1
|
Leach FE, Nagornov KO, Kozhinov AN, Tsybin YO. External Data Systems Enable Enhanced (and Sustainable) Fourier Transform Mass Spectrometry Imaging for Legacy Hybrid Linear Ion Trap-Orbitrap Platforms. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2690-2698. [PMID: 39031087 PMCID: PMC11544700 DOI: 10.1021/jasms.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Legacy Fourier transform (FT) mass spectrometers provide robust platforms for bioanalytical mass spectrometry (MS) yet lack the most modern performance capabilities. For many laboratories, the routine investment in next generation instrumentation is cost prohibitive. Field-based upgrades provide a direct path to extend the usable lifespan of MS platforms which may be considered antiquated based on performance specifications at the time of manufacture. Here we demonstrate and evaluate the performance of a hybrid linear ion trap (LTQ)-Orbitrap mass spectrometer that has been enhanced via an external high-performance data acquisition and processing system to provide true absorption mode FT processing during an experimental acquisition. For the application to mass spectrometry imaging, several performance metrics have been improved including mass resolving power, mass accuracy, and dynamic range to provide an FTMS system comparable to current platforms. We also demonstrate, perhaps, the unexpected ability of these legacy platforms to detect usable time-domain signals up to 5 s in duration to achieve a mass resolving power 8× higher than the original platform specification.
Collapse
Affiliation(s)
- Franklin E. Leach
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | | | | | | |
Collapse
|
2
|
Masucci C, Nagornov KO, Kozhinov AN, Kraft K, Tsybin YO, Bleiner D. Evaluation of atmospheric-plasma-source absorption mode Fourier transform Orbitrap mass spectrometry for chlorinated paraffin mixtures. Anal Bioanal Chem 2024; 416:5133-5144. [PMID: 39138657 PMCID: PMC11377688 DOI: 10.1007/s00216-024-05450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
Chlorinated paraffins (CP) are complex molecular mixtures occurring in a wide range of isomers and homologs of environmental hazards, whose analytical complexity demand advanced mass spectrometry (MS) methods for their characterization. The reported formation of chlorinated olefins (COs) and other transformation products during CP biotransformation and degradation can alter the MS analysis, increasing the high resolution required to distinguish CPs from their degradation products. An advanced setup hyphenating a plasma ionization source and an external high-performance data acquisition and processing system to the legacy hybrid LTQ Orbitrap XL mass spectrometer is reported. First, the study demonstrated the versatility of a liquid sampling atmospheric pressure glow discharge, as a soft ionization technique, for CP analysis. Second, enhanced resolution and sensitivity provided by the absorption mode Fourier transform spectral representation on this legacy mass spectrometer are shown. The developed Orbitrap-based platform allowed the detection of new isotopic clusters and CPs and COs to be distinguished at medium resolution (setting 30,000 at m/z 400, ~ 400 ms transients), and even chlorinated di-olefins (CdiOs) at higher resolution (setting 100,000 at m/z 400, ~ 1500 ms transients). Overall, such proof-of-principle instrumental improvements are promising for environmental and analytical research in the field of CP analysis.
Collapse
Affiliation(s)
- Claudia Masucci
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | | - Kevin Kraft
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Davide Bleiner
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Grgic A, Nagornov KO, Kozhinov AN, Michael JA, Anthony IG, Tsybin YO, Heeren RM, Ellis SR. Ultrahigh-Mass Resolution Mass Spectrometry Imaging with an Orbitrap Externally Coupled to a High-Performance Data Acquisition System. Anal Chem 2024; 96:794-801. [PMID: 38127459 PMCID: PMC10794996 DOI: 10.1021/acs.analchem.3c04146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) is a powerful analytical tool that enables molecular sample analysis while simultaneously providing the spatial context of hundreds or even thousands of analytes. However, because of the lack of a separation step prior to ionization and the immense diversity of biomolecules, such as lipids, including numerous isobaric species, the coupling of ultrahigh mass resolution (UHR) with MSI presents one way in which this complexity can be resolved at the spectrum level. Until now, UHR MSI platforms have been restricted to Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Here, we demonstrate the capabilities of an Orbitrap-based UHR MSI platform to reach over 1,000,000 mass resolution in a lipid mass range (600-950 Da). Externally coupling the Orbitrap Q Exactive HF with the high-performance data acquisition system FTMS Booster X2 provided access to the unreduced data in the form of full-profile absorption-mode FT mass spectra. In addition, it allowed us to increase the time-domain transient length from 0.5 to 10 s, providing improvement in the mass resolution, signal-to-noise ratio, and mass accuracy. The resulting UHR performance generates high-quality MALDI MSI images and simplifies the identification of lipids. Collectively, these improvements resulted in a 1.5-fold increase in annotations, demonstrating the advantages of this UHR imaging platform for spatial lipidomics using MALDI-MSI.
Collapse
Affiliation(s)
- Andrej Grgic
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | | | | | - Jesse A. Michael
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Ian G.M. Anthony
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | | | - Ron M.A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | - Shane R. Ellis
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
4
|
James VK, Sanders JD, Aizikov K, Fort KL, Grinfeld D, Makarov A, Brodbelt JS. Advancing Orbitrap Measurements of Collision Cross Sections to Multiple Species for Broad Applications. Anal Chem 2022; 94:15613-15620. [DOI: 10.1021/acs.analchem.2c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Virginia K. James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D. Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | | | | | - Alexander Makarov
- Thermo Fisher Scientific, Bremen 28199, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584, The Netherlands
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Untargeted metabolomic analysis by ultra-high-resolution mass spectrometry for the profiling of new Italian wine varieties. Anal Bioanal Chem 2022; 414:7805-7812. [PMID: 36121471 DOI: 10.1007/s00216-022-04314-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/01/2022]
Abstract
The chemical composition of wine samples comprises numerous bioactive compounds responsible for unique flavor and health-promoting properties. Thus, it's important to have a complete overview of the metabolic profile of new wine products in order to obtain peculiar information in terms of their phytochemical composition, quality, and traceability. To achieve this aim, in this work, a mass spectrometry-based phytochemical screening was performed on seven new wine products from Villa D'Agri in the Basilicata region (Italy), i.e., Aglianico Bianco, Plavina, Guisana, Giosana, Malvasia ad acino piccolo, Colata Murro and Santa Sofia. Ultra-high-resolution mass spectrometry data were processed into absorption mode FT-ICR mass spectra, in order to remove artifacts and achieve a higher resolution and lower levels of noise. Accurate mass-to-charge ratio (m/z) values were converted into putative elemental formulas. Therefore, 2D van Krevelen diagrams were used as a tool to obtain molecular formula maps useful to perform a rapid and more comprehensive analysis of the wine sample metabolome. The presence of important metabolite classes, i.e., fatty acid derivatives, amino acids and peptides, carbohydrates and phenolic derivatives, was assessed. Moreover, the comparison of obtained metabolomic maps revealed some differences among profiles, suggesting their employment as metabolic fingerprints. This study shed some light on the metabolic composition of seven new Italian wine varieties, improving their value in terms of related bioactive compound content. Moreover, different metabolomic fingerprints were obtained for each of them, suggesting the use of molecular maps as innovative tool to ascertain their unique metabolic profile.
Collapse
|
6
|
Xu J, Li M, Marzullo B, Wootton CA, Barrow MP, O’Connor PB. Fine Structure in Isotopic Peak Distributions Measured Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Comparison between an Infinity ICR Cell and a Dynamically Harmonized ICR Cell. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1499-1509. [PMID: 35763614 PMCID: PMC9354249 DOI: 10.1021/jasms.2c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fine structure of isotopic peak distributions of glutathione in mass spectra is measured using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at 12 and 15 T magnetic field, with an infinity cell and a dynamically harmonized cell (DHC) respectively. The resolved peaks in the fine structure of glutathione consist of 2H, 13C, 15N, 17O, 18O, 33S, 34S, 36S, and combinations of them. The positions of the measured fine structure peaks agree with the simulated isotopic distributions with the mass error less than 250 ppb in broadband mode for the infinity cell and no more than 125 ppb with the DHC after internal calibration. The 15 T FT-ICR MS with DHC cell also resolved around 30 isotopic peaks in broadband with a resolving power (RP) of 2 M. In narrowband (m/z 307-313), our current highest RP of 13.9 M in magnitude mode was observed with a 36 s transient length by the 15 T FT-ICR MS with the DHC and 2ω detection on the 15 T offers slightly higher RP (14.8 M) in only 18 s. For the 12 T FT-ICR MS with the infinity cell, the highest RP achieved was 15.6 M in magnitude mode with a transient length of 45 s. Peak decay was observed for low abundance peaks, which could be due to the suppression effects from the most abundant peak, as result of ion cloud Coulombic interactions (space-charge).
Collapse
|
7
|
Bahureksa W, Borch T, Young RB, Weisbrod CR, Blakney GT, McKenna AM. Improved Dynamic Range, Resolving Power, and Sensitivity Achievable with FT-ICR Mass Spectrometry at 21 T Reveals the Hidden Complexity of Natural Organic Matter. Anal Chem 2022; 94:11382-11389. [PMID: 35917115 DOI: 10.1021/acs.analchem.2c02377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fourier transform ion-cyclotron resonance mass spectrometry (FT-ICR MS) is the only mass analyzer that can resolve the molecular complexity of natural organic matter at the level of elemental composition assignment. Here, we leverage the high dynamic range, resolving power, resistance to peak coalescence, and maximum ion number and ion trapping duration in a custom built, 21 tesla hybrid linear ion trap /FT-ICR mass spectrometer for a dissolved organic matter standard (Suwanne River Fulvic Acid). We compare the effect of peak-picking threshold (3σ, 4σ, 5σ, and 6σ) on number of elemental composition assignments, mass measurement accuracy, and dynamic range for a 6.3 s transient across the mass range of m/z 200-1200 that comprises the highest achieved resolving power broadband FT-ICR mass spectrum collected to date. More than 36 000 species are assigned with signal magnitude greater than 3σ at root-mean-square mass error of 36 ppb, the most species identified reported to date for dissolved organic matter. We identify 18O and 17O isotopologues and resolve isobaric overlaps on the order of a few electrons across a wide mass range (up to m/z 1000) leveraging mass resolving powers (3 000 000 at m/z 200) only achievable by 21 T FT-ICR MS and increased by ∼30% through absorption mode data processing. Elemental compositions unique to the 3σ span a wide compositional range of aromaticity not detected at higher peak-picking thresholds. Furthermore, we leverage the high dynamic range at 21 T FT-ICR MS to provide a molecular catalogue of a widely utilized reference standard (SRFA) to the analytical community collected on the highest performing mass analyzer for complex mixture analysis to date. This instrument is available free of charge to scientists worldwide.
