGN RESEARCH 2022; 2022:9896125. [PMID: 37850140 PMCID: PMC10521639 DOI: 10.34133/2022/9896125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/20/2022] [Indexed: 10/19/2023] Open
Abstract
The site-specific incorporation of the noncanonical amino acid (ncAA) into proteins via genetic code expansion (GCE) has enabled the development of new and powerful ways to learn, regulate, and evolve biological functions in vivo. However, cellular biosynthesis of ncAA-containing proteins with high efficiency and fidelity is a formidable challenge. In this review, we summarize up-to-date progress towards improving the efficiency and orthogonality of GCE and enhancing intracellular compatibility of introduced translation machinery in the living cells by creation and optimization of orthogonal translation components, constructing genomically recoded organism (GRO), utilization of unnatural base pairs (UBP) and quadruplet codons (four-base codons), and spatial separation of orthogonal translation.
Collapse
Affiliation(s)
- Xian Fu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120China
| | - Yijian Huang
- BGI-Shenzhen, Shenzhen 518083, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
8
|
Korostelev AA. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. BIOCHEMISTRY (MOSCOW) 2021; 86:1107-1121. [PMID: 34565314 DOI: 10.1134/s0006297921090066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When a ribosome encounters the stop codon of an mRNA, it terminates translation, releases the newly made protein, and is recycled to initiate translation on a new mRNA. Termination is a highly dynamic process in which release factors (RF1 and RF2 in bacteria; eRF1•eRF3•GTP in eukaryotes) coordinate peptide release with large-scale molecular rearrangements of the ribosome. Ribosomes stalled on aberrant mRNAs are rescued and recycled by diverse bacterial, mitochondrial, or cytoplasmic quality control mechanisms. These are catalyzed by rescue factors with peptidyl-tRNA hydrolase activity (bacterial ArfA•RF2 and ArfB, mitochondrial ICT1 and mtRF-R, and cytoplasmic Vms1), that are distinct from each other and from release factors. Nevertheless, recent structural studies demonstrate a remarkable similarity between translation termination and ribosome rescue mechanisms. This review describes how these pathways rely on inherent ribosome dynamics, emphasizing the active role of the ribosome in all translation steps.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Bulygin KN, Timofeev IO, Malygin AA, Graifer DM, Meschaninova MI, Venyaminova AG, Krumkacheva OA, Fedin MV, Yu Frolova L, Karpova GG, Bagryanskaya EG. Two alternative conformations of mRNA in the human ribosome during elongation and termination of translation as revealed by EPR spectroscopy. Comput Struct Biotechnol J 2021; 19:4702-4710. [PMID: 34504663 PMCID: PMC8390954 DOI: 10.1016/j.csbj.2021.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
DEER reveals the conformational variability of mRNA at the certain translation steps. Elongation and termination complexes exist in 2 conformations in dynamic equilibrium. The conformations of mRNA in 40S channel undergo no major change during termination.
The conformation of mRNA in the region of the human 80S ribosome decoding site was monitored using 11-mer mRNA analogues that bore nitroxide spin labels attached to the terminal nucleotide bases. Intramolecular spin–spin distances were measured by DEER/PELDOR spectroscopy in model complexes mimicking different states of the 80S ribosome during elongation and termination of translation. The measurements revealed that in all studied complexes, mRNA exists in two alternative conformations, whose ratios are different in post-translocation, pre-translocation and termination complexes. We found that the presence of a tRNA molecule at the ribosomal A site decreases the relative share of the more extended mRNA conformation, whereas the binding of eRF1 (alone or in a complex with eRF3) results in the opposite effect. In the termination complexes, the ratios of mRNA conformations are practically the same, indicating that a part of mRNA bound in the ribosome channel does not undergo significant structural alterations in the course of completion of the translation. Our results contribute to the understanding of mRNA molecular dynamics in the mammalian ribosome channel during translation.
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Ivan O Timofeev
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Ludmila Yu Frolova
- Engelhardt Institute of Molecular Biology RAS, Vavilova Str. 32, Moscow 119991, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Li W, Chang STL, Ward FR, Cate JHD. Selective inhibition of human translation termination by a drug-like compound. Nat Commun 2020; 11:4941. [PMID: 33009412 PMCID: PMC7532171 DOI: 10.1038/s41467-020-18765-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Methods to directly inhibit gene expression using small molecules hold promise for the development of new therapeutics targeting proteins that have evaded previous attempts at drug discovery. Among these, small molecules including the drug-like compound PF-06446846 (PF846) selectively inhibit the synthesis of specific proteins, by stalling translation elongation. These molecules also inhibit translation termination by an unknown mechanism. Using cryo-electron microscopy (cryo-EM) and biochemical approaches, we show that PF846 inhibits translation termination by arresting the nascent chain (NC) in the ribosome exit tunnel. The arrested NC adopts a compact α-helical conformation that induces 28 S rRNA nucleotide rearrangements that suppress the peptidyl transferase center (PTC) catalytic activity stimulated by eukaryotic release factor 1 (eRF1). These data support a mechanism of action for a small molecule targeting translation that suppresses peptidyl-tRNA hydrolysis promoted by eRF1, revealing principles of eukaryotic translation termination and laying the foundation for new therapeutic strategies.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stacey Tsai-Lan Chang
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Fred R Ward
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Jamie H D Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
11
|
Ayyub SA, Gao F, Lightowlers RN, Chrzanowska-Lightowlers ZM. Rescuing stalled mammalian mitoribosomes - what can we learn from bacteria? J Cell Sci 2020; 133:133/1/jcs231811. [PMID: 31896602 DOI: 10.1242/jcs.231811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the canonical process of translation, newly completed proteins escape from the ribosome following cleavage of the ester bond that anchors the polypeptide to the P-site tRNA, after which the ribosome can be recycled to initiate a new round of translation. Not all protein synthesis runs to completion as various factors can impede the progression of ribosomes. Rescuing of stalled ribosomes in mammalian mitochondria, however, does not share the same mechanisms that many bacteria use. The classic method for rescuing bacterial ribosomes is trans-translation. The key components of this system are absent from mammalian mitochondria; however, four members of a translation termination factor family are present, with some evidence of homology to members of a bacterial back-up rescue system. To date, there is no definitive demonstration of any other member of this family functioning in mitoribosome rescue. Here, we provide an overview of the processes and key players of canonical translation termination in both bacteria and mammalian mitochondria, followed by a perspective of the bacterial systems used to rescue stalled ribosomes. We highlight any similarities or differences with the mitochondrial translation release factors, and suggest potential roles for these proteins in ribosome rescue in mammalian mitochondria.
Collapse
Affiliation(s)
- Shreya Ahana Ayyub
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Fei Gao
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Zofia M Chrzanowska-Lightowlers
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
12
|
Elakhdar A, Ushijima T, Fukuda M, Yamashiro N, Kawagoe Y, Kumamaru T. Eukaryotic peptide chain release factor 1 participates in translation termination of specific cysteine-poor prolamines in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:223-231. [PMID: 30824055 DOI: 10.1016/j.plantsci.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Prolamines are alcohol-soluble proteins classified as either cysteine-poor (CysP) or cysteine-rich (CysR) based on whether they can be alcohol-extracted without or with reducing agents, respectively. In rice esp1 mutants, various CysP prolamines exhibit both reduced and normal amounts of isoelectric focusing bands, indicating that the mutation affects only certain prolamine classes. To examine the genetic regulation of CysP prolamine synthesis and accumulation, we constructed a high-resolution genetic linkage map of ESP1. The ESP1 gene was mapped to within a 20 kb region on rice chromosome 7. Sequencing analysis of annotated genes in this region revealed a single-nucleotide polymorphism within eukaryotic peptide chain release factor (eRF1), which participates in stop-codon recognition and nascent-polypeptide release from ribosomes during translation. A subsequent complementation test revealed that ESP1 encodes eRF1. We also identified UAA as the stop codon of CysP prolamines with reduced concentration in esp1 mutants. Recognition assays and microarray analysis confirmed that ESP1/eRF1 recognizes UAA/UAG, but not UGA. Our results provide convincing evidence that ESP1/eRF1 participates in the translation termination of CysP prolamines during seed development.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan; Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Tomokazu Ushijima
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Masako Fukuda
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Noriko Yamashiro
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan.
