1
|
Capatina TF, Oatu A, Babasan C, Trifu S. Translating Molecular Psychiatry: From Biomarkers to Personalized Therapies-A Narrative Review. Int J Mol Sci 2025; 26:4285. [PMID: 40362522 PMCID: PMC12072283 DOI: 10.3390/ijms26094285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
In this review, we explore the biomarkers of different psychiatric disorders, such as major depressive disorder, generalized anxiety disorder, schizophrenia, and bipolar disorder. Moreover, we show the interplay between genetic and environmental factors. Novel techniques such as genome-wide association studies (GWASs) have identified numerous risk loci and single-nucleotide polymorphisms (SNPs) implicated in these conditions, contributing to a better understanding of their mechanisms. Moreover, the impact of genetic variations on drug metabolisms, particularly through cytochrome P450 (CYP450) enzymes, highlights the importance of pharmacogenomics in optimizing psychiatric treatment. This review also explores the role of neurotransmitter regulation, immune system interactions, and metabolic pathways in psychiatric disorders. As the technology advances, integrating genetic markers into clinical practice will be crucial in advancing precision psychiatry, improving diagnostic accuracy and therapeutic interventions for individual patients.
Collapse
Affiliation(s)
| | - Anamaria Oatu
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Casandra Babasan
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Simona Trifu
- Department of Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
2
|
Trapp NT, Purgianto A, Taylor JJ, Singh MK, Oberman LM, Mickey BJ, Youssef NA, Solzbacher D, Zebley B, Cabrera LY, Conroy S, Cristancho M, Richards JR, Flood MJ, Barbour T, Blumberger DM, Taylor SF, Feifel D, Reti IM, McClintock SM, Lisanby SH, Husain MM. Consensus review and considerations on TMS to treat depression: A comprehensive update endorsed by the National Network of Depression Centers, the Clinical TMS Society, and the International Federation of Clinical Neurophysiology. Clin Neurophysiol 2025; 170:206-233. [PMID: 39756350 PMCID: PMC11825283 DOI: 10.1016/j.clinph.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
This article updates the prior 2018 consensus statement by the National Network of Depression Centers (NNDC) on the use of transcranial magnetic stimulation (TMS) in the treatment of depression, incorporating recent research and clinical developments. Publications on TMS and depression between September 2016 and April 2024 were identified using methods informed by PRISMA guidelines. The NNDC Neuromodulation Work Group met monthly between October 2022 and April 2024 to define important clinical topics and review pertinent literature. A modified Delphi method was used to achieve consensus. 2,396 abstracts and manuscripts met inclusion criteria for review. The work group generated consensus statements which include an updated narrative review of TMS safety, efficacy, and clinical features of use for depression. Considerations related to training, roles/responsibilities of providers, and documentation are also discussed. TMS continues to demonstrate broad evidence for safety and efficacy in treating depression. Newer forms of TMS are faster and potentially more effective than conventional repetitive TMS. Further exploration of targeting methods, use in special populations, and accelerated protocols is encouraged. This article provides an updated overview of topics relevant to the administration of TMS for depression and summarizes expert, consensus opinion on the practice of TMS in the United States.
Collapse
Affiliation(s)
- Nicholas T Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| | - Anthony Purgianto
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph J Taylor
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Brian J Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Nagy A Youssef
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Daniela Solzbacher
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Laura Y Cabrera
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Susan Conroy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mario Cristancho
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson R Richards
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Tracy Barbour
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel M Blumberger
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Feifel
- Kadima Neuropsychiatry Institute, La Jolla, CA, USA; University of California-San Diego, San Diego, CA, USA
| | - Irving M Reti
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Shawn M McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA; Division of Translational Research, National Institute of Mental Health, Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Mustafa M Husain
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Cabral Barata P, Pimenta Alves S, Sack AT. TMS in the Kingdom of Denmark: an overview of current clinical practice. Nord J Psychiatry 2025; 79:15-25. [PMID: 39615032 DOI: 10.1080/08039488.2024.2419620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Repetitive TMS (rTMS) has been demonstrated to be an effective treatment of several neuropsychiatric disorders. Its safety and efficacy are well established, and multiple rTMS devices have been approved by both Conformitè Europëenne Mark and U.S. Food and Drug Administration. We aimed to survey TMS practice in Psychiatry in the Kingdom of Denmark and compare it with the international state of the art. METHODS A survey of rTMS clinical practice in 2023 was sent to all general adult psychiatry departments practicing TMS in the Danish Realm (Denmark = 10, Faroe Islands = 0, Greenland = 0). RESULTS Response rate was 100%. rTMS was available in 37% of psychiatric departments and 3 out of 5 Danish Regions. Admission criteria required a diagnosis of unipolar depression with a degree of treatment-resistance or unacceptable side-effects to antidepressant treatment. Common contraindications included: cochlear implants (100%), pacemaker and neurostimulators (80%), other ferromagnetic/implanted devices in head, neck, or thorax (70%), active substance misuse (60%), and electrolytic disturbances (50%). Three rTMS protocols were identified: 10 Hz rTMS delivered over the L-DLPFC, iTBS delivered over the L-DLPFC and 1 Hz rTMS delivered over the right-DLPFC. 383 patients were treated with TMS. CONCLUSIONS rTMS is unequally available in the public healthcare of the Kingdom of Denmark. Existing strategies for solving inequalities could address such issues. Unipolar depression was the only psychiatric disorder treated with rTMS in 2023. rTMS practice in the Danish Realm considers the use of evidence-based protocols and is consistent with recommendations from international expert guidelines.
Collapse
Affiliation(s)
- Pedro Cabral Barata
- Regionspsykiatrien Gødstrup, Herning, Denmark
- Research Unit, Regionspsykiatrien Gødstrup, Herning, Denmark
- Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | - Alexander T Sack
- Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
O'Sullivan SJ, Buchanan DM, Batail JMV, Williams NR. Should rTMS be considered a first-line treatment for major depressive episodes in adults? Clin Neurophysiol 2024; 165:76-87. [PMID: 38968909 DOI: 10.1016/j.clinph.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
Treatment-resistant depression (TRD) is an epidemic with rising social, economic, and political costs. In a patient whose major depressive episode (MDE) persists through an adequate antidepressant trial, insurance companies often cover alternative treatments which may include repetitive transcranial magnetic stimulation (rTMS). RTMS is an FDA-cleared neuromodulation technique for TRD which is safe, efficacious, noninvasive, and well-tolerated. Recent developments in the optimization of rTMS algorithms and targeting have increased the efficacy of rTMS in treating depression, improved the clinical convenience of these treatments, and decreased the cost of a course of rTMS. In this opinion paper, we make a case for why conventional FDA-cleared rTMS should be considered as a first-line treatment for all adult MDEs. RTMS is compared to other first-line treatments including psychotherapy and SSRIs. These observations suggest that rTMS has similar efficacy, fewer side-effects, lower risk of serious adverse events, comparable compliance, the potential for more rapid relief, and cost-effectiveness. This suggestion, however, would be strengthened by further research with an emphasis on treatment-naive subjects in their first depressive episode, and trials directly contrasting rTMS with SSRIs or psychotherapy.
Collapse
Affiliation(s)
- Sean J O'Sullivan
- Department of Psychiatry and Behavioral Sciences, Dell School of Medicine, Austin, TX, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA. USA.
| | - Derrick M Buchanan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA. USA
| | - Jean-Marie V Batail
- Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Centre Hospitalier Guillaume Régnier, Rennes, France; Université de Rennes, Rennes, France
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA. USA
| |
Collapse
|
5
|
Davani AJ, Richardson AJ, Vodovozov W, Sanghani SN. Neuromodulation in Psychiatry. ADVANCES IN PSYCHIATRY AND BEHAVIORAL HEALTH 2024; 4:177-198. [DOI: 10.1016/j.ypsc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Boosting psychological change: Combining non-invasive brain stimulation with psychotherapy. Neurosci Biobehav Rev 2022; 142:104867. [PMID: 36122739 DOI: 10.1016/j.neubiorev.2022.104867] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
Mental health disorders and substance use disorders are a leading cause of morbidity and mortality worldwide, and one of the most important challenges for public health systems. While evidence-based psychotherapy is generally pursued to address mental health challenges, psychological change is often hampered by non-adherence to treatments, relapses, and practical barriers (e.g., time, cost). In recent decades, Non-invasive brain stimulation (NIBS) techniques have emerged as promising tools to directly target dysfunctional neural circuitry and promote long-lasting plastic changes. While the therapeutic efficacy of NIBS protocols for mental illnesses has been established, neuromodulatory interventions might also be employed to support the processes activated by psychotherapy. Indeed, combining psychotherapy with NIBS might help tailor the treatment to the patient's unique characteristics and therapeutic goal, and would allow more direct control of the neuronal changes induced by therapy. Herein, we overview emerging evidence on the use of NIBS to enhance the psychotherapeutic effect, while highlighting the next steps in advancing clinical and research methods toward personalized intervention approaches.
Collapse
|
7
|
Neacsiu AD, Beynel L, Graner JL, Szabo ST, Appelbaum LG, Smoski MJ, LaBar KS. Enhancing cognitive restructuring with concurrent fMRI-guided neurostimulation for emotional dysregulation-A randomized controlled trial. J Affect Disord 2022; 301:378-389. [PMID: 35038479 PMCID: PMC9937022 DOI: 10.1016/j.jad.2022.01.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Transdiagnostic clinical emotional dysregulation is a key component of many mental health disorders and offers an avenue to address multiple disorders with one transdiagnostic treatment. In the current study, we pilot an intervention that combines a one-time teaching and practice of cognitive restructuring (CR) with repetitive transcranial magnetic stimulation (rTMS), targeted based on functional magnetic resonance imaging (fMRI). METHODS Thirty-seven clinical adults who self-reported high emotional dysregulation were enrolled in this randomized, double-blind, placebo-controlled trial. fMRI was collected as participants were reminded of lifetime stressors and asked to downregulate their distress using CR tactics. fMRI BOLD data were analyzed to identify the cluster of voxels within the left dorsolateral prefrontal cortex (dlPFC) with the highest activation when participants attempted to downregulate, versus passively remember, distressing memories. Participants underwent active or sham rTMS (10 Hz) over the left dlPFC target while practicing CR following emotional induction using recent autobiographical stressors. RESULTS Receiving active versus sham rTMS led to significantly higher high frequency heart rate variability during regulation, lower regulation duration during the intervention, and higher likelihood to use CR during the week following the intervention. There were no differences between conditions when administering neurostimulation alone without the CR skill and compared to sham. Participants in the sham versus active condition experienced less distress the week after the intervention. There were no differences between conditions at the one-month follow up. CONCLUSION This study demonstrated that combining active rTMS with emotion regulation training for one session significantly enhances emotion regulation and augments the impact of training for as long as a week. These findings are a promising step towards a combined intervention for transdiagnostic emotion dysregulation.
