1
|
Lindquist KL, Padula AE, Katzenmeyer NS, Potts HN, Rinker JA, Mulholland PJ. K Ca2 channel positive modulation reduces alcohol drinking in female C57BL/6J mice. Alcohol 2025; 124:97-103. [PMID: 39864678 DOI: 10.1016/j.alcohol.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Although men have historically exhibited higher levels of alcohol use disorder (AUD) diagnosis, the gap between men and women has been diminishing quickly. Preclinical screening for pharmacological treatments for AUD has typically focused solely on males, ignoring the possibility that males and females may differ mechanistically for the same behavioral phenotype. To ensure the efficacy of treatment targets across the sexes, it is crucial to study the pharmacological effects of AUD treatments in males and females. While positive KCa2 channel modulation can reduce ethanol consumption and seeking behaviors, withdrawal-induced hyperexcitability, and negative affective behaviors in male rodents, the effect of KCa2 channel modulation on female ethanol consumption has not been reported. To determine the efficacy of KCa2 channel positive modulation in female C57BL/6J mice, we assessed the ability of the KCa2 channel positive modulator 1-EBIO to affect locomotor activity, voluntary home cage ethanol intake prior to and following chronic intermittent ethanol (CIE) exposure, and voluntary home cage sucrose drinking. There were no significant changes to distance traveled in an open field apparatus following administration of 1-EBIO in our locomotor assay. In ethanol drinking mice, 1-EBIO significantly reduced ethanol consumption in air controls and CIE exposed mice, without altering water consumption. While administration of 1-EBIO did not affect consumption of sucrose in male mice, 1-EBIO significantly increased sucrose intake in females. Together, these data provide further evidence that KCa2 channel positive modulation is a promising therapeutic target to reduce ethanol drinking in males and females alike.
Collapse
Affiliation(s)
- Kathy L Lindquist
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA
| | - Natalie S Katzenmeyer
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA
| | - Hannah N Potts
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Belviranlı M, Okudan N, Sezer T. Potential therapeutic effects of curcumin, with or without L-DOPA, on motor and cognitive functions and hippocampal changes in rotenone-treated rats. Metab Brain Dis 2025; 40:174. [PMID: 40208367 PMCID: PMC11985604 DOI: 10.1007/s11011-025-01602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
The neurodegenerative condition known as Parkinson's disease (PD) is a long-term condition that causes both motor and non-motor symptoms. It is known that curcumin has a strong neuroprotective potential. This experimental study was designed to examine the anti-inflammatory, anti-apoptotic and neuroprotective effects of curcumin administered alone and in combination with L-DOPA in the hippocampus as well as behavioral symptoms in rotenone-induced PD model. Forty-two 4-month-old adult male Wistar rats were randomly divided into six groups as follows: Control, Curcumin, Rotenone, Rotenone plus curcumin, Rotenone plus L-DOPA and Rotenone plus curcumin plus L-DOPA. Control group received vehicles, curcumin group received curcumin (200 mg kg-1, daily for 35 days), rotenone group received rotenone (2 mg kg-1, daily for 35 days), and test groups received curcumin or L-DOPA (10 mg kg-1, daily for the last 15 days) or their combination in addition the rotenone. Pole, sucrose preference, open field, elevated plus maze, and Morris water maze tests were performed after treatment. Molecular and biochemical analyses were performed in the hippocampus tissue and serum samples. Rotenone injection caused impairments in motor activity, depressive-like behavior, and learning and memory functions. Rotenone also increased the expressions of α-synuclein, caspase 3, NF-κB, and decreased the expressions of parkin and BDNF in the hippocampus. However, especially curcumin and L-DOPA combined treatment normalized all these impaired molecular and behavioral variables. In conclusion, curcumin may exert beneficial effects in treatment strategies for PD-related hippocampal effects, especially when added to L-DOPA therapy.
Collapse
Affiliation(s)
- Muaz Belviranlı
- School of Medicine, Department of Physiology, Selçuk University, Konya, 42131, Turkey.
| | - Nilsel Okudan
- School of Medicine, Department of Physiology, Selçuk University, Konya, 42131, Turkey
| | - Tuğba Sezer
- School of Medicine, Department of Physiology, Selçuk University, Konya, 42131, Turkey
| |
Collapse
|
3
|
Ong J, Heller HC, Pittaras E. Selectively Blocking Small Conductance Ca 2+-Activated K + Channels Improves Cognition in Aged Mice. BIOLOGY 2025; 14:149. [PMID: 40001917 PMCID: PMC11851921 DOI: 10.3390/biology14020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Aging is associated with decreased neuronal sensitivity and activity that creates deficits in cognitive processes, including learning, memory, motivation, general activity, and other behaviors. These effects are due in part to decreased intracellular Ca2+ homeostasis, increasing hyperpolarization of the resting potential in aged neurons and therefore decreasing their excitability. To reduce hyperpolarization in aged mice, we used apamin, a selective small conductance Ca2+-activated K+ (sKCa) channel blocker. By blocking the sKCa channels, apamin decreases the egress of the K+ out of the cell, reducing its hyperpolarization and causing it to be closer to threshold potential. As a result, neurons should be more sensitive to excitatory stimuli and more active. We evaluated the performance of aged mice in a selection of cognitive and behavioral tests prior to and after systemic applications of apamin or the vehicle saline. Apamin improved performance in short-term memory, increased attention to tasks, and decreased anhedonia. Apamin had no significant effect on long-term spatial and recognition memory, risk-taking behavior, sociability, and anxiety. Our results are compatible with the known effects of sKCa channel blockade on neuronal sensitivity and activity; however, these short-term effects were not reflected in longer-term alterations of neural plasticity responsible for long-term spatial and recognition memory or other more complex cognitive processes we evaluated.
Collapse
Affiliation(s)
| | | | - Elsa Pittaras
- Department of Biology, Stanford University, Stanford, CA 94305, USA; (J.O.); (H.C.H.)
| |
Collapse
|
4
|
Prates‐Rodrigues M, Schweizer BLA, de Paula Gomes C, Ribeiro ÂM, Padovan‐Neto FE, Masini D, Lopes‐Aguiar C. Challenges and Opportunities in Exploring Non-Motor Symptoms in 6-Hydroxydopamine Models of Parkinson's Disease: A Systematic Review. J Neurochem 2025; 169:e70008. [PMID: 39901598 PMCID: PMC11791392 DOI: 10.1111/jnc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of midbrain dopaminergic neurons, leading to motor symptoms such as tremors, rigidity, and bradykinesia. Non-motor symptoms, including depression, hyposmia, and sleep disturbances, often emerge in the early stages of PD, but their mechanisms remain poorly understood. The 6-hydroxydopamine (6-OHDA) rodent model is a well-established tool for preclinical research, replicating key motor and non-motor symptoms of PD. In this review, we systematically analyzed 135 studies that used 6-OHDA rodent models of PD to investigate non-motor symptoms. The review process adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our analysis highlights the growing use of 6-OHDA PD models for experimental research of non-motor symptoms. It also reveals significant variability in methodologies, including choices of brain target, toxin dosage, lesion verification strategies, and behavioral assessment reporting. Factors that hinder reproducibility and comparability of findings across studies. We highlight the need for standardization in 6-OHDA-based models with particular emphasis on consistent evaluation of lesion extent and reporting of the co-occurrence of non-motor symptoms. By fostering methodological coherence, this framework aims to enhance the reproducibility, reliability, and translational value of 6-OHDA models in PD non-motor symptom research.
Collapse
Affiliation(s)
- Mateus Prates‐Rodrigues
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Beatriz Lage Araújo Schweizer
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Clara de Paula Gomes
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Ângela Maria Ribeiro
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Fernando E. Padovan‐Neto
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Debora Masini
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Cleiton Lopes‐Aguiar
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
5
|
Vahidinia Z, Barati S, Azami Tameh A, Bagheri-Mohammadi S, Garshasebi A. Bee venom as a promising therapeutic strategy in central nervous system diseases. Neuropeptides 2024; 107:102451. [PMID: 38936137 DOI: 10.1016/j.npep.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Central nervous system (CNS) disorders are one of the leading health problems today, accounting for a large proportion of global morbidity and mortality. Most these disorders are characterized by high levels of oxidative stress and intense inflammatory responses in degenerated neuronal tissues. While extensive research has been conducted on CNS diseases, but few breakthroughs have been made in treatment methods. To date, there are no disease-modifying drugs available for CNS treatment, underscoring the urgent need for finding effective medications. Bee venom (BV), which is produced by honeybee workers' stingers, has been a subject of interest and study across various cultures. Over the past few decades, extensive research has focused on BV and its therapeutic potentials. BV consists a variety of substances, mainly proteins and peptides like melittin and phospholipase A2 (PLA2). Research has proven that BV is effective in various medical conditions, including pain, arthritis and inflammation and CNS disorders such as Multiple sclerosis, Alzheimer's disease and Parkinson's disease. This review provides a comprehensive overview of the existing knowledge concerning the therapeutic effects of BV and its primary compounds on various CNS diseases. Additionally, we aim to shed light on the potential cellular and molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Garshasebi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Boi L, Fisone G. Investigating affective neuropsychiatric symptoms in rodent models of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:119-186. [PMID: 38341228 DOI: 10.1016/bs.irn.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Affective neuropsychiatric disorders such as depression, anxiety and apathy are among the most frequent non-motor symptoms observed in people with Parkinson's disease (PD). These conditions often emerge during the prodromal phase of the disease and are generally considered to result from neurodegenerative processes in meso-corticolimbic structures, occurring in parallel to the loss of nigrostriatal dopaminergic neurons. Depression, anxiety, and apathy are often treated with conventional medications, including selective serotonin reuptake inhibitors, tricyclic antidepressants, and dopaminergic agonists. The ability of these pharmacological interventions to consistently counteract such neuropsychiatric symptoms in PD is still relatively limited and the development of reliable experimental models represents an important tool to identify more effective treatments. This chapter provides information on rodent models of PD utilized to study these affective neuropsychiatric symptoms. Neurotoxin-based and genetic models are discussed, together with the main behavioral tests utilized to identify depression- and anxiety-like behaviors, anhedonia, and apathy. The ability of various therapeutic approaches to counteract the symptoms observed in the various models is also reviewed.
