1
|
Malos IG, Ghizdareanu AI, Vidu L, Matei CB, Pasarin D. The Role of Whey in Functional Microorganism Growth and Metabolite Generation: A Biotechnological Perspective. Foods 2025; 14:1488. [PMID: 40361571 PMCID: PMC12071764 DOI: 10.3390/foods14091488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The valorization of cheese whey, a rich by-product of the dairy industry that is rich in lactose (approx. 70%), proteins (14%), and minerals (9%), represents a promising approach for microbial fermentation. With global whey production exceeding 200 million tons annually, the high biochemical oxygen demand underlines the important need for sustainable processing alternatives. This review explores the biotechnological potential of whey as a fermentation medium by examining its chemical composition, microbial interactions, and ability to support the synthesis of valuable metabolites. Functional microorganisms such as lactic acid bacteria (Lactobacillus helveticus, L. acidophilus), yeasts (Kluyveromyces marxianus), actinobacteria, and filamentous fungi (Aspergillus oryzae) have demonstrated the ability to efficiently convert whey into a wide range of bioactive compounds, including organic acids, exopolysaccharides (EPSs), bacteriocins, enzymes, and peptides. To enhance microbial growth and metabolite production, whey fermentation can be carried out using various techniques, including batch, fed-batch, continuous and immobilized cell fermentation, and membrane bioreactors. These bioprocessing methods improve substrate utilization and metabolite yields, contributing to the efficient utilization of whey. These bioactive compounds have diverse applications in food, pharmaceuticals, agriculture, and biofuels and strengthen the role of whey as a sustainable biotechnological resource. Patents and clinical studies confirm the diverse bioactivities of whey-derived metabolites and their industrial potential. Whey peptides provide antihypertensive, antioxidant, immunomodulatory, and antimicrobial benefits, while bacteriocins and EPSs act as natural preservatives in foods and pharmaceuticals. Also, organic acids such as lactic acid and propionic acid act as biopreservatives that improve food safety and provide health-promoting formulations. These results emphasize whey's significant industrial relevance as a sustainable, cost-efficient substrate for the production of high-quality bioactive compounds in the food, pharmaceutical, agricultural, and bioenergy sectors.
Collapse
Affiliation(s)
- Iuliu Gabriel Malos
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., District 1, 011464 Bucharest, Romania; (I.G.M.)
| | - Andra-Ionela Ghizdareanu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Livia Vidu
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., District 1, 011464 Bucharest, Romania; (I.G.M.)
| | - Catalin Bogdan Matei
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Diana Pasarin
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
2
|
Hundam S, Al-Zghoul MB, Ababneh M, Alanagreh L, Dahadha R, Mayyas M, Alghizzawi D, Mustafa MA, Gerrard DE, Dalloul RA. Effects of Embryonic Thermal Manipulation on Body Performance and Cecum Microbiome in Broiler Chickens Following a Post-Hatch Lipopolysaccharide Challenge. Animals (Basel) 2025; 15:1149. [PMID: 40281983 PMCID: PMC12024374 DOI: 10.3390/ani15081149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/26/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Thermal manipulation (TM) during embryogenesis has emerged as a promising strategy to enhance post-hatch performance and improve resilience to environmental and bacterial stress, which offers a potential alternative to reduce the reliance on antibiotic growth promoters (AGPs) in broiler production. This study investigated TM's ability to modulate broilers' cecal microbiota and enhance resilience to lipopolysaccharide (LPS)-induced stress. Eggs in the control group (CON) were incubated at 37.8 °C and 56% relative humidity (RH), while TM eggs were exposed to 39 °C and 65% RH for 18 h daily from embryonic days 10-18. Post-hatch, the LPS subgroups (LPS-CON, LPS-TM) received intraperitoneal LPS injections, and body weight (BW) and temperature (BT) were monitored. Cecal samples were collected for microbiome sequencing. Alpha diversity showed no differences (p > 0.05), but beta diversity revealed differences between groups (PERMANOVA, p < 0.05). Firmicutes and Bacteroidota dominated the microbiota at the phylum level. Oscillospirales were enriched in the TM groups (p < 0.001) and Lactobacillales were increased in the LPS-CON group (p < 0.019). LPS reduced BT in the CON group (p < 0.01), but LPS-TM birds bypassed hypothermia. LPS significantly reduced BW (p < 0.001), while TM had no significant effect. These findings demonstrate TM's enduring influence on gut microbiota and stress resilience, highlighting its potential to reduce antibiotic reliance and mitigate antimicrobial resistance (AMR) in poultry production.
Collapse
Affiliation(s)
- Seif Hundam
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.H.); (M.A.); (R.D.); (D.A.)
| | - Mohammad Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.H.); (M.A.); (R.D.); (D.A.)
| | - Mustafa Ababneh
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.H.); (M.A.); (R.D.); (D.A.)
| | - Lo’ai Alanagreh
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan; (L.A.); (M.A.M.)
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13133, Jordan
| | - Rahmeh Dahadha
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.H.); (M.A.); (R.D.); (D.A.)
| | - Mohammad Mayyas
- Department of Animal Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Daoud Alghizzawi
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.H.); (M.A.); (R.D.); (D.A.)
| | - Minas A. Mustafa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan; (L.A.); (M.A.M.)