Collapse
Affiliation(s)
- William Bahureksa
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 United States
| | - Thomas Borch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 United States.,Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States
| | - Robert B Young
- Chemical Analysis & Instrumentation Laboratory, New Mexico State University, MSC 3RES, Las Cruces, New Mexico 88003, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University,1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Greg T Blakney
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University,1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Amy M McKenna
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States.,National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University,1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| |
Collapse
|
8
|
Nagornov KO, Kozhinov AN, Gasilova N, Menin L, Tsybin YO. Characterization of the Time-Domain Isotopic Beat Patterns of Monoclonal Antibodies in Fourier Transform Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1113-1125. [PMID: 35638743 DOI: 10.1021/jasms.1c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The time-domain transients in the Fourier transform mass spectrometry (FTMS) analysis of monoclonal antibodies (mAbs) are known to exhibit characteristic isotopic beat patterns. These patterns are defined by the isotopic distributions of all gaseous mAb ions present in the FTMS mass analyzer, originating from single or multiple charge states, and from single or multiple proteoforms. For an isolated charge state of a single proteoform, the mAb isotopic beat pattern resembles narrow splashes of signal amplitude (beats), spaced periodically in the time-domain transient, with broad (often exceeding 1 s) "valleys" between them. Here, we reinforce the importance of isotopic beat patterns for the accurate interpretation and presentation of FTMS data in the analysis of mAbs and other large biopolymers. An updated, mAb-grade version of the transient-mediated FTMS data simulation and visualization tool, FTMS Simulator is introduced and benchmarked. We then apply this tool to evaluate the charge-state dependent characteristics of isotopic beats in mAbs analyses with modern models of Orbitrap and ion cyclotron resonance (ICR) FTMS instruments, including detection of higher-order harmonics. We demonstrate the impact of the isotopic beat patterns on the analytical characteristics of the resulting mass spectra of individual and overlapping mAb proteoforms. The results reported here detail highly nonlinear dependences of resolution and signal-to-noise ratio on the time-domain transient period, absorption or magnitude mode spectra representation, and apodization functions. The provided description and the demonstrated ability to routinely conduct accurate simulations of FTMS data for large biopolymers should aid the end-users of Orbitrap and ICR FTMS instruments in the analysis of mAbs and other biopolymers, including viruses.
Collapse
Affiliation(s)
| | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
9
|
Romero CM, Redman AAPH, Owens J, Terry SA, Ribeiro GO, Gorzelak MA, Oldenburg TBP, Hazendonk P, Larney FJ, Hao X, Okine E, McAllister TA. Effects of feeding a pine-based biochar to beef cattle on subsequent manure nutrients, organic matter composition and greenhouse gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152267. [PMID: 34902397 DOI: 10.1016/j.scitotenv.2021.152267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Biochar in ruminant diets is being assessed as a method for simultaneously improving animal production and reducing enteric CH4 emissions, but little is known about subsequent biochar-manure interactions post-excretion. We examined chemical properties, greenhouse gas (GHG) emissions and organic matter (OM) composition during farm scale stockpiling (SP) or composting (CP) of manure from cattle that either received a pine-based biochar in their diet (BM) or did not (RM). Manure piles were monitored hourly for temperature and weekly for top surface CO2, N2O and CH4 fluxes over 90 d in a semiarid location near Lethbridge, AB, Canada. Results indicate that cumulative CO2, N2O and CH4 emissions were not affected by biochar, implying that BM was as labile as RM. The pH, total C (TC), NO3-N and Olsen P were also not influenced by biochar, although it was observed that NH4-N and OM extractability were both 13% lower in BM than RM. Solid-state 13C nuclear magnetic resonance (NMR) showed that biochar increased stockpile/compost aromaticity, yet it did not alter the bulk C speciation of manure OM. Further analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that dissolved OM was enriched by strongly reduced chemical constituents, with BM providing more humic-like OM precursors than RM. Inclusion of a pine-based biochar in cattle diets to generate BM is consistent with current trends in the circular economy, "closing the loop" in agricultural supply chains by returning C-rich organic amendments to croplands. Stockpiling/composting the resulting BM, however, may not provide a clear advantage over directly mixing low levels of biochar with manure. Further research is required to validate BM as a tool to reduce the C footprint of livestock waste management.
Collapse
Affiliation(s)
- Carlos M Romero
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada.
| | - Abby-Ann P H Redman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Jen Owens
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Stephanie A Terry
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Gabriel O Ribeiro
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Monika A Gorzelak
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Thomas B P Oldenburg
- Petroleum Reservoir Group, Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul Hazendonk
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Francis J Larney
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Xiying Hao
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Erasmus Okine
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
10
|
Shaw JB, Cooper-Shepherd DA, Hewitt D, Wildgoose JL, Beckman JS, Langridge JI, Voinov VG. Enhanced Top-Down Protein Characterization with Electron Capture Dissociation and Cyclic Ion Mobility Spectrometry. Anal Chem 2022; 94:3888-3896. [PMID: 35188751 PMCID: PMC8908312 DOI: 10.1021/acs.analchem.1c04870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tandem mass spectrometry of denatured, multiply charged high mass protein precursor ions yield extremely dense spectra with hundreds of broad and overlapping product ion isotopic distributions of differing charge states that yield an elevated baseline of unresolved "noise" centered about the precursor ion. Development of mass analyzers and signal processing methods to increase mass resolving power and manipulation of precursor and product ion charge through solution additives or ion-ion reactions have been thoroughly explored as solutions to spectral congestion. Here, we demonstrate the utility of electron capture dissociation (ECD) coupled with high-resolution cyclic ion mobility spectrometry (cIMS) to greatly increase top-down protein characterization capabilities. Congestion of protein ECD spectra was reduced using cIMS of the ECD product ions and "mobility fractions", that is, extracted mass spectra for segments of the 2D mobiligram (m/z versus drift time). For small proteins, such as ubiquitin (8.6 kDa), where mass resolving power was not the limiting factor for characterization, pre-IMS ECD and mobility fractions did not significantly increase protein sequence coverage, but an increase in the number of identified product ions was observed. However, a dramatic increase in performance, measured by protein sequence coverage, was observed for larger and more highly charged species, such as the +35 charge state of carbonic anhydrase (29 kDa). Pre-IMS ECD combined with mobility fractions yielded a 135% increase in the number of annotated isotope clusters and a 75% increase in unique product ions compared to processing without using the IMS dimension. These results yielded 89% sequence coverage for carbonic anhydrase.
Collapse
Affiliation(s)
- Jared B. Shaw
- e-MSion
Inc., 2121 NE Jack London Street, Corvallis, Oregon 97330, United States, (J.S.)
| | | | - Darren Hewitt
- Waters
Corporation, Wilmslow, Cheshire SK9 4AX, U.K.
| | | | - Joseph S. Beckman
- e-MSion
Inc., 2121 NE Jack London Street, Corvallis, Oregon 97330, United States,Linus
Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Valery G. Voinov
- e-MSion
Inc., 2121 NE Jack London Street, Corvallis, Oregon 97330, United States
| |
Collapse
|
11
|
Kim S, Kim D, Jung MJ, Kim S. Analysis of environmental organic matters by Ultrahigh-Resolution mass spectrometry-A review on the development of analytical methods. MASS SPECTROMETRY REVIEWS 2022; 41:352-369. [PMID: 33491249 DOI: 10.1002/mas.21684] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Owing to the increasing environmental and climate changes globally, there is an increasing interest in the molecular-level understanding of environmental organic compound mixtures, that is, the pursuit of complete and detailed knowledge of the chemical compositions and related chemical reactions. Environmental organic molecule mixtures, including those in air, soil, rivers, and oceans, have extremely complex and heterogeneous chemical compositions. For their analyses, ultrahigh-resolution and sub-ppb level mass accuracy, achievable using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), are important. FT-ICR MS has been successfully used to analyze complex environmental organic molecule mixtures such as natural, soil, particulate, and dissolved organic matter. Despite its success, many limitations still need to be overcome. Sample preparation, ionization, structural identification, chromatographic separation, and data interpretation are some key areas that have been the focus of numerous studies. This review describes key developments in analytical techniques in these areas to aid researchers seeking to start or continue investigations for the molecular-level understanding of environmental organic compound mixtures.
Collapse
Affiliation(s)
- Sungjune Kim
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Donghwi Kim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, Korea
| | - Maeng-Joon Jung
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, Korea
- Mass Spectrometry Convergence Research Center and Green-Nano Materials Research Center, Daegu, Korea
| |
Collapse
|
12
|
A novel route for identifying starch diagenetic products in the archaeological record. PLoS One 2021; 16:e0258779. [PMID: 34793489 PMCID: PMC8601532 DOI: 10.1371/journal.pone.0258779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
This work introduces a novel analytical chemistry method potentially applicable to the study of archaeological starch residues. The investigation involved the laboratory synthesis of model Maillard reaction mixtures and their analysis through Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS). Thus, starch from sixteen plant species were matured while reacting it with the amino acid glycine. The FTICR-MS analysis revealed > 5,300 molecular compounds, with numerous unique heteroatom rich compound classes, ranging from 20 (Zea mays) to 50 (Sorghum bicolor). These classes were investigated as repositories of chemical structure retaining source and process-specific character, linked back to botanical provenance. We discussed the Maillard reaction products thus generated, a possible pathway for the preservation of degraded starch, while also assessing diagenetic recalcitrance and adsorption potential to mineral surfaces. In some cases, hydrothermal experimentation on starches without glycine reveals that the chemical complexity of the starch itself is sufficient to produce some Maillard reaction products. The article concludes that FTICR-MS offers a new analytical window to characterize starchy residue and its diagenetic products, and is able to recognize taxonomic signals with the potential to persist in fossil contexts.