Collapse
Affiliation(s)
- Laura Boi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Chen X, Feng Y, Quinn RJ, Pountney DL, Richardson DR, Mellick GD, Ma L. Potassium Channels in Parkinson's Disease: Potential Roles in Its Pathogenesis and Innovative Molecular Targets for Treatment. Pharmacol Rev 2023; 75:758-788. [PMID: 36918260 DOI: 10.1124/pharmrev.122.000743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the midbrain. The loss of neurons results in a subsequent reduction of dopamine in the striatum, which underlies the core motor symptoms of PD. To date, there are no effective treatments to stop, slow, or reverse the pathologic progression of dopaminergic neurodegeneration. This unfortunate predicament is because of the current early stages in understanding the biologic targets and pathways involved in PD pathogenesis. Ion channels have become emerging targets for new therapeutic development for PD due to their essential roles in neuronal function and neuroinflammation. Potassium channels are the most prominent ion channel family and have been shown to be critically important in PD pathology because of their roles in modulating neuronal excitability, neurotransmitter release, synaptic transmission, and neuroinflammation. In this review, members of the subfamilies of voltage-gated K+ channels, inward rectifying K+ channels, and Ca2+-activated K+ channels are described. Evidence of the role of these channels in PD etiology is discussed together with the latest views on related pathologic mechanisms and their potential as biologic targets for developing neuroprotective drugs for PD. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) is the second most common neurodegenerative disorder, featuring progressive degeneration of dopaminergic neurons in the midbrain. It is a multifactorial disease involving multiple risk factors and complex pathobiological mechanisms. Mounting evidence suggests that ion channels play vital roles in the pathogenesis and progression of PD by regulating neuronal excitability and immune cell function. Therefore, they have become "hot" biological targets for PD, as demonstrated by multiple clinical trials of drug candidates targeting ion channels for PD therapy.
Collapse
Affiliation(s)
- Xiaoyi Chen
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Yunjiang Feng
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Ronald J Quinn
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Dean L Pountney
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Des R Richardson
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - George D Mellick
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Linlin Ma
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| |
Collapse
|
8
|
Nageeb Hasan SM, Clarke CL, McManamon Strand TP, Bambico FR. Putative pathological mechanisms of late-life depression and Alzheimer's Disease. Brain Res 2023:148423. [PMID: 37244602 DOI: 10.1016/j.brainres.2023.148423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive impairment in cognition and memory. AD is accompanied by several neuropsychiatric symptoms, with depression being the most prominent. Although depression has long been known to be associated with AD, controversial findings from preclinical and clinical studies have obscured the precise nature of this association. However recent evidence suggests that depression could be a prodrome or harbinger of AD. Evidence indicates that the major central serotonergic nucleus-the dorsal raphe nucleus (DRN)-shows very early AD pathology: neurofibrillary tangles made of hyperphosphorylated tau protein and degenerated neurites. AD and depression share common pathophysiologies, including functional deficits of the serotonin (5-HT) system. 5-HT receptors have modulatory effects on the progression of AD pathology i.e., reduction in Aβ load, increased hyper-phosphorylation of tau, decreased oxidative stress etc. Moreover, preclinical models show a role for specific channelopathies that result in abnormal regional activational and neuroplasticity patterns. One of these concerns the pathological upregulation of the small conductance calcium-activated potassium (SK) channel in corticolimbic structure. This has also been observed in the DRN in both diseases. The SKC is a key regulator of cell excitability and long-term potentiation (LTP). SKC over-expression is positively correlated with aging and cognitive decline, and is evident in AD. Pharmacological blockade of SKCs has been reported to reverse symptoms of depression and AD. Thus, aberrant SKC functioning could be related to depression pathophysiology and diverts its late-life progression towards the development of AD. We summarize findings from preclinical and clinical studies suggesting a molecular linkage between depression and AD pathology. We also provide a rationale for considering SKCs as a novel pharmacological target for the treatment of AD-associated symptoms.
Collapse
Affiliation(s)
- S M Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada.
| | - Courtney Leigh Clarke
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada
| | | | - Francis Rodriguez Bambico
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada; Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T1R8, Canada
| |
Collapse
|
9
|
Fan L, Zhang S, Li X, Hu Z, Yang J, Zhang S, Zheng H, Su Y, Luo H, Liu X, Fan Y, Sun H, Zhang Z, Miao J, Song B, Xia Z, Shi C, Mao C, Xu Y. CHCHD2 p.Thr61Ile knock-in mice exhibit motor defects and neuropathological features of Parkinson's disease. Brain Pathol 2023; 33:e13124. [PMID: 36322611 PMCID: PMC10154378 DOI: 10.1111/bpa.13124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 05/04/2023] Open
Abstract
The p.Thr61Ile (p.T61I) mutation in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) was deemed a causative factor in Parkinson's disease (PD). However, the pathomechanism of the CHCHD2 p.T61I mutation in PD remains unclear. Few existing mouse models of CHCHD2-related PD completely reproduce the features of PD, and no transgenic or knock-in (KI) mouse models of CHCHD2 mutations have been reported. In the present study, we generated a novel CHCHD2 p.T61I KI mouse model, which exhibited accelerated mortality, progressive motor deficits, and dopaminergic (DA) neurons loss with age, accompanied by the accumulation and aggregation of α-synuclein and p-α-synuclein in the brains of the mutant mice. The mitochondria of mouse brains and induced pluripotent stem cells (iPSCs)-derived DA neurons carrying the CHCHD2 p.T61I mutation exhibited aberrant morphology and impaired function. Mechanistically, proteomic and RNA sequencing analysis revealed that p.T61I mutation induced mitochondrial dysfunction in aged mice likely through repressed insulin-degrading enzyme (IDE) expression, resulting in the degeneration of the nervous system. Overall, this CHCHD2 p.T61I KI mouse model recapitulated the crucial clinical and neuropathological aspects of patients with PD and provided a novel tool for understanding the pathogenic mechanism and therapeutic interventions of CHCHD2-related PD.