| | - David E. Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Rami A. Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
3
|
Nazir A, Khan EU, Muneeb M, Qaisrani SN, Naveed S, Ahmad S, Yameen RMK, Al Sulaiman AR, Alhotan RA, Abudabos AE. Influence of Dietary Supplementation with Yeast Culture and Microencapsulated Butyric Acid on Growth Performance, Carcass Traits, Gut Health, and Immune Status in Broilers. Vet Sci 2025; 12:359. [PMID: 40284861 PMCID: PMC12031145 DOI: 10.3390/vetsci12040359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
The study aimed to examine the effects of dietary supplementation with microencapsulated butyric acid (EBA) and yeast culture (YC) in broiler diets. A total of 450 Ross-308 broiler chicks were selected and randomly allocated to five dietary treatments with six replicates (15 birds per replicate) in a complete block design. The experimental diets included the following treatments: (1) Negative control (NC) with basal diet without any additives. (2) Positive control (PC) with basal diet + 0.2 g/kg enramycin. (3) EBA, basal diet + 0.3 g/kg EBA. (4) YC, basal diet + 1 g/kg YC. (5) EBA+YC, basal diet + 0.3 g/kg EBA and 1 g/kg YC. The results indicated a non-significant effect on feed intake (FI) during the experiment periods. However, the EBA+YC treatment exhibited significantly increased body weight gain (BWG), better feed conversion ratio (FCR), and enhanced carcass traits (p < 0.05) compared to other treatments. A significant effect was observed for the immune organ weights and ND titters. Villus height (VH) and the ratio of villus height-to-crypt depth (VH: CD) were noted for EBA+YC across all other treatments. Ileal microbial analysis revealed a significantly lower count of E. coli and Salmonella in the ileal digesta of broiler chickens in the EBA+YC treatment compared to the NC group (p < 0.05). In conclusion, dietary supplementation with any supplement positively influences the broiler's performance, carcass characteristics, gut health, and immune status over the NC group. More pronounced improvements were obtained from the EBA+YC group, indicating that EBA and YC had a synergistic effect on broilers.
Collapse
Affiliation(s)
- Azhar Nazir
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Muhammad Muneeb
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Shafqat Nawaz Qaisrani
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Saima Naveed
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (S.A.); (R.M.K.Y.)
| | - Rao Muhammad Kashif Yameen
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (S.A.); (R.M.K.Y.)
| | - Ali R. Al Sulaiman
- Environmental Protection Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Ala E. Abudabos
- Department of Agriculture, School of Agriculture and Applied Sciences, Alcorn State University, 1000 ASU Drive, Lorman, MS 39096-7500, USA
| |
Collapse
|
4
|
Yin H, Du Z, Jiang X, Zhou Y, Jin Z, Cong F. Butyric acid from ligilactobacillus animalis 2020MB acts on membrane BamA to control avian pathogenic escherichia coli. Poult Sci 2025; 104:105119. [PMID: 40187014 PMCID: PMC12002762 DOI: 10.1016/j.psj.2025.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Avian pathogenic Escherichia coli can cause high morbidity, mortality, and serious economic losses to the global poultry industry. Lactic acid bacteria inhibit the growth of many pathogens, including E. coli, but the underlying mechanism remains unclear. In this study, we investigated the effect of the cell-free supernatant of Ligilactobacillus animalis 2020MB isolated from the intestinal tract of chickens on specific pathogen-free chickens infected with E. coli. The cell-free supernatant-induced inhibition of E. coli infection was determined through clinical symptom observation, pathological analysis, and qPCR. Protease and heat treatments did not affect the antibacterial activity of cell-free supernatant, suggesting that an organic acid was the antibacterial substance. Liquid chromatography-mass spectrometry and non-targeted metabolomics identified antibacterial activity for eight L. animalis 2020MB cell-free supernatant metabolites, including butyric, valeric, and succinic acids. The inhibitory activity of butyric acid was quantified by determining the minimal inhibitory concentration. Scanning electron microscopy, laser confocal microscopy, and proteomic analysis revealed that butyric acid altered the morphology and impaired the cell envelope integrity of target bacteria, leading to leakage of intracellular contents. BamA was identified as the membrane protein target for butyric acid. The findings reveal the molecular mechanism of action of L. animalis 2020MB in the chicken intestine against E. coli.
Collapse
Affiliation(s)
- Haichang Yin
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China; Guangdong Laboratory Animals Monitoring Institute, 2.Guangdong, Guangzhou 510663, China
| | - Zunhe Du
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Xinjie Jiang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Yao Zhou
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Zhenhua Jin
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang 161006, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, 2.Guangdong, Guangzhou 510663, China.
| |
Collapse
|
5
|
Gao H, Wang Y, Zhao X, Yu Y, Guo Y, Li Z, Zhou Z. Growth Performance and Gut Health of Cold-Stressed Broilers in Response to Supplementation with a Combination of Sodium Butyrate and Vitamin D3. Animals (Basel) 2025; 15:861. [PMID: 40150390 PMCID: PMC11939318 DOI: 10.3390/ani15060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
The current experiment aimed to investigate the effects of sodium butyrate (SB) and vitamin D3 (VD3) supplementation on the growth performance, immune status, antioxidant capacity, and gut health of young broilers under cold stress. A total of 144 1-day-old Arbor Acres chicks were randomly allotted to three treatments with 6 replicates of 8 birds: (1) basal diet; (2) basal diet + cold stress; and (3) basal diet with 1 g/kg SB and 2000 IU/kg VD3 + cold stress. Birds were exposed to cold stress at 16 ± 1 °C for 72 h (d 18-21) and 26 ± 1 °C for the control. The results indicated that the SB/VD3 diet could alleviate the reduction in average daily gain (ADG) caused by cold stress (p < 0.05). The SB/VD3 diet decreased the serum endotoxin level and ileal interleukin-1β gene expression and upregulated interleukin-10 and nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression compared with cold-stressed birds (p < 0.05). Furthermore, cold stress altered the composition of gut microbiota, including a decrease in Clostridium_sensu_stricto_1, whereas the SB/VD3 diet prevented the reduction. In conclusion, the SB/VD3 diet mitigated the negative effects of cold stress on growth performance and the intestines by strengthening intestinal barrier function and stabilizing gut microbiota balance in broiler chicks, and these results can help to manage cold stress.
