1
|
Kamiki J, Gorgulho CM, Lérias JR, Maeurer MJ. Mucosal-associated invariant T-cells in pulmonary pathophysiology. Curr Opin Pulm Med 2025; 31:202-210. [PMID: 40104908 PMCID: PMC11957436 DOI: 10.1097/mcp.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW Mucosal-associated invariant T-cells (MAIT) have been associated with lung cancer and pulmonary infections. The treatment of patients with cancer or infections includes host-directed therapies (HDTs). MAIT play a role in shaping the 'milieu interne' in cancer and infections and this review addresses the biology of MAIT in pulmonary pathophysiology. RECENT FINDINGS MAIT represent an attractive target for therapy in pulmonary malignancies and infections. T-cells are often difficult to exploit therapeutically due to the diversity of both T-cell receptor (TCR) repertoire and its ligandome. MAIT-cells are restricted by the major histocompatibility complex class I-related gene protein (MR1) that presents nondefined tumor-associated targets, bacterial products, vitamin and drug derivates. Due to their plasticity in gene expression, MAIT are able to conversely switch from IFN-γ to IL-17 production. Both cytokines play a key role in protective immune responses in infections and malignancies. MAIT-derived production of interleukin (IL)-17/TGF-β shapes the tumor micro-environment (TME), including tissue re-modelling leading to pulmonary fibrosis and recruitment of neutrophils. MAIT contribute to the gut-lung axis associated with clinical improved responses of patients with cancer to checkpoint inhibition therapy. MAIT are at the crossroad of HDTs targeting malignant and infected cells. Clinical presentations of overt inflammation, protective immune responses and tissue re-modeling are reviewed along the balance between Th1, Th2, Th9, and Th17 responses associated with immune-suppression or protective immune responses in infections. SUMMARY MAIT shape the TME in pulmonary malignancies and infections. Drugs targeting the TME and HDTs affect MAIT that can be explored to achieve improved clinical results while curbing overt tissue-damaging immune responses.
Collapse
Affiliation(s)
- Jéssica Kamiki
- ImmunoTherapy/ImmunoSurgery Laboratory, Cell Center at the Champalimaud Foundation, Lisbon, Portugal
| | | | | | | |
Collapse
|
2
|
Lachman HM. Use of cerebral organoids to model environmental and gene x environment interactions in the developing fetus and neurodegenerative disorders. PHENOTYPING OF HUMAN IPSC-DERIVED NEURONS 2023:173-200. [DOI: 10.1016/b978-0-12-822277-5.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
An opinion on the debatable function of brain resident immune protein, T-cell receptor beta subunit in the central nervous system. IBRO Neurosci Rep 2022; 13:235-242. [PMID: 36590097 PMCID: PMC9795316 DOI: 10.1016/j.ibneur.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/02/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years scientific research has established that the nervous and immune systems have shared molecular signaling components. Proteins native to immune cells, which are also found in the brain, have neuronal functions in the nervous system where they affect synaptic plasticity, axonal regeneration, neurogenesis, and neurotransmission. Certain native immune molecules like major histocompatibility complex I (MHC-I), paired immunoglobulin receptor B (PirB), toll-like receptor (TLR), cluster of differentiation-3 zeta (CD3ζ), CD4 co-receptor, and T-cell receptor beta (TCR-β) expression in neurons have been extensively documented. In this review, we provide our opinion and discussed the possible roles of T-cell receptor beta subunits in modulating the function of neurons in the central nervous system. Based on the previous findings of Syken and Shatz., 2003; Nishiyori et al., 2004; Rodriguez et., 1993 and Komal et., 2014; we discuss whether restrictive expression of TCR-β subunits in selected brain regions could be involved in the pathology of neurological disorders and whether their aberrant enhancement in expression may be considered as a suitable biomarker for aging or neurodegenerative diseases like Huntington's disease (HD).
Collapse
|
4
|
Non-classical human leukocyte antigen class I in Tunisian children with autism. Cent Eur J Immunol 2021; 45:176-183. [PMID: 33456328 PMCID: PMC7792448 DOI: 10.5114/ceji.2020.97906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorders (ASD) are one of the most common childhood morbidities characterized by deficits in communication and social skills. Increasing evidence has suggested associations between immune genes located in the human leukocyte antigen (HLA) complex and etiology of autism. In this study, we investigated whether the non-classical class I HLA-G, -E, and -F polymorphisms are associated with genetic predisposition to autism in Tunisia. We aimed to find a correlation between HLA-G genotypes and soluble HLA-G (sHLA-G) levels. We have analyzed the HLA-G, -E, and -F genotypes of 15 autistic children and their parents. DNA typing of HLA class I genes was performed using PCR-SSP and PCR-RFLP methods. Also, we evaluated the serum levels of HLA-G (1 and 5) by a validated ELISA technique in autistic probands and their parents. No association was found between any polymorphism and autism in the study subjects. Additionally, we found no correlation between sHLA-G1 and sHLA-G5 and autism. Also, no significant difference in sHLA-G testing in parents and offspring was found. However, parents carrying [GG] genotype presented a higher sHLA-G levels than those carrying ([CC]+[GC]) genotypes (p = 0.037). From this preliminary study, we conclude that the investigated polymorphisms of HLA-G, -E, and -F genes did not lead to autism susceptibility in Tunisian children. However, the CGTIGA haplotype was found to be associated with the disease.