Collapse
Affiliation(s)
- Liyuan Fan
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Shuo Zhang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xinwei Li
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zhengwei Hu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jing Yang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Shuyu Zhang
- Neuro‐Intensive Care UnitThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Huimin Zheng
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Yun Su
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Haiyang Luo
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xinjing Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Yu Fan
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Huifang Sun
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zhongxian Zhang
- Sino‐British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Jinxin Miao
- Sino‐British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Bo Song
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zongping Xia
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Clinical Systems Biology LaboratoriesZhengzhou UniversityZhengzhouChina
| | - Changhe Shi
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouChina
| | - Chengyuan Mao
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Sino‐British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yuming Xu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouChina
| |
Collapse
|
10
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
11
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
12
|
Qi ZX, Shen KL, Peng JY, Fan XJ, Huang HW, Jiang JL, Lu JH, Wang XQ, Fang XX, Chen L, Zhuang QX. Histamine bidirectionally regulates the intrinsic excitability of parvalbumin-positive neurons in the lateral globus pallidus and promotes motor behaviour. Br J Pharmacol 2022; 180:1379-1407. [PMID: 36512485 DOI: 10.1111/bph.16010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Parvalbumin (PV)-positive neurons are a type of neuron in the lateral globus pallidus (LGP) which plays an important role in motor control. The present study investigated the effect of histamine on LGPPV neurons and motor behaviour. EXPERIMENTAL APPROACH Histamine levels in LGP as well as its histaminergic innervation were determined through brain stimulation, microdialysis, anterograde tracing and immunostaining. Mechanisms of histamine action were detected by immunostaining, single-cell qPCR, whole-cell patch-clamp recording, optogenetic stimulation and CRISPR/Cas9 gene-editing techniques. The effect of histamine on motor behaviour was detected by animal behavioural tests. KEY RESULTS A direct histaminergic innervation in LGP from the tuberomammillary nucleus (TMN) and a histamine-induced increase in the intrinsic excitability of LGPPV neurons were determined by pharmacological blockade or by genetic knockout of the histamine H1 receptor (H1 R)-coupled TWIK-related potassium channel-1 (TREK-1) and the small-conductance calcium-activated potassium channel (SK3), as well as by activation or overexpression of the histamine H2 receptor (H2 R)-coupled hyperpolarization-activated cyclic nucleotide-gated channel (HCN2). Histamine negatively regulated the STN → LGPGlu transmission in LGPPV neurons via the histamine H3 receptor (H3 R), whereas blockage or knockout of H3 R increased the intrinsic excitability of LGPPV neurons. CONCLUSIONS AND IMPLICATIONS Our results indicated that the endogenous histaminergic innervation in the LGP can bidirectionally promote motor control by increasing the intrinsic excitability of LGPPV neurons through postsynaptic H1 R and H2 R, albeit its action was negatively regulated by the presynaptic H3 R, thereby suggesting possible role of histamine in motor deficits manifested in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Kang-Li Shen
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jian-Ya Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiu-Juan Fan
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Hui-Wei Huang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jian-Lan Jiang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jian-Hua Lu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Qin Wang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Xia Fang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
13
|
Dantas CG, da Paixão AO, Nunes TLGM, Silva IJF, dos S. Lima B, Araújo AAS, de Albuquerque-Junior RLC, Gramacho KP, Padilha FF, da Costa LP, Severino P, Cardoso JC, Souto EB, Gomes MZ. Africanized Bee Venom ( Apis mellifera Linnaeus): Neuroprotective Effects in a Parkinson's Disease Mouse Model Induced by 6-hydroxydopamine. TOXICS 2022; 10:583. [PMID: 36287863 PMCID: PMC9609968 DOI: 10.3390/toxics10100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the neuroprotective effects of the Africanized bee venom (BV) and its mechanisms of action after 6-hydroxydopamine-(6-OHDA)-induced lesion in a mice model. Prior to BV treatment, mice received intrastriatal microinjections of 6-OHDA (no induced dopaminergic neuronal death) or ascorbate saline (as a control). BV was administered subcutaneously at different dosages (0.01, 0.05 or 0.1 mg·Kg-1) once every two days over a period of 3 weeks. The open field test was carried out, together with the immunohistochemical and histopathological analysis. The chemical composition of BV was also assessed, identifying the highest concentrations of apamin, phospholipase A2 and melittin. In the behavioral evaluation, the BV (0.1 mg·Kg-1) counteracted the 6-OHDA-induced decrease in crossings and rearing. 6-OHDA caused loss of dopaminergic cell bodies in the substantia nigra pars compacta and fibers in striatum (STR). Mice that received 0.01 mg·Kg-1 showed significant increase in the mean survival of dopaminergic cell bodies. Increased astrocytic infiltration occurred in the STR of 6-OHDA injected mice, differently from those of the groups treated with BV. The results suggested that Africanized BV has neuroprotective activity in an animal model of Parkinson's disease.
Collapse
Affiliation(s)
- Camila G. Dantas
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Ailma O. da Paixão
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Tássia L. G. M. Nunes
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Italo J. F. Silva
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Bruno dos S. Lima
- Department of Pharmacy, Federal University of Sergipe (U.F.S.), Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon, Jardim Rosa Elze, São Cristóvão 49100-000, Sergipe, Brazil
| | - Adriano A. S. Araújo
- Department of Pharmacy, Federal University of Sergipe (U.F.S.), Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon, Jardim Rosa Elze, São Cristóvão 49100-000, Sergipe, Brazil
| | | | - Kátia P. Gramacho
- Department of Animal Science, Rural Federal University of Semi-Árido (U.F.E.R.S.A), Av. Francisco Mota, Costa e Silva, Mossoró 49032-490, Natal, Brazil
| | - Francine F. Padilha
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Luiz P. da Costa
- Post-Graduation Program in Chemistry, Federal University of Sergipe (U.F.S.), Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon, Jardim Rosa Elze, São Cristóvão 49100-000, Sergipe, Brazil
| | - Patricia Severino
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Juliana C. Cardoso
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Margarete Z. Gomes
- Department of Animal Science, Rural Federal University of Semi-Árido (U.F.E.R.S.A), Av. Francisco Mota, Costa e Silva, Mossoró 49032-490, Natal, Brazil
| |
Collapse
|
14
|
Mou YK, Guan LN, Yao XY, Wang JH, Song XY, Ji YQ, Ren C, Wei SZ. Application of Neurotoxin-Induced Animal Models in the Study of Parkinson's Disease-Related Depression: Profile and Proposal. Front Aging Neurosci 2022; 14:890512. [PMID: 35645772 PMCID: PMC9136050 DOI: 10.3389/fnagi.2022.890512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 01/17/2023] Open
Abstract
Depression can be a non-motor symptom, a risk factor, and even a co-morbidity of Parkinson's disease (PD). In either case, depression seriously affects the quality of life of PD patients. Unfortunately, at present, a large number of clinical and basic studies focused on the pathophysiological mechanism of PD and the prevention and treatment of motor symptoms. Although there has been increasing attention to PD-related depression, it is difficult to achieve early detection and early intervention, because the clinical guidelines mostly refer to depression developed after or accompanied by motor impairments. Why is there such a dilemma? This is because there has been no suitable preclinical animal model for studying the relationship between depression and PD, and the assessment of depressive behavior in PD preclinical models is as well a very challenging task since it is not free from the confounding from the motor impairment. As a common method to simulate PD symptoms, neurotoxin-induced PD models have been widely used. Studies have found that neurotoxin-induced PD model animals could exhibit depression-like behaviors, which sometimes manifested earlier than motor impairments. Therefore, there have been attempts to establish the PD-related depression model by neurotoxin induction. However, due to a lack of unified protocol, the reported results were diverse. For the purpose of further promoting the improvement and optimization of the animal models and the study of PD-related depression, we reviewed the establishment and evaluation strategies of the current animal models of PD-related depression based on both the existing literature and our own research experience, and discussed the possible mechanism and interventions, in order to provide a reference for future research in this area.
Collapse
Affiliation(s)
- Ya-Kui Mou
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Li-Na Guan
- Department of Neurosurgical Intensive Care Unit, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Jia-Hui Wang
- Department of Central Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yu Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yong-Qiang Ji
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Chao Ren
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Shi-Zhuang Wei
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
15
|
SK Channels Modulation Accelerates Equilibrium Recovery in Unilateral Vestibular Neurectomized Rats. Pharmaceuticals (Basel) 2021; 14:ph14121226. [PMID: 34959626 PMCID: PMC8707273 DOI: 10.3390/ph14121226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
We have previously reported in a feline model of acute peripheral vestibulopathy (APV) that the sudden, unilateral, and irreversible loss of vestibular inputs induces selective overexpression of small conductance calcium-activated potassium (SK) channels in the brain stem vestibular nuclei. Pharmacological blockade of these ion channels by the selective antagonist apamin significantly alleviated the evoked vestibular syndrome and accelerated vestibular compensation. In this follow-up study, we aimed at testing, using a behavioral approach, whether the antivertigo (AV) effect resulting from the antagonization of SK channels was species-dependent or whether it could be reproduced in a rodent APV model, whether other SK channel antagonists reproduced similar functional effects on the vestibular syndrome expression, and whether administration of SK agonist could also alter the vestibular syndrome. We also compared the AV effects of apamin and acetyl-DL-leucine, a reference AV compound used in human clinic. We demonstrate that the AV effect of apamin is also found in a rodent model of APV. Other SK antagonists also produce a trend of AV effect when administrated during the acute phase of the vertigo syndrome. Conversely, the vertigo syndrome is worsened upon administration of SK channel agonist. It is noteworthy that the AV effect of apamin is superior to that of acetyl-DL-leucine. Taken together, these data reinforce SK channels as a pharmacological target for modulating the manifestation of the vertigo syndrome during APV.