Collapse
Affiliation(s)
- Hang Gao
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (H.G.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (H.G.)
| | - Xingkai Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaling Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yizhe Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhendong Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Sarker MT, Wang S, Wang S, Xia W, Zhang Y, Jin C, Huang X, Li K, Elokil A, Lv Y, Zheng C, Chen W. Sodium butyrate alleviates high ambient temperature-induced oxidative stress, intestinal structural disruption, and barrier integrity for growth and production in growing layer chickens. BMC Vet Res 2025; 21:131. [PMID: 40025581 PMCID: PMC11874859 DOI: 10.1186/s12917-025-04583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND This study was conducted to evaluate the effects of dietary sodium butyrate (SB) supplementation on the antioxidant status, intestinal morphology, functional damage, and barrier integrity of heat-stressed Hy-Line Sonia (HYS) layer chicks. A total of 240 female HYS at 35 days of age with average body weights (415 ± 35 g) were divided into 6 groups with 10 replicates/group and 4 chickens per replicate. A 2 × 3 factorial design study was performed, including two conditions of ambient temperature (25 °C and 35 °C) and three dietary levels of SB (0, 0.5, and 1.0 SB g/kg diet). RESULTS HS decreased (P < 0.05) the performance parameters final body weight (FBW), average daily gain (ADG), and average daily feed intake (ADFI), and increased mortality; compared with the HS groups, supplementation with SB decreased mortality. Compared with thermoneutral conditions, the high-temperature conditions significantly decreased (P < 0.05) the thymus, liver, and heart weights, and the relative length of the jejunum, ileum, and cecum, whereas supplementation with 0.5 SB g/kg diet increased (P < 0.05) the weight of the spleen in growing layer chickens. High temperature decreased (P < 0.05) the villus height (VH) and VH/CD ratio, and increased the crypt depth (CD), and supplementation with SB and the T × SB interaction produced greater VH and VH/CD values in the LSB2 and HSB2 groups. SB decreased (P < 0.05) the concentration of serum malondialdehyde (MDA); however, high temperature decreased (P < 0.05) the activities of the catalase (CAT) and glutathione peroxidase (GSH-Px) antioxidant enzymes. The relative mRNA expression levels of the occluding, zonula occludens-1 (ZO-1), claudin-1, and interleukin-10 (IL-10) proteins were downregulated (P < 0.05) at high-temperatures, while that of transforming growth factor-β (TGFβ) was upregulated. Dietary supplementation decreased the expression of the inflammatory cytokines nuclear factor kappa B (NF-κB), transforming growth factor-β (TGFβ), and interferon-γ (IFNγ), and the T × SB interaction decreased TGFβ gene expression in the LSB2 and HSB2 groups compared with that in the other groups of growing layer chickens. CONCLUSION SB supplementation effectively alleviated HS-induced oxidative stress and structural and functional damage to the intestine in layer chickens in the growing phase.
Collapse
Affiliation(s)
- Md Touhiduzzaman Sarker
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Shenglin Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Shuang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Weiguang Xia
- College of Animal Science and Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yanan Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Chenglong Jin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Xuebing Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Kaichao Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Abdelmotaleb Elokil
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Yantai Lv
- College of Animal Science and Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| | - Wei Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Li Y, Zhou J, Guo T, Zhang H, Cao C, Cai Y, Zhang J, Li T, Zhang J. Effects of adding a kind of compound bio-enzyme to the diet on the production performance, serum immunity, and intestinal health of Pekin ducks. Poult Sci 2025; 104:104506. [PMID: 39700598 PMCID: PMC11720614 DOI: 10.1016/j.psj.2024.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024] Open
Abstract
The use of bio-enzyme as feed additives holds significant potential. This study aimed to evaluate the impact of a kind of compound bio-enzyme supplementation (the main functional components are probiotics and astragalus polysaccharides) on the production performance, serum immunity, and intestinal health of Pekin ducks. A total of 126 male Pekin ducks were randomly assigned to three groups: a control group (CG, no additive), a low-dose group (LG, 0.1 % bio-enzyme), and a high-dose group (HG, 0.2 % bio-enzyme), with 6 replicates per group. Ducks were raised until 35 days of age, with weekly measurements of growth performance. At day 35, serum immunoglobulins were measured, carcass traits were recorded, and cecal contents were analyzed using 16S rRNA sequencing and metabolomics. Results indicated a significant increase in ADG (P = 0.049) and a decrease in feed-to-gain ratio (F:G) (P = 0.020) in LG and HG compared to CG during rearing. The HG showed a notable improvement in half eviscerated yield (HEY) (P = 0.023) and full eviscerated yield (FEY) (P = 0.008). No substantial changes were observed in immunological parameters (P > 0.05). The jejunal villus height to crypt depth ratio (VH/CD) significantly increased (P < 0.001) in LG, with notable improvements in duodenal (P = 0.001) and jejunal (P < 0.001) VH/CD in HG. The Shannon index (P = 0.042) and Pielou index (P = 0.038) of cecal microbiota were markedly lower in HG. Notable changes in the relative abundance of Firmicutes and Bacteroidota were observed in LG and HG. Differential bacteria and metabolites among the treatments were identified, and their correlations were analyzed. KEGG enrichment pathways of the metabolites were also identified. In conclusion, this bio-enzyme can improve production performance, intestinal wall structure, and microbiota in Pekin ducks. A 0.1 % concentration of this bio-enzyme is optimal for Pekin duck production.