| |
Collapse
|
13
|
Abstract
Cells respond to hypoxia by shifting cellular processes from general housekeeping functions to activating specialized hypoxia-response pathways. Oxygen plays an important role in generating ATP to maintain a productive rate of protein synthesis in normoxia. In hypoxia, the rate of the canonical protein synthesis pathway is significantly slowed and impaired due to limited ATP availability, necessitating an alternative mechanism to mediate protein synthesis and facilitate adaptation. Hypoxia adaptation is largely mediated by hypoxia-inducible factors (HIFs). While HIFs are well known for their transcriptional functions, they also play imperative roles in translation to mediate hypoxic protein synthesis. Such adaptations to hypoxia are often hyperactive in solid tumors, contributing to the expression of cancer hallmarks, including treatment resistance. The current literature on protein synthesis in hypoxia is reviewed here, inclusive of hypoxia-specific mRNA selection to translation termination. Current HIF targeting therapies are also discussed as are the opportunities involved with targeting hypoxia specific protein synthesis pathways.
Collapse
Affiliation(s)
- Nancy T Chee
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA
| | - Ines Lohse
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA
| | - Shaun P Brothers
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
14
|
Wada M, Ito K. Misdecoding of rare CGA codon by translation termination factors, eRF1/eRF3, suggests novel class of ribosome rescue pathway in S. cerevisiae. FEBS J 2019; 286:788-802. [PMID: 30471181 PMCID: PMC7379694 DOI: 10.1111/febs.14709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
The CGA arginine codon is a rare codon in Saccharomyces cerevisiae. Thus, full-length mature protein synthesis from reporter genes with internal CGA codon repeats are markedly reduced, and the reporters, instead, produce short-sized polypeptides via an unknown mechanism. Considering the product size and similar properties between CGA sense and UGA stop codons, we hypothesized that eukaryote polypeptide-chain release factor complex eRF1/eRF3 catalyses polypeptide release at CGA repeats. Herein, we performed a series of analyses and report that the CGA codon can be, to a certain extent, decoded as a stop codon in yeast. This also raises an intriguing possibility that translation termination factors eRF1/eRF3 rescue ribosomes stalled at CGA codons, releasing premature polypeptides, and competing with canonical tRNAICG to the CGA codon. Our results suggest an alternative ribosomal rescue pathway in eukaryotes. The present results suggest that misdecoding of low efficient codons may play a novel role in global translation regulation in S. cerevisiae.
Collapse
Affiliation(s)
- Miki Wada
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwa‐cityJapan
- Technical officeThe Institute of Medical ScienceThe University of TokyoMinato‐kuJapan
| | - Koichi Ito
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwa‐cityJapan
| |
Collapse
|
15
|
Control of mRNA Translation by Versatile ATP-Driven Machines. Trends Biochem Sci 2018; 44:167-180. [PMID: 30527974 DOI: 10.1016/j.tibs.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
Translation is organized in a cycle that requires ribosomal subunits, mRNA, aminoacylated transfer RNAs, and myriad regulatory factors. As soon as translation reaches a stop codon or stall, a termination or surveillance process is launched via the release factors eRF1 or Pelota, respectively. The ATP-binding cassette (ABC) protein ABCE1 interacts with release factors and coordinates the recycling process in Eukarya and Archaea. After splitting, ABCE1 stays with the small ribosomal subunit and emerges as an integral part of translation initiation complexes. In addition, eEF3 and ABCF proteins control translation by binding at the E-site. In this review, we highlight advances in the fundamental role of ABC systems in mRNA translation in view of their collective inner mechanics.
Collapse
|
16
|
Svidritskiy E, Demo G, Korostelev AA. Mechanism of premature translation termination on a sense codon. J Biol Chem 2018; 293:12472-12479. [PMID: 29941456 DOI: 10.1074/jbc.aw118.003232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accurate translation termination by release factors (RFs) is critical for the integrity of cellular proteomes. Premature termination on sense codons, for example, results in truncated proteins, whose accumulation could be detrimental to the cell. Nevertheless, some sense codons are prone to triggering premature termination, but the structural basis for this is unclear. To investigate premature termination, we determined a cryo-EM structure of the Escherichia coli 70S ribosome bound with RF1 in response to a UAU (Tyr) sense codon. The structure reveals that RF1 recognizes a UAU codon similarly to a UAG stop codon, suggesting that sense codons induce premature termination because they structurally mimic a stop codon. Hydrophobic interaction between the nucleobase of U3 (the third position of the UAU codon) and conserved Ile-196 in RF1 is important for misreading the UAU codon. Analyses of RNA binding in ribonucleoprotein complexes or by amino acids reveal that Ile-U packing is a frequent protein-RNA-binding motif with key functional implications. We discuss parallels with eukaryotic translation termination by the release factor eRF1.
Collapse
Affiliation(s)
- Egor Svidritskiy
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Gabriel Demo
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Andrei A Korostelev
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
17
|
Cridge AG, Crowe-McAuliffe C, Mathew SF, Tate WP. Eukaryotic translational termination efficiency is influenced by the 3' nucleotides within the ribosomal mRNA channel. Nucleic Acids Res 2018; 46:1927-1944. [PMID: 29325104 PMCID: PMC5829715 DOI: 10.1093/nar/gkx1315] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/07/2017] [Accepted: 01/05/2018] [Indexed: 01/01/2023] Open
Abstract
When a stop codon is at the 80S ribosomal A site, there are six nucleotides (+4 to +9) downstream that are inferred to be occupying the mRNA channel. We examined the influence of these downstream nucleotides on translation termination success or failure in mammalian cells at the three stop codons. The expected hierarchy in the intrinsic fidelity of the stop codons (UAA>UAG>>UGA) was observed, with highly influential effects on termination readthrough mediated by nucleotides at position +4 and position +8. A more complex influence was observed from the nucleotides at positions +5 and +6. The weakest termination contexts were most affected by increases or decreases in the concentration of the decoding release factor (eRF1), indicating that eRF1 binding to these signals was rate-limiting. When termination efficiency was significantly reduced by cognate suppressor tRNAs, the observed influence of downstream nucleotides was maintained. There was a positive correlation between experimentally measured signal strength and frequency of the signal in eukaryotic genomes, particularly in Saccharomyces cerevisiae and Drosophila melanogaster. We propose that termination efficiency is not only influenced by interrogation of the stop signal directly by the release factor, but also by downstream ribosomal interactions with the mRNA nucleotides in the entry channel.