Collapse
|
16
|
Lhost J, More S, Watabe I, Louber D, Ouagazzal AM, Liberge M, Amalric M. Interplay Between Inhibitory Control and Behavioural Flexibility: Impact of Dorsomedial Striatal Dopamine Denervation in Mice. Neuroscience 2021; 477:25-39. [PMID: 34634423 DOI: 10.1016/j.neuroscience.2021.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
In Parkinson's disease, nigrostriatal dopamine (DA) degeneration is commonly associated with motor symptomatology. However, non-motor symptoms affecting cognitive function, such as behavioural flexibility and inhibitory control may also appear early in the disease. Here we addressed the role of DA innervation of the dorsomedial striatum (DMS) in mediating these functions in 6-hydroxydopamine (6-OHDA)-lesioned mice using instrumental conditioning in various tasks. Behavioural flexibility was studied in a simple reversal task (nose-poke discrimination) or in reversal of a two-step sequence of actions (central followed by lateral nose-poke). Our results show that mild DA lesions of the DMS induces behavioural flexibility deficits in the sequential reversal learning only. In the first sessions following reversal of contingency, lesioned mice enhanced perseverative sequence of actions to the initial rewarded side then produced premature responses directly to the correct side omitting the central response, thus disrupting the two-step sequence of actions. These deficits may be linked to increased impulsivity as 6-OHDA-lesioned mice were unable to inhibit a previously learned motor response in a cued response inhibition task assessing proactive inhibitory control. Our findings show that partial DA denervation restricted to DMS impairs behavioural flexibility and proactive response inhibition in mice. Such striatal DA lesion may thus represent a valuable animal model for exploring deficits in executive control documented in early stage of Parkinson's disease.
Collapse
Affiliation(s)
| | - Simon More
- Aix Marseille Univ, CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
17
|
Daniel NH, Aravind A, Thakur P. Are ion channels potential therapeutic targets for Parkinson's disease? Neurotoxicology 2021; 87:243-257. [PMID: 34699791 DOI: 10.1016/j.neuro.2021.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is primarily associated with the progressive neurodegeneration of the dopaminergic neurons in the substantia nigra region of the brain. The resulting motor symptoms are managed with the help of dopamine replacement therapies. However, these therapeutics do not prevent the neurodegeneration underlying the disease and therefore lose their effectiveness in managing disease symptoms over time. Thus, there is an urgent need to develop newer therapeutics for the benefit of patients. The release of dopamine and the firing activity of substantia nigra neurons is regulated by several ion channels that act in concert. Dysregulations of these channels cause the aberrant movement of various ions in the intracellular milieu. This eventually leads to disruption of intracellular signalling cascades, alterations in cellular homeostasis, and bioenergetic deficits. Therefore, ion channels play a central role in driving the high vulnerability of dopaminergic neurons to degenerate during PD. Targeting ion channels offers an attractive mechanistic strategy to combat the process of neurodegeneration. In this review, we highlight the evidence pointing to the role of various ion channels in driving the PD processes. In addition, we also discuss the various drugs or compounds that target the ion channels and have shown neuroprotective potential in the in-vitro and in-vivo models of PD. We also discuss the current clinical status of various drugs targeting the ion channels in the context of PD.
Collapse
Affiliation(s)
- Neha Hanna Daniel
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India
| | - Ananya Aravind
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India
| | - Poonam Thakur
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
18
|
Kim H, Hong JY, Lee J, Jeon WJ, Ha IH. Apamin Enhances Neurite Outgrowth and Regeneration after Laceration Injury in Cortical Neurons. Toxins (Basel) 2021; 13:toxins13090603. [PMID: 34564607 PMCID: PMC8472698 DOI: 10.3390/toxins13090603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022] Open
Abstract
Apamin is a minor component of bee venom and is a polypeptide with 18 amino acid residues. Although apamin is considered a neurotoxic compound that blocks the potassium channel, its neuroprotective effects on neurons have been recently reported. However, there is little information about the underlying mechanism and very little is known regarding the toxicological characterization of other compounds in bee venom. Here, cultured mature cortical neurons were treated with bee venom components, including apamin, phospholipase A2, and the main component, melittin. Melittin and phospholipase A2 from bee venom caused a neurotoxic effect in dose-dependent manner, but apamin did not induce neurotoxicity in mature cortical neurons in doses of up to 10 µg/mL. Next, 1 and 10 µg/mL of apamin were applied to cultivate mature cortical neurons. Apamin accelerated neurite outgrowth and axon regeneration after laceration injury. Furthermore, apamin induced the upregulation of brain-derived neurotrophic factor and neurotrophin nerve growth factor, as well as regeneration-associated gene expression in mature cortical neurons. Due to its neurotherapeutic effects, apamin may be a promising candidate for the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
| | | | | | | | - In-Hyuk Ha
- Correspondence: ; Tel.: +82-2-2222-2740; Fax: +82-2-527-1869
| |
Collapse
|
19
|
Neuropsychiatric and Cognitive Deficits in Parkinson's Disease and Their Modeling in Rodents. Biomedicines 2021; 9:biomedicines9060684. [PMID: 34204380 PMCID: PMC8234051 DOI: 10.3390/biomedicines9060684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
Parkinson’s disease (PD) is associated with a large burden of non-motor symptoms including olfactory and autonomic dysfunction, as well as neuropsychiatric (depression, anxiety, apathy) and cognitive disorders (executive dysfunctions, memory and learning impairments). Some of these non-motor symptoms may precede the onset of motor symptoms by several years, and they significantly worsen during the course of the disease. The lack of systematic improvement of these non-motor features by dopamine replacement therapy underlines their multifactorial origin, with an involvement of monoaminergic and cholinergic systems, as well as alpha-synuclein pathology in frontal and limbic cortical circuits. Here we describe mood and neuropsychiatric disorders in PD and review their occurrence in rodent models of PD. Altogether, toxin-based rodent models of PD indicate a significant but non-exclusive contribution of mesencephalic dopaminergic loss in anxiety, apathy, and depressive-like behaviors, as well as in learning and memory deficits. Gene-based models display significant deficits in learning and memory, as well as executive functions, highlighting the contribution of alpha-synuclein pathology to these non-motor deficits. Collectively, neuropsychiatric and cognitive deficits are recapitulated to some extent in rodent models, providing partial but nevertheless useful options to understand the pathophysiology of non-motor symptoms and develop therapeutic options for these debilitating symptoms of PD.
Collapse
|
20
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
21
|
Vecchia DD, Kanazawa LKS, Wendler E, Hocayen PDAS, Vital MABF, Takahashi RN, Da Cunha C, Miyoshi E, Andreatini R. Ketamine reversed short-term memory impairment and depressive-like behavior in animal model of Parkinson's disease. Brain Res Bull 2021; 168:63-73. [PMID: 33359641 DOI: 10.1016/j.brainresbull.2020.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
The most common features of Parkinson's disease (PD) are motor impairments, but many patients also present depression and memory impairment. Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has been shown to be effective in patients with treatment-resistant major depression. Thus, the present study evaluated the action of ketamine on memory impairment and depressive-like behavior in an animal model of PD. Male Wistar rats received a bilateral infusion of 6 μg/side 6-hydroxydopamine (6-OHDA) into the substantia nigra pars compacta (SNc). Short-term memory was evaluated by the social recognition test, and depressive-like behaviors were evaluated by the sucrose preference and forced swimming tests (FST). Drug treatments included vehicle (i.p., once a week); ketamine (5, 10 and 15 mg/kg, i.p., once a week); and imipramine (20 mg/kg, i.p., daily). The treatments were administered 21 days after the SNc lesion and lasted for 28 days. The SNc lesion impaired short-term social memory, and all ketamine doses reversed the memory impairment and anhedonia (reduction of sucrose preference) induced by 6-OHDA. In the FST, 6-OHDA increased immobility, and all doses of ketamine and imipramine reversed this effect. The anti-immobility effect of ketamine was associated with an increase in swimming but not in climbing, suggesting a serotonergic effect. Ketamine and imipramine did not reverse the 6-OHDA-induced reduction in tyrosine hydroxylase immunohistochemistry in the SNc. In conclusion, ketamine reversed depressive-like behaviors and short-term memory impairment in rats with SNc bilateral lesions, indicating a promising profile for its use in PD patients.