Collapse
|
13
|
Sanders JD, Butalewicz JP, Clowers BH, Brodbelt JS. Absorption Mode Fourier Transform Ion Mobility Mass Spectrometry Multiplexing Combined with Half-Window Apodization Windows Improves Resolution and Shortens Acquisition Times. Anal Chem 2021; 93:9513-9520. [PMID: 34185992 DOI: 10.1021/acs.analchem.1c01427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fourier transform multiplexing enables the coupling of drift tube ion mobility to a wide array of mass spectrometers with improved ion utilization and duty cycles compared to dual-gate signal averaging methods. Traditionally, the data generated by this method is presented in the magnitude mode, but significant improvements in resolution and the signal-to-noise ratio (SNR) are expected if the data can be phase corrected and presented in the absorption mode. A method to simply and reliably determine and correct phase shifts in Fourier transform ion mobility mass spectrometry data using information readily available to any user is presented and evaluated for both small molecule and intact protein analyses with no modification to instrument hardware or experimental procedures. Additionally, the effects of apodization and zero padding are evaluated for both processing methods, and a strategy to use these techniques to reduce acquisition times is presented and evaluated. Resolution is improved by an average factor of 1.6, the SNR is improved by an average factor of 1.2, and acquisition times are reduced by up to 80% through the application of absorption mode processing combined with apodization and zero padding.
Collapse
Affiliation(s)
- James D Sanders
- The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Brian H Clowers
- Washington State University, Pullman, Washington 99163, United States
| | | |
Collapse
|
14
|
Phase Correction for Absorption Mode Two-Dimensional Mass Spectrometry. Molecules 2021; 26:molecules26113388. [PMID: 34205070 PMCID: PMC8199897 DOI: 10.3390/molecules26113388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/03/2022] Open
Abstract
Two-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry method that relies on manipulating ion motions to correlate precursor and fragment ion signals. 2D mass spectra are obtained by performing a Fourier transform in both the precursor ion mass-to-charge ratio (m/z) dimension and the fragment ion m/z dimension. The phase of the ion signals evolves linearly in the precursor m/z dimension and quadratically in the fragment m/z dimension. This study demonstrates that phase-corrected absorption mode 2D mass spectrometry improves signal-to-noise ratios by a factor of 2 and resolving power by a factor of 2 in each dimension compared to magnitude mode. Furthermore, phase correction leads to an easier differentiation between ion signals and artefacts, and therefore easier data interpretation.
Collapse
|
15
|
Ge J, Ma C, Qi Y, Wang X, Wang W, Hu M, Hu Q, Yi Y, Shi D, Yue F, Li S, Volmer DA. Quadrupole detection FT-ICR mass spectrometry offers deep profiling of residue oil: A systematic comparison of 2ω 7 Tesla versus 15 Tesla instruments. ANALYTICAL SCIENCE ADVANCES 2021; 2:272-278. [PMID: 38716153 PMCID: PMC10989625 DOI: 10.1002/ansa.202000123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2024]
Abstract
Mass resolving power is one of the key features of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which enables the molecular characterization of complex mixtures. Quadrupole (2ω) detection provides a significant step forward in FT-ICR MS performance, as it doubles the resolving power for a given signal acquisition time. Whether this 2ω detection technique truly substitutes for a higher magnetic field remains unknown however. In this study, a residue oil sample was characterized using both a 2ω 7 Tesla FT-ICR and a 15 Tesla FT-ICR instrument, and analytical figures of merit were systematically compared. It was shown that 2ω 7T FT-ICR MS provided comparable performance in the deep profiling of the complex oil sample, with better signal intensities and reproducibilities for absorption-mode processing. The 15T FT-ICR MS gave more precise measurements with better estimates of the sample's elemental compositions. To the best of our knowledge, this is the first published study, which thoroughly compared the performance of 2ω detection on a low magnetic field instrument with that of a high magnetic field FT-ICR-MS.
Collapse
Affiliation(s)
- Jinfeng Ge
- Institute of Surface‐Earth System ScienceSchool of Earth System ScienceTianjin UniversityTianjinChina
| | - Chao Ma
- Institute of Surface‐Earth System ScienceSchool of Earth System ScienceTianjin UniversityTianjinChina
| | - Yulin Qi
- Institute of Surface‐Earth System ScienceSchool of Earth System ScienceTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai RimTianjin UniversityTianjinChina
| | - Xiaowei Wang
- Analytical Chemistry DepartmentResearch Institute of Petroleum Processing (RIPP), SinopecBeijingChina
| | - Wei Wang
- Analytical Chemistry DepartmentResearch Institute of Petroleum Processing (RIPP), SinopecBeijingChina
| | - Miao Hu
- CNOOC Research Institute of Refining and PetrochemicalsBeijingChina
| | - Qiaozhuan Hu
- Institute of Surface‐Earth System ScienceSchool of Earth System ScienceTianjin UniversityTianjinChina
| | - Yuan‐Bi Yi
- Institute of Surface‐Earth System ScienceSchool of Earth System ScienceTianjin UniversityTianjinChina
| | - Dejun Shi
- Petrochina Petrochemical Research InstituteBeijingChina
| | - Fu‐Jun Yue
- Institute of Surface‐Earth System ScienceSchool of Earth System ScienceTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai RimTianjin UniversityTianjinChina
| | - Si‐Liang Li
- Institute of Surface‐Earth System ScienceSchool of Earth System ScienceTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai RimTianjin UniversityTianjinChina
| | | |
Collapse
|
16
|
Bills JR, Nagornov KO, Kozhinov AN, Williams TJ, Tsybin YO, Marcus RK. Improved Uranium Isotope Ratio Analysis in Liquid Sampling-Atmospheric Pressure Glow Discharge/Orbitrap FTMS Coupling through the Use of an External Data Acquisition System. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1224-1236. [PMID: 33793219 DOI: 10.1021/jasms.1c00051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Isotope ratio (IR) analysis of natural abundance uranium presents a formidable challenge for mass spectrometry (MS): the required spectral dynamic range needs to enable the quantitatively accurate measurement of the 234UO2 species present at ∼0.0053% isotopic abundance. We address this by empowering a benchtop Orbitrap Fourier transform mass spectrometer (FTMS) coupled with the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ion source and an external high-performance data acquisition system, FTMS Booster X2. The LS-APGD microplasma has demonstrated impressive capabilities regarding elemental and IR analysis when coupled with Orbitrap FTMS. Despite successes, there are limitations regarding the dynamic range and mass resolution that stem from space charge effects and data acquisition and processing restrictions. To overcome these limitations, the FTMS Booster was externally interfaced to an LS-APGD Q Exactive Focus Orbitrap FTMS to obtain time-domain signals (transients) and to process unreduced data. The unreduced time-domain data acquisition with user-controlled processing permit the evaluation of the effects of in-hardware transient phasing, increased transient lengths, advanced transient coadding, varying the length of a transient to be processed with a user-defined time increment, and the use of absorption-mode FT (aFT) processing methods on IR analysis. The added capabilities extend the spectral dynamic range of the instrument to at least 4-5 orders of magnitude and provide a resolution improvement from ∼70k to 900k m/Δm at 200 m/z. The empowered LS-APGD Orbitrap platform allows for the simultaneous measurement of 234UO2 and the prominent 235UO2 and 238UO2 isotopic species at their natural abundances, ultimately yielding improvements in performance when compared to previous uranium IR results on this same Q Exactive Focus instrument.
Collapse
Affiliation(s)
- Jacob R Bills
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | | | - Tyler J Williams
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
17
|
Cramm MA, Neves BDM, Manning CCM, Oldenburg TBP, Archambault P, Chakraborty A, Cyr-Parent A, Edinger EN, Jaggi A, Mort A, Tortell P, Hubert CRJ. Characterization of marine microbial communities around an Arctic seabed hydrocarbon seep at Scott Inlet, Baffin Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143961. [PMID: 33373752 DOI: 10.1016/j.scitotenv.2020.143961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Seabed hydrocarbon seeps present natural laboratories for investigating responses of marine ecosystems to petroleum input. A hydrocarbon seep near Scott Inlet, Baffin Bay, was visited for in situ observations and sampling in the summer of 2018. Video evidence of an active hydrocarbon seep was confirmed by methane and hydrocarbon analysis of the overlying water column, which is 260 m at this site. Elevated methane concentrations in bottom water above and down current from the seep decreased to background seawater levels in the mid-water column >150 m above the seafloor. Seafloor microbial mats morphologically resembling sulfide-oxidizing bacteria surrounded areas of bubble ebullition. Calcareous tube worms, brittle stars, shrimp, sponges, sea stars, sea anemones, sea urchins, small fish and soft corals were observed near the seep, with soft corals showing evidence for hydrocarbon incorporation. Sediment microbial communities included putative methane-oxidizing Methyloprofundus, sulfate-reducing Desulfobulbaceae and sulfide-oxidizing Sulfurovum. A metabolic gene diagnostic for aerobic methanotrophs (pmoA) was detected in the sediment and bottom water above the seep epicentre and up to 5 km away. Both 16S rRNA gene and pmoA amplicon sequencing revealed that pelagic microbial communities oriented along the geologic basement rise associated with methane seepage (running SW to NE) differed from communities in off-axis water up to 5 km away. Relative abundances of aerobic methanotrophs and putative hydrocarbon-degrading bacteria were elevated in the bottom water down current from the seep. Detection of bacterial clades typically associated with hydrocarbon and methane oxidation highlights the importance of Arctic marine microbial communities in mitigating hydrocarbon emissions from natural geologic sources.