Collapse
Affiliation(s)
- Yuxiao Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jie Zhou
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Tong Guo
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Huiya Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Chang Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yingjie Cai
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jiqiao Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Tao Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| |
Collapse
|
8
|
Gulizia JP, Terra-Long MT, Khalid Z, Vargas JI, Bonilla SM, Hernandez JR, Thuekeaw S, Hauck R, Macklin KS, Dozier WA, McCafferty KW, Pacheco WJ. Response of YPM x Ross 708 male broilers to diets containing varying inclusions of phytase, calcium butyrate, and bacitracin methylene disalicylate from 1 to 42 d of age-part 1: performance, processing yields, and nutrient digestibility. Poult Sci 2024; 103:104350. [PMID: 39447330 PMCID: PMC11538864 DOI: 10.1016/j.psj.2024.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
This 42-d study evaluated the effects of phytase, calcium butyrate (CB), and bacitracin methylene disalicylate 50 (BMD) on broiler performance, processing yields, and nutrient digestibility. Ross YPM x 708 male broilers (2,880 total) were distributed in 72 floor pens and assigned to 1 of 9 treatments (8 replicates/treatment) on d of hatch. This experiment was a 2 × 4 + 1 factorial arrangement, including 2 phytase concentrations (500 or 1,500 FTU/kg), 4 microbiota modulating feed additive groups (MMFA; none, CB (0.5 g/kg of diet), BMD (55 mg/kg of diet), or both CB and BMD), and a negative control without feed additives. Broiler performance (d 14, 28, and 42), apparent ileal nutrient digestibility (d 28 and 42), and processing yields (d 43) were determined. Day 14 BW increased with BMD inclusion compared to CB and no MMFA in the 1,500 FTU/kg group but BW were similar between all MMFA combined with 500 FTU/kg (P ≤ 0.05). Supplementing BMD increased d 28 BW and reduced d 1 to 28 feed conversion ratio compared to CB and no MMFA (main effect, P ≤ 0.05). Day 42 BW varied depending on dietary phytase concentrations. When diets contained 500 FTU/kg, broilers fed both CB and BMD had a higher BW than broilers fed only CB. Whereas when the inclusion of phytase was increased to 1,500 FTU/kg, broilers fed diets with only BMD or both CB and BMD had higher BW than broilers fed diets with no MMFA (P ≤ 0.05). Phytase concentrations at 1,500 FTU/kg increased (P ≤ 0.05) digestibility of fat (main effect, d 42), phosphorus (d 28 and 42), and apparent ileal digestible energy (main effect, d 42) compared to 500 FTU/kg. In this study, dietary BMD improved broiler growth compared to CB and no MMFA. However, these observed differences between CB and BMD were dependent on dietary phytase concentrations.
Collapse
Affiliation(s)
- J P Gulizia
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - M T Terra-Long
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Z Khalid
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - J I Vargas
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - S M Bonilla
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - J R Hernandez
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - S Thuekeaw
- Department of Animal Husbandry, Faculty Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - R Hauck
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA; Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - K S Macklin
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - W A Dozier
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - K W McCafferty
- USDA-ARS Poultry Research Unit, Mississippi State 39762, USA
| | - W J Pacheco
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
9
|
Abdeldayem FA, Lestingi A, Abol-Ela SS, Alagawany M, Ismail TA, Mostafa NG, El-Shall NA. Application of butyric acid as a feed additive for improving quail performance and health. Poult Sci 2024; 103:104109. [PMID: 39111236 PMCID: PMC11350500 DOI: 10.1016/j.psj.2024.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 09/22/2024] Open
Abstract
This study evaluated the effects of dietary butyric acid (BA) on the Japanese quail' performance, immunology, lipid profile, cecal microbiota, and antioxidant levels. 250 unsexed, one-week-old quail chicks were divided into 5 groups, each with fifty chicks (5 replicates of 10 chicks). The first group was given the basal diet (BD), while the 2nd to 5th groups were fed BD with 50, 100, 150, and 200 mg BA/kg, respectively. The results indicated that BA improved weight gain and FCR (p < 0.05) and decreased total FI. The 200 mg BA/kg of diet showed the lowest FI (p < 0.05) and the best FCR (p > 0.05). BA boosted immunity through increasing IgA, IgM, IgG, and Complement 3. Significantly lower alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were observed at 150 and 200 mg BA/kg (P < 0.05) than the control group. The BA-supplemented quail showed lower total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) than the control one. This effect was more pronounced for 100 and 200 mg of BA/kg. However, high low-density lipoprotein (HDL) did not differ from the control group (p > 0.05). BA at ≥100 mg/kg diet reduced malondialdehyde (MDA) and induced greater levels of superoxide dismutase (SOD), total antioxidant capacity (TAC), glutathione peroxidase (GPX), globulin, total protein, digestive enzymes than the control group (P < 0.05). BA decreased cecal E. coli, Salmonella, Enterococcus, and Coliforms and increased Lactic acid bacteria (p < 0.05) compared to non-supplemented group. Collectively, the inclusion of 100 mg BA/kg diet is ideal for Japanese quail production and health.
Collapse
Affiliation(s)
- Fayza A Abdeldayem
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Antonia Lestingi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari 70010, Italy
| | - Salah S Abol-Ela
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Nadeen G Mostafa
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| |
Collapse
|
10
|
Liang S, Meng J, Tang Z, Xie X, Tian M, Ma X, Yang X, Xiao D, Wang S. Licorice Extract Supplementation Benefits Growth Performance, Blood Biochemistry and Hormones, Immune Antioxidant Status, Hindgut Fecal Microbial Community, and Metabolism in Beef Cattle. Vet Sci 2024; 11:356. [PMID: 39195810 PMCID: PMC11359752 DOI: 10.3390/vetsci11080356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to evaluate the effects of licorice extract (LE) on growth performance, nutrient apparent digestibility, serum index (biochemistry, hormones, humoral immunity, and antioxidant function), hindgut fecal microbiota, and metabolism in beef cattle. In total, 12 male yellow cattle aged 12 months were divided into two groups (6 cattle per group): the basal diet (CK group) and the basal diet supplemented with 2 g/kg LE (CHM group). The entire experimental phase lasted for 120 days, including a 30-day pre-feeding period. Compared to the CK group, the average daily gain, crude fiber, calcium, and crude protein nutrient digestibility were greater on d 30 than d 60 (p < 0.05) and the feed meat ratio was lower for LE addition (p < 0.01). In terms of serum indexes, the insulin and nitric oxide contents were enhanced on d 30, the alkaline phosphatase level was improved on d 60, and the levels of albumin, immunoglobulin A, and catalase were increased on d 90 (p < 0.05). In contrast, the cholesterol content was lower on d 60 for LE addition compared with the CK group (p < 0.05). The higher enrichment of [Eubacterium]-oxidoreducens-group, p-2534-18b5-gut-group, and Ileibacterium were observed in the CHM group (p < 0.05), while the relative abundances of Gallibacterium and Breznakia in the CHM group were lower compared with the CK group (p < 0.05). In addition, the differential metabolites related to healthy growth in the CHM group were increased compared with the CK group. And there was a close correlation between hindgut microbiota and metabolic differentials. In general, LE has a promoting effect on the growth performance and health status of beef cattle over a period (30 to 60 days).