Collapse
Affiliation(s)
- Débora Dalla Vecchia
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil; Uniandrade, Centro Universitário Campos de Andrade, Santa Quiteria, 80310-310, Curitiba, PR, Brazil
| | - Luiz Kae Sales Kanazawa
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Etiéli Wendler
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil; Uniandrade, Centro Universitário Campos de Andrade, Santa Quiteria, 80310-310, Curitiba, PR, Brazil
| | - Palloma de Almeida Soares Hocayen
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Maria Aparecida Barbato Frazão Vital
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Reinaldo Naoto Takahashi
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Trindade, 88049-900, Florianópolis, SC, Brazil
| | - Claudio Da Cunha
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Edmar Miyoshi
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Avenida General Carlos Cavalcanti 4748, 84030-900, Ponta Grossa, PR, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
22
|
Boccella S, Guida F, Iannotta M, Iannotti FA, Infantino R, Ricciardi F, Cristiano C, Vitale RM, Amodeo P, Marabese I, Belardo C, de Novellis V, Paino S, Palazzo E, Calignano A, Di Marzo V, Maione S, Luongo L. 2-Pentadecyl-2-oxazoline ameliorates memory impairment and depression-like behaviour in neuropathic mice: possible role of adrenergic alpha2- and H3 histamine autoreceptors. Mol Brain 2021; 14:28. [PMID: 33557888 PMCID: PMC7871413 DOI: 10.1186/s13041-020-00724-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain (NP) remains an untreatable disease due to the complex pathophysiology that involves the whole pain neuraxis including the forebrain. Sensory dysfunctions such as allodynia and hyperalgesia are only part of the symptoms associated with neuropathic pain that extend to memory and affectivity deficits. The development of multi-target molecules might be a promising therapeutic strategy against the symptoms associated with NP. 2-pentadecyl-2-oxazoline (PEA-OXA) is a plant-derived agent, which has shown effectiveness against chronic pain and associated neuropsychiatric disorders. The molecular mechanisms by which PEA-OXA exerts its effects are, however, only partially known. In the current study, we show that PEA-OXA, besides being an alpha2 adrenergic receptor antagonist, also acts as a modulator at histamine H3 receptors, and report data on its effects on sensory, affective and cognitive symptoms associated with the spared nerve injury (SNI) model of neuropathic pain in mice. Treatment for 14 days with PEA-OXA after the onset of the symptoms associated with neuropathic pain resulted in the following effects: (i) allodynia was decreased; (ii) affective/cognitive impairment associated with SNI (depression, spatial, and working memories) was counteracted; (iii) long-term potentiation in vivo in the lateral entorhinal cortex-dentate gyrus (perforant pathway, LPP) was ameliorated, (iv) hippocampal glutamate, GABA, histamine, norepinephrine and dopamine level alterations after peripheral nerve injury were reversed, (v) expression level of the TH positive neurons in the Locus Coeruleus were normalized. Thus, a 16-day treatment with PEA-OXA alleviates the sensory, emotional, cognitive, electrophysiological and neurochemical alterations associated with SNI-induced neuropathic pain.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | - Pietro Amodeo
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Vito de Novellis
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Salvatore Paino
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
- IRCSS, Neuromed, Pozzilli, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy.
- IRCSS, Neuromed, Pozzilli, Italy.
| |
Collapse
|
23
|
Badawi HM, Abdelsalam RM, Abdel-Salam OM, Youness ER, Shaffie NM, Eldenshary EEDS. Bee venom attenuates neurodegeneration and motor impairment and modulates the response to L-dopa or rasagiline in a mice model of Parkinson's disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 23:1628-1638. [PMID: 33489038 PMCID: PMC7811814 DOI: 10.22038/ijbms.2020.46469.10731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objectives This study aimed to investigate the effect of bee venom, a form of alternative therapy, on rotenone-induced Parkinson's disease (PD) in mice. Moreover, the possible modulation by bee venom of the effect of L-dopa/carbidopa or rasagiline was examined. Materials and Methods Rotenone (1.5 mg/kg, subcutaneously; SC) was administered every other day for two weeks and at the same time mice received the vehicle (DMSO, SC), bee venom (0.065, 0.13, and 0.26 mg/kg; intradermal; ID), L-dopa/carbidopa (25 mg/kg, intraperitoneal; IP), L-dopa/carbidopa+bee venom (0.13 mg/kg, ID), rasagiline (1 mg/kg, IP) or rasagiline+bee venom (0.13 mg/kg, ID). Then, wire hanging and staircase tests were performed and mice were euthanized and brains' striata separated. Oxidative stress biomarkers namely, malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), paraoxonase-1 (PON-1), and total antioxidant capacity (TAC) were measured. Additionally, butyrylcholinesterase (BuChE), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), and dopamine (DA) were evaluated. Brain histopathological changes and caspase-3- expression were done. Results Bee venom significantly enhanced motor performance and inhibited rotenone-induced oxidative/nitrosative stress, observed as a reduction in both MDA and NO along with increasing GSH, PON-1, and TAC. Besides, bee venom decreased MCP-1, TNF-α, and caspase-3 expression together with an increase in BuChE activity and DA content. Conclusion Bee venom alone or in combination with L-dopa/carbidopa or rasagiline alleviated neuronal degeneration compared with L-dopa/carbidopa or rasagiline treatment only. Bee venom via its antioxidant and cytokine reducing potentials might be of value either alone or as adjunctive therapy in the management of PD.
Collapse
Affiliation(s)
- Hanaa Mm Badawi
- Holding Company for Biological Products, Vaccines and Drugs (VACSERA), Cairo, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omar Me Abdel-Salam
- Department of Toxicology and Narcotics, National Research Centre, Cairo, Egypt
| | - Eman R Youness
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | | | - Ezz-El Din S Eldenshary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Sun J, Liu Y, Baudry M, Bi X. SK2 channel regulation of neuronal excitability, synaptic transmission, and brain rhythmic activity in health and diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118834. [PMID: 32860835 PMCID: PMC7541745 DOI: 10.1016/j.bbamcr.2020.118834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 11/20/2022]
Abstract
Small conductance calcium-activated potassium channels (SKs) are solely activated by intracellular Ca2+ and their activation leads to potassium efflux, thereby repolarizing/hyperpolarizing membrane potential. Thus, these channels play a critical role in synaptic transmission, and consequently in information transmission along the neuronal circuits expressing them. SKs are widely but not homogeneously distributed in the central nervous system (CNS). Activation of SKs requires submicromolar cytoplasmic Ca2+ concentrations, which are reached following either Ca2+ release from intracellular Ca2+ stores or influx through Ca2+ permeable membrane channels. Both Ca2+ sensitivity and synaptic levels of SKs are regulated by protein kinases and phosphatases, and degradation pathways. SKs in turn control the activity of multiple Ca2+ channels. They are therefore critically involved in coordinating diverse Ca2+ signaling pathways and controlling Ca2+ signal amplitude and duration. This review highlights recent advances in our understanding of the regulation of SK2 channels and of their roles in normal brain functions, including synaptic plasticity, learning and memory, and rhythmic activities. It will also discuss how alterations in their expression and regulation might contribute to various brain disorders such as Angelman Syndrome, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States of America; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Yan Liu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States of America; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Michel Baudry
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States of America; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States of America; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America.
| |
Collapse
|
25
|
Xie C, Prasad AA. Probiotics Treatment Improves Hippocampal Dependent Cognition in a Rodent Model of Parkinson's Disease. Microorganisms 2020; 8:microorganisms8111661. [PMID: 33120961 PMCID: PMC7692862 DOI: 10.3390/microorganisms8111661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a neurological disorder with motor dysfunction and a number of psychiatric symptoms. Symptoms such as anxiety and cognitive deficits emerge prior to motor symptoms and persist over time. There are limited treatments targeting PD psychiatric symptoms. Emerging studies reveal that the gut microbe is altered in PD patients. Here we assessed the effect of a probiotic treatment in a rat model of PD. We used the neurotoxin (6-hydroxydopamine, 6-OHDA) in a preclinical PD model to examine the impact of a probiotic treatment (Lacticaseibacillus rhamnosus HA-114) on anxiety and memory. Rats underwent either sham surgery or received 6-OHDA bilaterally into the striatum. Three weeks post-surgery, rats were divided into three experimental groups: a sham group that received probiotics, a 6-OHDA group that received probiotics, and the third group of 6-OHDA received the placebo formula. All rats had access to either placebo or probiotics formula for 6 weeks. All groups were assessed for anxiety-like behaviour using the elevated plus maze. Cognition was assessed for both non-hippocampal and hippocampal dependent tasks using the novel object recognition and novel place recognition. We report that the 6-OHDA lesion induced anxiety-like behaviour and deficits in hippocampal dependent cognition. Interestingly, the probiotics treatment had no impact on anxiety-like behaviour but selectively improved hippocampal dependent cognition deficits. Together, the results presented here highlight the utility of animal models in examining the neuropsychiatric symptoms of PD and the potential of probiotics as adjunctive treatment for non-motor symptoms of PD.
Collapse
|
26
|
Bharatiya R, Bratzu J, Lobina C, Corda G, Cocco C, De Deurwaerdere P, Argiolas A, Melis MR, Sanna F. The pesticide fipronil injected into the substantia nigra of male rats decreases striatal dopamine content: A neurochemical, immunohistochemical and behavioral study. Behav Brain Res 2020; 384:112562. [DOI: 10.1016/j.bbr.2020.112562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022]
|
27
|
Mohammad S, Page SJ, Wang L, Ishii S, Li P, Sasaki T, Basha A, Salzberg A, Quezado Z, Imamura F, Nishi H, Isaka K, Corbin JG, Liu JS, Kawasawa YI, Torii M, Hashimoto-Torii K. Kcnn2 blockade reverses learning deficits in a mouse model of fetal alcohol spectrum disorders. Nat Neurosci 2020; 23:533-543. [PMID: 32203497 PMCID: PMC7131887 DOI: 10.1038/s41593-020-0592-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Learning disabilities are hallmarks of congenital conditions caused by prenatal exposure to harmful agents. Those include Fetal Alcohol Spectrum Disorders (FASD) with a wide range of cognitive deficiencies including impaired motor skill development. While these effects have been well characterized, the molecular effects that bring about these behavioral consequences remain to be determined. We have previously found that the acute molecular responses to alcohol in the embryonic brain are stochastic, varying among neural progenitor cells. However, the pathophysiological consequences stemming from these heterogeneous responses remain unknown. Here we show that acute responses to alcohol in progenitor cells alter gene expression in their descendant neurons. Among the altered genes, an increase of the calcium-activated potassium channel Kcnn2 in the motor cortex correlates with motor learning deficits in the mouse model of FASD. Pharmacologic blockade of Kcnn2 improves these learning deficits, suggesting Kcnn2 blockers as a novel intervention for learning disabilities in FASD.