Collapse
Affiliation(s)
- Margaret A Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada.
| | - Bárbara de Moura Neves
- Fisheries and Oceans Canada, Ecological Sciences Section, 80 East White Hills Road, P.O. Box 5667, St. John's, Newfoundland A1C 5X1, Canada
| | - Cara C M Manning
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas B P Oldenburg
- Department of Geoscience, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada
| | - Philippe Archambault
- ArcticNet, Québec Océan, Takuvik Département de Biologie, Université Laval, Québec G1V 0A6, Canada
| | - Anirban Chakraborty
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada
| | - Annie Cyr-Parent
- Department of Economic Development and Transportation, Government of Nunavut, Building 1104A, Inuksugait Plaza, PO Box 1000, Station 1500, Iqaluit, NU X0A 0H0, Canada
| | - Evan N Edinger
- Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John's, Newfoundland A1C 5S7, Canada
| | - Aprami Jaggi
- Department of Geoscience, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada
| | - Andrew Mort
- Natural Resources Canada, 3303 33 Street NW, Calgary, Alberta T2L 2A7, Canada
| | - Philippe Tortell
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Casey R J Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
18
|
Gstöttner C, Reusch D, Haberger M, Dragan I, Van Veelen P, Kilgour DPA, Tsybin YO, van der Burgt YEM, Wuhrer M, Nicolardi S. Monitoring glycation levels of a bispecific monoclonal antibody at subunit level by ultrahigh-resolution MALDI FT-ICR mass spectrometry. MAbs 2021; 12:1682403. [PMID: 31630606 PMCID: PMC6927770 DOI: 10.1080/19420862.2019.1682403] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bispecific monoclonal antibodies (BsAbs) are engineered proteins with multiple functionalities and properties. The "bi-specificity" of these complex biopharmaceuticals is a key characteristic for the development of novel and more effective therapeutic strategies. The high structural complexity of BsAbs poses a challenge to the analytical methods needed for their characterization. Modifications of the BsAb structure, resulting from enzymatic and non-enzymatic processes, further complicate the analysis. An important example of the latter type of modification is glycation, which can occur in the manufacturing process, during storage in the formulation or in vivo after application of the drug. Glycation affects the structure, function, and stability of monoclonal antibodies, and consequently, a detailed analysis of glycation levels is required. Mass spectrometry (MS) plays a key role in the structural characterization of monoclonal antibodies and top-down, middle-up and middle-down MS approaches are increasingly used for the analysis of modifications. Here, we apply a novel middle-up strategy, based on IdeS digestion and matrix-assisted laser desorption ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) MS, to analyze all six different BsAb subunits in a single high-resolution mass spectrum, namely two light chains, two half fragment crystallizable regions and two Fd' regions, thus avoiding upfront chromatography. This method was used to monitor glycation changes during a 168 h forced-glycation experiment. In addition, hot spot glycation sites were localized using top-down and middle-down MALDI-in-source decay FT-ICR MS, which provided complementary information compared to standard bottom-up MS.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Markus Haberger
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Irina Dragan
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Peter Van Veelen
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - David P A Kilgour
- Department of Chemistry, Nottingham Trent University, Nottingham, U.K
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, Lausanne, Switzerland
| | - Yuri E M van der Burgt
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Simone Nicolardi
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| |
Collapse
|
19
|
Nagornov KO, Kozhinov AN, Nicol E, Tsybin OY, Touboul D, Brunelle A, Tsybin YO. Narrow Aperture Detection Electrodes ICR Cell with Quadrupolar Ion Detection for FT-ICR MS at the Cyclotron Frequency. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2258-2269. [PMID: 32966078 DOI: 10.1021/jasms.0c00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ion signal detection at the true (unperturbed) cyclotron frequency instead of the conventional reduced cyclotron frequency has remained a formidable challenge since the inception of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Recently, routine FT-ICR MS at the true cyclotron frequency has become a reality with the implementation of ICR cells with narrow aperture detection electrodes (NADEL). Here, we describe the development and implementation of the next generation of these cells, namely, a 2xNADEL ICR cell, which comprises four flat detect and four ∼45° cylindrical excite electrodes, enabling independent ion excitation and quadrupolar ion detection. The performance of the 2xNADEL ICR cell was evaluated on two commercial FT-ICR MS platforms, 10 T LTQ FT from Thermo Scientific and 9.4 T SolariX XR from Bruker Daltonics. The cells provided accurate mass measurements in the analyses of singly and multiply charged peptides (root-mean-square, RMS, mass error Δm/m of 90 ppb), proteins (Δm/m = 200 ppb), and petroleum fractions (Δm/m < 200 ppb). Due to the reduced influence of measured frequency on the space charge and external (trapping) electric fields, the 2xNADEL ICR cells exhibited stable performance in a wide range of trapping potentials (1-20 V). Similarly, in a 13 h rat brain MALDI imaging experiment, the RMS mass error did not exceed 600 ppb even for low signal-to-noise ratio analyte peaks. Notably, the same set of calibration constants was applicable to Fourier spectra in all pixels, reducing the need for recalibration at the individual pixel level. Overall, these results support further experimental development and fundamentals investigation of this promising technology.
Collapse
Affiliation(s)
| | | | - Edith Nicol
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Oleg Yu Tsybin
- Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Alain Brunelle
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
- Laboratoire d'Archéologie Moléculaire et Structurale, LAMS UMR8220, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Nicolardi S, Kilgour DPA, van der Burgt YEM, Wuhrer M. Improved N- and C-Terminal Sequencing of Proteins by Combining Positive and Negative Ion MALDI In-Source Decay Mass Spectrometry. Anal Chem 2020; 92:12429-12436. [PMID: 32803948 PMCID: PMC7498143 DOI: 10.1021/acs.analchem.0c02198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/17/2020] [Indexed: 01/10/2023]
Abstract
The development of various ionization and fragmentation techniques has been of key importance for establishing mass spectrometry (MS) as a powerful tool for protein characterization. One example of this is matrix-assisted laser desorption/ionization (MALDI) combined with in-source decay (ISD) fragmentation that allows mapping of N- and C-terminal regions of large proteins without the need for proteolysis. Positive ion mode ISD fragments are commonly assigned in the mass region above m/z 1000, while MALDI matrix ions generally hamper the detection of smaller singly charged fragments. The ultrahigh resolving power provided by Fourier transform ion cyclotron resonance (FT-ICR) MS partially overcomes this limitation, but to further increase the detection of smaller fragments we have revisited the application of negative ion mode MALDI-ISD and found good coverage of the peptide chain termini starting from c'2 and z'2 fragment ions. For the first time, we demonstrate that the combination of negative and positive ion MALDI FT-ICR MS is a useful tool to improve the characterization of mAbs. The different specificities of the two ion modes allowed us to selectively cover the sequence of the light and heavy chains of mAbs at increased sensitivity. A comprehensive evaluation of positive and negative ion mode MALDI-ISD FT-ICR MS in the m/z range 46-13 500 showed an increased sequence coverage for three standard proteins, namely, myoglobin, SiLuLite mAb, and NIST mAb. The data obtained in the two ion modes were, in part, complementary.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center
for Proteomics & Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - David P. A. Kilgour
- Department
of Chemistry, Nottingham Trent University, Nottingham NG11 0JN, U.K.
| | - Yuri E. M. van der Burgt
- Center
for Proteomics & Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Manfred Wuhrer
- Center
for Proteomics & Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| |
Collapse
|
21
|
Nagornov KO, Kozhinov AN, Gasilova N, Menin L, Tsybin YO. Transient-Mediated Simulations of FTMS Isotopic Distributions and Mass Spectra to Guide Experiment Design and Data Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1927-1942. [PMID: 32816459 DOI: 10.1021/jasms.0c00190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fourier transform mass spectrometry (FTMS) applications require accurate analysis of extremely complex mixtures of species in wide mass and charge state ranges. To optimize the related FTMS data analysis accuracy, parameters for data acquisition and the allied data processing should be selected rationally, and their influence on the data analysis outcome is to be understood. To facilitate this selection process and to guide the experiment design and data processing workflows, we implemented the underlying algorithms in a software tool with a graphical user interface, FTMS Isotopic Simulator. This tool computes FTMS data via time-domain data (transient) simulations for user-defined molecular species of interest and FTMS instruments, including diverse Orbitrap FTMS models, followed by user-specified FT processing steps. Herein, we describe implementation and benchmarking of this tool for analysis of a wide range of compounds as well as compare simulated and experimentally generated FTMS data. In particular, we discuss the use of this simulation tool for narrowband, broadband, and low- and high-resolution analysis of small molecules, peptides, and proteins, up to the level of their isotopic fine structures. By demonstrating the allied FT processing artifacts, we raise awareness of a proper selection of FT processing parameters for modern applications of FTMS, including intact mass analysis of proteoforms and top-down proteomics. Overall, the described transient-mediated approach to simulate FTMS data has proven useful for supporting contemporary FTMS applications. We also find its utility in fundamental FTMS studies and creating didactic materials for FTMS teaching.
Collapse
Affiliation(s)
| | - Anton N Kozhinov
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Natalia Gasilova
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Nicolardi S, Kilgour DPA, Dolezal N, Drijfhout JW, Wuhrer M, van der Burgt YEM. Evaluation of Sibling and Twin Fragment Ions Improves the Structural Characterization of Proteins by Top-Down MALDI In-Source Decay Mass Spectrometry. Anal Chem 2020; 92:5871-5881. [PMID: 32212639 PMCID: PMC7178258 DOI: 10.1021/acs.analchem.9b05683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Comprehensive determination
of primary sequence and identification
of post-translational modifications (PTMs) are key elements in protein
structural analysis. Various mass spectrometry (MS) based fragmentation
techniques are powerful approaches for mapping both the amino acid
sequence and PTMs; one of these techniques is matrix-assisted laser
desorption/ionization (MALDI), combined with in-source decay (ISD)
fragmentation and Fourier-transform ion cyclotron resonance (FT-ICR)
MS. MALDI-ISD MS protein analysis involves only minimal sample preparation
and does not require spectral deconvolution. The resulting MALDI-ISD
MS data is complementary to electrospray ionization-based MS/MS sequencing
readouts, providing knowledge on the types of fragment ions is available.