Collapse
Affiliation(s)
- Andrew G Cridge
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | | | - Suneeth F Mathew
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Warren P Tate
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| |
Collapse
|
18
|
Hoernes TP, Clementi N, Juen MA, Shi X, Faserl K, Willi J, Gasser C, Kreutz C, Joseph S, Lindner H, Hüttenhofer A, Erlacher MD. Atomic mutagenesis of stop codon nucleotides reveals the chemical prerequisites for release factor-mediated peptide release. Proc Natl Acad Sci U S A 2018; 115:E382-E389. [PMID: 29298914 PMCID: PMC5776981 DOI: 10.1073/pnas.1714554115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Termination of protein synthesis is triggered by the recognition of a stop codon at the ribosomal A site and is mediated by class I release factors (RFs). Whereas in bacteria, RF1 and RF2 promote termination at UAA/UAG and UAA/UGA stop codons, respectively, eukaryotes only depend on one RF (eRF1) to initiate peptide release at all three stop codons. Based on several structural as well as biochemical studies, interactions between mRNA, tRNA, and rRNA have been proposed to be required for stop codon recognition. In this study, the influence of these interactions was investigated by using chemically modified stop codons. Single functional groups within stop codon nucleotides were substituted to weaken or completely eliminate specific interactions between the respective mRNA and RFs. Our findings provide detailed insight into the recognition mode of bacterial and eukaryotic RFs, thereby revealing the chemical groups of nucleotides that define the identity of stop codons and provide the means to discriminate against noncognate stop codons or UGG sense codons.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Clementi
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jessica Willi
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
19
|
Abstract
Termination of protein synthesis on the ribosome requires that mRNA stop codons are recognized with high fidelity. This is achieved by specific release factor proteins that are very different in bacteria and eukaryotes. Hence, while there are two release factors with overlapping specificity in bacteria, the single omnipotent eRF1 release factor in eukaryotes is able to read all three stop codons. This is particularly remarkable as it is able to select three out of four combinations of purine bases in the last two codon positions. With recently determined 3D structures of eukaryotic termination complexes, it has become possible to explore the origin of eRF1 specificity by computer simulations. Here, we report molecular dynamics free energy calculations on these termination complexes, where relative eRF1 binding free energies to different cognate and near-cognate codons are evaluated. The simulations show a high and uniform discrimination against the near-cognate codons, that differ from the cognate ones by a single nucleotide, and reveal the structural mechanisms behind the precise decoding by eRF1. The eukaryotic release factor eRF1 is able to recognize the three stop codons UAA, UAG and UGA with high accuracy, while discriminating against near-cognate codons. Here the authors use molecular dynamic simulation to provide insight into the molecular basis behind the remarkable codon specificity of eRF1.
Collapse
|
20
|
Kumar A, Basu D, Satpati P. Structure-Based Energetics of Stop Codon Recognition by Eukaryotic Release Factor. J Chem Inf Model 2017; 57:2321-2328. [PMID: 28825483 DOI: 10.1021/acs.jcim.7b00340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In translation termination, the eukaryotic release factor (eRF1) recognizes mRNA stop codons (UAA, UAG, or UGA) in a ribosomal A site and triggers release of the nascent polypeptide chain from P-site tRNA. eRF1 is highly selective for U in the first position and a combination of purines (except two consecutive guanines, i.e., GG) in the second and third positions. Eukaryotes decode all three stop codons with a single release factor eRF1, instead of two (RF1 and RF2), in bacteria. Furthermore, unlike bacterial RF1/RF2, eRF1 stabilizes the compact U-turn mRNA configuration in the ribosomal A site by accommodating four nucleotides instead of three. Despite the available cryo-EM structures (resolution ∼3.5-3.8 Å), the energetic principle for eRF1 selectivity toward a stop codon remains a fundamentally unsolved problem. Using cryo-EM structures of eukaryotic translation termination complexes as templates, we carried out molecular dynamics free energy simulations of cognate and near-cognate complexes to quantitatively address the energetics of stop codon recognition by eRF1. Our results suggest that eRF1 has a higher discriminatory power against sense codons, compared to that reported earlier for RF1/RF2. The compact mRNA formed specific intra-mRNA interactions, which itself contributed to stop codon specificity. Furthermore, the specificity is enhanced by the loss of protein-mRNA interactions and, most importantly, by desolvation of the incorrect codons in the near-cognate complexes. Our work provides a clue to how eRF1 discriminates between cognate and near-cognate codons during protein synthesis.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati , Guwahati 781039, Assam, India
| | - Debadrita Basu
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati , Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati , Guwahati 781039, Assam, India
| |
Collapse
|
21
|
Exploring contacts of eRF1 with the 3'-terminus of the P site tRNA and mRNA stop signal in the human ribosome at various translation termination steps. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:782-793. [PMID: 28457996 DOI: 10.1016/j.bbagrm.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 11/22/2022]
Abstract
Here we employed site-directed cross-linking with the application of tRNA and mRNA analogues bearing an oxidized ribose at the 3'-terminus to investigate mutual arrangement of the main components of translation termination complexes formed on the human 80S ribosome bound with P site deacylated tRNA using eRF1•eRF3•GTP or eRF1 alone. In addition, we applied a model complex obtained in the same way with eRF1•eRF3•GMPPNP. We found that eRF3 content in the complexes with GTP and GMPPNP is similar, proving that eRF3 does not leave the ribosome after GTP hydrolysis. Our cross-linking data allowed determining locations of the 3'-terminus of the P site tRNA relatively the eRF1 M domain and of the mRNA stop signal toward the N domain and the ribosomal decoding site at the nucleotide-peptide resolution level. Our results indicate that locations of these components do not change after peptide release up to post-termination pre-recycling state, and the positioning of the mRNA stop signal remains similar to that when eRF1 recognizes it. Besides, we found that in all the complexes studied eRF1 shielded the N-terminal part of ribosomal protein eS30 from the interaction with the nucleotide adjacent to stop codon observed with pre-termination ribosome free of eRFs. Altogether, our findings brought important information on contacts of the key structural elements of eRF1, tRNA and mRNA in the ribosomal complexes including those mimicking different translation termination steps, thereby providing a deeper understanding of molecular mechanisms underlying events occurring in the course of protein synthesis termination in mammals.
Collapse
|
22
|
Bulygin KN, Bartuli YS, Malygin AA, Graifer DM, Frolova LY, Karpova GG. Chemical footprinting reveals conformational changes of 18S and 28S rRNAs at different steps of translation termination on the human ribosome. RNA (NEW YORK, N.Y.) 2016; 22:278-289. [PMID: 26655225 PMCID: PMC4712677 DOI: 10.1261/rna.053801.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Translation termination in eukaryotes is mediated by release factors: eRF1, which is responsible for stop codon recognition and peptidyl-tRNA hydrolysis, and GTPase eRF3, which stimulates peptide release. Here, we have utilized ribose-specific probes to investigate accessibility of rRNA backbone in complexes formed by association of mRNA- and tRNA-bound human ribosomes with eRF1•eRF3•GMPPNP, eRF1•eRF3•GTP, or eRF1 alone as compared with complexes where the A site is vacant or occupied by tRNA. Our data show which rRNA ribose moieties are protected from attack by the probes in the complexes with release factors and reveal the rRNA regions increasing their accessibility to the probes after the factors bind. These regions in 28S rRNA are helices 43 and 44 in the GTPase associated center, the apical loop of helix 71, and helices 89, 92, and 94 as well as 18S rRNA helices 18 and 34. Additionally, the obtained data suggest that eRF3 neither interacts with the rRNA ribose-phosphate backbone nor dissociates from the complex after GTP hydrolysis. Taken together, our findings provide new information on architecture of the eRF1 binding site on mammalian ribosome at various translation termination steps and on conformational rearrangements induced by binding of the release factors.