Collapse
Affiliation(s)
- Sunzhen Liang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Jinzhu Meng
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Zining Tang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Xinxin Xie
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Miaomiao Tian
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Xiaowan Ma
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Xiao Yang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuilian Wang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| |
Collapse
|
11
|
Madani AMA, Muhlisin M, Kurniawati A, Baskara AP, Anas MA. Dietary jack bean ( Canavalia ensiformis L.) supplementation enhanced intestinal health by modulating intestinal integrity and immune responses of broiler chickens. Heliyon 2024; 10:e34389. [PMID: 39130426 PMCID: PMC11315099 DOI: 10.1016/j.heliyon.2024.e34389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
This study investigated the influence of supplementing with jack beans on jejunal morphology, cecal short-chain fatty acids production, gene expression both of pro- and anti-inflammatory cytokines and tight junctions. Four treatment groups including 288 Indian River chicks that were one day old were randomized at random. While the treatment groups received jack bean supplementation at levels of 5 %, 10 %, and 15 %, the control group (0 %) was given a basal diet. For 11-35 days, each treatment consisted of 8 pens with 9 birds each. Supplementing with jack beans significantly enhanced butyrate production (P < 0.001), while at 10 % supplementation did not differ from control. Villus height (VH) and the ratio (VH:CD) were significantly (P < 0.001) increased by dietary treatments, while villus width (VW) and crypt depth (CD) were significantly (P < 0.05) decreased. TLR-3, TNF-a, and IL-6 were all significantly (P < 0.001) increased by dietary supplementation. However, at 15 %, TLR-3 and IL-6 were same with control. IL-18 was significantly (P < 0.05) decreased at 15 %. IL-10 decreased significantly (P < 0.001), but at 10 % same with control. At 5 and 10 %, IL-13 increased significantly (P < 0.001), whereas dietary treatments decreased at 15 % compared to control. Although ZO1 decreased significantly (P < 0.001) and OLCN increased significantly (P < 0.001), both ZO1 and OCLN were not significantly different from the control at 15 %. Dietary treatments significantly (P < 0.001) increased CLDN1 but did not differ from the control at 10 %. JAM2 decreased significantly (P < 0.001) with dietary treatments. In conclusion, jack bean supplementation may increase broiler chicken performance and intestinal health due to butyrate production. It may affect intestinal morphology and integrity by upregulating a tight junction protein gene. Jack beans also impacted jejunum immune responses and inflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Abd Majid Ahmad Madani
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada, Indonesia
| | - Muhlisin Muhlisin
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada, Indonesia
| | - Asih Kurniawati
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada, Indonesia
| | - Aji Praba Baskara
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada, Indonesia
| | - Muhsin Al Anas
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada, Indonesia
| |
Collapse
|
12
|
Lu Y, Cai X, Shi B, Gong H. Gut microbiota, plasma metabolites, and osteoporosis: unraveling links via Mendelian randomization. Front Microbiol 2024; 15:1433892. [PMID: 39077745 PMCID: PMC11284117 DOI: 10.3389/fmicb.2024.1433892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Objective Osteoporosis, characterized by reduced bone density and heightened fracture risk, is influenced by genetic and environmental factors. This study investigates the interplay between gut microbiota, plasma metabolomics, and osteoporosis, identifying potential causal relationships mediated by plasma metabolites. Methods Utilizing aggregated genome-wide association studies (GWAS) data, a comprehensive two-sample Mendelian Randomization (MR) analysis was performed involving 196 gut microbiota taxa, 1,400 plasma metabolites, and osteoporosis indicators. Causal relationships between gut microbiota, plasma metabolites, and osteoporosis were explored. Results The MR analyses revealed ten gut microbiota taxa associated with osteoporosis, with five taxa positively linked to increased risk and five negatively associated. Additionally, 96 plasma metabolites exhibited potential causal relationships with osteoporosis, with 49 showing positive associations and 47 displaying negative associations. Mediation analyses identified six causal pathways connecting gut microbiota to osteoporosis through ten mediating relationships involving seven distinct plasma metabolites, two of which demonstrated suppression effects. Conclusion This study provides suggestive evidence of genetic correlations and causal links between gut microbiota, plasma metabolites, and osteoporosis. The findings underscore the complex, multifactorial nature of osteoporosis and suggest the potential of gut microbiota and plasma metabolite profiles as biomarkers or therapeutic targets in the management of osteoporosis.
