1
|
Gaudreau LI, Stewart EJ. Vasculature-on-a-chip technologies as platforms for advanced studies of bacterial infections. BIOMICROFLUIDICS 2024; 18:021503. [PMID: 38560344 PMCID: PMC10977040 DOI: 10.1063/5.0179281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Bacterial infections frequently occur within or near the vascular network as the vascular network connects organ systems and is essential in delivering and removing blood, essential nutrients, and waste products to and from organs. In turn, the vasculature plays a key role in the host immune response to bacterial infections. Technological advancements in microfluidic device design and development have yielded increasingly sophisticated and physiologically relevant models of the vasculature including vasculature-on-a-chip and organ-on-a-chip models. This review aims to highlight advancements in microfluidic device development that have enabled studies of the vascular response to bacteria and bacterial-derived molecules at or near the vascular interface. In the first section of this review, we discuss the use of parallel plate flow chambers and flow cells in studies of bacterial adhesion to the vasculature. We then highlight microfluidic models of the vasculature that have been utilized to study bacteria and bacterial-derived molecules at or near the vascular interface. Next, we review organ-on-a-chip models inclusive of the vasculature and pathogenic bacteria or bacterial-derived molecules that stimulate an inflammatory response within the model system. Finally, we provide recommendations for future research in advancing the understanding of host-bacteria interactions and responses during infections as well as in developing innovative antimicrobials for preventing and treating bacterial infections that capitalize on technological advancements in microfluidic device design and development.
Collapse
Affiliation(s)
- Lily Isabelle Gaudreau
- Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | | |
Collapse
|
2
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
3
|
Yang X, Gao C, Liu Y, Zhu L, Yang K. Simplified Cell Magnetic Isolation Assisted SC 2 Chip to Realize "Sample in and Chemotaxis Out": Validated by Healthy and T2DM Patients' Neutrophils. MICROMACHINES 2022; 13:1820. [PMID: 36363840 PMCID: PMC9692824 DOI: 10.3390/mi13111820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Neutrophil migration in tissues critically regulates the human immune response and can either play a protective role in host defense or cause health problems. Microfluidic chips are increasingly applied to study neutrophil migration, attributing to their advantages of low reagent consumption, stable chemical gradients, visualized cell chemotaxis monitoring, and quantification. Most chemotaxis chips suffered from low throughput and fussy cell separation operations. We here reported a novel and simple "sample in and chemotaxis out" method for rapid neutrophils isolation from a small amount of whole blood based on a simplified magnetic method, followed by a chemotaxis assay on a microfluidic chip (SC2 chip) consisting of six cell migration units and six-cell arrangement areas. The advantages of the "sample in and chemotaxis out" method included: less reagent consumption (10 μL of blood + 1 μL of magnetic beads + 1 μL of lysis buffer); less time (5 min of cell isolation + 15 min of chemotaxis testing); no ultracentrifugation; more convenient; higher efficiency; high throughput. We have successfully validated the approach by measuring neutrophil chemotaxis to frequently-used chemoattractant (i.e., fMLP). The effects of D-glucose and mannitol on neutrophil chemotaxis were also analyzed. In addition, we demonstrated the effectiveness of this approach for testing clinical samples from diabetes mellitus type 2 (T2DM) patients. We found neutrophils' migration speed was higher in the "well-control" T2DM than in the "poor-control" group. Pearson coefficient analysis further showed that the migration speed of T2DM was negatively correlated with physiological indicators, such as HbA1c (-0.44), triglyceride (-0.36), C-reactive protein (-0.28), and total cholesterol (-0.28). We are very confident that the developed "sample in and chemotaxis out" method was hoped to be an attractive model for analyzing the chemotaxis of healthy and disease-associated neutrophils.