In this study, we evaluate the isotopic distributions of z′ ions in protein top-down MALDI-ISD FT-ICR mass spectra and
show why these distributions can deviate from theoretical profiles
as a result of co-occurring and isomeric z and y-NH3 ions. Two synthetic peptides, containing
either normal or deuterated alanine residues, were used to confirm
the presence and unravel the identity of isomeric z and y-NH3 fragment ions (“twins”).
Furthermore, two reducing MALDI matrices, namely 1,5-diaminonaphthalene
and N-phenyl-p-phenylenediamine
were applied that yield ISD mass spectra with different fragment ion
distributions. This study demonstrates that the relative abundance
of isomeric z and y-NH3 ions requires consideration for accurate and confident assignments
of z′ ions in MALDI-ISD FT-ICR mass spectra.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - David P A Kilgour
- Department of Chemistry, Nottingham Trent University, Nottingham NG11 0JN, United Kingdom
| | - Natasja Dolezal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Yuri E M van der Burgt
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| |
Collapse
|
23
|
Nagornov KO, Zennegg M, Kozhinov AN, Tsybin YO, Bleiner D. Trace-Level Persistent Organic Pollutant Analysis with Gas-Chromatography Orbitrap Mass Spectrometry-Enhanced Performance by Complementary Acquisition and Processing of Time-Domain Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:257-266. [PMID: 32031392 DOI: 10.1021/jasms.9b00032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The range of commercial techniques for high-resolution gas-chromatography-mass spectrometry (GC-MS) has been recently extended with the introduction of GC Orbitrap Fourier transform mass spectrometry (FTMS). We report on progress with quantitation performance in the analysis of persistent organic pollutants (POP), by averaging of time-domain signals (transients), from a number of GC-FTMS experiment replicates. Compared to a standard GC-FTMS measurement (a single GC-FTMS experiment replicate, mass spectra representation in reduced profile mode), for the 10 GC-FTMS technical replicates of ultratrace POP analysis, sensitivity improvement of up to 1 order of magnitude is demonstrated. The accumulation method was implemented with an external high-performance data acquisition system and dedicated data processing software to acquire the time-domain data for each GC-FTMS replicate and to average the acquired GC-FTMS data sets. Concomitantly, the increased flexibility in ion signal detection allowed the attainment of ultrahigh-mass resolution (UHR), approaching R = 700 000 at m/z = 200.
Collapse
Affiliation(s)
| | - Markus Zennegg
- Swiss Federal Laboratories for Materials Science and Technology (Empa) , Überlandstrasse 129 , 8600 Dübendorf , Switzerland
| | - Anton N Kozhinov
- Spectroswiss , EPFL Innovation Park, Building I, 1015 Lausanne , Switzerland
| | - Yury O Tsybin
- Spectroswiss , EPFL Innovation Park, Building I, 1015 Lausanne , Switzerland
| | - Davide Bleiner
- Swiss Federal Laboratories for Materials Science and Technology (Empa) , Überlandstrasse 129 , 8600 Dübendorf , Switzerland
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , 8057 Zurich , Switzerland
| |
Collapse
|
24
|
van Agthoven MA, Kilgour DPA, Lynch AM, Barrow MP, Morgan TE, Wootton CA, Chiron L, Delsuc MA, O'Connor PB. Phase relationships in two-dimensional mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2594-2607. [PMID: 31617086 PMCID: PMC6914722 DOI: 10.1007/s13361-019-02308-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 05/14/2023]
Abstract
Two-dimensional mass spectrometry (2D MS) is a data-independent tandem mass spectrometry technique in which precursor and fragment ion species can be correlated without the need for prior ion isolation. The behavior of phase in 2D Fourier transform mass spectrometry is investigated with respect to the calculation of phase-corrected absorption-mode 2D mass spectra. 2D MS datasets have a phase that is defined differently in each dimension. In both dimensions, the phase behavior of precursor and fragment ions is found to be different. The dependence of the phase for both precursor and fragment ion signals on various parameters (e.g., modulation frequency, shape of the fragmentation zone) is discussed. Experimental data confirms the theoretical calculations of the phase in each dimension. Understanding the phase relationships in a 2D mass spectrum is beneficial to the development of possible algorithms for phase correction, which may improve both the signal-to-noise ratio and the resolving power of peaks in 2D mass spectra.
Collapse
Affiliation(s)
- Maria A van Agthoven
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - David P A Kilgour
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- School of Science and Technology, Nottingham Trent University, 50 Shakespeare Street, Nottingham, NG1 4FQ, UK
| | - Alice M Lynch
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Department of Computer Science, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SX, UK
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Tomos E Morgan
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Christopher A Wootton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Lionel Chiron
- CASC4DE, Le Lodge 20 av. du Neuhof, 67100, Strasbourg, France
| | - Marc-André Delsuc
- CASC4DE, Le Lodge 20 av. du Neuhof, 67100, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
25
|
Leefmann T, Frickenhaus S, Koch BP. UltraMassExplorer: a browser-based application for the evaluation of high-resolution mass spectrometric data. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:193-202. [PMID: 30366355 DOI: 10.1002/rcm.8315] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 05/16/2023]
Abstract
RATIONALE High-resolution mass spectrometry (HRMS) with high sample throughput has become an important analytical tool for the analysis of highly complex samples and data processing has become a major challenge for the user community. Evaluating direct-infusion HRMS data without automated tools for batch processing can be a time-consuming step in the analytical pipeline. Therefore, we developed a new browser-based software tool for processing HRMS data. METHODS The software, named UltraMassExplorer (UME), was written in the R programming language using the shiny library to build the graphical user interface. The performance of the integrated formula library search algorithm was tested using HRMS data derived from analyses of up to 50 extracts of marine dissolved organic matter. RESULTS The software supports the processing of lists of calibrated masses of neutral, protonated or deprotonated molecules, with masses of up to 700 Da and a mass accuracy <3 ppm. In the performance test, the number of assigned peaks per second increased with the number of submitted peaks and reached a maximum rate of 4745 assigned peaks per second. CONCLUSIONS UME offers a complete data evaluation pipeline comprising a fast molecular formula assignment algorithm allowing for the swift reanalysis of complete datasets, advanced filter functions and the export of data, metadata and publication-quality graphics. Unique to UME is a fast and interactive connection between data and their visual representation. UME provides a new platform enabling an increased transparency, customization, documentation and comparability of datasets.
Collapse
Affiliation(s)
- Tim Leefmann
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Stephan Frickenhaus
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- University of Applied Sciences, An der Karlstadt 8, 27568, Bremerhaven, Germany
- Centre for Industrial Mathematics, University of Bremen, Bibliothekstraße 5, 28359, Bremen, Germany
| | - Boris P Koch
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- University of Applied Sciences, An der Karlstadt 8, 27568, Bremerhaven, Germany
| |
Collapse
|
26
|
van der Burgt YEM, Kilgour DPA, Tsybin YO, Srzentić K, Fornelli L, Beck A, Wuhrer M, Nicolardi S. Structural Analysis of Monoclonal Antibodies by Ultrahigh Resolution MALDI In-Source Decay FT-ICR Mass Spectrometry. Anal Chem 2019; 91:2079-2085. [PMID: 30571088 PMCID: PMC6365908 DOI: 10.1021/acs.analchem.8b04515] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The
emergence of complex protein therapeutics in general and monoclonal
antibodies (mAbs) in particular have stimulated analytical chemists
to develop new methods and strategies for their structural characterization.
Mass spectrometry plays a key role in providing information on the
primary amino acid sequence, post-translational modifications, and
other structure characteristics that must be monitored during the
manufacturing process and subsequent quality control assessment. In
this study, we present a novel method that allows structural characterization
of mAbs based on MALDI in-source decay (ISD) fragmentation, coupled
with Fourier transform ion cyclotron resonance (FT-ICR) MS. The method
benefits from higher resolution of absorption mode FT mass spectra,
compared to magnitude mode, which enables simultaneous identification
of ISD fragments from both the heavy and light chains with a higher
confidence in a wide mass range up to m/z 13 500. This method was applied to two standard mAbs, namely
NIST mAb and trastuzumab, in preparation for method application in
an interlaboratory study on mAbs structural analysis coordinated by
the Consortium for Top-Down Proteomics. Extensive sequence coverage
was obtained from the middle-down analysis (IdeS- and GingisKHAN-digested
mAbs) that complemented the top-down analysis of intact mAbs. In addition,
MALDI FT-ICR MS of IdeS-digested mAbs allowed isotopic-level profiling
of proteoforms with regard to heavy chain N-glycosylation.