Collapse
|
8
|
Wang WL, Wang SY, Hung HY, Chen MH, Juan CH, Li CT. Safety of transcranial magnetic stimulation in unipolar depression: A systematic review and meta-analysis of randomized-controlled trials. J Affect Disord 2022; 301:400-425. [PMID: 35032510 DOI: 10.1016/j.jad.2022.01.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND To study the safety and patients' tolerance of transcranial magnetic stimulation (TMS), we conducted a systematic review and meta-analysis of the major depressive disorder population. METHODS Our study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched the literature published before April 30th, 2021 and performed a random-effects meta-analyses which included drop-out due to adverse events, serious adverse events and other non-serious adverse events as primary and secondary outcomes. RESULTS A total of 53 randomized sham-controlled trials with 3,273 participants were included. There was no increased risk of drop-out due to an adverse event (active TMS intervention group=3.3%, sham TMS intervention group=2.3%, odds ratio = 1.30, 95% CI= 0.78-2.16, P = 0.31) or a serious adverse event (active TMS intervention group=0.9%, sham TMS intervention group=1.5%, odds ratio = 0.67, 95% CI= 0.29-1.55, P = 0.35). Our findings suggest that TMS intervention may significantly increase the risk of non-serious adverse events including: headaches (active TMS intervention group=22.6%, sham TMS intervention group=16.2%, odds ratio = 1.48, 95% CI= 1.15-1.91, P = 0.002), discomfort (active TMS intervention group=10.9%, sham TMS intervention group=5.0%, odds ratio 1.98, 95% CI= 1.22-3.21, P = 0.006) and pain (active TMS intervention group=23.8%, sham TMS intervention group=5.2%, odds ratio= 8.09, 95% CI= 4.71-13.90, P < 0.001) at the stimulation site, but these non-serious events were mostly mild and transient after TMS treatment. CONCLUSIONS These findings provide evidence for the safety and patients' tolerance of transcranial magnetic stimulation technique as an alternative monotherapy or as an add-on treatment for major depressive disorder.
Collapse
Affiliation(s)
- Wei-Li Wang
- Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Master of Public Health Degree Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shen-Yi Wang
- Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Hao-Yuan Hung
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan; Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Institute of Brain Science and Brain Research Center, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| |
Collapse
|
9
|
Cotovio G, Rodrigues da Silva D, Real Lage E, Seybert C, Oliveira-Maia AJ. Hemispheric asymmetry of motor cortex excitability in mood disorders - Evidence from a systematic review and meta-analysis. Clin Neurophysiol 2022; 137:25-37. [PMID: 35240425 DOI: 10.1016/j.clinph.2022.01.137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mood disorders have been associated with lateralized brain dysfunction, on the left-side for depression and right-side for mania. Consistently, asymmetry of cortical excitability, as measured by transcranial magnetic stimulation (TMS) has been reported. Here, we reviewed and summarized work assessing such measures bilaterally in mood disorders. METHODS We performed a systematic review and extracted data to perform meta-analyses of interhemispheric asymmetry of motor cortex excitability, assessed with TMS, across different mood disorders and in healthy subjects. Additionally, potential predictors of interhemispheric asymmetry were explored. RESULTS Asymmetry of resting motor threshold (MT) among healthy volunteers was significant, favoring lower right relative to left-hemisphere excitability. MT was also significantly asymmetric in major depressive disorder (MDD), but with lower excitability of the left -hemisphere, when compared to the right, no longer observed in recovered patients. Findings on intracortical facilitation were similar. The few trials including bipolar depression revealed similar trends for imbalance, but with lower right hemisphere excitability, relative to the left. CONCLUSIONS There is interhemispheric asymmetry of motor cortical excitability in MDD, with lower excitability on left when compared to right-side. Interhemispheric asymmetry, with lower right relative to left-sided excitability, was found for bipolar depression and was also suggested for healthy volunteers, in a pattern that is clearly distinct from MDD. SIGNIFICANCE Mood disorders display asymmetric motor cortical excitability that is distinct from that found in healthy volunteers, supporting the presence of lateralized brain dysfunction in these disorders.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | | | - Estela Real Lage
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal
| | - Carolina Seybert
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
10
|
Konstantinou G, Hui J, Ortiz A, Kaster TS, Downar J, Blumberger DM, Daskalakis ZJ. Repetitive transcranial magnetic stimulation (rTMS) in bipolar disorder: A systematic review. Bipolar Disord 2022; 24:10-26. [PMID: 33949063 DOI: 10.1111/bdi.13099] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) is commonly used in unipolar depression; yet, its evidence in bipolar disorder (BD) is limited. We sought to review the evidence on the use of rTMS across the different stages of BD. METHODS MEDLINE database was systematically searched using the PubMed interface following the PRISMA guidelines. Inclusion criteria were as follows: (i) randomized clinical trials (RCTs), open-label studies, and case series; (ii) specific evaluation of the treatment outcomes using psychometric scales; (iii) clinical studies in adults; and (iv) articles in the English language. The systematic review has been registered on PROSPERO (CRD42020192788). RESULTS Thirty-one papers were included in the review. Most studies included participants diagnosed with a bipolar depressive episode (N = 24), have yielded mixed findings, and have yet to reach a consensus on the most effective rTMS protocol. Few studies examined the effect of rTMS during manic (N = 5) or mixed episode (N = 1), or as maintenance treatment (N = 1). The limited data thus far suggest rTMS to be relatively safe and well tolerated. Small sample sizes, heterogeneity among study designs, patients and control groups recruited, rTMS parameters, and outcome measures are among the most significant limitations to these studies. CONCLUSION The current data regarding the application of rTMS in BD patients remain limited. More adequately powered sham-controlled studies are required to verify its efficacy. Large-scale clinical trials are needed to also determine whether its effects extend to manic and mixed episodes, as well as its role in mood stabilization and amelioration of suicidal behavior.
Collapse
Affiliation(s)
- Gerasimos Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeanette Hui
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Abigail Ortiz
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Mood and Anxiety Ambulatory Services, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tyler S Kaster
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health and Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Abstract
Mania, the diagnostic hallmark of bipolar disorder, is an episodic disturbance of mood, sleep, behavior, and perception. Improved understanding of the neurobiology of mania is expected to allow for novel avenues to address current challenges in its diagnosis and treatment. Previous research focusing on the impairment of functional neuronal circuits and brain networks has resulted in heterogenous findings, possibly due to a focus on bipolar disorder and its several phases, rather than on the unique context of mania. Here we present a comprehensive overview of the evidence regarding the functional neuroanatomy of mania. Our interpretation of the best available evidence is consistent with a convergent model of lateralized circuit dysfunction in mania, with hypoactivity of the ventral prefrontal cortex in the right hemisphere, and hyperactivity of the amygdala, basal ganglia, and anterior cingulate cortex in the left hemisphere of the brain. Clarification of dysfunctional neuroanatomic substrates of mania may contribute not only to improve understanding of the neurobiology of bipolar disorder overall, but also highlights potential avenues for new circuit-based therapeutic approaches in the treatment of mania.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal.
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
12
|
Marder KG, Barbour T, Ferber S, Idowu O, Itzkoff A. Psychiatric Applications of Repetitive Transcranial Magnetic Stimulation. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:8-18. [PMID: 35746935 PMCID: PMC9063593 DOI: 10.1176/appi.focus.20210021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcranial magnetic stimulation (TMS) is an increasingly popular noninvasive brain stimulation modality. In TMS, a pulsed magnetic field is used to noninvasively stimulate a targeted brain region. Repeated stimulation produces lasting changes in brain activity via mechanisms of synaptic plasticity similar to long-term potentiation. Local application of TMS alters activity in distant, functionally connected brain regions, indicating that TMS modulates activity of cortical networks. TMS has been approved by the U.S. Food and Drug Administration for the treatment of major depressive disorder, obsessive-compulsive disorder, and smoking cessation, and a growing evidence base supports its efficacy in the treatment of other neuropsychiatric conditions. TMS is rapidly becoming part of the standard of care for treatment-resistant depression, where it yields response rates of 40%-60%. TMS is generally safe and well tolerated; its most serious risk is seizure, which occurs very rarely. This review aims to familiarize practicing psychiatrists with basic principles of TMS, including target localization, commonly used treatment protocols and their outcomes, and safety and tolerability. Practical considerations, including evaluation and monitoring of patients undergoing TMS, device selection, treatment setting, and insurance reimbursement, are also reviewed.
Collapse
|
13
|
Knox ED, Bota RG. Transcranial magnetic stimulation-associated mania with psychosis: A case report. Ment Health Clin 2021; 11:373-375. [PMID: 34824963 PMCID: PMC8582772 DOI: 10.9740/mhc.2021.11.373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive procedure used in the treatment of depression. We observed TMS-associated mania with psychotic symptoms in a 55-year-old male diagnosed with MDD and generalized anxiety disorder without history of psychosis or mania. Owing to poor pharmacotherapeutic response and worsening symptomatology, TMS was introduced while continuing phenelzine; this was initially successful in demonstrating positive effects on mood. However, the patient began to develop symptoms consistent with mania with psychosis and was hospitalized. Both TMS and phenelzine were discontinued, leading to significant improvement of the symptoms of mania and psychosis. Phenelzine was later reintroduced for maintenance treatment of depression and anxiety, with no recurrence of mania or psychosis. This case report implicates TMS as a possible cause of mania and psychosis symptoms.
Collapse
Affiliation(s)
- Erin D Knox
- Clinical Professor of Psychiatry, University of California, Riverside, Riverside, California
| | - Robert G Bota
- Clinical Professor of Psychiatry, University of California, Riverside, Riverside, California
| |
Collapse
|
14
|
Wang CJ, Chou LS, Lin CH. Repetitive transcranial magnetic stimulation-induced hypomania for an elderly patient with major depressive disorder: a case report. Int J Geriatr Psychiatry 2021; 36:1460-1461. [PMID: 33724559 DOI: 10.1002/gps.5525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chih-Jen Wang
- Department of Neuropsychiatry, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan
| | - Li-Shiu Chou
- Department of Adult Psychiatry, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan
| | - Ching-Hua Lin
- Department of Adult Psychiatry, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Miuli A, Sepede G, Stigliano G, Mosca A, Di Carlo F, d’Andrea G, Lalli A, Spano MC, Pettorruso M, Martinotti G, di Giannantonio M. Hypomanic/manic switch after transcranial magnetic stimulation in mood disorders: A systematic review and meta-analysis. World J Psychiatry 2021; 11:477-490. [PMID: 34513609 PMCID: PMC8394688 DOI: 10.5498/wjp.v11.i8.477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/24/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nowadays there is an increasing use of transcranial magnetic stimulation (TMS) both in neurological and psychiatric fields. After Food and Drug Administration approval of TMS for the therapy of treatment-resistant depression, TMS has been widely used in the context of mood disorders (MD). However, growing reports regarding the possibility of developing hypomanic/manic switch (HMS) have generated concern regarding its use in MDs.