Collapse
Affiliation(s)
- Xiao Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Chaoru Gao
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Yang Y, Liu L, Guo Z, Huang J, Li L, Shao Y, Song M, Yang A, Sun B. A novel computer vision-based assessment of neutrophil chemotaxis in patients with severe infection. Clin Transl Immunology 2021; 10:e1333. [PMID: 34434554 PMCID: PMC8373525 DOI: 10.1002/cti2.1333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/21/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives To evaluate the value of chemotactic function of neutrophils in patients with severe infections. Methods A computer vision‐based cellular chemotaxis analysis platform was established for the dynamic assessment of neutrophil chemotaxis. Fifty‐three patients in the intensive care unit were eligible for the study. In parallel, 142 healthy volunteers were recruited to detect and establish the normal values for chemotactic function. Four chemotactic function indicators were determined–chemotaxis distance (CD), chemotaxis cell ratio (CCR), chemotaxis index (CI) and maximum speed of chemotaxis (Vmax). The chemotaxis function scores (CFS) were calculated for further correlation analysis with clinical data. Results The normal ranges of indicators were established as CD ≥ 1755.85 µm, CCR ≥ 3.34%, CI ≥ 39.63, Vmax ≥ 14.63 µm min−1 and CFS ≥ 15. We found that the chemotactic function of neutrophils in patients suffering from infections was significantly impaired. The mean values of CD, CCR, CI, Vmax and CFS were 1452.8 µm (P < 0.0001), 3.1% (P < 0.0001), 34.5 (P < 0.0001), 12.2 µm min−1 (P < 0.0001) and 9 (P < 0.0001), respectively. CD and CFS were significantly negatively correlated with the APACHE II score (rCD = −0.55, rCFS = −0.39), SOFA score (rCD = −0.68, rCFS = −0.56), procalcitonin concentration (rCD = −0.60, rCFS = −0.5) and the expression of P2RX1 (rCD = −0.76, rCFS = −0.56), respectively. Conclusions CD, CCR, CI and Vmax can well reflect the neutrophil chemotactic function in patients with severe infections. CFS systematically indicated neutrophil function and has promising clinical application prospects.
Collapse
Affiliation(s)
- Yunxi Yang
- School of Medicine Jiangsu University Zhenjiang Jiangsu Province China
| | - Lu Liu
- School of Medicine Jiangsu University Zhenjiang Jiangsu Province China
| | - Zaiwen Guo
- Department of Burns and Plastic Surgery Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu Province China
| | - Jiamin Huang
- Department of Burns and Plastic Surgery Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu Province China
| | - Linbin Li
- Department of Burns and Plastic Surgery Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu Province China
| | - Yiming Shao
- Department of Burns and Plastic Surgery Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu Province China
| | - Mingming Song
- Department of Burns and Plastic Surgery Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu Province China
| | - Aixiang Yang
- Department of Intensive Care Medicine Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu Province China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu Province China
| |
Collapse
|
5
|
Klemm LC, Denu RA, Hind LE, Rocha-Gregg BL, Burkard ME, Huttenlocher A. Centriole and Golgi microtubule nucleation are dispensable for the migration of human neutrophil-like cells. Mol Biol Cell 2021; 32:1545-1556. [PMID: 34191538 PMCID: PMC8351748 DOI: 10.1091/mbc.e21-02-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
Neutrophils migrate in response to chemoattractants to mediate host defense. Chemoattractants drive rapid intracellular cytoskeletal rearrangements including the radiation of microtubules from the microtubule-organizing center (MTOC) toward the rear of polarized neutrophils. Microtubules regulate neutrophil polarity and motility, but little is known about the specific role of MTOCs. To characterize the role of MTOCs on neutrophil motility, we depleted centrioles in a well-established neutrophil-like cell line. Surprisingly, both chemical and genetic centriole depletion increased neutrophil speed and chemotactic motility, suggesting an inhibitory role for centrioles during directed migration. We also found that depletion of both centrioles and GM130-mediated Golgi microtubule nucleation did not impair neutrophil directed migration. Taken together, our findings demonstrate an inhibitory role for centrioles and a resilient MTOC system in motile human neutrophil-like cells.
Collapse
Affiliation(s)
- Lucas C. Klemm
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ryan A. Denu
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, Madison, WI 53706
| | - Laurel E. Hind
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Briana L. Rocha-Gregg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Mark E. Burkard
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
6
|
Mattei F, Andreone S, Mencattini A, De Ninno A, Businaro L, Martinelli E, Schiavoni G. Oncoimmunology Meets Organs-on-Chip. Front Mol Biosci 2021; 8:627454. [PMID: 33842539 PMCID: PMC8032996 DOI: 10.3389/fmolb.2021.627454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Oncoimmunology represents a biomedical research discipline coined to study the roles of immune system in cancer progression with the aim of discovering novel strategies to arm it against the malignancy. Infiltration of immune cells within the tumor microenvironment is an early event that results in the establishment of a dynamic cross-talk. Here, immune cells sense antigenic cues to mount a specific anti-tumor response while cancer cells emanate inhibitory signals to dampen it. Animals models have led to giant steps in this research context, and several tools to investigate the effect of immune infiltration in the tumor microenvironment are currently available. However, the use of animals represents a challenge due to ethical issues and long duration of experiments. Organs-on-chip are innovative tools not only to study how cells derived from different organs interact with each other, but also to investigate on the crosstalk between immune cells and different types of cancer cells. In this review, we describe the state-of-the-art of microfluidics and the impact of OOC in the field of oncoimmunology underlining the importance of this system in the advancements on the complexity of tumor microenvironment.