Collapse
Affiliation(s)
- Yuri E M van der Burgt
- Center for Proteomics and Metabolomics , Leiden University Medical Center (LUMC) , PO Box 9600, 2300 RC , Leiden , The Netherlands
| | - David P A Kilgour
- Department of Chemistry , Nottingham Trent University , Nottingham , NG11 0JN , U.K
| | - Yury O Tsybin
- Spectroswiss , EPFL Innovation Park , 1015 Lausanne , Switzerland
| | - Kristina Srzentić
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 N. Sheridan Road , Evanston , Illinois 60208 , United States
| | - Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 N. Sheridan Road , Evanston , Illinois 60208 , United States
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre , 74160 St. Julien-en-Genevois , France
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics , Leiden University Medical Center (LUMC) , PO Box 9600, 2300 RC , Leiden , The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics , Leiden University Medical Center (LUMC) , PO Box 9600, 2300 RC , Leiden , The Netherlands
| |
Collapse
|
27
|
Srzentić K, Nagornov KO, Fornelli L, Lobas AA, Ayoub D, Kozhinov AN, Gasilova N, Menin L, Beck A, Gorshkov MV, Aizikov K, Tsybin YO. Multiplexed Middle-Down Mass Spectrometry as a Method for Revealing Light and Heavy Chain Connectivity in a Monoclonal Antibody. Anal Chem 2018; 90:12527-12535. [DOI: 10.1021/acs.analchem.8b02398] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kristina Srzentić
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Luca Fornelli
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anna A. Lobas
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Daniel Ayoub
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alain Beck
- Centre d’Immunologie Pierre Fabre, 74160 St. Julien-en-Genevois, France
| | - Mikhail V. Gorshkov
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology State University, 141707 Dolgoprudny, Moscow Region, Russia
| | | | - Yury O. Tsybin
- Spectroswiss, EPFL Innovation Park, 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Oyler BL, Khan MM, Smith DF, Harberts EM, Kilgour DPA, Ernst RK, Cross AS, Goodlett DR. Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1221-1229. [PMID: 29464544 PMCID: PMC8294406 DOI: 10.1007/s13361-018-1897-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
Recent advances in lipopolysaccharide (LPS) biology have led to its use in drug discovery pipelines, including vaccine and vaccine adjuvant discovery. Desirable characteristics for LPS vaccine candidates include both the ability to produce a specific antibody titer in patients and a minimal host inflammatory response directed by the innate immune system. However, in-depth chemical characterization of most LPS extracts has not been performed; hence, biological activities of these extracts are unpredictable. Additionally, the most widely adopted workflow for LPS structure elucidation includes nonspecific chemical decomposition steps before analyses, making structures inferred and not necessarily biologically relevant. In this work, several different mass spectrometry workflows that have not been previously explored were employed to show proof-of-principle for top down LPS primary structure elucidation, specifically for a rough-type mutant (J5) E. coli-derived LPS component of a vaccine candidate. First, ion mobility filtered precursor ions were subjected to collision induced dissociation (CID) to define differences in native J5 LPS v. chemically detoxified J5 LPS (dLPS). Next, ultra-high mass resolving power, accurate mass spectrometry was employed for unequivocal precursor and product ion empirical formulae generation. Finally, MS3 analyses in an ion trap instrument showed that previous knowledge about dissociation of LPS components can be used to reconstruct and sequence LPS in a top down fashion. A structural rationale is also explained for differential inflammatory dose-response curves, in vitro, when HEK-Blue hTLR4 cells were administered increasing concentrations of native J5 LPS v. dLPS, which will be useful in future drug discovery efforts. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Benjamin L Oyler
- School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Mohd M Khan
- School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Donald F Smith
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Erin M Harberts
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - David P A Kilgour
- Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - Alan S Cross
- Center for Vaccine Development, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Pharmacy Hall North Room 623, 20 N. Pine St, Baltimore, MD, 21201, USA.
| |
Collapse
|
29
|
Shaw JB, Gorshkov MV, Wu Q, Paša-Tolić L. High Speed Intact Protein Characterization Using 4X Frequency Multiplication, Ion Trap Harmonization, and 21 Tesla FTICR-MS. Anal Chem 2018; 90:5557-5562. [PMID: 29613776 DOI: 10.1021/acs.analchem.7b04606] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mass spectrometric characterization of large biomolecules, such as intact proteins, requires the specificity afforded by ultrahigh resolution mass measurements performed at both the intact mass and product ion levels. Although the performance of time-of-flight mass analyzers is steadily increasing, the choice of mass analyzer for large biomolecules (e.g., proteins >50 kDa) is generally limited to the Fourier transform family of mass analyzers such as Orbitrap and ion cyclotron resonance (FTICR-MS), with the latter providing unmatched mass resolving power and measurement accuracy. Yet, protein analyses using FTMS are largely hindered by the low acquisition rates of spectra with ultrahigh resolving power. Frequency multiple detection schemes enable FTICR-MS to overcome this fundamental barrier and achieve resolving powers and acquisition speeds 4× greater than the limits imposed by magnetic field strength. Here we expand upon earlier work on the implementation of this technique for biomolecular characterization. We report the coupling of 21T FTICR-MS, 4X frequency multiplication, ion trapping field harmonization technology, and spectral data processing methods to achieve unprecedented acquisition rates and resolving power in mass spectrometry of large intact proteins. Isotopically resolved spectra of multiply charged ubiquitin ions were acquired using detection periods as short as 12 ms. Large proteins such as apo-transferrin (MW = 78 kDa) and monoclonal antibody (MW = 150 kDa) were isotopically resolved with detection periods of 384 and 768 ms, respectively. These results illustrate the future capability of accurate characterization of large proteins on time scales compatible with online separations.
Collapse
Affiliation(s)
- Jared B Shaw
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 3335 Innovation Boulevard . Richland , Washington 99352 , United States
| | - Mikhail V Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , Moscow 119334 , Russia.,Moscow Institute of Physics and Technology (State University) , Dolgoprudny , Moscow Region 141700 , Russia
| | - Qinghao Wu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 3335 Innovation Boulevard . Richland , Washington 99352 , United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 3335 Innovation Boulevard . Richland , Washington 99352 , United States
| |
Collapse
|
30
|
Qi Y, Luo R, Schrader W, Volmer DA. Application of phase correction to improve the characterization of photooxidation products of lignin using 7 Tesla Fourier-transform ion cyclotron resonance mass spectrometry. Facets (Ott) 2017. [DOI: 10.1139/facets-2016-0069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lignin is the second most abundant natural biopolymer and potentially a valuable alternative energy source for conventional fossil fuels. In this study, Fourier-transform ion cyclotron resonance-mass spectrometry (FTICR-MS) in conjunction with phase correction was applied to study photooxidation products of lignin using a 7 Tesla (T) mass spectrometer. The application of 7 T FTICR-MS has often been inadequate for the analysis of complex natural organic matter because of insufficient resolving power as compared with high-field FTICR, which led to incorrect assignments of elemental formulae and discontinuous plots in graphical and statistical analyses. Here, the application of phase correction to the FTICR mass spectra of lignin oxidation products greatly improved the spectral quality, and thus, readily permitted characterization of photooxidation processes of lignin compounds under simulated solar radiation conditions.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Ruoji Luo
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Schrader
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Dietrich A. Volmer
- Institute of Bioanalytical Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
31
|
Kilgour DPA, Hughes S, Kilgour SL, Mackay CL, Palmblad M, Tran BQ, Goo YA, Ernst RK, Clarke DJ, Goodlett DR. Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:253-262. [PMID: 27924495 DOI: 10.1007/s13361-016-1549-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 06/06/2023]
Abstract
We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- David P A Kilgour
- Department of Chemistry and Forensics, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Sam Hughes
- EastCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Samantha L Kilgour
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - C Logan Mackay
- EastCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Bao Quoc Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - David J Clarke
- EastCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
32
|
Grinfeld D, Aizikov K, Kreutzmann A, Damoc E, Makarov A. Phase-Constrained Spectrum Deconvolution for Fourier Transform Mass Spectrometry. Anal Chem 2016; 89:1202-1211. [DOI: 10.1021/acs.analchem.6b03636] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dmitry Grinfeld
- Thermo Fisher Scientific (Bremen), Hanna-Kunath Strasse 11, 28199 Bremen, Germany
| | - Konstantin Aizikov
- Thermo Fisher Scientific (Bremen), Hanna-Kunath Strasse 11, 28199 Bremen, Germany
| | - Arne Kreutzmann
- Thermo Fisher Scientific (Bremen), Hanna-Kunath Strasse 11, 28199 Bremen, Germany
| | - Eugen Damoc
- Thermo Fisher Scientific (Bremen), Hanna-Kunath Strasse 11, 28199 Bremen, Germany
| | - Alexander Makarov
- Thermo Fisher Scientific (Bremen), Hanna-Kunath Strasse 11, 28199 Bremen, Germany
| |
Collapse
|
33
|
Shaw JB, Lin TY, Leach FE, Tolmachev AV, Tolić N, Robinson EW, Koppenaal DW, Paša-Tolić L. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1929-1936. [PMID: 27734325 DOI: 10.1007/s13361-016-1507-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jared B Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - Tzu-Yung Lin
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - Franklin E Leach
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - Aleksey V Tolmachev
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - Nikola Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - Errol W Robinson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, WA, 99352, USA.
| |
Collapse
|
34
|
Benigni P, Fernandez-Lima F. Oversampling Selective Accumulation Trapped Ion Mobility Spectrometry Coupled to FT-ICR MS: Fundamentals and Applications. Anal Chem 2016; 88:7404-12. [DOI: 10.1021/acs.analchem.6b01946] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry and ‡Biomolecular Sciences
Institute, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and ‡Biomolecular Sciences
Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
35
|
van Agthoven MA, Wootton CA, Chiron L, Coutouly MA, Soulby A, Wei J, Barrow MP, Delsuc MA, Rolando C, O'Connor PB. Two-Dimensional Mass Spectrometry for Proteomics, a Comparative Study with Cytochrome c. Anal Chem 2016; 88:4409-17. [PMID: 26991046 DOI: 10.1021/acs.analchem.5b04878] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows the correlation between precursor and fragment ions in tandem mass spectrometry without the need to isolate the precursor ion beforehand. 2D FT-ICR MS has been optimized as a data-independent method for the structural analysis of compounds in complex samples. Data processing methods and denoising algorithms have been developed to use it as an analytical tool. In the present study, the capabilities of 2D FT-ICR MS are explored with a tryptic digest of cytochrome c with both ECD and IRMPD as fragmentation modes. The 2D mass spectra showed useful fragmentation patterns of peptides over a dynamic range of almost 400. By using a quadratic calibration, fragment ion peaks could be successfully assigned. The correlation between precursor and fragment ions in the 2D mass spectra was more accurate than in MS/MS spectra after quadrupole isolation, due to the limitations of quadrupole isolation. The use of the second dimension allowed for successful fragment assignment from precursors that were separated by only m/z 0.0156. The resulting cleavage coverage of cytochrome c almost matched data provided by high-resolution FT-ICR MS/MS analysis, but the 2D FT-ICR MS method required only one experimental scan.