Collapse
MESH Headings
- Binding Sites
- Codon, Terminator
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Female
- Guanosine Triphosphate/metabolism
- Humans
- Hydrolysis
- Nucleic Acid Conformation
- Peptide Chain Termination, Translational
- Peptide Termination Factors/genetics
- Peptide Termination Factors/metabolism
- Placenta/chemistry
- Pregnancy
- Protein Binding
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yulia S Bartuli
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ludmila Yu Frolova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
23
|
Pillay S, Li Y, Wong LE, Pervushin K. Structural characterization of eRF1 mutants indicate a complex mechanism of stop codon recognition. Sci Rep 2016; 6:18644. [PMID: 26725946 PMCID: PMC4698671 DOI: 10.1038/srep18644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/17/2015] [Indexed: 12/19/2022] Open
Abstract
Eukarya translation termination requires the stop codon recognizing protein eRF1. In contrast to the multiple proteins required for translation termination in Bacteria, eRF1 retains the ability to recognize all three of the stop codons. The details of the mechanism that eRF1 uses to recognize stop codons has remained elusive. This study describes the structural effects of mutations in the eRF1 N-domain that have previously been shown to alter stop codon recognition specificity. Here, we propose a model of eRF1 binding to the pre-translation termination ribosomal complex that is based in part on our solution NMR structures of the wild-type and mutant eRF1 N-domains. Since structural perturbations induced by these mutations were spread throughout the protein structure, residual dipolar coupling (RDC) data were recorded to establish the long-range effects of the specific mutations, E55Q, Y125F, Q(122)FM(Y)F(126). RDCs were recorded on (15)N-labeled eRF1 N-domain weakly aligned in either 5% w/v n-octyl-penta (ethylene glycol)/octanol (C8E5) or the filamentous phage Pf1. These data indicate that the mutations alter the conformation and dynamics of the GTS loop that is distant from the mutation sites. We propose that the GTS loop forms a switch that is key for the multiple codon recognition capability of eRF1.
Collapse
Affiliation(s)
- Shubhadra Pillay
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Leo E Wong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
24
|
Matheisl S, Berninghausen O, Becker T, Beckmann R. Structure of a human translation termination complex. Nucleic Acids Res 2015; 43:8615-26. [PMID: 26384426 PMCID: PMC4605324 DOI: 10.1093/nar/gkv909] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/12/2015] [Indexed: 12/02/2022] Open
Abstract
In contrast to bacteria that have two release factors, RF1 and RF2, eukaryotes only possess one unrelated release factor eRF1, which recognizes all three stop codons of the mRNA and hydrolyses the peptidyl-tRNA bond. While the molecular basis for bacterial termination has been elucidated, high-resolution structures of eukaryotic termination complexes have been lacking. Here we present a 3.8 Å structure of a human translation termination complex with eRF1 decoding a UAA(A) stop codon. The complex was formed using the human cytomegalovirus (hCMV) stalling peptide, which perturbs the peptidyltransferase center (PTC) to silence the hydrolysis activity of eRF1. Moreover, unlike sense codons or bacterial stop codons, the UAA stop codon adopts a U-turn-like conformation within a pocket formed by eRF1 and the ribosome. Inducing the U-turn conformation for stop codon recognition rationalizes how decoding by eRF1 includes monitoring geometry in order to discriminate against sense codons.
Collapse
Affiliation(s)
- Sarah Matheisl
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Otto Berninghausen
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Thomas Becker
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Roland Beckmann
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| |
Collapse
|
25
|
Chai B, Li C, Yu J, Hao Y, Guo P, Shen Q. Stop codon recognition in the early-diverged protozoans Giardia lamblia and Trichomonas vaginalis. Mol Biochem Parasitol 2015; 202:15-21. [PMID: 26310515 DOI: 10.1016/j.molbiopara.2015.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/25/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Two classes of polypeptide release factors (RFs) are responsible for maintaining accuracy in translation termination; however, their detailed mechanism of action and evolutionary history of these factors remain elusive. The structure and function of RFs vary in bacteria and eukaryotes, a fact that is suggestive of evolutionary changes in the translation termination system. Giardia lamblia (Diplomonada) and Trichomonas vaginalis (Parabasalia) are considered as early-diverged eukaryotes. The class II release factor, eRF3, of Giardia (Gl-eRF3) appears to have only one domain that corresponds to EF-1α and lacks the N-terminal domain, similar to that of eRF3 of other organisms. In the present study, we show that the chimeric molecules Gl/Sc eRF1 and Tv/Sc eRF1, which are composed of the N-terminal domain of Gl-eRF1 or Tv-eRF1, fused to the core domain (M and C domain) of Saccharomyces cerevisiae eRF1 (Sc-eRF1), resulting in loss of the RF properties of the N-terminal domain. This suggests that the conformation of eRF1 for stop codon recognition in Giardia and Trichomonas varies from the eRF1s of other eukaryotes, including ciliates and yeast. Further studies using intra-N-terminal chimeras of eRF1 indicated that the combination of the GTS loop and NIKS motif from Gl-eRF1 and the Y-C-F motif from Sc-eRF1within the N terminal domain of hybrid eRF1 could restore UGA, but not UAG and UGA recognition. In contrast, the combination of the GTS loop and the NIKS motif of Sc-eRF1 and the Y-C-F motif of Gl-eRF1 could restore UAG and UAA recognition, but not UGA recognition. Thus, these results confirm the findings of previous studies that three motifs in eRF1 are necessary for discrimination of the three bases of stop codons. The NIKS motif is responsible for recognition of the first two bases of UAA and UAG, and the Y-C-F motif identifies the second base of UGA by Gl-eRF1. Amino acid residue substitutions in Gl/Sc-eRF1 by corresponding residues of Sc-eRF1 could change and even restore RF activity, further suggesting different conformation of eRF1 are used for stop codon recognition in Giardia and in Saccharomyces.
Collapse
Affiliation(s)
- Baofeng Chai
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| | - Cui Li
- Faculty of Environment and Economics, Shanxi University of Finance and Economics, Taiyuan 030006, China
| | - Jingfei Yu
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Yanrong Hao
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Ping Guo
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Quan Shen
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
26
|
Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature 2015; 524:493-496. [PMID: 26245381 PMCID: PMC4591471 DOI: 10.1038/nature14896] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022]
Abstract
Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UAA, UAG or UGA. Release factors recognize stop codons in the ribosomal A-site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognize all three stop codons. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here we present cryo-electron microscopy (cryo-EM) structures at 3.5-3.8 Å resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A-site. Binding of eRF1 flips nucleotide A1825 of 18S ribosomal RNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A-site, where it is stabilized by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during transfer RNA selection to drive messenger RNA compaction. In this compacted mRNA conformation, stop codons are favoured by a hydrogen-bonding network formed between rRNA and essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination.
Collapse
Affiliation(s)
- Alan Brown
- MRC-LMB, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sichen Shao
- MRC-LMB, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jason Murray
- MRC-LMB, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | | |
Collapse
|
27
|
Blanchet S, Rowe M, Von der Haar T, Fabret C, Demais S, Howard MJ, Namy O. New insights into stop codon recognition by eRF1. Nucleic Acids Res 2015; 43:3298-308. [PMID: 25735746 PMCID: PMC4381064 DOI: 10.1093/nar/gkv154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes, translation termination is performed by eRF1, which recognizes stop codons via its N-terminal domain. Many previous studies based on point mutagenesis, cross-linking experiments or eRF1 chimeras have investigated the mechanism by which the stop signal is decoded by eRF1. Conserved motifs, such as GTS and YxCxxxF, were found to be important for termination efficiency, but the recognition mechanism remains unclear. We characterized a region of the eRF1 N-terminal domain, the P1 pocket, that we had previously shown to be involved in termination efficiency. We performed alanine scanning mutagenesis of this region, and we quantified in vivo readthrough efficiency for each alanine mutant. We identified two residues, arginine 65 and lysine 109, as critical for recognition of the three stop codons. We also demonstrated a role for the serine 33 and serine 70 residues in UGA decoding in vivo. NMR analysis of the alanine mutants revealed that the correct conformation of this region was controlled by the YxCxxxF motif. By combining our genetic data with a structural analysis of eRF1 mutants, we were able to formulate a new model in which the stop codon interacts with eRF1 through the P1 pocket.