Collapse
|
5
|
Wulaer B, Hada K, Sobue A, Itoh N, Nabeshima T, Nagai T, Yamada K. Overexpression of astroglial major histocompatibility complex class I in the medial prefrontal cortex impairs visual discrimination learning in mice. Mol Brain 2020; 13:170. [PMID: 33317605 PMCID: PMC7734728 DOI: 10.1186/s13041-020-00710-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/02/2020] [Indexed: 01/12/2023] Open
Abstract
Background Immune molecules, such as cytokines, complement, and major histocompatibility complex (MHC) proteins, in the central nervous system are often associated with neuropsychiatric disorders. Neuronal MHC class I (MHCI), such as H-2D, regulate neurite outgrowth, the establishment and function of cortical connections, and activity-dependent refinement in mice. We previously established mice expressing MHCI specifically in astrocytes of the media prefrontal cortex (mPFC) using the adeno-associated virus (AAV) vector under the control of the GfaABC1D promoter. Mice expressing the soluble form of H-2D (sH-2D) in the mPFC (sH-2D-expressing mice) showed abnormal behaviors, including social interaction deficits and cognitive dysfunctions. However, the pathophysiological significance of astroglial MHCI on higher brain functions, such as learning, memory, and behavioral flexibility, remains unclear. Therefore, cognitive function in mice expressing sH-2D in astrocytes of the mPFC was tested using the visual discrimination (VD) task. Methods sH-2D-expressing mice were subjected to the VD and reversal learning tasks, and morphological analysis. Results In the pretraining, sH-2D-expressing mice required significantly more trials to reach the learning criterion than control mice. The total number of sessions, trials, normal trials, and correction trials to reach the VD criterion were also significantly higher in sH-2D-expressing mice than in control mice. A morphological study showed that dendritic complexity and spine density were significantly reduced in the dorsal striatum of sH-2D-expressing mice. Conclusion Collectively, the present results suggest that the overexpression of astroglial MHCI in the mPFC results in impaired VD learning, which may be accompanied by decreased dendritic complexity in the dorsal striatum and mPFC.
Collapse
Affiliation(s)
- Bolati Wulaer
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan.,Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Kazuhiro Hada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Akira Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Norimichi Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan.
| |
Collapse
|
6
|
Sobue A, Ito N, Nagai T, Shan W, Hada K, Nakajima A, Murakami Y, Mouri A, Yamamoto Y, Nabeshima T, Saito K, Yamada K. Astroglial major histocompatibility complex class I following immune activation leads to behavioral and neuropathological changes. Glia 2018; 66:1034-1052. [PMID: 29380419 DOI: 10.1002/glia.23299] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/27/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
In the central nervous system, major histocompatibility complex class I (MHCI) molecules are mainly expressed in neurons, and neuronal MHCI have roles in synapse elimination and plasticity. However, the pathophysiological significance of astroglial MHCI remains unclear. We herein demonstrate that MHCI expression is up-regulated in astrocytes in the medial prefrontal cortex (mPFC) following systemic immune activation by an intraperitoneal injection of polyinosinic-polycytidylic acid (polyI:C) or hydrodynamic interferon (IFN)-γ gene delivery in male C57/BL6J mice. In cultured astrocytes, MHCI/H-2D largely co-localized with exosomes. To investigate the role of astroglial MHCI, H-2D, or sH-2D was expressed in the mPFC of male C57/BL6J mice using an adeno-associated virus vector under the control of a glial fibrillary acidic protein promoter. The expression of astroglial MHCI in the mPFC impaired sociability and recognition memory in mice. Regarding neuropathological changes, MHCI expression in astrocytes significantly activated microglial cells, decreased parvalbumin-positive cell numbers, and reduced dendritic spine density in the mPFC. A treatment with GW4869 that impairs exosome synthesis ameliorated these behavioral and neuropathological changes. These results suggest that the overexpression of MHCI in astrocytes affects microglial proliferation as well as neuronal numbers and spine densities, thereby leading to social and cognitive deficits in mice, possibly via exosomes created by astrocytes.
Collapse
Affiliation(s)
- Akira Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Norimichi Ito
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Wei Shan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Kazuhiro Hada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Akira Nakajima
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Yuki Murakami
- Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Yasuko Yamamoto
- Department of Disease Control Prevention, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory Fujita Health University, Graduate School of Health Sciences & Aino University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Kuniaki Saito
- Department of Disease Control Prevention, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan.,Advanced Diagnostic System Research Laboratory Fujita Health University, Graduate School of Health Sciences & Aino University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| |
Collapse
|
7
|
Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC SYSTEMS BIOLOGY 2016. [DOI: 10.1186/s12918-016-0366-0 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Lin M, Pedrosa E, Hrabovsky A, Chen J, Puliafito BR, Gilbert SR, Zheng D, Lachman HM. Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC SYSTEMS BIOLOGY 2016. [DOI: 10.1186/s12918-016-0366-0 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC SYSTEMS BIOLOGY 2016. [DOI: 10.1186/s12918-016-0366-0 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Lin M, Pedrosa E, Hrabovsky A, Chen J, Puliafito BR, Gilbert SR, Zheng D, Lachman HM. Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC SYSTEMS BIOLOGY 2016. [DOI: 10.1186/s12918-016-0366-0 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Lin M, Pedrosa E, Hrabovsky A, Chen J, Puliafito BR, Gilbert SR, Zheng D, Lachman HM. Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC SYSTEMS BIOLOGY 2016. [DOI: 10.1186/s12918-016-0366-0 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Lin M, Pedrosa E, Hrabovsky A, Chen J, Puliafito BR, Gilbert SR, Zheng D, Lachman HM. Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC SYSTEMS BIOLOGY 2016. [DOI: 10.1186/s12918-016-0366-0 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Lin M, Pedrosa E, Hrabovsky A, Chen J, Puliafito BR, Gilbert SR, Zheng D, Lachman HM. Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC SYSTEMS BIOLOGY 2016. [DOI: 10.1186/s12918-016-0366-0 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Lin M, Pedrosa E, Hrabovsky A, Chen J, Puliafito BR, Gilbert SR, Zheng D, Lachman HM. Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC SYSTEMS BIOLOGY 2016; 10:105. [PMID: 27846841 PMCID: PMC5111260 DOI: 10.1186/s12918-016-0366-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 11/06/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Individuals with 22q11.2 Deletion Syndrome (22q11.2 DS) are a specific high-risk group for developing schizophrenia (SZ), schizoaffective disorder (SAD) and autism spectrum disorders (ASD). Several genes in the deleted region have been implicated in the development of SZ, e.g., PRODH and DGCR8. However, the mechanistic connection between these genes and the neuropsychiatric phenotype remains unclear. To elucidate the molecular consequences of 22q11.2 deletion in early neural development, we carried out RNA-seq analysis to investigate gene expression in early differentiating human neurons derived from induced pluripotent stem cells (iPSCs) of 22q11.2 DS SZ and SAD patients. METHODS Eight cases (ten iPSC-neuron samples in total including duplicate clones) and seven controls (nine in total including duplicate clones) were subjected to RNA sequencing. Using a systems level analysis, differentially expressed genes/gene-modules and pathway of interests were identified. Lastly, we related our findings from in vitro neuronal cultures to brain development by mapping differentially expressed genes to BrainSpan transcriptomes. RESULTS We observed ~2-fold reduction in expression of almost all genes in the 22q11.2 region in SZ (37 genes reached p-value < 0.05, 36 of which reached a false discovery rate < 0.05). Outside of the deleted region, 745 genes showed significant differences in expression between SZ and control neurons (p < 0.05). Function enrichment and network analysis of the differentially expressed genes uncovered converging evidence on abnormal expression in key functional pathways, such as apoptosis, cell cycle and survival, and MAPK signaling in the SZ and SAD samples. By leveraging transcriptome profiles of normal human brain tissues across human development into adulthood, we showed that the differentially expressed genes converge on a sub-network mediated by CDC45 and the cell cycle, which would be disrupted by the 22q11.2 deletion during embryonic brain development, and another sub-network modulated by PRODH, which could contribute to disruption of brain function during adolescence. CONCLUSIONS This study has provided evidence for disruption of potential molecular events in SZ patient with 22q11.2 deletion and related our findings from in vitro neuronal cultures to functional perturbations that can occur during brain development in SZ.
Collapse
Affiliation(s)
- Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Jian Chen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Benjamin R. Puliafito
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Stephanie R. Gilbert
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| |
Collapse
|
15
|
Hougaard Pedersen S, Maretty L, Ramachandran R, Sibbesen JA, Yakimov V, Elgaard-Christensen R, Hansen TF, Krogh A, Olesen J, Jansen-Olesen I. RNA Sequencing of Trigeminal Ganglia in Rattus Norvegicus after Glyceryl Trinitrate Infusion with Relevance to Migraine. PLoS One 2016; 11:e0155039. [PMID: 27213950 PMCID: PMC4877077 DOI: 10.1371/journal.pone.0155039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/22/2016] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Infusion of glyceryl trinitrate (GTN), a donor of nitric oxide, induces immediate headache in humans that in migraineurs is followed by a delayed migraine attack. In order to achieve increased knowledge of mechanisms activated during GTN-infusion this present study aims to investigate transcriptional responses to GTN-infusion in the rat trigeminal ganglia. METHODS Rats were infused with GTN or vehicle and trigeminal ganglia were isolated either 30 or 90 minutes post infusion. RNA sequencing was used to investigate transcriptomic changes in response to the treatment. Furthermore, we developed a novel method for Gene Set Analysis Of Variance (GSANOVA) to identify gene sets associated with transcriptional changes across time. RESULTS 15 genes displayed significant changes in transcription levels in response to GTN-infusion. Ten of these genes showed either sustained up- or down-regulation in the 90-minute period after infusion. The GSANOVA analysis demonstrate enrichment of pathways pointing towards an increase in immune response, signal transduction, and neuroplasticity in response to GTN-infusion. Future functional in-depth studies of these mechanisms are expected to increase our understanding of migraine pathogenesis.
Collapse
Affiliation(s)
- Sara Hougaard Pedersen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Maretty
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Roshni Ramachandran
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Andreas Sibbesen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Victor Yakimov
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Elgaard-Christensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Folkmann Hansen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Krogh
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Tetruashvily MM, Melson JW, Park JJ, Peng X, Boulanger LM. Expression and alternative splicing of classical and nonclassical MHCI genes in the hippocampus and neuromuscular junction. Mol Cell Neurosci 2016; 72:34-45. [PMID: 26802536 DOI: 10.1016/j.mcn.2016.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/01/2015] [Accepted: 01/15/2016] [Indexed: 01/25/2023] Open
Abstract
The major histocompatibility complex class I (MHCI) is a large gene family, with over 20 members in mouse. Some MHCIs are well-known for their critical roles in the immune response. Studies in mice which lack stable cell-surface expression of many MHCI proteins suggest that one or more MHCIs also play unexpected, essential roles in the establishment, function, and modification of neuronal synapses. However, there is little information about which genes mediate MHCI's effects in neurons. In this study, RT-PCR was used to simultaneously assess transcription of many MHCI genes in regions of the central and peripheral nervous system where MHCI has a known or suspected role. In the hippocampus, a part of the CNS where MHCI regulates synapse density, synaptic transmission, and plasticity, we found that more than a dozen MHCI genes are transcribed. Single-cell RT-PCR revealed that individual hippocampal neurons can express more than one MHCI gene, and that the MHCI gene expression profile of CA1 pyramidal neurons differs significantly from that of CA3 pyramidal neurons or granule cells of the dentate gyrus. MHCI gene expression was also assessed at the neuromuscular junction (NMJ), a part of the peripheral nervous system (PNS) where MHCI plays a role in developmental synapse elimination, aging-related synapse loss, and neuronal regeneration. Four MHCI genes are expressed at the NMJ at an age when synapse elimination is occurring in three different muscles. Several MHCI mRNA splice variants were detected in hippocampus, but not at the NMJ. Together, these results establish the first profile of MHCI gene expression at the developing NMJ, and demonstrate that MHCI gene expression is under tight spatial and temporal regulation in the nervous system. They also identify more than a dozen MHCIs that could play important roles in regulating synaptic transmission and plasticity in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Mazell M Tetruashvily
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States; Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08901, United States
| | - John W Melson
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States
| | - Joseph J Park
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States
| | - Xiaoyu Peng
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States; Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08544, United States
| | - Lisa M Boulanger
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States; Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08544, United States.