Collapse
Affiliation(s)
- Shahid Mohammad
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Stephen J Page
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Li Wang
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Seiji Ishii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Peijun Li
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Wenzhou Medical University, Ouhai, Wenzhou, China
| | - Toru Sasaki
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Aiesha Basha
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Anna Salzberg
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Zenaide Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Anesthesiology, Pain and Perioperative Medicine, Children's National Hospital, Washington, DC, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Keiichi Isaka
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Judy S Liu
- Department of Neurology, Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
28
|
de Oliveira Amaral H, Monge-Fuentes V, Biolchi Mayer A, Alves Campos GA, Soares Lopes K, Camargo LC, Ferroni Schwartz M, Galante P, Mortari MR. Animal venoms: therapeutic tools for tackling Parkinson's disease. Drug Discov Today 2019; 24:2202-2211. [PMID: 31539640 DOI: 10.1016/j.drudis.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/02/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative pathology of the central nervous system, mainly involving the selective and progressive loss of dopaminergic neurons from the substantia nigra, resulting in motor and non-motor symptoms. PD remains an incurable ailment; thus, treatments are limited to symptom alleviation. With long-term use, conventional treatments can become inefficient, often triggering possible side effects. Considering these drawbacks, drug discovery constantly turns to nature as a source of efficient therapeutics. Thus, this review explores animal venoms as a rich source of bioactive compounds with potent neuropharmacological profiles for the development of effective adjuvant treatments with fewer side effects, ultimately aiming for the neuroprotection of dopaminergic neurons and the symptomatic relief of PD.
Collapse
Affiliation(s)
- Henrique de Oliveira Amaral
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Victoria Monge-Fuentes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.
| | - Andréia Biolchi Mayer
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Gabriel Avohay Alves Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Kamila Soares Lopes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Luana C Camargo
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Matheus Ferroni Schwartz
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Priscilla Galante
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
29
|
Crowley EK, Nolan YM, Sullivan AM. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol 2018; 172:2-22. [PMID: 30481560 DOI: 10.1016/j.pneurobio.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/25/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterised by degeneration of dopaminergic neurons of the nigrostriatal pathway, which leads to the cardinal motor symptoms of the disease - tremor, rigidity and postural instability. A number of non-motor symptoms are also associated with PD, including cognitive impairment, mood disturbances and dysfunction of gastrointestinal and autonomic systems. Current therapies provide symptomatic relief but do not halt the disease process, so there is an urgent need for preventative strategies. Lifestyle interventions such as aerobic exercise have shown potential to lower the risk of developing PD and to alleviate both motor and non-motor symptoms. However, there is a lack of large-scale randomised clinical trials that have employed exercise in PD patients. This review will focus on the evidence from studies on rodent models of PD, for employing exercise as an intervention for both motor and non-motor symptoms.
Collapse
Affiliation(s)
- E K Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - A M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
30
|
Hypobaric Hypoxia-Induced Learning and Memory Impairment: Elucidating the Role of Small Conductance Ca2+-Activated K+ Channels. Neuroscience 2018; 388:418-429. [DOI: 10.1016/j.neuroscience.2018.07.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 11/19/2022]
|
31
|
Kshatri AS, Gonzalez-Hernandez A, Giraldez T. Physiological Roles and Therapeutic Potential of Ca 2+ Activated Potassium Channels in the Nervous System. Front Mol Neurosci 2018; 11:258. [PMID: 30104956 PMCID: PMC6077210 DOI: 10.3389/fnmol.2018.00258] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022] Open
Abstract
Within the potassium ion channel family, calcium activated potassium (KCa) channels are unique in their ability to couple intracellular Ca2+ signals to membrane potential variations. KCa channels are diversely distributed throughout the central nervous system and play fundamental roles ranging from regulating neuronal excitability to controlling neurotransmitter release. The physiological versatility of KCa channels is enhanced by alternative splicing and co-assembly with auxiliary subunits, leading to fundamental differences in distribution, subunit composition and pharmacological profiles. Thus, understanding specific KCa channels’ mechanisms in neuronal function is challenging. Based on their single channel conductance, KCa channels are divided into three subtypes: small (SK, 4–14 pS), intermediate (IK, 32–39 pS) and big potassium (BK, 200–300 pS) channels. This review describes the biophysical characteristics of these KCa channels, as well as their physiological roles and pathological implications. In addition, we also discuss the current pharmacological strategies and challenges to target KCa channels for the treatment of various neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Aravind S Kshatri
- Department of Basic Medical Sciences, Medical School, Universidad de La Laguna, Tenerife, Spain.,Instituto de Tecnologias Biomedicas, Universidad de La Laguna, Tenerife, Spain
| | - Alberto Gonzalez-Hernandez
- Department of Basic Medical Sciences, Medical School, Universidad de La Laguna, Tenerife, Spain.,Instituto de Tecnologias Biomedicas, Universidad de La Laguna, Tenerife, Spain
| | - Teresa Giraldez
- Department of Basic Medical Sciences, Medical School, Universidad de La Laguna, Tenerife, Spain.,Instituto de Tecnologias Biomedicas, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
32
|
Chagraoui A, Boukhzar L, Thibaut F, Anouar Y, Maltête D. The pathophysiological mechanisms of motivational deficits in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:138-152. [PMID: 29097256 DOI: 10.1016/j.pnpbp.2017.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a progressive degenerative disorder that leads to disabling motor symptoms and a wide variety of neuropsychiatric symptoms. Apathy is the most common psychiatric disorder in the early stages of untreated PD and can be defined as a hypodopaminergic syndrome, which also includes anxiety and depression. Apathy is also considered the core feature of the parkinsonian triad (apathy, anxiety and depression) of behavioural non-motor signs, including a motivational deficit. Moreover, apathy is recognised as a distinct chronic neuropsychiatric behavioural disorder based on specific diagnostic criteria. Given the prevalence of apathy in approximately 40% of the general Parkinson's disease population, this appears to be a contributing factor to dementia in PD; also, apathy symptoms are factors that potentially contribute to morbidity, leading to a major impairment of health-related quality of life, thus stressing the importance of understanding the pathophysiology of this disease. Several studies have clearly established a prominent role for DA-mediated signals in PD apathy. However, synergistic interaction between dopaminergic impairment resulting from the neurodegenerative process and deep brain stimulation of the subthalamic nucleus may cause or exacerbate apathy. Furthermore, serotoninergic mechanism signalling is also likely to be of importance in this pathophysiology.