Collapse
Affiliation(s)
- Maria A van Agthoven
- Department of Chemistry, University of Warwick , Gibbet Hill Road, CV4 7AL Coventry, West Midlands, United Kingdom
| | - Christopher A Wootton
- Department of Chemistry, University of Warwick , Gibbet Hill Road, CV4 7AL Coventry, West Midlands, United Kingdom
| | - Lionel Chiron
- CASC4DE, Le Lodge, 20, av. du Neuhof, 67100 Strasbourg, France
| | - Marie-Aude Coutouly
- NMRTEC, Bld. Sébastien Brandt, Bioparc - Bat. B, 67400 Illkirch-Graffenstaden, France
| | - Andrew Soulby
- Department of Chemistry, University of Warwick , Gibbet Hill Road, CV4 7AL Coventry, West Midlands, United Kingdom
| | - Juan Wei
- Department of Chemistry, University of Warwick , Gibbet Hill Road, CV4 7AL Coventry, West Midlands, United Kingdom
| | - Mark P Barrow
- Department of Chemistry, University of Warwick , Gibbet Hill Road, CV4 7AL Coventry, West Midlands, United Kingdom
| | - Marc-André Delsuc
- CASC4DE, Le Lodge, 20, av. du Neuhof, 67100 Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596; CNRS, UMR7104; Université de Strasbourg , 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France
| | - Christian Rolando
- Université de Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique, FR 3688, FRABIO, Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, and FR 2638, Institut Eugène-Michel Chevreul, F-59000 Lille, France
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick , Gibbet Hill Road, CV4 7AL Coventry, West Midlands, United Kingdom
| |
Collapse
|
36
|
Thurlow SE, Kilgour DP, Campopiano DJ, Mackay CL, Langridge-Smith PRR, Clarke DJ, Campbell CJ. Determination of Protein Thiol Reduction Potential by Isotope Labeling and Intact Mass Measurement. Anal Chem 2016; 88:2727-33. [PMID: 26881737 DOI: 10.1021/acs.analchem.5b04195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation/reduction of thiol residues in proteins is an important type of post-translational modification that is implicated in regulating a range of biological processes. The nature of the modification makes it possible to define a quantifiable electrochemical potential (E(⊕)) for oxidation/reduction that allows cysteine-containing proteins to be ranked based on their propensity to be oxidized. Measuring oxidation of cysteine residues in proteins is difficult using standard electrochemical methods, but top-down mass spectrometry recently has been shown to enable the quantification of E(⊕) for thiol oxidations. In this paper, we demonstrate that mass spectrometry of intact proteins can be used in combination with an isotopic labeling strategy and an automated data analysis algorithm to measure E(⊕) for the thiols in both E. coli Thioredoxin 1 and human Thioredoxin 1. Our methodology relies on accurate mass measurement of proteins using liquid chromatography-mass spectroscopy (LC-MS) analyses and does not necessarily require top-down fragmentation. In addition to analyzing homogeneous protein samples, we also demonstrate that our methodology can be used to determine thiol E(⊕) measurements in samples that contain mixtures of proteins. Thus, the combination of experimential methodology and data analysis regime has the potential to make such measurements in a high-throughput manner and in a manner that is more accessible to a broad community of protein scientists.
Collapse
Affiliation(s)
- Sophie E Thurlow
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - David P Kilgour
- Chemistry and Forensics, Rosalind Franklin Building, Nottingham Trent University , Clifton Campus, Clifton Lane, Nottingham, NG11 8NS, United Kingdom
| | - Dominic J Campopiano
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Pat R R Langridge-Smith
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Colin J Campbell
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
37
|
Tran BQ, Barton C, Feng J, Sandjong A, Yoon SH, Awasthi S, Liang T, Khan MM, Kilgour DP, Goodlett DR, Goo YA. Comprehensive glycosylation profiling of IgG and IgG-fusion proteins by top-down MS with multiple fragmentation techniques. J Proteomics 2016; 134:93-101. [DOI: 10.1016/j.jprot.2015.10.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/18/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023]
|
38
|
van Agthoven MA, Barrow MP, Chiron L, Coutouly MA, Kilgour D, Wootton CA, Wei J, Soulby A, Delsuc MA, Rolando C, O'Connor PB. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2105-14. [PMID: 26184984 DOI: 10.1007/s13361-015-1226-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 05/21/2023]
Abstract
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Lionel Chiron
- NMRTEC, Bld. Sébastien Brandt, Bioparc - Bat. B, 67400, Illkirch-Graffenstaden, France
| | - Marie-Aude Coutouly
- NMRTEC, Bld. Sébastien Brandt, Bioparc - Bat. B, 67400, Illkirch-Graffenstaden, France
| | - David Kilgour
- School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | | | - Juan Wei
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew Soulby
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Marc-André Delsuc
- NMRTEC, Bld. Sébastien Brandt, Bioparc - Bat. B, 67400, Illkirch-Graffenstaden, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596; CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Christian Rolando
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, and Protéomique, Modifications Post-traductionnelles et Glycobiologie, IFR 147 and Institut Eugène-Michel Chevreul, FR CNRS 2638, Université de Lille 1 Sciences et Technologies, 59655, Villeneuve d'Ascq Cedex, France
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
39
|
Tran BQ, Barton C, Feng J, Sandjong A, Yoon SH, Awasthi S, Liang T, Khan MM, Kilgour DP, Goodlett DR, Goo YA. Glycosylation characterization of therapeutic mAbs by top- and middle-down mass spectrometry. Data Brief 2015; 6:68-76. [PMID: 26793758 PMCID: PMC4688415 DOI: 10.1016/j.dib.2015.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
A reference monoclonal antibody IgG1 and a fusion IgG protein were analyzed by top- and middle-down mass spectrometry with multiple fragmentation techniques including electron transfer dissociation (ETD) and matrix-assisted laser desorption ionization in-source decay (MALDI-ISD) to investigate heterogeneity of glycosylated protein species. Specifically, glycan structure, sites, relative abundance levels, and termini structural conformation were investigated by use of Fourier transform ion cyclotron resonance (FT-ICR) or high performance liquid chromatography electrospray ionization (HPLC-ESI) linked to an Orbitrap. Incorporating a limited enzymatic digestion by immunoglobulin G-degrading enzyme Streptococcus pyogenes (IdeS) with MALDI-ISD analysis extended sequence coverage of the internal region of the proteins without pre-fractionation. The data in this article is associated with the research article published in Journal of Proteomics (Tran et al., 2015) [1].
Collapse
Affiliation(s)
- Bao Quoc Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | | | | | | | - Sung Hwan Yoon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Shivangi Awasthi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Tao Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Mohd M. Khan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - David P.A. Kilgour
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - David R. Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
- Corresponding authors.
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
- Corresponding authors.
| |
Collapse
|
40
|
Nicolardi S, Bogdanov B, Deelder AM, Palmblad M, van der Burgt YEM. Developments in FTICR-MS and Its Potential for Body Fluid Signatures. Int J Mol Sci 2015; 16:27133-44. [PMID: 26580595 PMCID: PMC4661870 DOI: 10.3390/ijms161126012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/01/2023] Open
Abstract
Fourier transform mass spectrometry (FTMS) is the method of choice for measurements that require ultra-high resolution. The establishment of Fourier transform ion cyclotron resonance (FTICR) MS, the availability of biomolecular ionization techniques and the introduction of the Orbitrap™ mass spectrometer have widened the number of FTMS-applications enormously. One recent example involves clinical proteomics using FTICR-MS to discover and validate protein biomarker signatures in body fluids such as serum or plasma. These biological samples are highly complex in terms of the type and number of components, their concentration range, and the structural identity of each species, and thus require extensive sample cleanup and chromatographic separation procedures. Clearly, such an elaborate and multi-step sample preparation process hampers high-throughput analysis of large clinical cohorts. A final MS read-out at ultra-high resolution enables the analysis of a more complex sample and can thus simplify upfront fractionations. To this end, FTICR-MS offers superior ultra-high resolving power with accurate and precise mass-to-charge ratio (m/z) measurement of a high number of peptides and small proteins (up to 20 kDa) at isotopic resolution over a wide mass range, and furthermore includes a wide variety of fragmentation strategies to characterize protein sequence and structure, including post-translational modifications (PTMs). In our laboratory, we have successfully applied FTICR “next-generation” peptide profiles with the purpose of cancer disease classifications. Here we will review a number of developments and innovations in FTICR-MS that have resulted in robust and routine procedures aiming for ultra-high resolution signatures of clinical samples, exemplified with state-of-the-art examples for serum and saliva.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Bogdan Bogdanov
- Perkin Elmer, San Jose Technology Center, San Jose, CA 95134, USA.
| | - André M Deelder
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Yuri E M van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
41
|
Kilgour DPA, Nagornov KO, Kozhinov AN, Zhurov KO, Tsybin YO. Producing absorption mode Fourier transform ion cyclotron resonance mass spectra with non-quadratic phase correction functions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1087-1093. [PMID: 26044277 DOI: 10.1002/rcm.7200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
RATIONALE Previously described methods for producing absorption mode Fourier transform ion cyclotron resonance (FTICR) mass spectra have all relied on the phase correction function being quadratic. This assumption has been found to be invalid for some instruments and spectra and so it has not been possible to produce absorption mode spectra for these cases. METHODS The Autophaser algorithm has been adapted to allow nth order polynomial phase correction functions to be optimized. The data was collected on a modified Thermo LTQ FTICR mass spectrometer, using electrospray ionization and a novel ICR cell design (NADEL). Peak assignment and mass calibration were undertaken using the pyFTMS framework. RESULTS An nth-order phase correction function has been used to produce an absorption mode mass spectrum of the maltene fraction of a crude oil sample which was not possible using the previous assumption that the phase correction function must be quadratic. Data processing for this spectrum in absorption mode has shown the expected benefits in terms of increasing the number of assigned peaks and also improving the mass accuracy (i.e. confidence) of the assignments. CONCLUSIONS It is possible to phase-correct time-domain data in FTICRMS to yield absorption mode mass spectra representation even when the data does not correspond to the theoretical quadratic phase correction function predicted by previous studies. This will allow a larger proportion of spectra to be processed in absorption mode.