| |
Collapse
|
17
|
Mangold CA, Masser DR, Stanford DR, Bixler GV, Pisupati A, Giles CB, Wren JD, Ford MM, Sonntag WE, Freeman WM. CNS-wide Sexually Dimorphic Induction of the Major Histocompatibility Complex 1 Pathway With Aging. J Gerontol A Biol Sci Med Sci 2016; 72:16-29. [PMID: 26786204 DOI: 10.1093/gerona/glv232] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023] Open
Abstract
The major histocompatibility complex I (MHCI) pathway, which canonically functions in innate immune viral antigen presentation and detection, is functionally pleiotropic in the central nervous system (CNS). Alternative roles include developmental synapse pruning, regulation of synaptic plasticity, and inhibition of neuronal insulin signaling; all processes altered during brain aging. Upregulation of MHCI components with aging has been reported; however, no systematic examination of MHCI cellular localization, expression, and regulation across CNS regions, life span, and sexes has been reported. In the mouse, MHCI is expressed by neurons and microglia, and MHCI components and receptors (H2-K1, H2-D1, β2M, Lilrb3, Klra2, CD247) display markedly different expression profiles across the hippocampus, cortex, cerebellum, brainstem, and retina. MHCI components, receptors, associated inflammatory transcripts (IL1α, IL1β, IL6, TNFα), and TAP (transporter associated with antigen processing) components are induced with aging and to a greater degree in female than male mice across CNS regions. H2-K1 and H2-D1 expression is associated with differential CG and non-CG promoter methylation across CNS regions, ages, and between sexes, and concomitant increased expression of proinflammatory genes. Meta-analysis of human brain aging data also demonstrates age-related increases in MHCI. Induction of MHCI signaling could contribute to altered synapse regulation and impaired synaptic plasticity with aging.
Collapse
Affiliation(s)
- Colleen A Mangold
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey
| | - Dustin R Masser
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey.,Department of Physiology, University of Oklahoma Health Sciences Center.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - David R Stanford
- Department of Physiology, University of Oklahoma Health Sciences Center.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Georgina V Bixler
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey
| | - Aditya Pisupati
- MD/PhD Program, College of Medicine, Pennsylvania State University, Hershey
| | - Cory B Giles
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation
| | - Matthew M Ford
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Willard M Freeman
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey. .,Department of Physiology, University of Oklahoma Health Sciences Center.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| |
Collapse
|
18
|
Abstract
The immune system's role in the pathophysiology of several neuropsychiatric disorders has been the subject of research for many decades. Despite suggestive evidence from genetic, epidemiologic, and immunologic studies, those findings did not translate into clinical practice. Recent recognition of antibody-mediated central nervous system (CNS) disorders has fueled the search for a subgroup of patients with an antibody-mediated psychiatric illness. This chapter focuses on the current understanding of autoimmune CNS disorders and how they may be relevant to psychiatric disorders, particularly schizophrenia and autism. We review the results provided by antibody screening in psychiatric patient groups and discuss future directions to establish whether those findings will be meaningful in clinical practice.
Collapse
Affiliation(s)
- Ester Coutinho
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
19
|
Significant Association of HLA-B Alleles and Genotypes in Thai Children with Autism Spectrum Disorders: A Case-Control Study. DISEASE MARKERS 2015; 2015:724935. [PMID: 26819491 PMCID: PMC4706891 DOI: 10.1155/2015/724935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 11/17/2022]
Abstract
Autism is a severe neurodevelopmental disorder. Many susceptible causative genes have been identified. Most of the previous reports showed the relationship between the Human Leukocyte Antigen (HLA) gene and etiology of autism. In order to identify HLA-B alleles associated with autism in Thai population, we compared the frequency of HLA-B allele in 364 autistic subjects with 952 normal subjects by using a two-stage sequence-specific oligonucleotide probe system (PCR-SSOP) method based on flow-cytometry technology. HLA-B (⁎) 13:02 (P = 0.019, OR = 2.229), HLA-B (⁎) 38:02 (P = 0.049, OR = 1.628), HLA-B (⁎) 44:03 (P = 0.016, OR = 1.645), and HLA-B (⁎) 56:01 (P = 1.78 × 10(-4), OR = 4.927) alleles were significantly increased in autistic subjects compared with normal subjects. Moreover, we found that the HLA-B (⁎) 18:02 (P = 0.016, OR = 0.375) and HLA-B (⁎) 46:12 (P = 0.008, OR = 0.147) alleles were negatively associated with autism when compared to normal controls. Both alleles might have a protective role in disease development. In addition, four HLA-B genotypes of autistic patients had statistically significant relationship with control groups, consisting of HLA-B (⁎) 3905/(⁎) 5801 (P = 0.032, OR = 24.697), HLA-B (⁎) 2704/(⁎) 5801 (P = 0.022, OR = 6.872), HLA-B (⁎) 3501/(⁎) 4403 (P = 0.021, OR = 30.269), and HLA-B (⁎) 1801/(⁎) 4402 (P = 0.017, OR = 13.757). This is the first report on HLA-B associated with Thai autism and may serve as a marker for genetic susceptibility to autism in Thai population.