Collapse
Affiliation(s)
- A Chagraoui
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France.; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - L Boukhzar
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| | - Y Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France
| | - D Maltête
- Department of Neurology, Rouen University Hospital, Rouen, France
| |
Collapse
|
33
|
More SV, Choi DK. Emerging preclinical pharmacological targets for Parkinson's disease. Oncotarget 2018; 7:29835-63. [PMID: 26988916 PMCID: PMC5045437 DOI: 10.18632/oncotarget.8104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological condition caused by the degeneration of dopaminergic neurons in the basal ganglia. It is the most prevalent form of Parkinsonism, categorized by cardinal features such as bradykinesia, rigidity, tremors, and postural instability. Due to the multicentric pathology of PD involving inflammation, oxidative stress, excitotoxicity, apoptosis, and protein aggregation, it has become difficult to pin-point a single therapeutic target and evaluate its potential application. Currently available drugs for treating PD provide only symptomatic relief and do not decrease or avert disease progression resulting in poor patient satisfaction and compliance. Significant amount of understanding concerning the pathophysiology of PD has offered a range of potential targets for PD. Several emerging targets including AAV-hAADC gene therapy, phosphodiesterase-4, potassium channels, myeloperoxidase, acetylcholinesterase, MAO-B, dopamine, A2A, mGlu5, and 5-HT-1A/1B receptors are in different stages of clinical development. Additionally, alternative interventions such as deep brain stimulation, thalamotomy, transcranial magnetic stimulation, and gamma knife surgery, are also being developed for patients with advanced PD. As much as these therapeutic targets hold potential to delay the onset and reverse the disease, more targets and alternative interventions need to be examined in different stages of PD. In this review, we discuss various emerging preclinical pharmacological targets that may serve as a new promising neuroprotective strategy that could actually help alleviate PD and its symptoms.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| |
Collapse
|
34
|
The Kv7/KCNQ channel blocker XE991 protects nigral dopaminergic neurons in the 6-hydroxydopamine rat model of Parkinson's disease. Brain Res Bull 2017; 137:132-139. [PMID: 29174294 DOI: 10.1016/j.brainresbull.2017.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/11/2017] [Accepted: 11/18/2017] [Indexed: 12/21/2022]
Abstract
The excitability of dopaminergic neurons in the substantia nigra pars compacta (SNc) that supply the striatum with dopamine (DA) determines the function of the nigrostriatal system for motor coordination. We previously showed that 4-pyridinylmethyl-9(10H)-anthracenone (XE991), a specific blocker of Kv7/KCNQ channels, enhanced the excitability of nigral DA neurons and resulted in attenuation of haloperidol-induced catalepsy in a Parkinson's disease (PD) rat model. However, whether XE991 exhibits neuroprotective effects towards DA neuron degeneration remains unknown. The aim of this study was to investigate the effects of Kv7/KCNQ channel blocker, XE991, on 6-hydroxydopamine (6-OHDA)-induced nigral DA neuron degeneration and motor dysfunction. Using immunofluorescence staining and western blotting, we showed that intracerebroventricular administration of XE991 prevented the 6-OHDA-induced decrease in tyrosine hydroxylase (TH)-positive neurons and TH protein expression in the SNc. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) also revealed that XE991 partly restored the levels of DA and its metabolites in the striatum. Moreover, XE991 decreased apomorphine (APO)-induced contralateral rotations, enhanced balance and coordination, and attenuated muscle rigidity in 6-OHDA-treated rats. Importantly, all neuroprotective effects by XE991 were abolished by co-application of Kv7/KCNQ channel opener retigabine and XE991. Thus, Kv7/KCNQ channel inhibition by XE991 can exert neuroprotective effects against 6-OHDA-induced degeneration of the nigrostriatal DA system and motor dysfunction.
Collapse
|
35
|
Chen X, Xue B, Wang J, Liu H, Shi L, Xie J. Potassium Channels: A Potential Therapeutic Target for Parkinson's Disease. Neurosci Bull 2017; 34:341-348. [PMID: 28884460 DOI: 10.1007/s12264-017-0177-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of the second major neurodegenerative disorder, Parkinson's disease (PD), is closely associated with the dysfunction of potassium (K+) channels. Therefore, PD is also considered to be an ion channel disease or neuronal channelopathy. Mounting evidence has shown that K+ channels play crucial roles in the regulations of neurotransmitter release, neuronal excitability, and cell volume. Inhibition of K+ channels enhances the spontaneous firing frequency of nigral dopamine (DA) neurons, induces a transition from tonic firing to burst discharge, and promotes the release of DA in the striatum. Recently, three K+ channels have been identified to protect DA neurons and to improve the motor and non-motor symptoms in PD animal models: small conductance (SK) channels, A-type K+ channels, and KV7/KCNQ channels. In this review, we summarize the physiological and pharmacological effects of the three K+ channels. We also describe in detail the laboratory investigations regarding K+ channels as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Bao Xue
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Jun Wang
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Haixia Liu
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Limin Shi
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
36
|
Sargin D, Oliver DK, Lambe EK. Chronic social isolation reduces 5-HT neuronal activity via upregulated SK3 calcium-activated potassium channels. eLife 2016; 5. [PMID: 27874831 PMCID: PMC5119885 DOI: 10.7554/elife.21416] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/02/2016] [Indexed: 01/24/2023] Open
Abstract
The activity of serotonin (5-HT) neurons is critical for mood regulation. In a mouse model of chronic social isolation, a known risk factor for depressive illness, we show that 5-HT neurons in the dorsal raphe nucleus are less responsive to stimulation. Probing the responsible cellular mechanisms pinpoints a disturbance in the expression and function of small-conductance Ca2+-activated K+ (SK) channels and reveals an important role for both SK2 and SK3 channels in normal regulation of 5-HT neuronal excitability. Chronic social isolation renders 5-HT neurons insensitive to SK2 blockade, however inhibition of the upregulated SK3 channels restores normal excitability. In vivo, we demonstrate that inhibiting SK channels normalizes chronic social isolation-induced anxiety/depressive-like behaviors. Our experiments reveal a causal link for the first time between SK channel dysregulation and 5-HT neuron activity in a lifelong stress paradigm, suggesting these channels as targets for the development of novel therapies for mood disorders.
Collapse
Affiliation(s)
- Derya Sargin
- Department of Physiology, University of Toronto, Toronto, Canada
| | - David K Oliver
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Sierra M, Carnicella S, Strafella AP, Bichon A, Lhommée E, Castrioto A, Chabardes S, Thobois S, Krack P. Apathy and Impulse Control Disorders: Yin & Yang of Dopamine Dependent Behaviors. JOURNAL OF PARKINSONS DISEASE 2016; 5:625-36. [PMID: 25870025 DOI: 10.3233/jpd-150535] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neuropsychiatric symptoms are common non-motor symptoms in Parkinson's disease (PD). Apathy and impulse control disorders (ICD) are two opposite motivational expressions of a continuous behavioural spectrum involving hypo- and hyperdopaminergia. Both syndromes share pathological (decreased vs increased) dopamine receptor stimulation states. Apathy belongs to the spectrum of hypodopaminergic symptoms together with anhedonia, anxiety and depression. Apathy is a key symptom of PD which worsens with disease progression. Animal models, imaging and pharmacological studies concur in pointing out dopaminergic denervation in the aetiology of parkinsonian apathy with a cardinal role of decreased tonic D2/D3 receptor stimulation. ICDs are part of the hyperdopaminergic behavioural spectrum, which also includes punding, and dopamine dysregulation syndrome (DDS), which are all related to non-physiological dopaminergic stimulation induced by antiparkinsonian drugs. According to clinical data tonic D2/D3 receptor stimulation can be sufficient to induce ICDs. Clinical observations in drug addiction and PD as well as data from studies in dopamine depleted rodents provide hints allowing to argue that both pulsatile D1 and D2 receptor stimulation and the severity of dopaminergic denervation are risk factors to develop punding behavior and DDS. Imaging studies have shown that the brain structures involved in drug addiction are also involved in hyperdopaminergic behaviours with increase of bottom-up appetitive drive and decrease in prefrontal top down behavioural control.
Collapse
Affiliation(s)
- María Sierra
- Service of Neurology, University Hospital "Marqués de Valdecilla (IFIMAV)", University of Cantabria and "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | | | - Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit - E.J. Safra Parkinson Disease Program, Toronto Western Hospital and Research Institute, UHN & Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Ontario, Canada
| | - Amélie Bichon
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Eugénie Lhommée
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Anna Castrioto
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Stephan Chabardes
- Department of Neurosurgery CHU de Grenoble, Joseph Fourier University, Grenoble, France and INSERM, Unité 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Stéphane Thobois
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5229, Centre de Neuroscience Cognitive, Bron, France; Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France
| | - Paul Krack
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| |
Collapse
|
38
|
Hartmann A, Müllner J, Meier N, Hesekamp H, van Meerbeeck P, Habert MO, Kas A, Tanguy ML, Mazmanian M, Oya H, Abuaf N, Gaouar H, Salhi S, Charbonnier-Beaupel F, Fievet MH, Galanaud D, Arguillere S, Roze E, Degos B, Grabli D, Lacomblez L, Hubsch C, Vidailhet M, Bonnet AM, Corvol JC, Schüpbach M. Bee Venom for the Treatment of Parkinson Disease - A Randomized Controlled Clinical Trial. PLoS One 2016; 11:e0158235. [PMID: 27403743 PMCID: PMC4942057 DOI: 10.1371/journal.pone.0158235] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
In the present study, we examined the potential symptomatic and/or disease-modifying effects of monthly bee venom injections compared to placebo in moderatly affected Parkinson disease patients. We conducted a prospective, randomized double-blind study in 40 Parkinson disease patients at Hoehn & Yahr stages 1.5 to 3 who were either assigned to monthly bee venom injections or equivalent volumes of saline (treatment/placebo group: n = 20/20). The primary objective of this study was to assess a potential symptomatic effect of s.c. bee venom injections (100 μg) compared to placebo 11 months after initiation of therapy on United Parkinson’s Disease Rating Scale (UPDRS) III scores in the « off » condition pre-and post-injection at a 60 minute interval. Secondary objectives included the evolution of UPDRS III scores over the study period and [123I]-FP-CIT scans to evaluate disease progression. Finally, safety was assessed by monitoring specific IgE against bee venom and skin tests when necessary. After an 11 month period of monthly administration, bee venom did not significantly decrease UPDRS III scores in the « off » condition. Also, UPDRS III scores over the study course, and nuclear imaging, did not differ significantly between treatment groups. Four patients were excluded during the trial due to positive skin tests but no systemic allergic reaction was recorded. After an initial increase, specific IgE against bee venom decreased in all patients completing the trial. This study did not evidence any clear symptomatic or disease-modifying effects of monthly bee venom injections over an 11 month period compared to placebo using a standard bee venom allergy desensitization protocol in Parkinson disease patients. However, bee venom administration appeared safe in non-allergic subjects. Thus, we suggest that higher administration frequency and possibly higher individual doses of bee venom may reveal its potency in treating Parkinson disease.