AIM To investigate the actual risk of developing HMS due to TMS in the treatment of MD.
METHODS We led our research on PubMed, Scopus and Web of Science on March 22, 2020, in accordance to the PRISMA guidelines for systematic review. Only double blind/single blind studies, written in English and focused on the TMS treatment of MD, were included. A meta-analysis of repetitive TMS protocol studies including HMS was conducted using RevMan 5.4 software. The assessment of Risk of Bias was done using Cochrane risk of bias tool. This protocol was registered on PROSPERO with the CRD42020175811 code.
RESULTS Twenty-five studies were included in our meta-analysis: Twenty-one double blind randomized controlled trials (RCT) and four single blind-RCT (no. of subjects involved in active stimulation = 576; no. of subjects involved in sham protocol = 487). The most frequently treated pathology was major depressive episode/major depressive disorder, followed by resistant depression, bipolar depression and other MD. The majority of the studies used a repetitive TMS protocol, and the left dorsolateral prefrontal cortex was the main target area. Side effects were reported in eight studies and HMS (described as greater energy, insomnia, irritability, anxiety, suicidal attempt) in four studies. When comparing active TMS vs sham treatment, the risk of developing HMS was not significantly different between conditions.
CONCLUSION Applying the most usual protocols and the appropriate precautionary measures, TMS seems not to be related to HMS development.
Collapse
Affiliation(s)
- Andrea Miuli
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti 66100, Italy
| | - Gianna Sepede
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti 66100, Italy
| | - Gianfranco Stigliano
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti 66100, Italy
| | - Alessio Mosca
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti 66100, Italy
| | - Francesco Di Carlo
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti 66100, Italy
| | - Giacomo d’Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti 66100, Italy
| | - Aliseo Lalli
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti 66100, Italy
| | - Maria Chiara Spano
- Department of Psychiatry Affective Neuropsychiatry, Sahlgrenska University Hospital, Göteborg 40530, Sweden
| | - Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti 66100, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti 66100, Italy
- Department of Pharmacy, Clinical Science, University of Hertfordshire, Herts AL10 9AB, Italy
| | - Massimo di Giannantonio
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti 66100, Italy
| |
Collapse
|
16
|
Kim WS, Paik NJ. Safety Review for Clinical Application of Repetitive Transcranial Magnetic Stimulation. BRAIN & NEUROREHABILITATION 2021; 14:e6. [PMID: 36742107 PMCID: PMC9879417 DOI: 10.12786/bn.2021.14.e6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 11/08/2022] Open
Abstract
Studies using repetitive transcranial magnetic stimulation (rTMS) in healthy individuals and those with neuropsychiatric diseases have rapidly increased since the 1990s, due to the potential of rTMS to modulate the cortical excitability in the brain depending on the stimulation parameters; therefore, the safety considerations for rTMS use are expected to become more important. Wassermann published the first safety guidelines for rTMS from the consensus conference held in 1996, and Rossi and colleague then published the second safety guidelines from the multidisciplinary consensus meeting held in Siena, Italy in 2008, on behalf of the International Federation of Clinical Neurophysiology. More than 10 years after the second guidelines, the updated third safety guidelines were recently published in 2021. The general safety guidelines for conventional rTMS have not substantially changed. Because the most frequently used rTMS protocol is conventional (low- and high-frequency) rTMS in research and clinical settings, we focus on reviewing safety issues when applying conventional rTMS with a focal cortical stimulation coil. The following issues will be covered: 1) possible adverse events induced by rTMS; 2) checklists to screen for any precautions and risks before rTMS; 3) safety considerations for dosing conventional rTMS; and 4) safety considerations for using rTMS in stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
17
|
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021; 132:269-306. [PMID: 33243615 PMCID: PMC9094636 DOI: 10.1016/j.clinph.2020.10.003] [Citation(s) in RCA: 705] [Impact Index Per Article: 176.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
This article is based on a consensus conference, promoted and supported by the International Federation of Clinical Neurophysiology (IFCN), which took place in Siena (Italy) in October 2018. The meeting intended to update the ten-year-old safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings (Rossi et al., 2009). Therefore, only emerging and new issues are covered in detail, leaving still valid the 2009 recommendations regarding the description of conventional or patterned TMS protocols, the screening of subjects/patients, the need of neurophysiological monitoring for new protocols, the utilization of reference thresholds of stimulation, the managing of seizures and the list of minor side effects. New issues discussed in detail from the meeting up to April 2020 are safety issues of recently developed stimulation devices and pulse configurations; duties and responsibility of device makers; novel scenarios of TMS applications such as in the neuroimaging context or imaging-guided and robot-guided TMS; TMS interleaved with transcranial electrical stimulation; safety during paired associative stimulation interventions; and risks of using TMS to induce therapeutic seizures (magnetic seizure therapy). An update on the possible induction of seizures, theoretically the most serious risk of TMS, is provided. It has become apparent that such a risk is low, even in patients taking drugs acting on the central nervous system, at least with the use of traditional stimulation parameters and focal coils for which large data sets are available. Finally, new operational guidelines are provided for safety in planning future trials based on traditional and patterned TMS protocols, as well as a summary of the minimal training requirements for operators, and a note on ethics of neuroenhancement.
Collapse
Affiliation(s)
- Simone Rossi
- Department of Scienze Mediche, Chirurgiche e Neuroscienze, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Italy.
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany; Institue of Medical Psychology, Otto-Guericke University Magdeburg, Germany
| | - Sven Bestmann
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carmen Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Linda L Carpenter
- Butler Hospital, Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Massimo Cincotta
- Unit of Neurology of Florence - Central Tuscany Local Health Authority, Florence, Italy
| | - Robert Chen
- Krembil Research Institute and Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Jeff D Daskalakis
- Center for Addiction and Mental Health (CAMH), University of Toronto, Canada
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico, Roma, Italy
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA
| | - Donald Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki, AHEPA University Hospital, Greece
| | | | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Aalto, Finland
| | - Jean Pascal Lefaucheur
- EA 4391, ENT Team, Faculty of Medicine, Paris Est Creteil University (UPEC), Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, (APHP), Créteil, France
| | - Letizia Leocani
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| | - Sarah H Lisanby
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Angel V Peterchev
- Departments of Psychiatry & Behavioral Sciences, Biomedical Engineering, Electrical & Computer Engineering, and Neurosurgery, Duke University, Durham, NC, USA
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Rothwell
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Paolo M Rossini
- Department of Neuroscience and Rehabilitation, IRCCS San Raffaele-Pisana, Roma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikatzu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abraham Zangen
- Zlotowski Center of Neuroscience, Ben Gurion University, Beer Sheva, Israel
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
18
|
Chen L, Hudaib AR, Hoy KE, Fitzgerald PB. Efficacy, efficiency and safety of high-frequency repetitive transcranial magnetic stimulation applied more than once a day in depression: A systematic review. J Affect Disord 2020; 277:986-996. [PMID: 33065843 DOI: 10.1016/j.jad.2020.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/23/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for depression but a standard course can be time-consuming. Of all rTMS protocols, high-frequency rTMS (HF rTMS) is the most studied and applied in clinical settings. Little is known about applying multiple sessions of HF rTMS per day, in so-called accelerated schedules. METHODS We systematically searched electronic records up to September 2019 for studies that applied HF rTMS in accelerated schedules to treat depression to review its efficacy, efficiency and safety. Treatment effect sizes of accelerated rTMS versus standard and sham rTMS were calculated from comparison studies and pooled to derive overall treatment effect. RESULTS Of 1,361 records screened, 12 met review criteria. Qualitative synthesis suggested accelerated HF rTMS was equally effective as once-daily scheduling in treating depression. It is equivocal if accelerated HF rTMS results in more rapid antidepressant response. Accelerated HF rTMS was well-tolerated. The small number of studies suitable for quantitative analysis led to pooled effect sizes that did not reach statistical significance. LIMITATIONS There was an overall paucity of studies examining the accelerated application of HF rTMS and even fewer studies comparing accelerated HF rTMS with once-daily or sham rTMS. CONCLUSION Our review found comparable antidepressant efficacy between accelerated and once-daily HF rTMS. Between group differences in therapeutic effect sizes were not clinically meaningful. More studies investigating accelerated rTMS protocols are needed to validate its utility and guide clinical decision making.
Collapse
Affiliation(s)
- Leo Chen
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne VIC 3004, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare, Camberwell VIC 3124, Australia; Alfred Mental and Addiction Health, Alfred Health, Melbourne VIC 3004, Australia.
| | - Abdul-Rahman Hudaib
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne VIC 3004, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne VIC 3004, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare, Camberwell VIC 3124, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne VIC 3004, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare, Camberwell VIC 3124, Australia
| |
Collapse
|
19
|
Hett D, Marwaha S. Repetitive Transcranial Magnetic Stimulation in the Treatment of Bipolar Disorder. Ther Adv Psychopharmacol 2020; 10:2045125320973790. [PMID: 33282175 PMCID: PMC7682206 DOI: 10.1177/2045125320973790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Bipolar disorder (BD) is a debilitating mood disorder marked by manic, hypomanic and/or mixed or depressive episodes. It affects approximately 1-2% of the population and is linked to high rates of suicide, functional impairment and poorer quality of life. Presently, treatment options for BD are limited. There is a strong evidence base for pharmacological (e.g., lithium) and psychological (e.g., psychoeducation) treatments; however, both of these pose challenges for treatment outcomes (e.g., non-response, side-effects, limited access). Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, is a recommended treatment for unipolar depression, but it is unclear whether rTMS is an effective, safe and well tolerated treatment in people with BD. This article reviews the extant literature on the use of rTMS to treat BD across different mood states. We found 34 studies in total (N = 611 patients), with most assessing bipolar depression (n = 26), versus bipolar mania (n = 5), mixed state bipolar (n = 2) or those not in a current affective episode (n = 1). Across all studies, there appears to be a detectable signal of efficacy for rTMS treatment, as most studies report that rTMS treatment reduced bipolar symptoms. Importantly, within the randomised controlled trial (RCT) study designs, most reported that rTMS was not superior to sham in the treatment of bipolar depression. However, these RCTs are based on small samples (NBD ⩽ 52). Reported side effects of rTMS in BD include headache, dizziness and sleep problems. Ten studies (N = 14 patients) reported cases of affective switching; however, no clear pattern of potential risk factors for affective switching emerged. Future adequately powered, sham-controlled trials are needed to establish the ideal rTMS treatment parameters to help better determine the efficacy of rTMS for the treatment of BD.