Collapse
Affiliation(s)
- Sandra Blanchet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| | - Michelle Rowe
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | - Céline Fabret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| | - Stéphane Demais
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| | - Mark J Howard
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| |
Collapse
|
28
|
Zhuang Q, Feng T, Coleman ML. Modifying the maker: Oxygenases target ribosome biology. ACTA ACUST UNITED AC 2015; 3:e1009331. [PMID: 26779412 PMCID: PMC4682802 DOI: 10.1080/21690731.2015.1009331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
Abstract
The complexity of the eukaryotic protein synthesis machinery is partly driven by extensive and diverse modifications to associated proteins and RNAs. These modifications can have important roles in regulating translation factor activity and ribosome biogenesis and function. Further investigation of ‘translational modifications’ is warranted considering the growing evidence implicating protein synthesis as a critical point of gene expression control that is commonly deregulated in disease. New evidence suggests that translation is a major new target for oxidative modifications, specifically hydroxylations and demethylations, which generally are catalyzed by a family of emerging oxygenase enzymes that act at the interface of nutrient availability and metabolism. This review summarizes what is currently known about the role or these enzymes in targeting rRNA synthesis, protein translation and associated cellular processes.
Collapse
Affiliation(s)
- Qinqin Zhuang
- Tumour Oxygenase Group; School of Cancer Sciences ; University of Birmingham ; Birmingham, UK
| | - Tianshu Feng
- Centre for Cellular and Molecular Physiology; University of Oxford ; Oxford, UK
| | - Mathew L Coleman
- Tumour Oxygenase Group; School of Cancer Sciences ; University of Birmingham ; Birmingham, UK
| |
Collapse
|
29
|
Karijolich J, Yu YT. Therapeutic suppression of premature termination codons: mechanisms and clinical considerations (review). Int J Mol Med 2014; 34:355-62. [PMID: 24939317 PMCID: PMC4094583 DOI: 10.3892/ijmm.2014.1809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/06/2014] [Indexed: 12/22/2022] Open
Abstract
An estimated one-third of genetic disorders are the result of mutations that generate premature termination codons (PTCs) within protein coding genes. These disorders are phenotypically diverse and consist of diseases that affect both young and old individuals. Various small molecules have been identified that are capable of modulating the efficiency of translation termination, including select antibiotics of the aminoglycoside family and multiple novel synthetic molecules, including PTC124. Several of these agents have proved their effectiveness at promoting nonsense suppression in preclinical animal models, as well as in clinical trials. In addition, it has recently been shown that box H/ACA RNA-guided peudouridylation, when directed to modify PTCs, can also promote nonsense suppression. In this review, we summarize our current understanding of eukaryotic translation termination and discuss various methods for promoting the read-through of disease-causing PTCs, as well as the current obstacles that stand in the way of using the discussed agents broadly in clinical practice.
Collapse
Affiliation(s)
- John Karijolich
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
30
|
Wada M, Ito K. A genetic approach for analyzing the co-operative function of the tRNA mimicry complex, eRF1/eRF3, in translation termination on the ribosome. Nucleic Acids Res 2014; 42:7851-66. [PMID: 24914055 PMCID: PMC4081094 DOI: 10.1093/nar/gku493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During termination of translation in eukaryotes, a GTP-binding protein, eRF3, functions within a complex with the tRNA-mimicking protein, eRF1, to decode stop codons. It remains unclear how the tRNA-mimicking protein co-operates with the GTPase and with the functional sites on the ribosome. In order to elucidate the molecular characteristics of tRNA-mimicking proteins involved in stop codon decoding, we have devised a heterologous genetic system in Saccharomyces cerevisiae. We found that eRF3 from Pneumocystis carinii (Pc-eRF3) did not complement depletion of S. cerevisiae eRF3. The strength of Pc-eRF3 binding to Sc-eRF1 depends on the GTP-binding domain, suggesting that defects of the GTPase switch in the heterologous complex causes the observed lethality. We isolated mutants of Pc-eRF3 and Sc-eRF1 that restore cell growth in the presence of Pc-eRF3 as the sole source of eRF3. Mapping of these mutations onto the latest 3D-complex structure revealed that they were located in the binding-interface region between eRF1 and eRF3, as well as in the ribosomal functional sites. Intriguingly, a novel functional site was revealed adjacent to the decoding site of eRF1, on the tip domain that mimics the tRNA anticodon loop. This novel domain likely participates in codon recognition, coupled with the GTPase function.
Collapse
Affiliation(s)
- Miki Wada
- Technical office, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| |
Collapse
|
31
|
Liu W, Mellado L, Espeso EA, Sealy-Lewis HM. In Aspergillus nidulans the suppressors suaA and suaC code for release factors eRF1 and eRF3 and suaD codes for a glutamine tRNA. G3 (BETHESDA, MD.) 2014; 4:1047-57. [PMID: 24727290 PMCID: PMC4065248 DOI: 10.1534/g3.114.010702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022]
Abstract
In Aspergillus nidulans, after extensive mutagenesis, a collection of mutants was obtained and four suppressor loci were identified genetically that could suppress mutations in putative chain termination mutations in different genes. Suppressor mutations in suaB and suaD have a similar restricted spectrum of suppression and suaB111 was previously shown to be an alteration in the anticodon of a gln tRNA. We have shown that like suaB, a suaD suppressor has a mutation in the anticodon of another gln tRNA allowing suppression of UAG mutations. Mutations in suaA and suaC had a broad spectrum of suppression. Four suaA mutations result in alterations in the coding region of the eukaryotic release factor, eRF1, and another suaA mutation has a mutation in the upstream region of eRF1 that prevents splicing of the first intron within the 5'UTR. Epitope tagging of eRF1 in this mutant results in 20% of the level of eRF1 compared to the wild-type. Two mutations in suaC result in alterations in the eukaryotic release factor, eRF3. This is the first description in Aspergillus nidulans of an alteration in eRF3 leading to suppression of chain termination mutations.
Collapse
Affiliation(s)
- Wen Liu
- Department of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Laura Mellado
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Heather M Sealy-Lewis
- Department of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
32
|
Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Mol Cell 2014; 53:645-54. [PMID: 24486019 PMCID: PMC3991326 DOI: 10.1016/j.molcel.2013.12.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/26/2013] [Accepted: 12/27/2013] [Indexed: 01/22/2023]
Abstract
Efficient stop codon recognition and peptidyl-tRNA hydrolysis are essential in order to terminate translational elongation and maintain protein sequence fidelity. Eukaryotic translational termination is mediated by a release factor complex that includes eukaryotic release factor 1 (eRF1) and eRF3. The N terminus of eRF1 contains highly conserved sequence motifs that couple stop codon recognition at the ribosomal A site to peptidyl-tRNA hydrolysis. We reveal that Jumonji domain-containing 4 (Jmjd4), a 2-oxoglutarate- and Fe(II)-dependent oxygenase, catalyzes carbon 4 (C4) lysyl hydroxylation of eRF1. This posttranslational modification takes place at an invariant lysine within the eRF1 NIKS motif and is required for optimal translational termination efficiency. These findings further highlight the role of 2-oxoglutarate/Fe(II) oxygenases in fundamental cellular processes and provide additional evidence that ensuring fidelity of protein translation is a major role of hydroxylation. Jmjd4 hydroxylates translational termination factor eRF1 The C4 lysyl hydroxylase activity of Jmjd4 is unprecedented in animals Hydroxylation occurs within the eRF1 stop codon recognition domain Inhibiting eRF1 K63 hydroxylation promotes stop codon readthrough
Collapse
|
33
|
des Georges A, Hashem Y, Unbehaun A, Grassucci RA, Taylor D, Hellen CUT, Pestova TV, Frank J. Structure of the mammalian ribosomal pre-termination complex associated with eRF1.eRF3.GDPNP. Nucleic Acids Res 2013; 42:3409-18. [PMID: 24335085 PMCID: PMC3950680 DOI: 10.1093/nar/gkt1279] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic translation termination results from the complex functional interplay between two release factors, eRF1 and eRF3, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, we present a cryo-electron microscopy structure of pre-termination complexes associated with eRF1•eRF3•GDPNP at 9.7 -Å resolution, which corresponds to the initial pre-GTP hydrolysis stage of factor attachment and stop codon recognition. It reveals the ribosomal positions of eRFs and provides insights into the mechanisms of stop codon recognition and triggering of eRF3's GTPase activity.