Collapse
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Arianna Mencattini
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.,Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Rome, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.,Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
7
|
Abstract
Neutrophil chemotaxis plays a vital role in human immune system. Compared with traditional cell migration assays, the emergence of microfluidics provides a new research platform of cell chemotaxis study due to the advantages of visualization, precise control of chemical gradient, and small consumption of reagents. A series of microfluidic devices have been fabricated to study the behavior of neutrophils exposed on controlled, stable, and complex profiles of chemical concentration gradients. In addition, microfluidic technology offers a promising way to integrate the other functions, such as cell culture, separation and analysis into a single chip. Therefore, an overview of recent developments in microfluidic-based neutrophil chemotaxis studies is presented. Meanwhile, the strength and drawbacks of these devices are compared.
Collapse
|
8
|
Li L, Wang H, Huang L, Michael SA, Huang W, Wu H. A Controllable, Centrifugal-Based Hydrodynamic Microfluidic Chip for Cell-Pairing and Studying Long-Term Communications between Single Cells. Anal Chem 2019; 91:15908-15914. [DOI: 10.1021/acs.analchem.9b04370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lijun Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huirong Wang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lu Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China
| | - Sean Alan Michael
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China
| | - Wei Huang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China
| |
Collapse
|
9
|
Ajikumar A, Long MB, Heath PR, Wharton SB, Ince PG, Ridger VC, Simpson JE. Neutrophil-Derived Microvesicle Induced Dysfunction of Brain Microvascular Endothelial Cells In Vitro. Int J Mol Sci 2019; 20:E5227. [PMID: 31652502 PMCID: PMC6834153 DOI: 10.3390/ijms20205227] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC) that are tightly linked by tight junction (TJ) proteins, restricts the movement of molecules between the periphery and the central nervous system. Elevated systemic levels of neutrophils have been detected in patients with altered BBB function, but the role of neutrophils in BMEC dysfunction is unknown. Neutrophils are key players of the immune response and, when activated, produce neutrophil-derived microvesicles (NMV). NMV have been shown to impact the integrity of endothelial cells throughout the body and we hypothesize that NMV released from circulating neutrophils interact with BMEC and induce endothelial cell dysfunction. Therefore, the current study investigated the interaction of NMV with human BMEC and determined whether they altered gene expression and function in vitro. Using flow cytometry and confocal imaging, NMV were shown to be internalized by the human cerebral microvascular endothelial cell line hCMEC/D3 via a variety of energy-dependent mechanisms, including endocytosis and macropinocytosis. The internalization of NMV significantly altered the transcriptomic profile of hCMEC/D3, specifically inducing the dysregulation of genes associated with TJ, ubiquitin-mediated proteolysis and vesicular transport. Functional studies confirmed NMV significantly increased permeability and decreased the transendothelial electrical resistance (TEER) of a confluent monolayer of hCMEC/D3. These findings indicate that NMV interact with and affect gene expression of BMEC as well as impacting their integrity. We conclude that NMV may play an important role in modulating the permeability of BBB during an infection.