Collapse
Affiliation(s)
- Danielle Hett
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- National Centre for Mental Health, Birmingham, UK
| | - Steven Marwaha
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, UK
- National Centre for Mental Health, Birmingham, UK
- Specialist Mood Disorders Clinic, Zinnia Centre, Birmingham and Solihull Mental Health Trust, Birmingham, UK
| |
Collapse
|
20
|
Fitzgerald PB. An update on the clinical use of repetitive transcranial magnetic stimulation in the treatment of depression. J Affect Disord 2020; 276:90-103. [PMID: 32697721 DOI: 10.1016/j.jad.2020.06.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an increasingly used treatment for patients with depression. The use of rTMS in depression is supported by over 20 years of clinical trials. There has been a significant increase in knowledge around the use of rTMS in recent years. OBJECTIVE The aim of this paper was to review the use of rTMS in depression to provide an update for rTMS practitioners and clinicians interested in the clinical use of this treatment. METHODS A targeted review of the literature around the use of rTMS treatment of depression with a specific focus on studies published in the last 3 years. RESULTS High-frequency rTMS applied to the left dorsolateral prefrontal cortex is an effective treatment for acute episodes of major depressive disorder. There are several additional methods of rTMS delivery that are supported by clinical trials and meta-analyses but no substantive evidence that any one approach is any more effective than any other. rTMS is effective in unipolar depression and most likely bipolar depression. rTMS courses may be repeated in the management of depressive relapse but there is less evidence for the use of rTMS in the maintenance phase. CONCLUSIONS The science around the use of rTMS is rapidly evolving and there is a considerable need for practitioners to remain abreast of the current state of this literature and its implications for clinical practice. rTMS is an effective antidepressant treatment but its optimal use should be continually informed by knowledge of the state of the art.
Collapse
Affiliation(s)
- Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Central Clinical School, 888 Toorak Rd, Camberwell, Victoria 3004, Australia.
| |
Collapse
|
21
|
Cotovio G, Talmasov D, Barahona-Corrêa JB, Hsu J, Senova S, Ribeiro R, Soussand L, Velosa A, Silva VCE, Rost N, Wu O, Cohen AL, Oliveira-Maia AJ, Fox MD. Mapping mania symptoms based on focal brain damage. J Clin Invest 2020; 130:5209-5222. [PMID: 32831292 PMCID: PMC7524493 DOI: 10.1172/jci136096] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDAlthough mania is characteristic of bipolar disorder, it can also occur following focal brain damage. Such cases may provide unique insight into brain regions responsible for mania symptoms and identify therapeutic targets.METHODSLesion locations associated with mania were identified using a systematic literature search (n = 41) and mapped onto a common brain atlas. The network of brain regions functionally connected to each lesion location was computed using normative human connectome data (resting-state functional MRI, n = 1000) and contrasted with those obtained from lesion locations not associated with mania (n = 79). Reproducibility was assessed using independent cohorts of mania lesions derived from clinical chart review (n = 15) and of control lesions (n = 490). Results were compared with brain stimulation sites previously reported to induce or relieve mania symptoms.RESULTSLesion locations associated with mania were heterogeneous and no single brain region was lesioned in all, or even most, cases. However, these lesion locations showed a unique pattern of functional connectivity to the right orbitofrontal cortex, right inferior temporal gyrus, and right frontal pole. This connectivity profile was reproducible across independent lesion cohorts and aligned with the effects of therapeutic brain stimulation on mania symptoms.CONCLUSIONBrain lesions associated with mania are characterized by a specific pattern of brain connectivity that lends insight into localization of mania symptoms and potential therapeutic targets.FUNDINGFundação para a Ciência e Tecnologia (FCT), Harvard Medical School DuPont-Warren Fellowship, Portuguese national funds from FCT and Fundo Europeu de Desenvolvimento Regional, Child Neurology Foundation Shields Research, Sidney R. Baer, Jr. Foundation, Nancy Lurie Marks Foundation, Mather's Foundation, and the NIH.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Daniel Talmasov
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - J. Bernardo Barahona-Corrêa
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joey Hsu
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Suhan Senova
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Neurosurgery Department and
- PePsy Department, Groupe Henri-Mondor Albert-Chenevier, Assistance Publique-Hôpitaux de Paris (APHP), Créteil, France
- Equipe 14, U955 INSERM, Institut Mondor de Recherche Biomedicale and
- Faculté de Médecine, Université Paris Est, Créteil, France
| | - Ricardo Ribeiro
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Louis Soussand
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Velosa
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Vera Cruz e Silva
- Department of Neuroradiology, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Natalia Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology and
| | - Ona Wu
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
| | - Alexander L. Cohen
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston Children’s Hospital, and
| | - Albino J. Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Michael D. Fox
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Department of Psychiatry, Department of Neurosurgery, and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Basavaraju R, Ithal D, Ramalingaiah AH, Thirthalli J, Mehta UM, Kesavan M. "Apathetic to hypomanic/manic": A case series-illustration of emergent mood symptoms during intermittent theta burst stimulation (iTBS) of cerebellar vermis in schizophrenia with predominant negative symptoms. Schizophr Res 2020; 222:501-502. [PMID: 32505445 DOI: 10.1016/j.schres.2020.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Rakshathi Basavaraju
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Dhruva Ithal
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Jagadisha Thirthalli
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Muralidharan Kesavan
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
23
|
Stramba-Badiale C, Mancuso V, Cavedoni S, Pedroli E, Cipresso P, Riva G. Transcranial Magnetic Stimulation Meets Virtual Reality: The Potential of Integrating Brain Stimulation With a Simulative Technology for Food Addiction. Front Neurosci 2020; 14:720. [PMID: 32760243 PMCID: PMC7372037 DOI: 10.3389/fnins.2020.00720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of this perspective is to propose and discuss the integration of transcranial magnetic stimulation (TMS) over the dorsolateral prefrontal cortex with virtual reality (VR) food exposure for therapeutic interventions for food addiction. "Food addiction" is a dysfunctional eating pattern which is typically observed in eating disorders (ED) such as bulimia nervosa and binge eating disorder. Food addiction has been compared to substance use disorder due to the necessity of consuming a substance (food) and the presence of a dependence behavior. In recent years, VR has been applied in the treatment of ED because it triggers psychological and physiological responses through food exposure in place of real stimuli. Virtual reality-Cue exposure therapy has been proven as a valid technique for regulating anxiety and food craving in ED. More, TMS has been proven to modulate circuits and networks implicated in neuropsychiatric disorders and is effective in treating addiction such as nicotine craving and consumption and cocaine use disorder. The combination of a simulative technology and a neurostimulation would presumably provide better improvement compared to a single intervention because it implies the presence of both cognitive and neuropsychological techniques. The possible advantage of this approach will be discussed in the perspective.
Collapse
Affiliation(s)
- Chiara Stramba-Badiale
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Valentina Mancuso
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Cavedoni
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department of Psychology, E-Campus University, Novedrate, Italy
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
24
|
Kaster TS, Knyahnytska Y, Noda Y, Downar J, Daskalakis ZJ, Blumberger DM. Treatment-emergent mania with psychosis in bipolar depression with left intermittent theta-burst rTMS. Brain Stimul 2020; 13:705-706. [PMID: 32289701 DOI: 10.1016/j.brs.2020.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 01/06/2023] Open
Affiliation(s)
- Tyler S Kaster
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Yoshihiro Noda
- Department of Neuropsychiatry, School of Medicine, Keio University, Japan
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, Canada; MRI-guided RTMS Clinic, Toronto Western Hospital, Toronto, ON, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
25
|
Dell’Osso B, Oldani L, Camuri G, Dobrea C, Cremaschi L, Benatti B, Arici C, Grancini B, Carlo Altamura A. Augmentative Repetitive Transcranial Magnetic Stimulation (rTMS) in the Acute Treatment of Poor Responder Depressed Patients: A Comparison Study Between High and Low Frequency Stimulation. Eur Psychiatry 2020; 30:271-6. [DOI: 10.1016/j.eurpsy.2014.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/29/2023] Open
Abstract
AbstractBackground:While the efficacy of repetitive transcranial magnetic stimulation (rTMS) in Major Depressive Disorder (MDD) is well established, the debate is still open in relation to bipolar depression and to a possible different effectiveness of high vs. low stimulation. The present study was aimed to assess and compare the efficacy and tolerability of different protocols of augmentative rTMS in a sample of patients with current Major Depressive Episode (MDE), poor drug response/treatment resistance and a diagnosis of MDD or bipolar disorder.Methods:Thirty-three patients were recruited in a 4-week, blind-rater, rTMS trial and randomised to the following three groups of stimulation: (1) (n = 10) right dorsolateral prefrontal cortex (DLPFC) 1 HZ, 110% of the motor threshold (MT), 420 stimuli/day; (2) (n = 10) right DLPFC, 1 Hz, 110% MT, 900 stimuli/day; (3) (n = 13) left DLPFC, 10 Hz, 80% MT, 750 stimuli/day.Results:Twenty-nine patients completed the treatment, showing a significant reduction of primary outcome measures (HAM-D, MADRS and CGI-S total scores: t = 8.1, P < 0.001; t = 8.6, P < 0.001; t = 4.6, P < 0.001 respectively). No significant differences in terms of efficacy and tolerability were found between high vs. low frequency and between unipolar and bipolar patients. Side effects were reported by 21% of the sample. One of the 4 dropouts was caused by a hypomanic switch.Conclusions:Augmentative rTMS appeared to be effective and well tolerated for the acute treatment of unipolar and bipolar depression with features of poor drug response/treatment resistance, showing a comparable effectiveness profile between protocols of high and low frequency stimulation.