Collapse
|
20
|
Chen J, Lin M, Hrabovsky A, Pedrosa E, Dean J, Jain S, Zheng D, Lachman HM. ZNF804A Transcriptional Networks in Differentiating Neurons Derived from Induced Pluripotent Stem Cells of Human Origin. PLoS One 2015; 10:e0124597. [PMID: 25905630 PMCID: PMC4408091 DOI: 10.1371/journal.pone.0124597] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/16/2015] [Indexed: 12/23/2022] Open
Abstract
ZNF804A (Zinc Finger Protein 804A) has been identified as a candidate gene for schizophrenia (SZ), autism spectrum disorders (ASD), and bipolar disorder (BD) in replicated genome wide association studies (GWAS) and by copy number variation (CNV) analysis. Although its function has not been well-characterized, ZNF804A contains a C2H2-type zinc-finger domain, suggesting that it has DNA binding properties, and consequently, a role in regulating gene expression. To further explore the role of ZNF804A on gene expression and its downstream targets, we used a gene knockdown (KD) approach to reduce its expression in neural progenitor cells (NPCs) derived from induced pluripotent stem cells (iPSCs). KD was accomplished by RNA interference (RNAi) using lentiviral particles containing shRNAs that target ZNF804A mRNA. Stable transduced NPC lines were generated after puromycin selection. A control cell line expressing a random (scrambled) shRNA was also generated. Neuronal differentiation was induced, RNA was harvested after 14 days and transcriptome analysis was carried out using RNA-seq. 1815 genes were found to be differentially expressed at a nominally significant level (p<0.05); 809 decreased in expression in the KD samples, while 1106 increased. Of these, 370 achieved genome wide significance (FDR<0.05); 125 were lower in the KD samples, 245 were higher. Pathway analysis showed that genes involved in interferon-signaling were enriched among those that were down-regulated in the KD samples. Correspondingly, ZNF804A KD was found to affect interferon-alpha 2 (IFNA2)-mediated gene expression. The findings suggest that ZNF804A may affect a differentiating neuron’s response to inflammatory cytokines, which is consistent with models of SZ and ASD that support a role for infectious disease, and/or autoimmunity in a subgroup of patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jason Dean
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Swati Jain
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (DZ); (HML)
| | - Herbert M. Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (DZ); (HML)
| |
Collapse
|
21
|
Lin M, Zhao D, Hrabovsky A, Pedrosa E, Zheng D, Lachman HM. Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon. PLoS One 2014; 9:e94968. [PMID: 24736721 PMCID: PMC3988108 DOI: 10.1371/journal.pone.0094968] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/21/2014] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are highly heritable neuropsychiatric disorders, although environmental factors, such as maternal immune activation (MIA), play a role as well. Cytokines mediate the effects of MIA on neurogenesis and behavior in animal models. However, MIA stimulators can also induce a febrile reaction, which could have independent effects on neurogenesis through heat shock (HS)-regulated cellular stress pathways. However, this has not been well-studied. To help understand the role of fever in MIA, we used a recently described model of human brain development in which induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional neuronal aggregates that resemble a first trimester telencephalon. RNA-seq was carried out on aggregates that were heat shocked at 39°C for 24 hours, along with their control partners maintained at 37°C. 186 genes showed significant differences in expression following HS (p<0.05), including known HS-inducible genes, as expected, as well as those coding for NGFR and a number of SZ and ASD candidates, including SMARCA2, DPP10, ARNT2, AHI1 and ZNF804A. The degree to which the expression of these genes decrease or increase during HS is similar to that found in copy loss and copy gain copy number variants (CNVs), although the effects of HS are likely to be transient. The dramatic effect on the expression of some SZ and ASD genes places HS, and perhaps other cellular stressors, into a common conceptual framework with disease-causing genetic variants. The findings also suggest that some candidate genes that are assumed to have a relatively limited impact on SZ and ASD pathogenesis based on a small number of positive genetic findings, such as SMARCA2 and ARNT2, may in fact have a much more substantial role in these disorders - as targets of common environmental stressors.