Collapse
Affiliation(s)
- David P A Kilgour
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD, USA
| | - Konstantin O Nagornov
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Anton N Kozhinov
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Konstantin O Zhurov
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Yury O Tsybin
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Spectroswiss Sàrl, EPFL Innovation Park, 1015, Lausanne, Switzerland
| |
Collapse
|
42
|
Kilgour DPA, Van Orden SL. Absorption mode Fourier transform mass spectrometry with no baseline correction using a novel asymmetric apodization function. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1009-1018. [PMID: 26044267 DOI: 10.1002/rcm.7190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
RATIONALE Absorption mode Fourier transform ion cyclotron resonance (FTICR) mass spectra offer significant benefits in terms of spectral resolution, signal-to-noise (S/N) ratio and measured mass accuracy. However, to date, methods for producing absorption mode spectra have created an undesirable baseline deviation as a consequence of FFT artifacts, resulting in interference of the frequency side-lobes of intense peaks. Methods for fitting and removing this deviation have been developed, but these are computationally intensive, slow and can be unreliable in practice. METHODS We have developed an approach for producing FTICR mass spectra which uses a new apodization approach to produce spectra which do not exhibit baseline deviation, whilst maintaining all the normal absorption mode benefits. This method involves the use of 'full' apodization function, replacing the more common Hann or half Hann functions, and where the user can control the position of the function maximum expressed as a fraction (F) of the transient length. RESULTS Absorption mode spectra produced using the new apodization function we propose provide all the normal benefits but do not exhibit baseline deviation that must be corrected prior to spectral interpretation. Additionally, varying the value of the F parameter allows users additional control over the compromise between the spectral resolving power and the S/N ratio. This is particularly beneficial in spectra with pronounced amplitude changes during the recording of the transient (detection). CONCLUSIONS The use of a 'full' apodization function, which may be asymmetric, prior to zero-padding and Fourier transformation, allows the production of absorption mode spectra which do not suffer from baseline deviation. Hence, it is no longer necessary to apply a baseline deviation correction in post processing, providing a significant performance advantage.
Collapse
Affiliation(s)
- David P A Kilgour
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD, USA
| | | |
Collapse
|
43
|
Kilgour DPA, Van Orden SL, Tran BQ, Goo YA, Goodlett DR. Producing Isotopic Distribution Models for Fully Apodized Absorption Mode FT-MS. Anal Chem 2015; 87:5797-801. [PMID: 25938639 DOI: 10.1021/acs.analchem.5b01032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Isotopic distributions are frequently used as part of the peak assignment process in the processing of mass spectra. The best methods for producing accurate peak assignments must account for the peak shape and resolving power. In other words, the full profile of the isotopic distribution is important. Conventional methods for modeling isotopic distributions generally assume a peak profile that is not applicable to fully apodized absorption mode spectra because the peak shapes in these spectra are distinctly different from those seen in normal (i.e., magnitude mode) spectra. We present results illustrating this problem and describe a method for producing more accurate isotopic distribution models for this class of spectra.
Collapse
Affiliation(s)
- David P A Kilgour
- †Mass Spectrometry Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | | | - Bao Quoc Tran
- †Mass Spectrometry Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Young Ah Goo
- †Mass Spectrometry Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - David R Goodlett
- †Mass Spectrometry Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
44
|
Nagornov KO, Kozhinov AN, Tsybin OY, Tsybin YO. Ion trap with narrow aperture detection electrodes for Fourier transform ion cyclotron resonance mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:741-751. [PMID: 25773900 DOI: 10.1007/s13361-015-1089-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
The current paradigm in ion trap (cell) design for Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is the ion detection with wide aperture detection electrodes. Specifically, excitation and detection electrodes are typically 90° wide and positioned radially at a similar distance from the ICR cell axis. Here, we demonstrate that ion detection with narrow aperture detection electrodes (NADEL) positioned radially inward of the cell's axis is feasible and advantageous for FT-ICR MS. We describe design details and performance characteristics of a 10 T FT-ICR MS equipped with a NADEL ICR cell having a pair of narrow aperture (flat) detection electrodes and a pair of standard 90° excitation electrodes. Despite a smaller surface area of the detection electrodes, the sensitivity of the NADEL ICR cell is not reduced attributable to improved excite field distribution, reduced capacitance of the detection electrodes, and their closer positioning to the orbits of excited ions. The performance characteristics of the NADEL ICR cell are comparable with the state-of-the-art FT-ICR MS implementations for small molecule, peptide, protein, and petroleomics analyses. In addition, the NADEL ICR cell's design improves the flexibility of ICR cells and facilitates implementation of advanced capabilities (e.g., quadrupolar ion detection for improved mainstream applications). It also creates an intriguing opportunity for addressing the major bottleneck in FTMS-increasing its throughput via simultaneous acquisition of multiple transients or via generation of periodic non-sinusoidal transient signals.
Collapse
Affiliation(s)
- Konstantin O Nagornov
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | | | | | | |
Collapse
|
45
|
Nicolardi S, Switzar L, Deelder AM, Palmblad M, van der Burgt YE. Top-Down MALDI-In-Source Decay-FTICR Mass Spectrometry of Isotopically Resolved Proteins. Anal Chem 2015; 87:3429-37. [DOI: 10.1021/ac504708y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Simone Nicolardi
- Center for Proteomics and
Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Linda Switzar
- Center for Proteomics and
Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - André M. Deelder
- Center for Proteomics and
Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Magnus Palmblad
- Center for Proteomics and
Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Yuri E.M. van der Burgt
- Center for Proteomics and
Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
46
|
Lin Z, Zhu C, Xia H. HRMS studies on the fragmentation pathways of metallapentalyne. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt B:906-910. [PMID: 25459615 DOI: 10.1016/j.saa.2014.09.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
The electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) using collision-induced dissociation (CID) method was applied to investigate the characteristic fragment ions of metalla-aromatic complexes for the first time. The fragmentation process of osmapentalyne, which contained metal-carbon triple bond in a five-membered ring, was discussed in detail. The ESI FT-ICR MS CID experimental results at high resolution mass spectra (HRMS) demonstrated the elemental composition of fragment ions unambiguously, thus a reasonable fragmentation pathway of osmapentalyne was proposed. In addition, the characteristic fragment ions have been investigated, which were specific and useful for the identification of some osmapentalynes complexes. These characteristic fragmentation pathways were helpful to analyze and interpret the stability and property of the parent ion. Also, this method could be used for the characterization of other organometallic complexes, especially containing characteristic isotopic peaks.
Collapse
Affiliation(s)
- Zhiwei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Congqing Zhu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Haiping Xia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
47
|
Salisbury JP, Liu Q, Agar JN. QUDeX-MS: hydrogen/deuterium exchange calculation for mass spectra with resolved isotopic fine structure. BMC Bioinformatics 2014; 15:403. [PMID: 25495703 PMCID: PMC4274694 DOI: 10.1186/s12859-014-0403-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022] Open
Abstract
Background Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry permits analysis of structure, dynamics, and molecular interactions of proteins. HDX mass spectrometry is confounded by deuterium exchange-associated peaks overlapping with peaks of heavy, natural abundance isotopes, such as carbon-13. Recent studies demonstrated that high-performance mass spectrometers could resolve isotopic fine structure and eliminate this peak overlap, allowing direct detection and quantification of deuterium incorporation. Results Here, we present a graphical tool that allows for a rapid and automated estimation of deuterium incorporation from a spectrum with isotopic fine structure. Given a peptide sequence (or elemental formula) and charge state, the mass-to-charge ratios of deuterium-associated peaks of the specified ion is determined. Intensities of peaks in an experimental mass spectrum within bins corresponding to these values are used to determine the distribution of deuterium incorporated. A theoretical spectrum can then be calculated based on the estimated distribution of deuterium exchange to confirm interpretation of the spectrum. Deuterium incorporation can also be detected for ion signals without a priori specification of an elemental formula, permitting detection of exchange in complex samples of unidentified material such as natural organic matter. A tool is also incorporated into QUDeX-MS to help in assigning ion signals from peptides arising from enzymatic digestion of proteins. MATLAB-deployable and standalone versions are available for academic use at qudex-ms.sourceforge.net and agarlabs.com. Conclusion Isotopic fine structure HDX-MS offers the potential to increase sequence coverage of proteins being analyzed through mass accuracy and deconvolution of overlapping ion signals. As previously demonstrated, however, the data analysis workflow for HDX-MS data with resolved isotopic fine structure is distinct. QUDeX-MS we hope will aid in the adoption of isotopic fine structure HDX-MS by providing an intuitive workflow and interface for data analysis.
Collapse
Affiliation(s)
- Joseph P Salisbury
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| | - Qian Liu
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
48
|
Distributed computing strategies for processing of FT-ICR MS imaging datasets for continuous mode data visualization. Anal Bioanal Chem 2014; 407:2321-7. [DOI: 10.1007/s00216-014-8210-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/12/2014] [Accepted: 09/19/2014] [Indexed: 11/25/2022]
|
49
|
Nagornov KO, Gorshkov MV, Kozhinov AN, Tsybin YO. High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry with Increased Throughput for Biomolecular Analysis. Anal Chem 2014; 86:9020-8. [DOI: 10.1021/ac501579h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Konstantin O. Nagornov
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Mikhail V. Gorshkov
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141707 Dolgoprudny,
Moscow Region, Russia
| | - Anton N. Kozhinov
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yury O. Tsybin
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Qi Y, O'Connor PB. Data processing in Fourier transform ion cyclotron resonance mass spectrometry. MASS SPECTROMETRY REVIEWS 2014; 33:333-352. [PMID: 24403247 DOI: 10.1002/mas.21414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 09/12/2013] [Accepted: 09/25/2013] [Indexed: 06/03/2023]
Abstract
The Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer intricately couples advanced physics, instrumentation, and electronics with chemical and particularly biochemical research. However, general understanding of the data processing methodologies used lags instrumentation, and most data processing algorithms we are familiar with in FT-ICR are not well studied; thus, professional skill and training in FT-ICR operation and data analysis is still the key to achieve high performance in FT-ICR. This review article is focused on FT-ICR data processing, and explains the procedures step-by-step for users with the goal of maximizing spectral features, such as mass accuracy, resolving power, dynamic range, and detection limits.
Collapse
Affiliation(s)
- Yulin Qi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | | |
Collapse
|