Collapse
|
26
|
Brunoni A, Ferrucci R, Bortolomasi M, Scelzo E, Boggio P, Fregni F, Dell’Osso B, Giacopuzzi M, Altamura A, Priori A. Interactions between transcranial direct current stimulation (tDCS) and pharmacological interventions in the Major Depressive Episode: Findings from a naturalistic study. Eur Psychiatry 2020. [DOI: 10.1016/j.eurpsy.2012.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
AbstractBackground:Transcranial direct current stimulation (tDCS) is a non-invasive, neuromodulatory technique with an emerging role for treating major depression.Objective:To investigate the interactions between tDCS and drug therapy in unipolar and bipolar depressed patients who were refractory for at least one pharmacological treatment.Methods:This was a naturalistic study using data from 54 female and 28 male patients (mean age of 54 years) that consecutively visited our psychiatric unit. They received active tDCS (five consecutive days, 2 mA, anodal stimulation over the left and cathodal over the right dorsolateral prefrontal cortex, twice a day, 20 minutes). The outcome variable (mood) was evaluated using the Beck Depression Inventory (BDI) and the Hamilton Depression Rating Scale (HDRS). Predictor variables were age, gender, disorder and pharmacological treatment (seven dummy variables). We performed univariate and multivariate analyses as to identify predictors associated to the outcome.Results:After 5 days of treatment, BDI and HDRS scores decreased significantly (29% ± 36%, 18% ± 9%, respectively, P < 0.01 for both). Benzodiazepine use was independently associated with a worse outcome in both univariate (β = 4.92, P < 0.01) and multivariate (β = 5.8, P < 0.01) analyses; whereas use of dual-reuptake inhibitors positively changed tDCS effects in the multivariate model (β = –4.7, P = 0.02). A similar trend was observed for tricyclics (β = –4, P = 0.06) but not for antipsychotics, non-benzodiazepine anticonvulsants and other drugs.Conclusion:tDCS over the DLPFC acutely improved depressive symptoms. Besides the inherent limitations of our naturalistic design, our results suggest that tDCS effects might vary according to prior pharmacological treatment, notably benzodiazepines and some antidepressant classes. This issue should be further explored in controlled studies.
Collapse
|
27
|
Shere SS, Baliga SP, Mehta UM, Girimaji SC, Thirthalli J. Treatment emergent affective switch in depression: A possible role of theta burst stimulation. Brain Stimul 2020; 13:492-493. [DOI: 10.1016/j.brs.2019.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022] Open
|
28
|
Garg S, Agarwal R, Tikka SK, Khattri S. Treatment emergent affective switch with intermittent theta burst stimulation over right temporo-parietal junction: A case report. Brain Stimul 2020; 13:275-276. [DOI: 10.1016/j.brs.2019.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022] Open
|
29
|
Rosenich E, Gill S, Clarke P, Paterson T, Hahn L, Galletly C. Does rTMS reduce depressive symptoms in young people who have not responded to antidepressants? Early Interv Psychiatry 2019; 13:1129-1135. [PMID: 30303308 DOI: 10.1111/eip.12743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/22/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022]
Abstract
AIM Depression is common in young people, and there is a need for safe, effective treatments. This study examined the efficacy of repetitive transcranial magnetic stimulation in a sample of young people aged 17 to 25 years. METHODS This retrospective study included 15 people aged 17 to 25 years referred by their private psychiatrists affiliated with Ramsay Health Care, South Australia Mental Health Services. All patients met Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for treatment-resistant Major Depressive Disorder. Eleven patients received right unilateral treatment and four patients received bilateral treatment. Patients were assessed at baseline and after treatment. RESULTS There was a significant improvement on the Hamilton Rating Scale for Depression (t(14) = 4.71, P < 0.0001); Montgomery-Åsperg Depression Rating Scale (t(14) = 3.96, P < 0.01) and the Zung Self-Rating Depression Scale (t(14) = 4.13, P < 0.01). There was no difference in response by gender or age. The response rates in these young people did not differ significantly from those of adults aged 25 to 82 years. CONCLUSION This open label, naturalistic study suggests that repetitive transcranial magnetic stimulation is an effective treatment in young adults who have treatment-resistant depression. Randomized sham-controlled studies are needed to further investigate the efficacy of this treatment in this age group.
Collapse
Affiliation(s)
- Emily Rosenich
- International Centre for Allied Health Evidence, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Shane Gill
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia.,South Australian Psychiatry Training Committee, Central Adelaide Local Health Network-Mental Health Directorate, Adelaide, South Australia, Australia
| | - Patrick Clarke
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia
| | - Tom Paterson
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia
| | - Lisa Hahn
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia.,Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| |
Collapse
|
30
|
Frequency-specific effects of low-intensity rTMS can persist for up to 2 weeks post-stimulation: A longitudinal rs-fMRI/MRS study in rats. Brain Stimul 2019; 12:1526-1536. [PMID: 31296402 DOI: 10.1016/j.brs.2019.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Evidence suggests that repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, alters resting brain activity. Despite anecdotal evidence that rTMS effects wear off, there are no reports of longitudinal studies, even in humans, mapping the therapeutic duration of rTMS effects. OBJECTIVE Here, we investigated the longitudinal effects of repeated low-intensity rTMS (LI-rTMS) on healthy rodent resting-state networks (RSNs) using resting-state functional MRI (rs-fMRI) and on sensorimotor cortical neurometabolite levels using proton magnetic resonance spectroscopy (MRS). METHODS Sprague-Dawley rats received 10 min LI-rTMS daily for 15 days (10 Hz or 1 Hz stimulation, n = 9 per group). MRI data were acquired at baseline, after seven days and after 14 days of daily stimulation and at two more timepoints up to three weeks post-cessation of daily stimulation. RESULTS 10 Hz stimulation increased RSN connectivity and GABA, glutamine, and glutamate levels. 1 Hz stimulation had opposite but subtler effects, resulting in decreased RSN connectivity and glutamine levels. The induced changes decreased to baseline levels within seven days following stimulation cessation in the 10 Hz group but were sustained for at least 14 days in the 1 Hz group. CONCLUSION Overall, our study provides evidence of long-term frequency-specific effects of LI-rTMS. Additionally, the transient connectivity changes following 10 Hz stimulation suggest that current treatment protocols involving this frequency may require ongoing "top-up" stimulation sessions to maintain therapeutic effects.
Collapse
|
31
|
Bulteau S, Guirette C, Brunelin J, Poulet E, Trojak B, Richieri R, Szekely D, Bennabi D, Yrondi A, Rotharmel M, Bougerol T, Dall’Igna G, Attal J, Benadhira R, Bouaziz N, Bubrovszky M, Calvet B, Dollfus S, Foucher J, Galvao F, Gay A, Haesebaert F, Haffen E, Jalenques I, Januel D, Jardri R, Millet B, Nathou C, Nauczyciel C, Plaze M, Rachid F, Vanelle JM, Sauvaget A. Troubles de l’humeur : quand recourir à la stimulation magnétique transcrânienne ? Presse Med 2019; 48:625-646. [DOI: 10.1016/j.lpm.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/30/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
|
32
|
Martinotti G, Montemitro C, Pettorruso M, Viceconte D, Alessi MC, Di Carlo F, Lucidi L, Picutti E, Santacroce R, Di Giannantonio M. Augmenting pharmacotherapy with neuromodulation techniques for the treatment of bipolar disorder: a focus on the effects of mood stabilizers on cortical excitability. Expert Opin Pharmacother 2019; 20:1575-1588. [PMID: 31150304 DOI: 10.1080/14656566.2019.1622092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Mood stabilizers and antipsychotics have been demonstrated to be effective in Bipolar Disorder, with lithium as the gold standard. However, the presence of adverse events and treatment-resistance is still a relevant issue. To this respect, the use of brain stimulation techniques may be considered as an augmentation strategy, with both Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS) having shown some level of efficacy in bipolar patients although clinical trials are still not sufficient to draw any conclusion. Areas covered: The authors have conducted a systematic review of the literature, in order to evaluate the role of mood stabilizers on neural activity and cortical excitability. Furthermore, the article reviews neuromodulation techniques and highlights the potential of integrating pharmacological first-line therapies with these techniques to treat BD patients. Expert opinion: The combination of neuromodulation techniques and available pharmacotherapies is a valuable opportunity which is not undermined by specific effects on cortical excitability and could improve BD patient outcome. Neurostimulation techniques may be considered safer than antidepressant treatments in BD, with a lower level of manic switches and may represent a new treatment strategy in BD depressive episodes.
Collapse
Affiliation(s)
- G Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti , Chieti , Italy.,Department of Pharmacy, Pharmacology, Clinical Science, University of Hertfordshire , Herts , UK
| | - C Montemitro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti , Chieti , Italy
| | - M Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti , Chieti , Italy
| | - D Viceconte
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti , Chieti , Italy
| | - M C Alessi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti , Chieti , Italy
| | - F Di Carlo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti , Chieti , Italy
| | - L Lucidi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti , Chieti , Italy
| | - E Picutti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti , Chieti , Italy
| | - R Santacroce
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti , Chieti , Italy
| | - M Di Giannantonio
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti , Chieti , Italy
| |
Collapse
|
33
|
Rachid F. Accelerated transcranial magnetic stimulation for the treatment of Patients with depression: A review. Asian J Psychiatr 2019; 40:71-75. [PMID: 30771754 DOI: 10.1016/j.ajp.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 11/30/2022]
Abstract
Major depressive disorder is a highly prevalent and profoundly disabling psychiatric disorder with significant morbidity and mortality and it is very often resistant to antidepressants, electroconvulsive therapy and psychotherapy. Therapeutic alternatives include repetitive transcranial magnetic stimulation which may be an effective choice for treatment-resistant depression but requires prolonged treatments for at least four to six weeks. Shorter exposure to this technique might be more advantageous for certain cases. The purpose of this review is to describe and discuss studies that have evaluated the safety and efficacy of accelerated transcranial magnetic stimulation (aTMS) in the acute treatment of depression. Methods: The electronic literature (NCBI Pubmed; Science Direct) on aTMS for the treatment of depression was reviewed. In the last years, a limited number of controlled and open-label studies have been published on the subject. The majority of these studies have shown promising results with aTMS, this protocol probably being at least as safe and as efficacious as conventional rTMS (five sessions per week) in the treatment of treatment-resistant depression (TRD) with a trend for faster response rates when more intensive protocols are used (15 sessions over two days). Future well-designed sham-controlled studies with larger samples are needed to confirm the safety and efficacy of aTMS in the treatment of depression.