Collapse
Affiliation(s)
- Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dejian Zhao
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (HML); (D. Zheng)
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (HML); (D. Zheng)
| |
Collapse
|
22
|
Carmichael DA, Simner J. The immune hypothesis of synesthesia. Front Hum Neurosci 2013; 7:563. [PMID: 24062665 PMCID: PMC3769635 DOI: 10.3389/fnhum.2013.00563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/23/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Duncan A Carmichael
- Department of Psychology, University of Edinburgh Edinburgh, UK ; Institute for Adaptive and Neural Computation, University of Edinburgh Edinburgh, UK ; Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh Edinburgh, UK
| | | |
Collapse
|
23
|
Prabowo AS, Iyer AM, Anink JJ, Spliet WGM, van Rijen PC, Aronica E. Differential expression of major histocompatibility complex class I in developmental glioneuronal lesions. J Neuroinflammation 2013; 10:12. [PMID: 23347564 PMCID: PMC3565983 DOI: 10.1186/1742-2094-10-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/10/2013] [Indexed: 11/21/2022] Open
Abstract
Purpose The expression of the major histocompatibility complex class I (MHC-I) in the brain has received considerable interest not only because of its fundamental role in the immune system, but also for its non-immune functions in the context of activity-dependent brain development and plasticity. Methods In the present study we evaluated the expression and cellular pattern of MHC-I in focal glioneuronal lesions associated with intractable epilepsy. MHC-I expression was studied in epilepsy surgery cases with focal cortical dysplasia (FCD I, n = 6; FCD IIa, n = 6 and FCD IIb, n = 15), tuberous sclerosis complex (TSC, cortical tubers; n = 6) or ganglioglioma (GG; n = 15) using immunocytochemistry. Evaluation of T lymphocytes with granzyme-B+ granules and albumin immunoreactivity was also performed. Results All lesions were characterized by MHC-I expression in blood vessels. Expression in both endothelial and microglial cells as well as in neurons (dysmorphic/dysplastic neurons) was observed in FCD II, TSC and GG cases. We observed perivascular and parenchymal T lymphocytes (CD8+, T-cytotoxic) with granzyme-B+ granules in FCD IIb and TSC specimens. Albumin extravasation, with uptake in astrocytes, was observed in FCD IIb and GG cases. Conclusions Our findings indicate a prominent upregulation of MHC-I as part of the immune response occurring in epileptogenic glioneuronal lesions. In particular, the induction of MHC-I in neuronal cells appears to be a feature of type II FCD, TSC and GG and may represent an important accompanying event of the immune response, associated with blood–brain barrier dysfunction, in these developmental lesions.
Collapse
Affiliation(s)
- Avanita S Prabowo
- Department of Neuro Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Adams EJ, Luoma AM. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 2013; 31:529-61. [PMID: 23298204 DOI: 10.1146/annurev-immunol-032712-095912] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MHC fold is found in proteins that have a range of functions in the maintenance of an organism's health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and β2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a β-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
25
|
Proteome analysis reveals protein candidates involved in early stages of brain regeneration of teleost fish. Neuroscience 2012; 219:302-13. [PMID: 22659563 DOI: 10.1016/j.neuroscience.2012.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 11/20/2022]
Abstract
Exploration of the molecular dynamics underlying regeneration in the central nervous system of regeneration-competent organisms has received little attention thus far. By combining a cerebellar lesion paradigm with differential proteome analysis at a post-lesion survival time of 30 min, we screened for protein candidates involved in the early stages of regeneration in the cerebellum of such an organism, the teleost fish Apteronotus leptorhynchus. Out of 769 protein spots, the intensity of 26 spots was significantly increased by a factor of at least 1.5 in the lesioned hemisphere, relative to the intact hemisphere. The intensity of 9 protein spots was significantly reduced by a factor of at least 1.5. The proteins associated with 15 of the spots were identified by peptide mass fingerprinting and/or tandem mass spectrometry, resulting in the identification of a total of 11 proteins. Proteins whose abundance was significantly increased include: erythrocyte membrane protein 4.1N, fibrinogen gamma polypeptide, fructose-biphosphate aldolase C, alpha-internexin neuronal intermediate filament protein, major histocompatibility complex class I heavy chain, 26S proteasome non-ATPase regulatory subunit 8, tubulin alpha-1C chain, and ubiquitin-specific protease 5. Proteins with significantly decreased levels of abundance include: brain glycogen phosphorylase, neuron-specific calcium-binding protein hippocalcin, and spectrin alpha 2. We hypothesize that these proteins are involved in energy metabolism, blood clotting, electron transfer in oxidative reactions, cytoskeleton degradation, apoptotic cell death, synaptic plasticity, axonal regeneration, and promotion of mitotic activity.
Collapse
|
26
|
Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J Neuroimmune Pharmacol 2012; 7:686-700. [PMID: 22391864 PMCID: PMC3419353 DOI: 10.1007/s11481-012-9345-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/06/2012] [Indexed: 12/15/2022]
Abstract
Changes in synapse structure occur in frontal neocortex with HIV encephalitis (HIVE) and may contribute to HIV-associated neurocognitive disorders (HAND). A postmortem survey was conducted to determine if mRNAs involved in synaptic transmission are perturbed in dorsolateral prefrontal cortex (DLPFC) in subjects with HIVE or HAND. Expression of the opioid neurotransmitter preproenkephalin mRNA (PENK) was significantly decreased in a sampling of 446 brain specimens from HIV-1 infected people compared to 67 HIV negative subjects. Decreased DLPFC PENK was most evident in subjects with HIVE and/or increased expression of interferon regulatory factor 1 mRNA (IRF1). Type 2 dopamine receptor mRNA (DRD2L) was decreased significantly, but not in the same set of subjects with PENK dysregulation. DRD2L downregulation occurred primarily in the subjects without HIVE or neurocognitive impairment. Subjects with neurocognitive impairment often failed to significantly downregulate DRD2L and had abnormally high IRF1 expression. Conclusion: Dysregulation of synaptic preproenkephalin and DRD2L in frontal neocortex can occur with and without neurocognitive impairment in HIV-infected people. Downregulation of DRD2L in the prefrontal cortex was associated with more favorable neuropsychological and neuropathological outcomes; the failure to downregulate DRD2L was significantly less favorable. PENK downregulation was related neuropathologically to HIVE, but was not related to neuropsychological outcome independently. Emulating endogenous synaptic plasticity pharmacodynamically could enhance synaptic accommodation and improve neuropsychological and neuropathological outcomes in HIV/AIDS.