Collapse
Affiliation(s)
- Amédée des Georges
- Howard Hughes Medical Institute, Chevy Chase, MD, USA, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA, Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA, Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA and Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Xu L, Hao Y, Li C, Shen Q, Chai B, Wang W, Liang A. Identification of amino acids responsible for stop codon recognition for polypeptide chain release factor. Biochem Cell Biol 2013; 91:155-64. [PMID: 23668788 DOI: 10.1139/bcb-2012-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One factor involved in eukaryotic translation termination is class 1 release factor in eukaryotes (eRF1), which functions to decode stop codons. Variant code species, such as ciliates, frequently exhibit altered stop codon recognition. Studies revealed that some class-specific residues in the eRF1 N-terminal domain are responsible for stop codon reassignment in ciliates. Here, we investigated the effects on stop codon recognition of chimeric eRF1s containing the N-terminal domain of Euplotes octocarinatus and Blepharisma japonicum eRF1 fused to Saccharomyces cerevisiae M and C domains using dual luciferase read-through assays. Mutation of class-specific residues in different eRF1 classes was also studied to identify key residues and motifs involved in stop codon decoding. As expected, our results demonstrate that 3 pockets within the eRF1 N-terminal domain were involved in decoding stop codon nucleotides. However, allocation of residues to each pocket was revalued. Our data suggest that hydrophobic and class-specific surface residues participate in different functions: modulation of pocket conformation and interaction with stop codon nucleotides, respectively. Residues conserved across all eRF1s determine the relative orientation of the 3 pockets according to stop codon nucleotides. However, quantitative analysis of variant ciliate and yeast eRF1 point mutants did not reveal any correlation between evolutionary conservation of class-specific residues and termination-related functional specificity and was limited in elucidating a detailed mechanism for ciliate stop codon reassignment. Thus, based on isolation of suppressor tRNAs from Euplotes and Tetrahymena, we propose that stop codon reassignment in ciliates may be controlled by cooperation between eRF1 and suppressor tRNAs.
Collapse
Affiliation(s)
- Lijun Xu
- a Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, China; and Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | | | |
Collapse
|
35
|
A Single Amino Acid Substitution Alters Omnipotent eRF1 of Dileptus to Euplotes-type Dualpotent eRF1: Standard Codon Usage May be Advantageous in Raptorial Ciliates. Protist 2013; 164:440-9. [DOI: 10.1016/j.protis.2013.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 11/23/2022]
|
36
|
Kryuchkova P, Grishin A, Eliseev B, Karyagina A, Frolova L, Alkalaeva E. Two-step model of stop codon recognition by eukaryotic release factor eRF1. Nucleic Acids Res 2013; 41:4573-86. [PMID: 23435318 PMCID: PMC3632111 DOI: 10.1093/nar/gkt113] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Release factor eRF1 plays a key role in the termination of protein synthesis in eukaryotes. The eRF1 consists of three domains (N, M and C) that perform unique roles in termination. Previous studies of eRF1 point mutants and standard/variant code eRF1 chimeras unequivocally demonstrated a direct involvement of the highly conserved N-domain motifs (NIKS, YxCxxxF and GTx) in stop codon recognition. In the current study, we extend this work by investigating the role of the 41 invariant and conserved N-domain residues in stop codon decoding by human eRF1. Using a combination of the conservative and non-conservative amino acid substitutions, we measured the functional activity of >80 mutant eRF1s in an in vitro reconstituted eukaryotic translation system and selected 15 amino acid residues essential for recognition of different stop codon nucleotides. Furthermore, toe-print analyses provide evidence of a conformational rearrangement of ribosomal complexes that occurs during binding of eRF1 to messenger RNA and reflects stop codon decoding activity of eRF1. Based on our experimental data and molecular modelling of the N-domain at the ribosomal A site, we propose a two-step model of stop codon decoding in the eukaryotic ribosome.
Collapse
Affiliation(s)
- Polina Kryuchkova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
37
|
Jeudy S, Abergel C, Claverie JM, Legendre M. Translation in giant viruses: a unique mixture of bacterial and eukaryotic termination schemes. PLoS Genet 2012; 8:e1003122. [PMID: 23271980 PMCID: PMC3521657 DOI: 10.1371/journal.pgen.1003122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/12/2012] [Indexed: 12/04/2022] Open
Abstract
Mimivirus and Megavirus are the best characterized representatives of an expanding new family of giant viruses infecting Acanthamoeba. Their most distinctive features, megabase-sized genomes carried in particles of size comparable to that of small bacteria, fill the gap between the viral and cellular worlds. These giant viruses are also uniquely equipped with genes coding for central components of the translation apparatus. The presence of those genes, thought to be hallmarks of cellular organisms, revived fundamental interrogations on the evolutionary origin of these viruses and the link they might have with the emergence of eukaryotes. In this work, we focused on the Mimivirus-encoded translation termination factor gene, the detailed primary structure of which was elucidated using computational and experimental approaches. We demonstrated that the translation of this protein proceeds through two internal stop codons via two distinct recoding events: a frameshift and a readthrough, the combined occurrence of which is unique to these viruses. Unexpectedly, the viral gene carries an autoregulatory mechanism exclusively encountered in bacterial termination factors, though the viral sequence is related to the eukaryotic/archaeal class-I release factors. This finding is a hint that the virally-encoded translation functions may not be strictly redundant with the one provided by the host. Lastly, the perplexing occurrence of a bacterial-like regulatory mechanism in a eukaryotic/archaeal homologous gene is yet another oddity brought about by the study of giant viruses. Giant viruses, such as Mimivirus and Megavirus, have huge near-micron-sized particles and possess more genes than several cellular organisms. Furthermore their genomes encode functions not supposed to be in a virus, such as components of the protein translation apparatus. Since Lwoff in 1957, viruses are defined as ultimate obligate intracellular parasites from their need to hijack the peptide synthesis machinery of their host to replicate. We looked at the Mimivirus and Megavirus proteins that recognize the stop codons, the translation termination factors. We found that these genes contain two internal stop codons, meaning that their translation bypasses two distinct stop codons to produce a functional translation termination factor. These types of autoregulatory mechanisms are found in bacterial termination factors, although it involves only a single internal stop codon and not two, and are absent from their eukaryotic and archaeal homologs. Despite these bacterial-like features, giant viruses' termination factors have sequences that do not resemble bacterial genes but are clearly related to the eukaryotic and archaeal termination factors. Thus, giant viruses' termination factors surprisingly combine elements from eukaryotes/archaea and bacteria.
Collapse
Affiliation(s)
- Sandra Jeudy
- CNRS, Aix-Marseille Université, IGS UMR7256, Marseille, France
| | | | | | | |
Collapse
|
38
|
Kobayashi K, Saito K, Ishitani R, Ito K, Nureki O. Structural basis for translation termination by archaeal RF1 and GTP-bound EF1α complex. Nucleic Acids Res 2012; 40:9319-28. [PMID: 22772989 PMCID: PMC3467058 DOI: 10.1093/nar/gks660] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
When a stop codon appears at the ribosomal A site, the class I and II release factors (RFs) terminate translation. In eukaryotes and archaea, the class I and II RFs form a heterodimeric complex, and complete the overall translation termination process in a GTP-dependent manner. However, the structural mechanism of the translation termination by the class I and II RF complex remains unresolved. In archaea, archaeal elongation factor 1 alpha (aEF1α), a carrier GTPase for tRNA, acts as a class II RF by forming a heterodimeric complex with archaeal RF1 (aRF1). We report the crystal structure of the aRF1·aEF1α complex, the first active class I and II RF complex. This structure remarkably resembles the tRNA·EF–Tu complex, suggesting that aRF1 is efficiently delivered to the ribosomal A site, by mimicking tRNA. It provides insights into the mechanism that couples GTP hydrolysis by the class II RF to stop codon recognition and peptidyl-tRNA hydrolysis by the class I RF. We discuss the different mechanisms by which aEF1α recognizes aRF1 and aPelota, another aRF1-related protein and molecular evolution of the three functions of aEF1α.