Collapse
Affiliation(s)
- Fady Rachid
- Private Practice, 7, place de la Fusterie, 1204, Geneva, Switzerland.
| |
Collapse
|
34
|
Brunoni AR, Sampaio-Junior B, Moffa AH, Aparício LV, Gordon P, Klein I, Rios RM, Razza LB, Loo C, Padberg F, Valiengo L. Noninvasive brain stimulation in psychiatric disorders: a primer. ACTA ACUST UNITED AC 2018; 41:70-81. [PMID: 30328957 PMCID: PMC6781710 DOI: 10.1590/1516-4446-2017-0018] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Noninvasive brain stimulation (NIBS) techniques, such as transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), are increasingly being used to treat mental disorders, particularly major depression. The aim of this comprehensive review is to summarize the main advances, limitations, and perspectives of the field. METHODS We searched PubMed and other databases from inception to July 2017 for articles, particularly systematic reviews and meta-analyses, evaluating the use of NIBS in psychiatric disorders. RESULTS We reviewed the mechanisms of action, safety, tolerability, efficacy, and relevant clinical parameters of NIBS. Repetitive TMS is already an established technique for the treatment of depression, and there is theoretically room for further methodological development towards a high-end therapeutic intervention. In contrast, tDCS is a technically easier method and therefore potentially suitable for wider clinical use. However the evidence of its antidepressant efficacy is less sound, and a recent study found tDCS to be inferior to antidepressant pharmacotherapy. Clinical trials using rTMS for other mental disorders produced mixed findings, whereas tDCS use has not been sufficiently appraised. CONCLUSION The most promising results of NIBS have been obtained for depression. These techniques excel in safety and tolerability, although their efficacy still warrants improvement.
Collapse
Affiliation(s)
- Andre R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Bernardo Sampaio-Junior
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Adriano H Moffa
- Black Dog Institute, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Luana V Aparício
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Pedro Gordon
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Department of Neurology and Stroke, Eberhard Karls University, Tübingen, Germany
| | - Izio Klein
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Rosa M Rios
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Lais B Razza
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Colleen Loo
- Black Dog Institute, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Frank Padberg
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Leandro Valiengo
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
35
|
Kozel FA. Clinical Repetitive Transcranial Magnetic Stimulation for Posttraumatic Stress Disorder, Generalized Anxiety Disorder, and Bipolar Disorder. Psychiatr Clin North Am 2018; 41:433-446. [PMID: 30098656 DOI: 10.1016/j.psc.2018.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is being investigated for psychiatric disorders such as posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), and both phases of bipolar disorder. Case series, open trials, and randomized controlled studies have demonstrated preliminary support for treating PTSD with rTMS alone as well as with rTMS combined with psychotherapy. Similarly, there is some evidence that GAD can be treated with rTMS. The results for treating either phase of bipolar disorder are mixed with most of the current studies showing lack of benefit over sham. Further study is required before rTMS can be recommended for these disorders.
Collapse
Affiliation(s)
- F Andrew Kozel
- Mental Health and Behavioral Sciences & HSR&D Center of Innovation on Disability and Rehabilitation Research (CINDRR), James A. Haley Veterans' Administration Hospital and Clinics, 116A, 13000 Bruce B. Downs Boulevard, Tampa, FL 33612, USA; Department of Psychiatry and Behavioral Neurosciences, University of South Florida, 3515 E Fletcher Avenue, Tampa, FL 33613, USA.
| |
Collapse
|
36
|
Seewoo BJ, Feindel KW, Etherington SJ, Rodger J. Resting-state fMRI study of brain activation using low-intensity repetitive transcranial magnetic stimulation in rats. Sci Rep 2018; 8:6706. [PMID: 29712947 PMCID: PMC5928106 DOI: 10.1038/s41598-018-24951-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/12/2018] [Indexed: 11/28/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique used to treat many neuropsychiatric conditions. However, the mechanisms underlying its mode of action are still unclear. This is the first rodent study using resting-state functional MRI (rs-fMRI) to examine low-intensity (LI) rTMS effects, in an effort to provide a direct means of comparison between rodent and human studies. Using anaesthetised Sprague-Dawley rats, rs-fMRI data were acquired before and after control or LI-rTMS at 1 Hz, 10 Hz, continuous theta burst stimulation (cTBS) or biomimetic high-frequency stimulation (BHFS). Independent component analysis revealed LI-rTMS-induced changes in the resting-state networks (RSN): (i) in the somatosensory cortex, the synchrony of resting activity decreased ipsilaterally following 10 Hz and bilaterally following 1 Hz stimulation and BHFS, and increased ipsilaterally following cTBS; (ii) the motor cortex showed bilateral changes following 1 Hz and 10 Hz stimulation, a contralateral decrease in synchrony following BHFS, and an ipsilateral increase following cTBS; and (iii) hippocampal synchrony decreased ipsilaterally following 10 Hz, and bilaterally following 1 Hz stimulation and BHFS. The present findings demonstrate that LI-rTMS modulates functional links within the rat RSN with frequency-specific outcomes, and the observed changes are similar to those described in humans following rTMS.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, The University of Western Australia, Perth, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Kirk W Feindel
- Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, The University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Sarah J Etherington
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia. .,Brain Plasticity Group, Perron Institute for Neurological and Translational Research, Perth, WA, Australia.
| |
Collapse
|
37
|
Taylor R, Galvez V, Loo C. Transcranial magnetic stimulation (TMS) safety: a practical guide for psychiatrists. Australas Psychiatry 2018; 26:189-192. [PMID: 29338288 DOI: 10.1177/1039856217748249] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) is increasingly being utilised as a treatment option for depression, and with this comes a need for a practical review of safety issues intended for clinicians. This article provides an overview of the current literature regarding safety issues with rTMS for depression, and provides recommendations for clinical practice. CONCLUSIONS Overall, rTMS is a well-tolerated treatment with common side effects (such as headache or local pain at the site of stimulation) being mild. Severe adverse effects, such as seizures, hearing impairment or mania, are uncommon. Certain populations, including adolescents, pregnant women, older adults and those with metal/electronic implants, require special consideration when prescribing and monitoring treatment courses. With adequate assessment and monitoring processes, rTMS can be administered safely in a large proportion of depressed patients.
Collapse
Affiliation(s)
- Rohan Taylor
- Health Education & Training Institute, Gladesville, NSW, Research Fellow, School of Psychiatry and Black Dog Institute, University of New South Wales, Randwick, NSW; Psychiatry Registrar, Concord Centre for Mental Health, Concord, NSW, Australia
| | - Veronica Galvez
- Psychiatrist, School of Psychiatry, University of New South Wales, Randwick, NSW; Black Dog Institute, University of New South Wales, Randwick, NSW, Australia
| | - Colleen Loo
- Professor of Psychiatry, School of Psychiatry, University of New South Wales, Randwick, NSW, and; Black Dog Institute, University of New South Wales, Randwick, NSW, and; Psychiatrist, St George Hospital, Kogarah, NSW, and; Psychiatrist, The Wesley Hospital, Kogarah, NSW, Australia
| |
Collapse
|
38
|
Seewoo BJ, Etherington SJ, Feindel KW, Rodger J. Combined rTMS/fMRI Studies: An Overlooked Resource in Animal Models. Front Neurosci 2018; 12:180. [PMID: 29628873 PMCID: PMC5876299 DOI: 10.3389/fnins.2018.00180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique, which has brain network-level effects in healthy individuals and is also used to treat many neurological and psychiatric conditions in which brain connectivity is believed to be abnormal. Despite the fact that rTMS is being used in a clinical setting and animal studies are increasingly identifying potential cellular and molecular mechanisms, little is known about how these mechanisms relate to clinical changes. This knowledge gap is amplified by non-overlapping approaches used in preclinical and clinical rTMS studies: preclinical studies are mostly invasive, using cellular and molecular approaches, while clinical studies are non-invasive, including functional magnetic resonance imaging (fMRI), TMS electroencephalography (EEG), positron emission tomography (PET), and behavioral measures. A non-invasive method is therefore needed in rodents to link our understanding of cellular and molecular changes to functional connectivity changes that are clinically relevant. fMRI is the technique of choice for examining both short and long term functional connectivity changes in large-scale networks and is becoming increasingly popular in animal research because of its high translatability, but, to date, there have been no reports of animal rTMS studies using this technique. This review summarizes the main studies combining different rTMS protocols with fMRI in humans, in both healthy and patient populations, providing a foundation for the design of equivalent studies in animals. We discuss the challenges of combining these two methods in animals and highlight considerations important for acquiring clinically-relevant information from combined rTMS/fMRI studies in animals. We believe that combining rTMS and fMRI in animal models will generate new knowledge in the following ways: functional connectivity changes can be explored in greater detail through complementary invasive procedures, clarifying mechanism and improving the therapeutic application of rTMS, as well as improving interpretation of fMRI data. And, in a more general context, a robust comparative approach will refine the use of animal models of specific neuropsychiatric conditions.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,Centre for Microscopy, Characterization and Analysis, Research Infrastructure Centers, The University of Western Australia, Perth, WA, Australia
| | - Sarah J Etherington
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Kirk W Feindel
- Centre for Microscopy, Characterization and Analysis, Research Infrastructure Centers, The University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Research, Perth, WA, Australia
| |
Collapse
|
39
|
Dean OM, Gliddon E, Van Rheenen TE, Giorlando F, Davidson SK, Kaur M, Ngo TT, Williams LJ. An update on adjunctive treatment options for bipolar disorder. Bipolar Disord 2018; 20:87-96. [PMID: 29369487 DOI: 10.1111/bdi.12601] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/19/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Bipolar disorder is a complex illness often requiring combinations of therapies to successfully treat symptoms. In recent years, there have been significant advancements in a number of therapies for bipolar disorder. It is therefore timely to provide an overview of current adjunctive therapeutic options to help treating clinicians to inform their patients and work towards optimal outcomes. METHODS Publications were identified from PubMed searches on bipolar disorder and pharmacotherapy, nutraceuticals, hormone therapy, psychoeducation, interpersonal and social rhythm therapy, cognitive remediation, mindfulness, e-Health and brain stimulation techniques. Relevant articles in these areas were selected for further review. This paper provides a narrative review of adjunctive treatment options and is not a systematic review of the literature. RESULTS A number of pharmacotherapeutic, psychological and neuromodulation treatment options are available. These have varying efficacy but all have shown benefit to people with bipolar disorder. Due to the complex nature of treating the disorder, combination treatments are often required. Adjunctive treatments to traditional pharmacological and psychological therapies are proving useful in closing the gap between initial symptom remission and full functional recovery. CONCLUSIONS Given that response to monotherapy is often inadequate, combination regimens for bipolar disorder are typical. Correspondingly, psychiatric research is working towards a better understanding of the disorder's underlying biology. Therefore, treatment options are changing and adjunctive therapies are being increasingly recognized as providing significant tools to improve patient outcomes. Towards this end, this paper provides an overview of novel treatments that may improve clinical outcomes for people with bipolar disorder.