Collapse
Affiliation(s)
- Anjana Ajikumar
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Merete B Long
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Victoria C Ridger
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
10
|
Shih YV, Varghese S. Tissue engineered bone mimetics to study bone disorders ex vivo: Role of bioinspired materials. Biomaterials 2019; 198:107-121. [PMID: 29903640 PMCID: PMC6281816 DOI: 10.1016/j.biomaterials.2018.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Recent advances in materials development and tissue engineering has resulted in a substantial number of bioinspired materials that recapitulate cardinal features of bone extracellular matrix (ECM) such as dynamic inorganic and organic environment(s), hierarchical organization, and topographical features. Bone mimicking materials, as defined by its self-explanatory term, are developed based on the current understandings of the natural bone ECM during development, remodeling, and fracture repair. Compared to conventional plastic cultures, biomaterials that resemble some aspects of the native environment could elicit a more natural molecular and cellular response relevant to the bone tissue. Although current bioinspired materials are mainly developed to assist tissue repair or engineer bone tissues, such materials could nevertheless be applied to model various skeletal diseases in vitro. This review summarizes the use of bioinspired materials for bone tissue engineering, and their potential to model diseases of bone development and remodeling ex vivo. We largely focus on biomaterials, designed to re-create different aspects of the chemical and physical cues of native bone ECM. Employing these bone-inspired materials and tissue engineered bone surrogates to study bone diseases has tremendous potential and will provide a closer portrayal of disease progression and maintenance, both at the cellular and tissue level. We also briefly touch upon the application of patient-derived stem cells and introduce emerging technologies such as organ-on-chip in disease modeling. Faithful recapitulation of disease pathologies will not only offer novel insights into diseases, but also lead to enabling technologies for drug discovery and new approaches for cell-based therapies.
Collapse
Affiliation(s)
- Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA.
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA; Department of Materials Science and Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Ingram PN, Hind LE, Jiminez-Torres JA, Huttenlocher A, Beebe DJ. An Accessible Organotypic Microvessel Model Using iPSC-Derived Endothelium. Adv Healthc Mater 2018; 7. [PMID: 29364596 DOI: 10.1002/adhm.201700497] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/03/2017] [Indexed: 12/30/2022]
Abstract
While organotypic approaches promise increased relevance through the inclusion of increased complexity (e.g., 3D extracellular microenvironment, structure/function relationships, presence of multiple cell types), cell source is often overlooked. Induced pluripotent stem cell (iPSC)-derived cells are potentially more physiologically relevant than cell lines, while also being less variable than primary cells, and recent advances have made them commercially available at costs similar to cell lines. Here, the use of induced pluripotent stem cell-derived endothelium for the generation of a functional microvessel model is demonstrated. High precision structural and microenvironmental control afforded by the design approach synergizes with the advantages of iPSC to produce microvessels for modeling endothelial biology in vitro. iPSC microvessels show endothelial characteristics, exhibit barrier function, secrete angiogenic and inflammatory mediators, and respond to changes in the extracellular microenvironment by altering vessel phenotype. Importantly, when deployed in the investigation of neutrophils during innate immune recruitment, the presence of the iPSC endothelial vessel facilitates neutrophil extravasation and migration toward a chemotactic source. Relevant cell sources, such as iPSC, combine with organotypic models to open the way for improved and increasingly accessible in vitro tissue, disease, and patient-specific models.
Collapse
Affiliation(s)
- Patrick N. Ingram
- Department of Biomedical Engineering; Wisconsin Institutes for Medical Research; University of Wisconsin-Madison; WIMR I Room 6028, 1111 Highland Ave Madison WI 53705 USA
| | - Laurel E. Hind
- Departments of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Microbial Sciences Building Room 4205, 1550 Linden Dr Madison WI 53705 USA
| | - Jose A. Jiminez-Torres
- Department of Biomedical Engineering; Wisconsin Institutes for Medical Research; University of Wisconsin-Madison; WIMR I Room 6028, 1111 Highland Ave Madison WI 53705 USA
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Microbial Sciences Building Room 4205, 1550 Linden Dr Madison WI 53705 USA
| | - David J. Beebe
- Department of Biomedical Engineering; Wisconsin Institutes for Medical Research; University of Wisconsin-Madison; WIMR I Room 6028, 1111 Highland Ave Madison WI 53705 USA
- University of Wisconsin Carbone Cancer Center; University of Wisconsin-Madison; WIMR I Room 6009, 1111 Highland Ave Madison WI 53705 USA
| |
Collapse
|
12
|
Higham A, Rattray NJW, Dewhurst JA, Trivedi DK, Fowler SJ, Goodacre R, Singh D. Electronic cigarette exposure triggers neutrophil inflammatory responses. Respir Res 2016; 17:56. [PMID: 27184092 PMCID: PMC4869345 DOI: 10.1186/s12931-016-0368-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/27/2016] [Indexed: 01/02/2023] Open