Collapse
|
13
|
Tomaszewska E, Świątkiewicz S, Arczewska-Włosek A, Wojtysiak D, Dobrowolski P, Domaradzki P, Puzio I, Rudyk H, Brezvyn O, Muszyński S. ß-Hydroxy-ß-methylbutyrate: A feed supplement influencing performance, bone metabolism, intestinal morphology, and muscle quality of laying hens: a preliminary one-point study. Poult Sci 2024; 103:103597. [PMID: 38471225 PMCID: PMC11067770 DOI: 10.1016/j.psj.2024.103597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Laying hens, selectively bred for high egg production, often suffer from bone fragility and fractures, impacting their welfare and causing economic losses. Additionally, gut health and muscle quality are crucial for overall health and productivity. This study aimed to evaluate the effects of ß-Hydroxy-ß-methylbutyrate (HMB) supplementation on performance, bone metabolism, intestinal morphology, and muscle quality in laying hens. Forty-eight Bovans Brown hens were divided into a control group and an HMB-supplemented group (0.02% HMB in diet). The study spanned from the 31st to the 60th wk of age. Assessments included bone mechanical testing, serum hormonal analysis, histological analysis of bone and intestine, and muscle quality analysis. The HMB supplementation led to decreased feed intake without affecting body weight or laying rate in laying hens. It caused an increase in both mean daily and total egg weight, indicating improved feed utilization, without influencing the feed intake to egg weight ratio. Enhanced bone formation markers and altered intestinal morphometric parameters were observed, along with improved trabecular bone structure. However, no changes in measured other bone quality indices, including geometric, densitometric, or mechanical properties were observed. Muscle analysis revealed no significant changes in overall meat quality, except for a decrease in cholesterol content and alterations in the fatty acid profile, notably a reduction in total n-3 polyunsaturated and total polyunsaturated fatty acids (PUFA). In conclusion, although not all effects of HMB supplementation were unequivocally beneficial, the positive changes in performance data and trabecular bone microarchitecture support further research into various doses and durations of supplementation. Such studies are necessary to fully understand and optimize the benefits of HMB for enhancing the health and productivity of laying hens.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| | - Anna Arczewska-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| | - Dorota Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Kraków, Cracow, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Piotr Domaradzki
- Department of Commodity Science and Processing of Raw Animal Materials, University of Life Sciences in Lublin, Lublin, Poland
| | - Iwona Puzio
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Halyna Rudyk
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Lviv, Ukraine
| | - Oksana Brezvyn
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Lviv, Ukraine
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
14
|
Hou J, Lu L, Lian L, Tian Y, Zeng T, Ma Y, Li S, Chen L, Xu W, Gu T, Li G, Liu X. Effects of coated sodium butyrate on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and intestinal microbiota of broiler chickens. Front Microbiol 2024; 15:1368736. [PMID: 38650870 PMCID: PMC11033381 DOI: 10.3389/fmicb.2024.1368736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction This study examined the impact of adding coated sodium butyrate (CSB) to the diet on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and cecal microbiota of yellow-feathered broiler chickens. Methods In this study, 240 yellow-feathered broiler chickens at 26 days old were divided into two groups: the control group (CON group) received a standard diet, and the experimental group (CSB group) received a diet with 0.5 g/kg of a supplement called CSB. Each group had 6 replicates, with 20 chickens in each replicate, and the experiment lasted for 36 days. Results Compared to the CON group, the CSB group showed a slight but insignificant increase in average daily weight gain during the 26-62 day period, while feed intake significantly decreased. The CSB group exhibited significant increases in serum superoxide dismutase, catalase, and total antioxidant capacity. Additionally, the CSB group had significant increases in total protein and albumin content, as well as a significant decrease in blood ammonia levels. Compared to the CON group, the CSB group had significantly increased small intestine villus height and significantly decreased jejunal crypt depth. The abundance of Bacteroidetes and Bacteroides in the cecal microbiota of the CSB group was significantly higher than that of the CON group, while the abundance of Proteobacteria, Deferribacteres, and Epsilonbacteraeota was significantly lower than that of the CON group. Conclusion These results suggest that adding CSB to the diet can improve the growth performance and antioxidant capacity of yellow-feathered broiler chickens while maintaining intestinal health.
Collapse
Affiliation(s)
- Jinwang Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lina Lian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanfen Ma
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sisi Li
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Liu
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
15
|
Zhang YW, Song PR, Wang SC, Liu H, Shi ZM, Su JC. Diets intervene osteoporosis via gut-bone axis. Gut Microbes 2024; 16:2295432. [PMID: 38174650 PMCID: PMC10773645 DOI: 10.1080/19490976.2023.2295432] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease that seriously endangers the health of middle-aged and older adults. Recently, with the continuous deepening of research, an increasing number of studies have revealed gut microbiota as a potential target for osteoporosis, and the research concept of the gut-bone axis has gradually emerged. Additionally, the intake of dietary nutrients and the adoption of dietary patterns may affect the gut microbiota, and alterations in the gut microbiota might also influence the metabolic status of the host, thus adjusting bone metabolism. Based on the gut-bone axis, dietary intake can also participate in the modulation of bone metabolism by altering abundance, diversity, and composition of gut microbiota. Herein, combined with emerging literatures and relevant studies, this review is aimed to summarize the impacts of different dietary components and patterns on osteoporosis by acting on gut microbiota, as well as underlying mechanisms and proper dietary recommendations.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Pei-Ran Song
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Zhong-Min Shi
- Department of Orthopaedics, Sixth People’s Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Abo El-Maaty H, Sherif S, Taha AE, Al-Otaibi AM, Othman SI, Allam AA, Mahrose K. Effects of housing systems and feed additive on growth, carcass traits, liver function, oxidative status, thyroid function, and immune parameters of broilers. Poult Sci 2023; 102:103121. [PMID: 37852054 PMCID: PMC10591001 DOI: 10.1016/j.psj.2023.103121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
The effects of rearing Cobb500 broiler chickens under 3 different housing systems (floor litter, floor plastic, and batteries) without or with feed additive (Butinov) on broiler performance, blood parameters and carcass traits were evaluated. Three hundred 1-day-old chicks were distributed in a 3 × 2 factorial arrangement (6 treatments each of 5 replicates). The results showed that reared broilers on litter or plastic floors had high values (P ≤ 0.01) of bird's weight (BW), weight gain (WG), and feed intake (FI) throughout the entire study period (1-42 d of age) compared with rearing on batteries. Rearing broilers in the different housing systems and with or without feed additives did not affect (P ≥ 0.05) total feed conversion (FCR). Different rearing systems or feed additives did not influence broiler chicks' carcass traits and some serum blood parameters. The plastic floor system significantly increased (P ≤ 0.05) blood serum corticosterone compared with litter and batteries. Feed additive (Butinov) decreased the level of T4 (P ≤ 0.05) in blood serum. Plastic floors or batteries significantly increased (P ≤ 0.01) the level of antibody titer against avian influenza virus (HIAV) compared to chicken reared on a litter floor. The results suggested that using housing systems of litter or plastic floors could improve broiler growth performance without adversely affecting carcass traits and blood characteristics compared with rearing in batteries. Also, broiler diets' feed additive (Butinov) and their interaction with rearing systems did not improve broiler growth performance.