Collapse
Affiliation(s)
- Kan Kobayashi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
39
|
Jackson RJ, Hellen CUT, Pestova TV. Termination and post-termination events in eukaryotic translation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:45-93. [PMID: 22243581 DOI: 10.1016/b978-0-12-386497-0.00002-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation termination in eukaryotes occurs in response to a stop codon in the ribosomal A-site and requires two release factors (RFs), eRF1 and eRF3, which bind to the A-site as an eRF1/eRF3/GTP complex with eRF1 responsible for codon recognition. After GTP hydrolysis by eRF3, eRF1 triggers hydrolysis of the polypeptidyl-tRNA, releasing the completed protein product. This leaves an 80S ribosome still bound to the mRNA, with deacylated tRNA in its P-site and at least eRF1 in its A-site, which needs to be disassembled and released from the mRNA to allow further rounds of translation. The first step in recycling is dissociation of the 60S ribosomal subunit, leaving a 40S/deacylated tRNA complex bound to the mRNA. This is mediated by ABCE1, which is a somewhat unusual member of the ATP-binding cassette family of proteins with no membrane-spanning domain but two essential iron-sulfur clusters. Two distinct pathways have been identified for subsequent ejection of the deacylated tRNA followed by dissociation of the 40S subunit from the mRNA, one executed by a subset of the canonical initiation factors (which therefore starts the process of preparing the 40S subunit for the next round of translation) and the other by Ligatin or homologous proteins. However, although this is the normal sequence of events, there are exceptions where the termination reaction is followed by reinitiation on the same mRNA (usually) at a site downstream of the stop codon. The overwhelming majority of such reinitiation events occur when the 5'-proximal open reading frame (ORF) is short and can result in significant regulation of translation of the protein-coding ORF, but there are also rare examples, mainly bicistronic viral RNAs, of reinitiation after a long ORF. Here, we review our current understanding of the mechanisms of termination, ribosome recycling, and reinitiation after translation of short and long ORFs.
Collapse
Affiliation(s)
- Richard J Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
40
|
Conard SE, Buckley J, Dang M, Bedwell GJ, Carter RL, Khass M, Bedwell DM. Identification of eRF1 residues that play critical and complementary roles in stop codon recognition. RNA (NEW YORK, N.Y.) 2012; 18:1210-21. [PMID: 22543865 PMCID: PMC3358643 DOI: 10.1261/rna.031997.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
The initiation and elongation stages of translation are directed by codon-anticodon interactions. In contrast, a release factor protein mediates stop codon recognition prior to polypeptide chain release. Previous studies have identified specific regions of eukaryotic release factor one (eRF1) that are important for decoding each stop codon. The cavity model for eukaryotic stop codon recognition suggests that three binding pockets/cavities located on the surface of eRF1's domain one are key elements in stop codon recognition. Thus, the model predicts that amino acid changes in or near these cavities should influence termination in a stop codon-dependent manner. Previous studies have suggested that the TASNIKS and YCF motifs within eRF1 domain one play important roles in stop codon recognition. These motifs are highly conserved in standard code organisms that use UAA, UAG, and UGA as stop codons, but are more divergent in variant code organisms that have reassigned a subset of stop codons to sense codons. In the current study, we separately introduced TASNIKS and YCF motifs from six variant code organisms into eRF1 of Saccharomyces cerevisiae to determine their effect on stop codon recognition in vivo. We also examined the consequences of additional changes at residues located between the TASNIKS and YCF motifs. Overall, our results indicate that changes near cavities two and three frequently mediated significant effects on stop codon selectivity. In particular, changes in the YCF motif, rather than the TASNIKS motif, correlated most consistently with variant code stop codon selectivity.
Collapse
Affiliation(s)
- Sara E. Conard
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jessica Buckley
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Mai Dang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Gregory J. Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Richard L. Carter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Mohamed Khass
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - David M. Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
41
|
Polshakov VI, Eliseev BD, Birdsall B, Frolova LY. Structure and dynamics in solution of the stop codon decoding N-terminal domain of the human polypeptide chain release factor eRF1. Protein Sci 2012; 21:896-903. [PMID: 22517631 DOI: 10.1002/pro.2067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/15/2012] [Accepted: 03/17/2012] [Indexed: 11/07/2022]
Abstract
The high-resolution NMR structure of the N-domain of human eRF1, responsible for stop codon recognition, has been determined in solution. The overall fold of the protein is the same as that found in the crystal structure. However, the structures of several loops, including those participating in stop codon decoding, are different. Analysis of the NMR relaxation data reveals that most of the regions with the highest structural discrepancy between the solution and solid states undergo internal motions on the ps-ns and ms time scales. The NMR data show that the N-domain of human eRF1 exists in two conformational states. The distribution of the residues having the largest chemical shift differences between the two forms indicates that helices α2 and α3, with the NIKS loop between them, can switch their orientation relative to the β-core of the protein. Such structural plasticity may be essential for stop codon recognition by human eRF1.
Collapse
Affiliation(s)
- Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | |
Collapse
|
42
|
Wong LE, Li Y, Pillay S, Frolova L, Pervushin K. Selectivity of stop codon recognition in translation termination is modulated by multiple conformations of GTS loop in eRF1. Nucleic Acids Res 2012; 40:5751-65. [PMID: 22383581 PMCID: PMC3384315 DOI: 10.1093/nar/gks192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translation termination in eukaryotes is catalyzed by two release factors eRF1 and eRF3 in a cooperative manner. The precise mechanism of stop codon discrimination by eRF1 remains obscure, hindering drug development targeting aberrations at translation termination. By solving the solution structures of the wild-type N-domain of human eRF1 exhibited omnipotent specificity, i.e. recognition of all three stop codons, and its unipotent mutant with UGA-only specificity, we found the conserved GTS loop adopting alternate conformations. We propose that structural variability in the GTS loop may underline the switching between omnipotency and unipotency of eRF1, implying the direct access of the GTS loop to the stop codon. To explore such feasibility, we positioned N-domain in a pre-termination ribosomal complex using the binding interface between N-domain and model RNA oligonucleotides mimicking Helix 44 of 18S rRNA. NMR analysis revealed that those duplex RNA containing 2-nt internal loops interact specifically with helix α1 of N-domain, and displace C-domain from a non-covalent complex of N-domain and C-domain, suggesting domain rearrangement in eRF1 that accompanies N-domain accommodation into the ribosomal A site.
Collapse
Affiliation(s)
- Leo E Wong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
43
|
Graille M, Figaro S, Kervestin S, Buckingham RH, Liger D, Heurgué-Hamard V. Methylation of class I translation termination factors: structural and functional aspects. Biochimie 2012; 94:1533-43. [PMID: 22266024 DOI: 10.1016/j.biochi.2012.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/07/2012] [Indexed: 12/23/2022]
Abstract
During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies.
Collapse
Affiliation(s)
- Marc Graille
- IBBMC, Université Paris-Sud 11, CNRS UMR8619, Orsay Cedex, F-91405, France.
| | | | | | | | | | | |
Collapse
|
44
|
Chrzanowska-Lightowlers ZMA, Pajak A, Lightowlers RN. Termination of protein synthesis in mammalian mitochondria. J Biol Chem 2011; 286:34479-85. [PMID: 21873426 DOI: 10.1074/jbc.r111.290585] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All mechanisms of protein synthesis can be considered in four stages: initiation, elongation, termination, and ribosome recycling. Remarkable progress has been made in understanding how these processes are mediated in the cytosol of many species; however, details of organellar protein synthesis remain sketchy. This is an important omission, as defects in human mitochondrial translation are known to cause disease and may contribute to the aging process itself. In this minireview, we focus on the recent advances that have been made in understanding how one of these processes, translation termination, occurs in the human mitochondrion.