Abstract
Background The use of electronic cigarettes (e-cigs) is increasing and there is widespread perception that e-cigs are safe. E-cigs contain harmful chemicals; more research is needed to evaluate the safety of e-cig use. Our aim was to investigate the effects of e-cigs on the inflammatory response of human neutrophils. Methods Neutrophils were exposed to e-cig vapour extract (ECVE) and the expression of CD11b and CD66b was measured by flow cytometry and MMP-9 and CXCL8 by ELISA. We also measured the activity of neutrophil elastase (NE) and MMP-9, along with the activation of inflammatory signalling pathways. Finally we analysed the biochemical composition of ECVE by ultra-high performance liquid chromatography mass spectrometry. Results ECVE caused an increase in the expression of CD11b and CD66b, and increased the release of MMP-9 and CXCL8. Furthermore, there was an increase in NE and MMP-9 activity and an increase in p38 MAPK activation. We also identified several harmful chemicals in ECVE, including known carcinogens. Conclusions ECVE causes a pro-inflammatory response from human neutrophils. This raises concerns over the safety of e-cig use. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0368-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Higham
- Manchester Academic Health and Science Centre, University Hospital of South Manchester Foundation Trust, Centre for Respiratory and Allergy Medicine, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| | - Nicholas J W Rattray
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Jennifer A Dewhurst
- Manchester Academic Health and Science Centre, University Hospital of South Manchester Foundation Trust, Centre for Respiratory and Allergy Medicine, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Drupad K Trivedi
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Stephen J Fowler
- Manchester Academic Health and Science Centre, University Hospital of South Manchester Foundation Trust, Centre for Respiratory and Allergy Medicine, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Royston Goodacre
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Dave Singh
- Manchester Academic Health and Science Centre, University Hospital of South Manchester Foundation Trust, Centre for Respiratory and Allergy Medicine, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Moussavi-Harami SF, Mladinich KM, Sackmann EK, Shelef MA, Starnes TW, Guckenberger DJ, Huttenlocher A, Beebe DJ. Microfluidic device for simultaneous analysis of neutrophil extracellular traps and production of reactive oxygen species. Integr Biol (Camb) 2016; 8:243-52. [PMID: 26805445 PMCID: PMC4776335 DOI: 10.1039/c5ib00225g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neutrophil extracellular traps (NETs) were first reported in 2004, and since their discovery, there has been an increasing interest in NETs, how they are formed, their role in controlling infections, and their contribution to disease pathogenesis. Despite this rapid expansion of our understanding of NETs, many details remain unclear including the role of reactive oxygen species (ROS) in the formation of NETs. Further, to study NETs, investigators typically require a large number of cells purified via a lengthy purification regimen. Here, we report a microfluidic device used to quantify both ROS and NET production over time in response to various stimulants, including live bacteria. This device enables ROS and NET analysis using a process that purifies primary human neutrophils in less than 10 minutes and requires only a few microliters of whole blood. Using this device we demonstrate the ability to identify distinct capabilities of neutrophil subsets (including ROS production and NET formation), the ability to use different stimulants/inhibitors, and the ability to effectively use samples stored for up to 8 hours. This device permits the study of ROS and NETs in a user-friendly format and has potential for widespread applications in the study of human disease.
Collapse
Affiliation(s)
- S F Moussavi-Harami
- Medical Scientist Training Program, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jones CN, Hoang AN, Martel JM, Dimisko L, Mikkola A, Inoue Y, Kuriyama N, Yamada M, Hamza B, Kaneki M, Warren HS, Brown DE, Irimia D. Microfluidic assay for precise measurements of mouse, rat, and human neutrophil chemotaxis in whole-blood droplets. J Leukoc Biol 2016; 100:241-7. [PMID: 26819316 DOI: 10.1189/jlb.5ta0715-310rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/04/2016] [Indexed: 01/04/2023] Open
Abstract
Animal models of human disease differ in innate immune responses to stress, pathogens, or injury. Precise neutrophil phenotype measurements could facilitate interspecies comparisons. However, such phenotype comparisons could not be performed accurately with the use of current assays, as they require the separation of neutrophils from blood using species-specific protocols, and they introduce distinct artifacts. Here, we report a microfluidic technology that enables robust characterization of neutrophil migratory phenotypes in a manner independent of the donor species and performed directly in a droplet of whole blood. The assay relies on the particular ability of neutrophils to deform actively during chemotaxis through microscale channels that block the advance of other blood cells. Neutrophil migration is measured directly in blood, in the presence of other blood cells and serum factors. Our measurements reveal important differences among migration counts, velocity, and directionality among neutrophils from 2 common mouse strains, rats, and humans.