Collapse
|
27
|
Brennand KJ, Gage FH. Concise review: the promise of human induced pluripotent stem cell-based studies of schizophrenia. Stem Cells 2011; 29:1915-22. [PMID: 22009633 PMCID: PMC3381343 DOI: 10.1002/stem.762] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SCZD) is a heritable developmental disorder. Although the molecular mechanism of disease remains unclear, insights into the disorder have been made through a vast array of experimental techniques. Together, magnetic resonance brain imaging, pharmacological, and post-mortem pathological studies have observed decreased brain volume, aberrant neurotransmitter signaling, reduced dendritic arborization, and impaired myelination in SCZD. Genome-wide association studies (GWAS) have identified common single nucleotide polymorphisms as well as rare copy number variants that contribute to SCZD, while mouse models of candidate SCZD genes show behavioral abnormalities and anatomical perturbations consistent with human disease. The advent of human induced pluripotent stem cells (hiPSCs) makes it possible to study SCZD using live human neurons with a genetic predisposition toward SCZD, even without knowledge of the genes interacting to produce the disease state. SCZD hiPSC neurons show cellular defects comparable to those identified in post-mortem human and mouse studies, and gene expression changes are consistent with predictions made by GWAS. SCZD hiPSC neurons represent a new tool to look beyond phenotype and begin to dissect the molecular mechanisms of SCZD.
Collapse
Affiliation(s)
- Kristen J Brennand
- Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037, USA
| | | |
Collapse
|
28
|
Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorg Biochem 2011; 105:1489-99. [PMID: 22099159 DOI: 10.1016/j.jinorgbio.2011.08.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/13/2011] [Accepted: 08/14/2011] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are serious multisystem developmental disorders and an urgent global public health concern. Dysfunctional immunity and impaired brain function are core deficits in ASD. Aluminum (Al), the most commonly used vaccine adjuvant, is a demonstrated neurotoxin and a strong immune stimulator. Hence, adjuvant Al has the potential to induce neuroimmune disorders. When assessing adjuvant toxicity in children, two key points ought to be considered: (i) children should not be viewed as "small adults" as their unique physiology makes them much more vulnerable to toxic insults; and (ii) if exposure to Al from only few vaccines can lead to cognitive impairment and autoimmunity in adults, is it unreasonable to question whether the current pediatric schedules, often containing 18 Al adjuvanted vaccines, are safe for children? By applying Hill's criteria for establishing causality between exposure and outcome we investigated whether exposure to Al from vaccines could be contributing to the rise in ASD prevalence in the Western world. Our results show that: (i) children from countries with the highest ASD prevalence appear to have the highest exposure to Al from vaccines; (ii) the increase in exposure to Al adjuvants significantly correlates with the increase in ASD prevalence in the United States observed over the last two decades (Pearson r=0.92, p<0.0001); and (iii) a significant correlation exists between the amounts of Al administered to preschool children and the current prevalence of ASD in seven Western countries, particularly at 3-4 months of age (Pearson r=0.89-0.94, p=0.0018-0.0248). The application of the Hill's criteria to these data indicates that the correlation between Al in vaccines and ASD may be causal. Because children represent a fraction of the population most at risk for complications following exposure to Al, a more rigorous evaluation of Al adjuvant safety seems warranted.
Collapse
Affiliation(s)
- Lucija Tomljenovic
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, 828 W. 10th Ave, Vancouver, BC, Canada V5Z 1L8.
| | | |
Collapse
|
29
|
Zanon RG, Cartarozzi LP, Victório SCS, Moraes JC, Morari J, Velloso LA, Oliveira ALR. Interferon (IFN) beta treatment induces major histocompatibility complex (MHC) class I expression in the spinal cord and enhances axonal growth and motor function recovery following sciatic nerve crush in mice. Neuropathol Appl Neurobiol 2011; 36:515-34. [PMID: 20831746 DOI: 10.1111/j.1365-2990.2010.01095.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Major histocompatibility complex (MHC) class I expression by neurones and glia constitutes an important pathway that regulates synaptic plasticity. The upregulation of MHC class I after treatment with interferon beta (IFN beta) accelerates the response to injury. Therefore the present work studied the regenerative outcome after peripheral nerve lesion and treatment with IFN beta, aiming at increasing MHC class I upregulation in the spinal cord. METHODS C57BL/6J mice were subjected to unilateral sciatic nerve crush and treatment with IFN beta. The lumbar spinal cords were processed for immunohistochemistry, in situ hybridization, Western blotting and RT-PCR, while the sciatic nerves were submitted for immunohistochemistry, morphometry and counting of regenerated axons. Motor function recovery was monitored using the walking track test. RESULTS Increased MHC class I expression in the motor nucleus of IFN beta-treated animals was detected. In the peripheral nerve, IFN beta-treated animals showed increased S100, GAP-43 and p75NTR labelling coupled with a significantly greater number of regenerated axons. No significant differences were found in neurofilament or laminin labelling. The morphological findings, indicating improvements in the regenerative process after IFN treatment were in line with the motor behaviour test applied to the animals during the recovery process. CONCLUSIONS The present data reinforce the role of MHC class I upregulation in the response to injury, and suggest that IFN treatment may be beneficial to motor recovery after axotomy.