Collapse
Affiliation(s)
- Zofia M A Chrzanowska-Lightowlers
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
45
|
Korostelev AA. Structural aspects of translation termination on the ribosome. RNA (NEW YORK, N.Y.) 2011; 17:1409-1421. [PMID: 21700725 PMCID: PMC3153966 DOI: 10.1261/rna.2733411] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Translation of genetic information encoded in messenger RNAs into polypeptide sequences is carried out by ribosomes in all organisms. When a full protein is synthesized, a stop codon positioned in the ribosomal A site signals termination of translation and protein release. Translation termination depends on class I release factors. Recently, atomic-resolution crystal structures were determined for bacterial 70S ribosome termination complexes bound with release factors RF1 or RF2. In combination with recent biochemical studies, the structures resolve long-standing questions about translation termination. They bring insights into the mechanisms of recognition of all three stop codons, peptidyl-tRNA hydrolysis, and coordination of stop-codon recognition with peptidyl-tRNA hydrolysis. In this review, the structural aspects of these mechanisms are discussed.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
46
|
Rispal D, Henri J, van Tilbeurgh H, Graille M, Séraphin B. Structural and functional analysis of Nro1/Ett1: a protein involved in translation termination in S. cerevisiae and in O2-mediated gene control in S. pombe. RNA (NEW YORK, N.Y.) 2011; 17:1213-1224. [PMID: 21610214 PMCID: PMC3138559 DOI: 10.1261/rna.2697111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
In Saccharomyces cerevisiae, the putative 2-OG-Fe(II) dioxygenase Tpa1 and its partner Ett1 have been shown to impact mRNA decay and translation. Hence, inactivation of these factors was shown to influence stop codon read-though. In addition, Tpa1 represses, by an unknown mechanism, genes regulated by Hap1, a transcription factor involved in the response to levels of heme and O(2). The Schizosaccharomyces pombe orthologs of Tpa1 and Ett1, Ofd1, and its partner Nro1, respectively, have been shown to regulate the stability of the Sre1 transcription factor in response to oxygen levels. To gain insight into the function of Nro1/Ett1, we have solved the crystal structure of the S. pombe Nro1 protein deleted of its 54 N-terminal residues. Nro1 unexpectedly adopts a Tetratrico Peptide Repeat (TPR) fold, a motif often responsible for protein or peptide binding. Two ligands, a sulfate ion and an unknown molecule, interact with a cluster of highly conserved amino acids on the protein surface. Mutation of these residues demonstrates that these ligand binding sites are essential for Ett1 function in S. cerevisiae, as investigated by assaying for efficient translation termination.
Collapse
Affiliation(s)
- Delphine Rispal
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, Inserm U964, and Université de Strasbourg, Strasbourg, Illkirch F-67000, France
- Centre de Génétique Moléculaire (CGM), CNRS, F-91198 Gif-sur-Yvette Cedex, France
| | - Julien Henri
- Equipe “Fonction et Architecture des Assemblages Macromoléculaires”, IBBMC (Institut de Biochimie et Biophysique Moléculaire et Cellulaire), CNRS, UMR8619, Bat 430, Université Paris Sud, F-91405 Orsay Cedex, France
| | - Herman van Tilbeurgh
- Equipe “Fonction et Architecture des Assemblages Macromoléculaires”, IBBMC (Institut de Biochimie et Biophysique Moléculaire et Cellulaire), CNRS, UMR8619, Bat 430, Université Paris Sud, F-91405 Orsay Cedex, France
| | - Marc Graille
- Equipe “Fonction et Architecture des Assemblages Macromoléculaires”, IBBMC (Institut de Biochimie et Biophysique Moléculaire et Cellulaire), CNRS, UMR8619, Bat 430, Université Paris Sud, F-91405 Orsay Cedex, France
| | - Bertrand Séraphin
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, Inserm U964, and Université de Strasbourg, Strasbourg, Illkirch F-67000, France
- Centre de Génétique Moléculaire (CGM), CNRS, F-91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
47
|
Becker T, Armache JP, Jarasch A, Anger AM, Villa E, Sieber H, Motaal BA, Mielke T, Berninghausen O, Beckmann R. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. Nat Struct Mol Biol 2011; 18:715-20. [PMID: 21623367 DOI: 10.1038/nsmb.2057] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 03/15/2011] [Indexed: 11/09/2022]
Abstract
No-go decay (NGD) is a mRNA quality-control mechanism in eukaryotic cells that leads to degradation of mRNAs stalled during translational elongation. The key factors triggering NGD are Dom34 and Hbs1. We used cryo-EM to visualize NGD intermediates resulting from binding of the Dom34-Hbs1 complex to stalled ribosomes. At subnanometer resolution, all domains of Dom34 and Hbs1 were identified, allowing the docking of crystal structures and homology models. Moreover, the close structural similarity of Dom34 and Hbs1 to eukaryotic release factors (eRFs) enabled us to propose a model for the ribosome-bound eRF1-eRF3 complex. Collectively, our data provide structural insights into how stalled mRNA is recognized on the ribosome and how the eRF complex can simultaneously recognize stop codons and catalyze peptide release.
Collapse
Affiliation(s)
- Thomas Becker
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bulygin KN, Khairulina YS, Kolosov PM, Ven’yaminova AG, Graifer DM, Vorobjev YN, Frolova LY, Karpova GG. Adenine and guanine recognition of stop codon is mediated by different N domain conformations of translation termination factor eRF1. Nucleic Acids Res 2011; 39:7134-46. [PMID: 21602268 PMCID: PMC3167606 DOI: 10.1093/nar/gkr376] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Positioning of release factor eRF1 toward adenines and the ribose-phosphate backbone of the UAAA stop signal in the ribosomal decoding site was studied using messenger RNA (mRNA) analogs containing stop signal UAA/UAAA and a photoactivatable cross-linker at definite locations. The human eRF1 peptides cross-linked to these analogs were identified. Cross-linkers on the adenines at the 2nd, 3rd or 4th position modified eRF1 near the conserved YxCxxxF loop (positions 125–131 in the N domain), but cross-linker at the 4th position mainly modified the tripeptide 26-AAR-28. This tripeptide cross-linked also with derivatized 3′-phosphate of UAA, while the same cross-linker at the 3′-phosphate of UAAA modified both the 26–28 and 67–73 fragments. A comparison of the results with those obtained earlier with mRNA analogs bearing a similar cross-linker at the guanines indicates that positioning of eRF1 toward adenines and guanines of stop signals in the 80S termination complex is different. Molecular modeling of eRF1 in the 80S termination complex showed that eRF1 fragments neighboring guanines and adenines of stop signals are compatible with different N domain conformations of eRF1. These conformations vary by positioning of stop signal purines toward the universally conserved dipeptide 31-GT-32, which neighbors guanines but is oriented more distantly from adenines.
Collapse
Affiliation(s)
- Konstantin N. Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia S. Khairulina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M. Kolosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Aliya G. Ven’yaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Dmitri M. Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yuri N. Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ludmila Yu. Frolova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Galina G. Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
- *To whom correspondence should be addressed. Tel: +7(383) 363 5140; Fax: +7(383) 363-5153;
| |
Collapse
|
49
|
Klaholz BP. Molecular recognition and catalysis in translation termination complexes. Trends Biochem Sci 2011; 36:282-92. [DOI: 10.1016/j.tibs.2011.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/16/2022]
|
50
|
Nakamura Y, Ito K. tRNA mimicry in translation termination and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:647-68. [DOI: 10.1002/wrna.81] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|