Collapse
Affiliation(s)
- Caroline N Jones
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anh N Hoang
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph M Martel
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurie Dimisko
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Mikkola
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yoshitaka Inoue
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina Yamada
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bashar Hamza
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - H Shaw Warren
- Department of Pediatrics and Medicine, Infectious Disease Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diane E Brown
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
15
|
Wu X, Newbold MA, Haynes CL. Recapitulation of in vivo-like neutrophil transendothelial migration using a microfluidic platform. Analyst 2016; 140:5055-64. [PMID: 26087389 DOI: 10.1039/c5an00967g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neutrophil transendothelial migration (TEM) is an essential physiological process that regulates the recruitment of neutrophils in response to inflammatory signals. Herein, a versatile hydrogel scaffold is embedded in a microfluidic platform that supports an endothelial cell layer cultured in the vertical direction and highly stable chemical gradients; this construct is employed to mimic the in vivo neutrophil TEM process. We found that the number of neutrophils migrating across the endothelial cell layer is dependent on the presented chemoattractant concentration and the spatial profile of the chemical gradient. Endothelial cells play a critical role in neutrophil TEM by promoting neutrophil morphological changes as well as expressing surface receptor molecules that are indispensable for inducing neutrophil attachment and migration. Furthermore, the microfluidic device also supports competing chemoattractant gradients to facilitate neutrophil TEM studies in complex microenvironments that more accurately model the in vivo system than simplified microenvironments without the complexity of chemical gradients. This work demonstrates that combinations of any two different chemoattractants induce more significant neutrophil migration than a single chemoattractant in the same total amount, indicating synergistic effects between distinct chemoattractants. The in vitro reconstitution of neutrophil TEM successfully translates planar neutrophil movement into in vivo-like neutrophil recruitment and accelerates understanding of cellular interactions between neutrophils and endothelial cells within the complicated physiological milieu.
Collapse
Affiliation(s)
- Xiaojie Wu
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
16
|
|
17
|
Berthier E, Beebe DJ. Gradient generation platforms: new directions for an established microfluidic technology. LAB ON A CHIP 2014; 14:3241-7. [PMID: 25008971 PMCID: PMC4134926 DOI: 10.1039/c4lc00448e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microscale platforms are enabling for cell-based studies as they allow the recapitulation of physiological conditions such as extracellular matrix (ECM) configurations and soluble factors interactions. Gradient generation platforms have been one of the few applications of microfluidics that have begun to be translated to biological laboratories and may become a new "gold standard". Though gradient generation platforms are now established, their full potential has not yet been realized. Here, we will provide our perspective on milestones achieved in the development of gradient generation and cell migration platforms, as well as emerging directions such as using cell migration as a diagnostic readout and attaining mechanistic information from cell migration models.
Collapse
Affiliation(s)
- E Berthier
- Microtechnology Medicine and Biology Lab (MMB), Department of Biomedical Engineering, University of Wisconsin-Madison, USA.
| | | |
Collapse
|
18
|
Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr Biol (Camb) 2014; 6:555-63. [PMID: 24676392 PMCID: PMC4307755 DOI: 10.1039/c3ib40267c] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generation of functional microvascular networks is critical for the development of advanced in vitro models to replicate pathophysiological conditions. Mural cells provide structural support to blood vessels and secrete biomolecules contributing to vessel stability and functionality. We investigated the role played by two endothelium-related molecules, angiopoietin (Ang-1) and transforming growth factor (TGF-β1), on bone marrow-derived human mesenchymal stem cell (BM-hMSC) phenotypic transition toward a mural cell lineage, both in monoculture and in direct contact with human endothelial cells (ECs), within 3D fibrin gels in microfluidic devices. We demonstrated that the effect of these molecules is dependent on direct heterotypic cell-cell contact. Moreover, we found a significant increase in the amount of α-smooth muscle actin in microvascular networks with added VEGF and TGF-β1 or VEGF and Ang-1 compared to networks with added VEGF alone. However, the addition of TGF-β1 generated a non-interconnected microvasculature, while Ang-1 promoted functional networks, confirmed by microsphere perfusion and permeability measurements. The presence of mural cell-like BM-hMSCs coupled with the addition of Ang-1 increased the number of network branches and reduced mean vessel diameter compared to EC only vasculature. This system has promising applications in the development of advanced in vitro models to study complex biological phenomena involving functional and perfusable microvascular networks.