Collapse
Affiliation(s)
- Olivia M Dean
- IMPACT Strategic Research Centre, Deakin University, Geelong, Vic., Australia.,Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Vic., Australia.,Department of Psychiatry, University of Melbourne, Parkville, Vic., Australia
| | - Emma Gliddon
- IMPACT Strategic Research Centre, Deakin University, Geelong, Vic., Australia.,Department of Psychiatry, University of Melbourne, Parkville, Vic., Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Vic., Australia.,Centre for Mental Health, Swinburne University, Melbourne, Vic., Australia.,Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, Vic., Australia
| | - Francesco Giorlando
- Department of Psychiatry, University of Melbourne, Parkville, Vic., Australia
| | - Sandra K Davidson
- Department of General Practice, Melbourne Medical School, University of Melbourne, Carlton, Vic., Australia
| | - Manreena Kaur
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, Vic., Australia
| | - Trung T Ngo
- Mater Research Institute-UQ, Faculty of Medicine, The University of Queensland and Translational Research Institute, Brisbane, Qld, Australia.,Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| | - Lana J Williams
- IMPACT Strategic Research Centre, Deakin University, Geelong, Vic., Australia
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW This article aims to review select applications of Transcranial Magnetic Stimulation (TMS) that have significant relevance in geriatric psychiatry. RECENT FINDINGS Small study sizes and parameter variability limit the generalizability of many TMS studies in geriatric patients. Additionally, geriatric patients have unique characteristics that can moderate the efficacy of TMS. Nonetheless, several promising experimental applications in addition to the FDA-approved indication for major depression have emerged. Cognitive impairment, neuropathic pain, and smoking cessation are experimental applications with special significance to the elderly. Cognitive impairment has been researched the most in this population and evidence thus far suggests that TMS has potential therapeutic benefit. There is also evidence to suggest benefit from TMS for neuropathic pain and smoking cessation in working age adults. TMS is consistently reported as a safe and well-tolerated treatment modality with no adverse cognitive side effects. TMS is a safe treatment modality that can be effective for certain applications in the elderly. Additional research that specifically includes older subjects is needed to replicate findings and to optimize treatment protocols for this population.
Collapse
Affiliation(s)
- Ilva G Iriarte
- Department of Psychiatry, Medical University of South Carolina (MUSC), Charleston, SC, USA.
| | - Mark S George
- Department of Psychiatry, Medical University of South Carolina (MUSC), Charleston, SC, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
41
|
Iwry J, Yaden DB, Newberg AB. Noninvasive Brain Stimulation and Personal Identity: Ethical Considerations. Front Hum Neurosci 2017; 11:281. [PMID: 28638327 PMCID: PMC5461331 DOI: 10.3389/fnhum.2017.00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/15/2017] [Indexed: 01/29/2023] Open
Abstract
As noninvasive brain stimulation (NIBS) technology advances, these methods may become increasingly capable of influencing complex networks of mental functioning. We suggest that these might include cognitive and affective processes underlying personality and belief systems, which would raise important questions concerning personal identity and autonomy. We give particular attention to the relationship between personal identity and belief, emphasizing the importance of respecting users' personal values. We posit that research participants and patients should be encouraged to take an active approach to considering the personal implications of altering their own cognition, particularly in cases of neurocognitive "enhancement." We suggest that efforts to encourage careful consideration through the informed consent process would contribute usefully to studies and treatments that use NIBS.
Collapse
Affiliation(s)
- Jonathan Iwry
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, United States
| | - David B. Yaden
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, United States
| | - Andrew B. Newberg
- Myrna Brind Center for Integrative Medicine, Thomas Jefferson UniversityPhiladelphia, PA, United States
| |
Collapse
|
42
|
Spagnolo PA, Goldman D. Neuromodulation interventions for addictive disorders: challenges, promise, and roadmap for future research. Brain 2017; 140:1183-1203. [PMID: 28082299 PMCID: PMC6059187 DOI: 10.1093/brain/aww284] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/24/2016] [Accepted: 09/12/2016] [Indexed: 01/27/2023] Open
Abstract
Addictive disorders are a major public health concern, associated with high relapse rates, significant disability and substantial mortality. Unfortunately, current interventions are only modestly effective. Preclinical studies as well as human neuroimaging studies have provided strong evidence that the observable behaviours that characterize the addiction phenotype, such as compulsive drug consumption, impaired self-control, and behavioural inflexibility, reflect underlying dysregulation and malfunction in specific neural circuits. These developments have been accompanied by advances in neuromodulation interventions, both invasive as deep brain stimulation, and non-invasive such as repetitive transcranial magnetic stimulation and transcranial direct current stimulation. These interventions appear particularly promising as they may not only allow us to probe affected brain circuits in addictive disorders, but also seem to have unique therapeutic applications to directly target and remodel impaired circuits. However, the available literature is still relatively small and sparse, and the long-term safety and efficacy of these interventions need to be confirmed. Here we review the literature on the use of neuromodulation in addictive disorders to highlight progress limitations with the aim to suggest future directions for this field.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - David Goldman
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Repetitive Transcranial Magnetic Stimulation and Treatment-emergent Mania and Hypomania: A Review of the Literature. J Psychiatr Pract 2017; 23:150-159. [PMID: 28291043 DOI: 10.1097/pra.0000000000000219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND This review focuses on treatment-emergent mania/hypomania (TEM) associated with repetitive transcranial magnetic stimulation (rTMS). METHODS English-language studies involving possible rTMS-induced mania/hypomania published between 1966 and 2015 were retrieved through a Medline search using the search terms mania, hypomania, mixed affective state, treatment-emergent, repetitive transcranial magnetic stimulation, and rTMS. Fifteen case series and controlled studies describing TEM associated with rTMS treatment have been published involving 24 individuals, most of whom were diagnosed with either bipolar I or II disorder or major depressive disorder. RESULTS rTMS has been shown to possibly induce manic or hypomanic episodes in patients with depression, who are sometimes also taking antidepressants. Both high-frequency and low-frequency rTMS with different stimulus parameters may be associated with TEM in both males and females. CONCLUSIONS Given these findings, it is highly recommended that patients with bipolar disorder who are experiencing a depressive episode be prescribed a mood stabilizer and that patients diagnosed with major depressive disorder be reevaluated to consider the possibility that they might have bipolar disorder, before rTMS treatment is initiated. If TEM occurs, discontinuation of rTMS should be considered, while continuing mood-stabilizing medications. Further research is needed concerning the underlying neurobiological mechanisms and epidemiologic characteristics of TEM associated with rTMS.
Collapse
|
44
|
Carle G, Touat M, Bruno N, Galanaud D, Peretti CS, Valero-Cabré A, Levy R, Azuar C. Acute Frontal Lobe Dysfunction Following Prefrontal Low-Frequency Repetitive Transcranial Magnetic Stimulation in a Patient with Treatment-Resistant Depression. Front Psychiatry 2017; 8:96. [PMID: 28611694 PMCID: PMC5447704 DOI: 10.3389/fpsyt.2017.00096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/11/2017] [Indexed: 12/30/2022] Open
Abstract
The potential of repetitive transcranial magnetic stimulation (rTMS) to treat numerous neurological and psychiatric disorders has been thoroughly studied for the last two decades. Here, we report for the first time, the case of a 65-year-old woman suffering from treatment-resistant depression who developed an acute frontal lobe syndrome following eight sessions of low-frequency rTMS (LF-rTMS) to the right dorsolateral prefrontal cortex while also treated with sertraline and mianserin. The pathophysiological mechanisms underlying such an unexpected acute frontal lobe dysfunction are discussed in relation to the therapeutic use of LF-rTMS in combination with pharmacotherapy in depressed patients.
Collapse
Affiliation(s)
- Guilhem Carle
- AP-HP, Hôpital Saint-Antoine, Department of Psychiatry, Paris, France.,FrontLab, INSERM U1127, CNRS UMR7225, IHU Translational Neurosciences, Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France.,Sorbonne Universitas Pierre et Marie Curie (UPMC) University, Paris, France
| | - Mehdi Touat
- AP-HP, Hôpital Saint-Antoine, Department of Neurology, Paris, France.,Paris Sud University, Gustave Roussy, INSERM U981, Villejuif, France
| | - Nicolas Bruno
- AP-HP, Hôpital Saint-Antoine, Department of Psychiatry, Paris, France.,Sorbonne Universitas Pierre et Marie Curie (UPMC) University, Paris, France
| | - Damien Galanaud
- Sorbonne Universitas Pierre et Marie Curie (UPMC) University, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neuroradiology, Paris, France
| | - Charles-Siegfried Peretti
- AP-HP, Hôpital Saint-Antoine, Department of Psychiatry, Paris, France.,Sorbonne Universitas Pierre et Marie Curie (UPMC) University, Paris, France
| | - Antoni Valero-Cabré
- FrontLab, INSERM U1127, CNRS UMR7225, IHU Translational Neurosciences, Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France.,Sorbonne Universitas Pierre et Marie Curie (UPMC) University, Paris, France.,Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, School of Medicine, Boston University, Boston, MA, USA.,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| | - Richard Levy
- FrontLab, INSERM U1127, CNRS UMR7225, IHU Translational Neurosciences, Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France.,Sorbonne Universitas Pierre et Marie Curie (UPMC) University, Paris, France.,AP-HP, Hôpital Saint-Antoine, Department of Neurology, Paris, France
| | - Carole Azuar
- FrontLab, INSERM U1127, CNRS UMR7225, IHU Translational Neurosciences, Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France.,Sorbonne Universitas Pierre et Marie Curie (UPMC) University, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, National Reference Centre on Rare Dementias, Paris, France
| |
Collapse
|
45
|
Brady RO, Tandon N, Masters GA, Margolis A, Cohen BM, Keshavan M, Öngür D. Differential brain network activity across mood states in bipolar disorder. J Affect Disord 2017; 207:367-376. [PMID: 27744225 PMCID: PMC5107137 DOI: 10.1016/j.jad.2016.09.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/21/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study aimed to identify how the activity of large-scale brain networks differs between mood states in bipolar disorder. The authors measured spontaneous brain activity in subjects with bipolar disorder in mania and euthymia and compared these states to a healthy comparison population. METHODS 23 subjects with bipolar disorder type I in a manic episode, 24 euthymic bipolar I subjects, and 23 matched healthy comparison (HC) subjects underwent resting state fMRI scans. Using an existing parcellation of the whole brain, we measured functional connectivity between brain regions and identified significant differences between groups. RESULTS In unbiased whole-brain analyses, functional connectivity between parietal, occipital, and frontal nodes within the dorsal attention network (DAN) were significantly greater in mania than euthymia or HC subjects. In the default mode network (DMN), connectivity between dorsal frontal nodes and the rest of the DMN differentiated both mood state and diagnosis. LIMITATIONS The bipolar groups were separate cohorts rather than subjects imaged longitudinally across mood states. CONCLUSIONS Bipolar mood states are associated with highly significant alterations in connectivity in two large-scale brain networks. These same networks also differentiate bipolar mania and euthymia from a HC population. State related changes in DAN and DMN connectivity suggest a circuit based pathology underlying cognitive dysfunction as well as activity/reactivity in bipolar mania. Altered activities in neural networks may be biomarkers of bipolar disorder diagnosis and mood state that are accessible to neuromodulation and are promising novel targets for scientific investigation and possible clinical intervention.