Collapse
Affiliation(s)
- Hayam Abo El-Maaty
- Poultry Production Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Sara Sherif
- Poultry Production Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, 22758 Edfina, Egypt.
| | - Aljohara M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 13225, Saudi Arabia
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
17
|
Wu X, Liang H, Tang Y, Chen D, Yu B, He J, Mao X, Huang Z, Yan H, Wu A, Luo Y, Zheng P, Yu J, Pu J, Luo J. Dietary ferulic acid supplementation improves antioxidant capacity and lipid metabolism in liver of piglets with intrauterine growth retardation. Anim Biotechnol 2023; 34:4900-4909. [PMID: 37149789 DOI: 10.1080/10495398.2023.2206863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Intrauterine growth retardation (IUGR) can result in early liver oxidative damage and abnormal lipid metabolism in neonatal piglets. Ferulic acid (FA), a phenolic compound widely found in plants, has many biological functions, such as anti-inflammation and anti-oxidation. Thus, we explored the effects of dietary FA supplementation on antioxidant capacity and lipid metabolism in newborn piglets with IUGR. In the study, 24 7-day-old piglets were divided into three groups: normal birth weight (NBW), IUGR, and IUGR + FA. The NBW and IUGR groups were fed formula milk as a basal diet, while the IUGR + FA group was fed a basal diet supplemented with 100 mg/kg FA. The trial lasted 21 days. The results showed that IUGR decreased absolute liver weight, increased transaminase activity, reduced antioxidant capacity, and disrupted lipid metabolism in piglets. Dietary FA supplementation enhanced absolute liver weight, reduced serum MDA level and ROS concentrations in serum and liver, markedly increased serum and liver GSH-PX and T-SOD activities, decreased serum HDL-C and LDL-C and liver NEFA, and increased TG content and HL activity in the liver. The mRNA expression related to the Nrf2-Keap1 signaling pathway and lipid metabolism in liver were affected by IUGR. Supplementing FA improved the antioxidant capacity of liver by down-regulating Keap1 and up-regulating the mRNA expression of SOD1 and CAT, and regulated lipid metabolism by increasing the mRNA expression level of Fasn, Pparα, LPL, and CD36. In conclusion, the study suggests that FA supplementation can improve antioxidant capacity and alleviate lipid metabolism disorders in IUGR piglets.
Collapse
Affiliation(s)
- Xiu Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hongmin Liang
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yan Tang
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Hou J, Lian L, Lu L, Gu T, Zeng T, Chen L, Xu W, Li G, Wu H, Tian Y. Effects of Dietary Bacillus coagulans and Tributyrin on Growth Performance, Serum Antioxidants, Intestinal Morphology, and Cecal Microbiota of Growing Yellow-Feathered Broilers. Animals (Basel) 2023; 13:3534. [PMID: 38003151 PMCID: PMC10668748 DOI: 10.3390/ani13223534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the impact of Bacillus coagulans (BC) and tributyrin (TB) supplementation on the growth performance, serum antioxidant capacity, intestinal morphology, and cecal microbiota of yellow-feathered broilers. Using a 2 × 2 factorial design, 480 broilers were randomly assigned to four experimental diets, comprising two levels of BC (0 and 1 g/kg) and two levels of TB (0 and 1 g/kg), over a 36-day period. A significant interaction was observed between BC and TB, impacting the average daily feed intake (ADFI) of broilers aged between 26 and 40 days (p < 0.01). BC and TB also displayed a significant interaction in relation to serum malondialdehyde levels and total antioxidant capacity (p < 0.05). Additionally, there was a significant interaction between BC and TB concerning the duodenal villus-to-crypt ratio, crypt depth, and jejunal villus-to-crypt ratio (p < 0.05). The addition of BC and TB significantly enhanced the richness and diversity of cecal microbiota, with a notable interactive effect observed for the abundance of Faecalibacterium, Ruminococcus_torques_group, and Phascolarctobacterium. In conclusion, supplementation with BC and TB can effectively improve the growth performance, serum antioxidant capacity, intestinal morphology, and cecal microbiota composition of yellow-feathered broilers, indicating the presence of an interactive effect.
Collapse
Affiliation(s)
- Jinwang Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Lina Lian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| |
Collapse
|
19
|
Chen L, Zhao R, Kang Z, Cao Z, Liu N, Shen J, Wang C, Pan F, Zhou X, Liu Z, Yang Y, Chen Q. Delivery of short chain fatty acid butyrate to overcome Fusobacterium nucleatum-induced chemoresistance. J Control Release 2023; 363:43-56. [PMID: 37734673 DOI: 10.1016/j.jconrel.2023.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
The gut microbiota is closely associated with the progression of colorectal cancer (CRC) in which Fusobacterium nucleatum (F. nucleatum) was found to induce cancer resistance to chemotherapeutics. To relieve F. nucleatum-induced drug resistance, herein, we found that short-chain fatty acid butyrate can inhibit the growth, enrichment and adhesion of F. nucleatum in colorectal cancer tissues by downregulating the expression of adhesion-associated outer membrane proteins, including RadD, FomA, and FadA, to reduce the colonization and invasion of F. nucleatum and relieve the chemoresistance induced by F. nucleatum. Leveraging the killing effect of butyrate on F. nucleatum, sodium butyrate (NaBu) was encapsulated in liposomes or prepared as NaBu tablets with Eudragit S100 coating and administered by intravenous injection or oral administration, respectively. Interestingly, both intravenous administration of NaBu liposomes and oral delivery of NaBu tablets could effectively inhibit the proliferation of F. nucleatum and significantly improve the therapeutic efficacy of oxaliplatin in mice with subcutaneous colorectal tumors, orthotopic colorectal tumors and even spontaneously formed colorectal tumors. Thus, our work provides a simple but effective formulation of NaBu to relieve F. nucleatum-induced chemoresistance, exhibiting ideal clinical application prospects.