Collapse
Affiliation(s)
- Jessie S Jeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA 02139.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr Biol (Camb) 2014. [PMID: 24676392 DOI: 10.1039/b000000x/nih-pa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The generation of functional microvascular networks is critical for the development of advanced in vitro models to replicate pathophysiological conditions. Mural cells provide structural support to blood vessels and secrete biomolecules contributing to vessel stability and functionality. We investigated the role played by two endothelium-related molecules, angiopoietin (Ang-1) and transforming growth factor (TGF-β1), on bone marrow-derived human mesenchymal stem cell (BM-hMSC) phenotypic transition toward a mural cell lineage, both in monoculture and in direct contact with human endothelial cells (ECs), within 3D fibrin gels in microfluidic devices. We demonstrated that the effect of these molecules is dependent on direct heterotypic cell-cell contact. Moreover, we found a significant increase in the amount of α-smooth muscle actin in microvascular networks with added VEGF and TGF-β1 or VEGF and Ang-1 compared to networks with added VEGF alone. However, the addition of TGF-β1 generated a non-interconnected microvasculature, while Ang-1 promoted functional networks, confirmed by microsphere perfusion and permeability measurements. The presence of mural cell-like BM-hMSCs coupled with the addition of Ang-1 increased the number of network branches and reduced mean vessel diameter compared to EC only vasculature. This system has promising applications in the development of advanced in vitro models to study complex biological phenomena involving functional and perfusable microvascular networks.
Collapse
Affiliation(s)
- Jessie S Jeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA 02139.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim D, Wu X, Young AT, Haynes CL. Microfluidics-based in vivo mimetic systems for the study of cellular biology. Acc Chem Res 2014; 47:1165-73. [PMID: 24555566 PMCID: PMC3993883 DOI: 10.1021/ar4002608] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The human body is a complex network of molecules,
organelles, cells,
tissues, and organs: an uncountable number of interactions and transformations
interconnect all the system’s components. In addition to these
biochemical components, biophysical components, such as pressure,
flow, and morphology, and the location of all of these interactions
play an important role in the human body. Technical difficulties have
frequently limited researchers from observing cellular biology as
it occurs within the human body, but some state-of-the-art analytical
techniques have revealed distinct cellular behaviors that occur only
in the context of the interactions. These types of findings have inspired
bioanalytical chemists to provide new tools to better understand these
cellular behaviors and interactions. What blocks us from understanding
critical biological interactions
in the human body? Conventional approaches are often too naïve
to provide realistic data and in vivo whole animal studies give complex
results that may or may not be relevant for humans. Microfluidics
offers an opportunity to bridge these two extremes: while these studies
will not model the complexity of the in vivo human system, they can
control the complexity so researchers can examine critical factors
of interest carefully and quantitatively. In addition, the use of
human cells, such as cells isolated from donated blood, captures human-relevant
data and limits the use of animals in research. In addition, researchers
can adapt these systems easily and cost-effectively to a variety of
high-end signal transduction mechanisms, facilitating high-throughput
studies that are also spatially, temporally, or chemically resolved.
These strengths should allow microfluidic platforms to reveal critical
parameters in the human body and provide insights that will help with
the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations
within the last 5 years that focus on modeling both biophysical and
biochemical interactions in cellular communication, such as flow and
cell–cell networks. We also describe more advanced systems
that mimic higher level biological networks, such as organ on-a-chip
and animal on-a-chip models. Since the first papers in the early 1990s,
interest in the bioanalytical use of microfluidics has grown significantly.
Advances in micro-/nanofabrication technology have allowed researchers
to produce miniaturized, biocompatible assay platforms suitable for
microfluidic studies in biochemistry and chemical biology. Well-designed
microfluidic platforms can achieve quick, in vitro analyses on pico-
and femtoliter volume samples that are temporally, spatially, and
chemically resolved. In addition, controlled cell culture techniques
using a microfluidic platform have produced biomimetic systems that
allow researchers to replicate and monitor physiological interactions.
Pioneering work has successfully created cell–fluid, cell–cell,
cell–tissue, tissue–tissue, even organ-like level interfaces.
Researchers have monitored cellular behaviors in these biomimetic
microfluidic environments, producing validated model systems to understand
human pathophysiology and to support the development of new therapeutics.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Xiaojie Wu
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Ashlyn T. Young
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|