Collapse
Affiliation(s)
- R G Zanon
- Laboratory of Nerve Regeneration, Department of Anatomy, Institute of Biology Laboratory of experimental gastroenterology, Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Ben-Ari Y, Spitzer NC. Phenotypic checkpoints regulate neuronal development. Trends Neurosci 2010; 33:485-92. [PMID: 20864191 DOI: 10.1016/j.tins.2010.08.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/22/2010] [Accepted: 08/22/2010] [Indexed: 12/22/2022]
Abstract
Nervous system development proceeds by sequential gene expression mediated by cascades of transcription factors in parallel with sequences of patterned network activity driven by receptors and ion channels. These sequences are cell type- and developmental stage-dependent and modulated by paracrine actions of substances released by neurons and glia. How and to what extent these sequences interact to enable neuronal network development is not understood. Recent evidence demonstrates that CNS development requires intermediate stages of differentiation providing functional feedback that influences gene expression. We suggest that embryonic neuronal functions constitute a series of phenotypic checkpoint signatures; neurons failing to express these functions are delayed or developmentally arrested. Such checkpoints are likely to be a general feature of neuronal development and constitute presymptomatic signatures of neurological disorders when they go awry.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Institut de Neurobiologie de la Méditerranée (INMED), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 901, Parc Scientifique de Luminy, Marseille CEDEX 09, France.
| | | |
Collapse
|
31
|
Garay PA, McAllister AK. Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders. Front Synaptic Neurosci 2010; 2:136. [PMID: 21423522 PMCID: PMC3059681 DOI: 10.3389/fnsyn.2010.00136] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022] Open
Abstract
Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Paula A Garay
- Laboratory of Dr. A.K. McAllister, Department of Neurobiology, Physiology, and Behavior, Center for Neuroscience, University of California Davis, CA, USA
| | | |
Collapse
|
32
|
Alternation of gene expression in trigeminal ganglion neurons following complete Freund's adjuvant or capsaicin injection into the rat face. J Mol Neurosci 2010; 42:200-9. [PMID: 20349343 DOI: 10.1007/s12031-010-9348-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
The hyperexcitability of trigeminal ganglion (TG) neurons following inflammation or C-fiber stimulation is known to be involved in a variety of changes in gene expression in TG neurons, resulting in pain abnormalities in orofacial regions. We analyzed nocifensive behavior following complete Freund's adjuvant (CFA) or capsaicin injection into the maxillary whisker pad, and gene expression in the TG neurons using microarray analysis. The head-withdrawal latency to capsaicin injection or the head-withdrawal threshold to mechanical stimulation of the whisker pad skin in CFA-treated rats was significantly decreased compared to vehicle-treated rats. Many up-regulated and down-regulated genes in the TG neurons of each model were reported. Genes which have not been linked to peripheral inflammation or C-fiber activation were detected. Moreover, microarray chip containing a number of non-coding sequences was also up-regulated by C-fiber activation. These findings suggest that the diverse gene expressions in TG neurons are differentially involved in the inflammatory chronic pain and the acute pain induced by C-fiber activation, and the hyperexcitation of C-fibers are associated with the activation of certain non-coding RNAs.
Collapse
|
33
|
Mignot E, Aran A. The immune system, the brain and narcolepsy. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Emmanuel Mignot
- Department of Psychiatry & Behavioral Sciences, 701 Welch Road, B basement, room 145 Palo Alto, CA 94304–5742, USA
| | - Adi Aran
- Department of Psychiatry & Behavioral Sciences, 701 Welch Road, B basement, room 145 Palo Alto, CA 94304–5742, USA
| |
Collapse
|
34
|
Epileptogenesis alters gene expression pattern in rats subjected to amygdala-dependent emotional learning. Neuroscience 2009; 159:468-82. [DOI: 10.1016/j.neuroscience.2008.12.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/11/2008] [Accepted: 12/31/2008] [Indexed: 11/18/2022]
|
35
|
Cheeran MCJ, Jiang Z, Hu S, Ni HT, Palmquist JM, Lokensgard JR. Cytomegalovirus infection and interferon-gamma modulate major histocompatibility complex class I expression on neural stem cells. J Neurovirol 2008; 14:437-47. [PMID: 18937121 DOI: 10.1080/13550280802356845] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cytomegalovirus (CMV) is the leading transmittable cause of congenital brain abnormalities in children and infection results in fatal ventriculoencephalitis in advanced acquired immunodeficiency syndrome (AIDS) patients. Pathology associated with CMV brain infection is seen predominantly in the periventricular region, an area known to harbor neural stem cells (NSCs). In the present study, using an adult model of murine CMV brain infection, the authors demonstrated that nestin-positive NSCs in the subventricular zone are susceptible to murine CMV infection. Furthermore, primary NSC cultures supported productive murine CMV replication with a 1000-fold increase in viral titers by 5 days post infection (d.p.i). Previous studies from the authors' laboratory demonstrated that CD8 lymphocytes were essential in protecting the brain against murine CMV infection. In the present study, the authors found that interferon (IFN)-gamma treatment increased the expression of major histocompatibility complex (MHC) class I on NSCs. Viral infection, on the other hand, inhibited this IFN-gamma-induced MHC up-regulation. In addition to increasing MHC class I expression, IFN-gamma (but not tumor necrosis factor [TNF]-alpha, interleukin [IL]-1 beta, or IL-10) also suppressed NSC proliferation in vitro. This decrease in proliferation was not accompanied by apoptosis or extracellular release of cellular lactate dehydrogenase (LDH), suggesting that the effects were not due to direct cytotoxicity. These studies demonstrate that NSCs are susceptible to murine CMV infection and inflammatory mediators, such as IFN-gamma, alter cellular characteristics which may have an impact on their reparative functions.
Collapse
Affiliation(s)
- Maxim C-J Cheeran
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|