Collapse
Affiliation(s)
- Andreas Hartmann
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
- * E-mail:
| | - Julia Müllner
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Niklaus Meier
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Helke Hesekamp
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Priscilla van Meerbeeck
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie-Odile Habert
- Assistance Publique Hôpitaux de Paris (APHP), Service de Médecine Nucléaire, Hôpital Pitié-Salpêtrière, Paris, France
| | - Aurélie Kas
- Assistance Publique Hôpitaux de Paris (APHP), Service de Médecine Nucléaire, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Tanguy
- Assistance Publique Hôpitaux de Paris (APHP), Unité de Recherche Clinique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Merry Mazmanian
- Assistance Publique Hôpitaux de Paris (APHP), Unité de Recherche Clinique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hervé Oya
- Assistance Publique Hôpitaux de Paris (APHP), Unité de Recherche Clinique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nissen Abuaf
- Assistance Publique Hôpitaux de Paris (APHP), Service de Dermatologie et d’Allérgie, Hôpital Tenon, Paris, France
| | - Hafida Gaouar
- Assistance Publique Hôpitaux de Paris (APHP), Service de Dermatologie et d’Allérgie, Hôpital Tenon, Paris, France
| | - Sabrina Salhi
- Assistance Publique Hôpitaux de Paris (APHP), Agence Générale des Equipements et Produits de Santé, Paris, France
| | - Fanny Charbonnier-Beaupel
- Assistance Publique Hôpitaux de Paris (APHP), Pharmacie, Secteur Essais Cliniques et Dispensation des Médicaments aux Patients Externes, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie-Hélène Fievet
- Assistance Publique Hôpitaux de Paris (APHP), Pharmacie, Secteur Essais Cliniques et Dispensation des Médicaments aux Patients Externes, Hôpital Pitié-Salpêtrière, Paris, France
| | - Damien Galanaud
- Assistance Publique Hôpitaux de Paris (APHP), Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sophie Arguillere
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Emmanuel Roze
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bertrand Degos
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - David Grabli
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Lucette Lacomblez
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cécile Hubsch
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie Vidailhet
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne-Marie Bonnet
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Christophe Corvol
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Michael Schüpbach
- Assistance Publique Hôpitaux de Paris (APHP), UPMC, INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
39
|
Magnard R, Vachez Y, Carcenac C, Krack P, David O, Savasta M, Boulet S, Carnicella S. What can rodent models tell us about apathy and associated neuropsychiatric symptoms in Parkinson's disease? Transl Psychiatry 2016; 6:e753. [PMID: 26954980 PMCID: PMC4872443 DOI: 10.1038/tp.2016.17] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/19/2022] Open
Abstract
In addition to classical motor symptoms, Parkinson's disease (PD) patients display incapacitating neuropsychiatric manifestations, such as apathy, anhedonia, depression and anxiety. These hitherto generally neglected non-motor symptoms, have gained increasing interest in medical and scientific communities over the last decade because of the extent of their negative impact on PD patients' quality of life. Although recent clinical and functional imaging studies have provided useful information, the pathophysiology of apathy and associated affective impairments remains elusive. Our aim in this review is to summarize and discuss recent advances in the development of rodent models of PD-related neuropsychiatric symptoms using neurotoxin lesion-based approaches. The data collected suggest that bilateral and partial lesions of the nigrostriatal system aimed at inducing reliable neuropsychiatric-like deficits while avoiding severe motor impairments that may interfere with behavioral evaluation, is a more selective and efficient strategy than medial forebrain bundle lesions. Moreover, of all the different classes of pharmacological agents, D2/D3 receptor agonists such as pramipexole appear to be the most efficient treatment for the wide range of behavioral deficits induced by dopaminergic lesions. Lesion-based rodent models, therefore, appear to be relevant tools for studying the pathophysiology of the non-motor symptoms of PD. Data accumulated so far confirm the causative role of dopaminergic depletion, especially in the nigrostriatal system, in the development of behavioral impairments related to apathy, depression and anxiety. They also put forward D2/D3 receptors as potential targets for the treatment of such neuropsychiatric symptoms in PD.
Collapse
Affiliation(s)
- R Magnard
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - Y Vachez
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - C Carcenac
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - P Krack
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France,Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Grenoble, France
| | - O David
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - M Savasta
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - S Boulet
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - S Carnicella
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France,Inserm U1216, Grenoble Institute of Neuroscience, Site Santé La Tronche - BP 170, 38042 Grenoble, France. E-mail:
| |
Collapse
|
40
|
Tang YR, Yang WW, Wang Y, Gong YY, Jiang LQ, Lin L. Estrogen regulates the expression of small-conductance Ca-activated K+ channels in colonic smooth muscle cells. Digestion 2015; 91:187-96. [PMID: 25790748 DOI: 10.1159/000371544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/12/2014] [Indexed: 02/04/2023]
Abstract
AIM This study aimed to determine the effects of small-conductance Ca(2+)-activated K(+) (SK) channels in colonic relaxation and the regulation of SK channels by estrogen. METHODS The contractile activity of muscle strips from male rats was estimated, and drugs including vehicle (DMSO), 17β-estradiol (E2), or apamin (SK blocker) were added, respectively. In a further experiment, muscle strips were preincubated with apamin before exposure to E2. The levels of the SK2 and SK3 protein expression in the colonic smooth muscle cells (SMCs) were detected. SMCs were treated with ICI 182780 (estrogen receptor [ER] antagonist) plus E2, BSA-E2, PPT (ERα agonist), or DPN (ERβ agonist). SK3 mRNA and protein expression levels were detected. RESULTS The muscle strips responded to E2 with a decrease and to apamin with a transient increase in tension. Preincubation with apamin partially prevented E2-induced relaxation. Two SK channel subtypes, SK2 and SK3, were coexpressed with α-actin in colonic SMCs. The quantitative ratio of the SK transcriptional expression in colonic SMCs was SK3 > SK2. The SK3 expression was upregulated by E2, and was downregulated by ICI 182780, but was not influenced by BSA-E2. Furthermore, the effect of PPT on the expression of SK3 was almost the same as that of E2, while DPN did not influence the protein expression of SK3. CONCLUSION These findings indicate that SK3 is involved in the E2-induced relaxing effect on rat colonic smooth muscle. Furthermore, E2 upregulates the expression of SK3 in rat SMCs, and that this effect is mediated via the ERα receptor.
Collapse
Affiliation(s)
- Yu-Rong Tang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
41
|
Maurice N, Deltheil T, Melon C, Degos B, Mourre C, Amalric M, Kerkerian-Le Goff L. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease. PLoS One 2015; 10:e0142838. [PMID: 26571268 PMCID: PMC4646345 DOI: 10.1371/journal.pone.0142838] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022] Open
Abstract
Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson’s disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease.
Collapse
Affiliation(s)
- Nicolas Maurice
- Aix Marseille Université, CNRS, IBDM UMR 7288, Marseille, France
- * E-mail:
| | | | - Christophe Melon
- Aix Marseille Université, CNRS, IBDM UMR 7288, Marseille, France
| | - Bertrand Degos
- INSERM, CNRS, Collège de France, CIRB UMR 7241 U-1050, Paris, France
- APHP, Département des Maladies du Système Nerveux, Centre Expert Inter-Régional Ile de France de la Maladie de Parkinson, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
42
|
Amalric M. Targeting metabotropic glutamate receptors (mGluRs) in Parkinson's disease. Curr Opin Pharmacol 2014; 20:29-34. [PMID: 25462289 DOI: 10.1016/j.coph.2014.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 12/28/2022]
Abstract
The interplay between dopamine and glutamate in the basal ganglia regulate critical aspects of motor and cognitive behavior. Metabotropic glutamate (mGlu) receptors are key modulators of glutamatergic dysfunction in Parkinson's disease (PD). Preclinical evidence demonstrate that group I mGlu receptor antagonism and groups II and III mGlu receptor activation improve motor symptomatology of PD and decrease l-DOPA-induced dyskinesia by regulating excitatory and inhibitory transmission in the basal ganglia. Emotional and cognitive deficits are also observed in PD. Treatment of these symptoms is challenging and underscore the need for novel effective and well tolerated pharmacological treatments. This article will thus review the currently available knowledge regarding the therapeutic potential of targeting mGlu receptors to restore motor and nonmotor symptoms of PD.
Collapse
Affiliation(s)
- Marianne Amalric
- Aix-Marseille University, CNRS UMR 7291, Laboratoire de Neurosciences Cognitives (LNC), FR3C 3512, 13331 Marseille, France.
| |
Collapse
|