Collapse
Affiliation(s)
- Roscoe O. Brady
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts,Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Corresponding author. 75 Fenwood Road, Room 616, Boston, MA 02115. Tel.: 617 754 1261; Fax: 617 754 1250.
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Grace A. Masters
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Allison Margolis
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Program for Neuropsychiatric Research, McLean Hospital, Belmont, Massachusetts
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Matsumoto H, Ugawa Y. Adverse events of tDCS and tACS: A review. Clin Neurophysiol Pract 2016; 2:19-25. [PMID: 30214966 PMCID: PMC6123849 DOI: 10.1016/j.cnp.2016.12.003] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/25/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) have been applied to many research issues because these stimulation techniques can modulate neural activity in the human brain painlessly and non-invasively with weak electrical currents. However, there are no formal safety guidelines for the selection of stimulus parameters in either tDCS or tACS. As a means of gathering the information that is needed to produce safety guidelines, in this article, we summarize the adverse events of tDCS and tACS. In both stimulation techniques, most adverse effects are mild and disappear soon after stimulation. Nevertheless, several papers have reported that, in tDCS, some adverse events persist even after stimulation. The persistent events consist of skin lesions similar to burns, which can arise even in healthy subjects, and mania or hypomania in patients with depression. Recently, one paper reported a pediatric patient presenting with seizure after tDCS, although the causal relationship between stimulation and seizure is not clear. As this seizure is the only serious adverse events yet reported in connection with tDCS, tDCS is considered safe. In tACS, meanwhile, no persistent adverse events have been reported, but considerably fewer reports are available on the safety of tACS than on the safety of tDCS. Therefore, to establish the safety of tDCS and tACS, we need to scan the literature continuously for information on the adverse events of both stimulation techniques. Further safety investigations are also required.
Collapse
Affiliation(s)
| | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Japan.,Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
47
|
Brunoni AR, Moffa AH, Sampaio-Júnior B, Gálvez V, Loo CK. Treatment-emergent mania/hypomania during antidepressant treatment with transcranial direct current stimulation (tDCS): A systematic review and meta-analysis. Brain Stimul 2016; 10:260-262. [PMID: 27916405 DOI: 10.1016/j.brs.2016.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Treatment-emergent mania/hypomania (TEM) is a possible adverse effect of pharmacological and non-pharmacological antidepressant treatments. OBJECTIVE We performed a systematic review and meta-analysis to evaluate the risk of TEM in depressed patients during randomized, sham-controlled trials (RCTs). DATA SOURCES Medline database, from the first date available to August 12, 2016. RESULTS From 283 references, 10 RCTs were identified. Only 3 of them described TEM. In active and sham groups, respectively, only 8 of 226 (3.5%) and 1 of 190 (0.5%) participants presented TEM. This difference was not statistically significant (OR = 1.79, 95% CI = 0.6 to 5.32). There were also five additional reports of TEM in participants not on RCTs. No risk factors for TEM were identified. LIMITATIONS Low number of studies and TEM reports. CONCLUSION Despite previous reports, active vs. sham tDCS was not associated with a significantly greater number of TEM episodes.
Collapse
Affiliation(s)
- André R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil; Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of São Paulo, São Paulo, Brazil.
| | - Adriano H Moffa
- Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of São Paulo, São Paulo, Brazil
| | - Bernardo Sampaio-Júnior
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil; Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of São Paulo, São Paulo, Brazil
| | - Verònica Gálvez
- School of Psychiatry, University of New South Wales, Black Dog Institute, Sydney, Australia
| | - Colleen K Loo
- School of Psychiatry, University of New South Wales, Black Dog Institute, Sydney, Australia; St George Hospital, Sydney, Australia
| |
Collapse
|
48
|
Oldani L, Altamura AC, Abdelghani M, Young AH. Brain stimulation treatments in bipolar disorder: A review of the current literature. World J Biol Psychiatry 2016; 17:482-94. [PMID: 25471324 DOI: 10.3109/15622975.2014.984630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Brain stimulation techniques are non-pharmacologic strategies which offer additional therapeutic options for treatment-resistant depression (TRD). The purpose of this paper is to review the current literature regarding the use of brain stimulation in resistant bipolar disorder (BD), with particular reference to hypomanic/manic symptoms. METHODS Keywords pertaining to the brain simulation techniques used in the treatment of depression (either unipolar or bipolar) along with their role in regard to hypomanic/manic symptoms were used to conduct an electronic search of the literature. Pertinent findings were identified by the authors and reviewed. RESULTS Brain stimulation techniques represent a valid therapeutic option in TRD. They have been extensively studied in unipolar depression and, to a minor extent, in the depressive phase of BD, showing encouraging but often limited results. With exception of electroconvulsive therapy, the efficacy of brain stimulation in the treatment of manic symptoms of bipolar patients is still uncertain and needs to be fully evaluated. CONCLUSIONS Brain stimulation in BD is derived from its use in unipolar depression. However, there are many important differences between these two disorders and more studies with a systematic approach need to be conducted on larger samples of bipolar patients with treatment-resistant characteristics.
Collapse
Affiliation(s)
- Lucio Oldani
- a Department of Psychiatry , University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - A Carlo Altamura
- a Department of Psychiatry , University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Mohamed Abdelghani
- b Complex Depression, Anxiety and Trauma Service (CDAT) and Neurodevelopmental Service (Adult ADHD and Adult ASD), Camden and Islington NHS Foundation Trust, St Pancras Hospital , London , UK
| | - Allan H Young
- c Centre for Affective Disorders, Institute of Psychiatry, King's College London , Denmark Hill, London , UK
| |
Collapse
|
49
|
de Sousa RT, Zanetti MV, Brunoni AR, Machado-Vieira R. Challenging Treatment-Resistant Major Depressive Disorder: A Roadmap for Improved Therapeutics. Curr Neuropharmacol 2016; 13:616-35. [PMID: 26467411 PMCID: PMC4761633 DOI: 10.2174/1570159x13666150630173522] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Major
depressive disorder (MDD) is associated with a significant burden and costs to
the society. As remission of depressive symptoms is achieved in only one-third
of the MDD patients after the first antidepressant trial, unsuccessful
treatments contribute largely to the observed suffering and social costs of MDD.
The present article provides a summary of the therapeutic strategies that have
been tested for treatment-resistant depression (TRD). A computerized search on
MedLine/PubMed database from 1975 to September 2014 was performed, using the
keywords “treatment-resistant depression”, “major depressive disorder”,
“adjunctive”, “refractory” and “augmentation”. From the 581 articles retrieved,
two authors selected 79 papers. A manual searching further considered relevant
articles of the reference lists. The evidence found supports adding or switching
to another antidepressant from a different class is an effective strategy in
more severe MDD after failure to an initial antidepressant trial. Also, in
subjects resistant to two or more classes of antidepressants, some augmentation
strategies and antidepressant combinations should be considered, although the
overall response and remission rates are relatively low, except for fast acting
glutamatergic modulators. The wide range of available treatments for TRD
reflects the complexity of MDD, which does not underlie diverse key features of
the disorder. Larger and well-designed studies applying dimensional approaches
to measure efficacy and effectiveness are warranted.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Machado-Vieira
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of Sao Paulo, Brazil, Address: Instituto de Psiquiatria do HC-FMUSP, 3o andar, LIM-27, Rua Dr. Ovidio Pires de Campos, 785, Postal code 05403- 010, Sao Paulo, SP, Brazil
| |
Collapse
|
50
|
Kazemi R, Rostami R, Khomami S, Horacek J, Brunovsky M, Novak T, Fitzgerald PB. Electrophysiological correlates of bilateral and unilateral repetitive transcranial magnetic stimulation in patients with bipolar depression. Psychiatry Res 2016; 240:364-375. [PMID: 27138833 DOI: 10.1016/j.psychres.2016.04.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/09/2016] [Accepted: 04/19/2016] [Indexed: 01/23/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been demonstrated to have efficacy in the treatment of unipolar depression but limited research has explored the efficacy of rTMS in bipolar depression. Therefore, we conducted a comparative clinical trial evaluating clinical responses to prefrontal bilateral and unilateral rTMS in patients suffering from bipolar depression. We hypothesized that, 1) the response to the treatment would be associated with a decrease in the frequency of beta waves, 2) bilateral stimulation of the cortex would bring about more extensive changes in brain activity than unilateral stimulation, and 3) bilateral stimulation is more effective than unilateral. Thirty patients with bipolar depression were divided into two groups. Bilateral Group (n=15) who received rTMS in the left DLPFC (10Hz) and right DLPFC (1-Hz), and unilateral group (n=15) who received the stimulation only in the right DLPFC (1-Hz) during 20 treatment sessions. The proportion of responders in the bilateral stimulation group was significantly higher than that in the unilateral group [80% versus 47%]. The remission rate was 40% in the bilateral group and 40% in the unilateral group (not significant). In the responders to bilateral rTMS treatment, a significant reduction of alpha1-2, beta 1-3, and gamma frequencies were observed in medial and superior frontal and cingulate gyrus . Responders to the unilateral treatment showed decrease of gamma frequency in postcentral gyrus, precuneus, superior and inferior parietal lobule, Cuneus and angular gyrus. In conclusion, we found that bilateral stimulation was more effective than the unilateral stimulation and evidence that beta frequency activity could possibly be used as a marker for response to rTMS.
Collapse
Affiliation(s)
- Reza Kazemi
- Atieh Clinical Neuroscience Center, Tehran, Iran.
| | - Reza Rostami
- Atieh Clinical Neuroscience Center, Tehran, Iran; Psychology Department, Faculty of Psychology and Educational Science, Tehran University, Tehran, Iran
| | - Sanaz Khomami
- Atieh Clinical Neuroscience Center, Tehran, Iran; Psychology Department, Faculty of Psychology and Educational Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jiri Horacek
- National Institute of Mental Health, Klecany, Czech Republic
| | | | - Tomas Novak
- National Institute of Mental Health, Klecany, Czech Republic
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Victoria, Australia
| |
Collapse
|