Collapse
Affiliation(s)
- Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Rui Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Zheyu Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Zhiqin Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Nanhui Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Xiao Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
20
|
Satterlee T, McDonough CM, Gold SE, Chen C, Glenn AE, Pokoo-Aikins A. Synergistic Effects of Essential Oils and Organic Acids against Aspergillus flavus Contamination in Poultry Feed. Toxins (Basel) 2023; 15:635. [PMID: 37999498 PMCID: PMC10675374 DOI: 10.3390/toxins15110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Organic acids and essential oils are commonly used in the poultry industry as antimicrobials and for their beneficial effects on gut health, growth performance, and meat quality. A common postharvest storage fungal colonist, Aspergillus flavus, contaminates corn, the primary component of poultry feed, with the highly detrimental mycotoxin, aflatoxin. Aflatoxin adversely affects poultry feed intake, feed conversion efficiency, weight gain, egg production, fertility, hatchability, and poultry meat yield. Both organic acids and essential oils have been reported to inhibit the growth of A. flavus. Thus, we evaluated if the inhibitory synergy between combined essential oils (cinnamon, lemongrass, and oregano) and organic acids (acetic, butyric, and propionic) prevents A. flavus growth. The study confirmed that these compounds inhibit the growth of A. flavus and that synergistic interactions do occur between some of them. Overall, cinnamon oil was shown to have the highest synergy with all the organic acids tested, requiring 1000 µL/L air of cinnamon oil and 888 mg/kg of butyric acid to fully suppress A. flavus growth on corn kernels. With the strong synergism demonstrated, combining certain essential oils and organic acids offers a potentially effective natural method for controlling postharvest aflatoxin contamination in poultry feed.
Collapse
Affiliation(s)
- Tim Satterlee
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Callie Megan McDonough
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Scott E. Gold
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, 110 Cedar Street, Athens, GA 30602, USA;
| | - Anthony E. Glenn
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Anthony Pokoo-Aikins
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| |
Collapse
|
21
|
Ji QY, Wang W, Yan H, Qu H, Liu Y, Qian Y, Gu R. The Effect of Different Organic Acids and Their Combination on the Cell Barrier and Biofilm of Escherichia coli. Foods 2023; 12:3011. [PMID: 37628010 PMCID: PMC10453431 DOI: 10.3390/foods12163011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Organic acids are natural antimicrobial compounds commonly used in the food industry. In this study, acetic, lactic, butyric, citric, and malic acid at minimum inhibitory concentrations and their combinations at optimal inhibition concentrations were used to treat E. coli, and the effects on the cell barrier and biofilm of E. coli were evaluated. Acetic acid showed the highest membrane-damaging effect, while citric acid and malic acid could specifically damage the cell wall of E. coli, leading to alkaline phosphatase leakage. The RT-qPCR results showed that organic acids upregulated the membrane-protein-related genes of E. coli, and the combination of organic acids had a wider range of effects than single organic acid treatment. Moreover, organic acids inhibited the formation of E. coli biofilm and cellular activity within the biofilm. This study showed that the combination of organic acids plays a synergistic inhibitory role mainly through multiple destructive effects on the cell barrier and exhibited synergistic anti-biofilm effects. The three-three combination of acetic, lactic acid, and a third organic acid (butyric, citric, or malic) can play a better synergistic antibacterial effect than the two-pair combination of acetic and lactic acid. These findings have implications for the usage, development, and optimization of organic acid combinations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Q.-Y.J.); (W.W.); (H.Y.); (H.Q.); (Y.L.); (Y.Q.)
| |
Collapse
|
22
|
Montoro-Dasi L, Lorenzo-Rebenaque L, Marco-Fuertes A, Vega S, Marin C. Holistic Strategies to Control Salmonella Infantis: An Emerging Challenge in the European Broiler Sector. Microorganisms 2023; 11:1765. [PMID: 37512937 PMCID: PMC10386103 DOI: 10.3390/microorganisms11071765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Salmonella spp. has been globally recognized as one of the leading causes of acute human bacterial gastroenteritis resulting from the consumption of animal-derived products. Salmonella Enteritidis, S. Typhimurium, and its monophasic variant are the main serovars responsible for human disease. However, a serovar known as S. Infantis has emerged as the fourth most prevalent serovar associated with human disease. A total of 95% of isolated S. Infantis serovars originate from broilers and their derived products. This serovar is strongly associated with an elevated antimicrobial (AMR) and multidrug resistance, a resistance to disinfectants, an increased tolerance to environmental mercury, a heightened virulence, and an enhanced ability to form biofilms and attach to host cells. Furthermore, this serovar harbors genes that confer resistance to colistin, a last-resort antibiotic in human medicine, and it has the potential to acquire additional transferable AMR against other critically important antimicrobials, posing a new and significant challenge to global public health. This review provides an overview of the current status of the S. Infantis serovar in the poultry sector, focusing on its key virulence factors, including its virulence genes, antimicrobial resistance, and biofilm formation. Additionally, novel holistic strategies for controlling S. Infantis along the entire food chain are presented in this review.
Collapse
Affiliation(s)
- Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Laura Lorenzo-Rebenaque
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
23
|
El-Saadony MT, Yaqoob MU, Hassan FU, Alagawany M, Arif M, Taha AE, Elnesr SS, El-Tarabily KA, Abd El-Hack ME. Applications of butyric acid in poultry production: the dynamics of gut health, performance, nutrient utilization, egg quality, and osteoporosis - CORRIGENDUM. Anim Health Res Rev 2023; 24:40. [PMID: 37264801 DOI: 10.1017/s1466252323000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|