1
|
Wei Y, Li Y, Liu S, Meng S, Liu D, You T. Photo-enhanced electrochemical and colorimetric dual-modal aptasensing for aflatoxin B1 detection based on graphene-gold Schottky contact. Chem Commun (Camb) 2023. [PMID: 37464891 DOI: 10.1039/d3cc02638h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A photo-enhanced electrochemical (PEEC) and colorimetric (CM) dual-modal aptasensor was developed with rGO-AuNP Schottky contact for AFB1 monitoring. The PEEC mode allowed the ultrasensitive quantitation based on the photo-enhanced electroactivity mechanism, while the CM mode offered a rapid threshold-level qualitative assay with a portable colorimeter.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Ma JX, Wang YL, Chen C, Cao JT, Liu YM. Label-Free Electrochemiluminescent (ECL) Determination of Mercury (II) Based upon the Cation Exchange Reaction with Cadmium Sulfide Nanowires. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2149768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jin-Xin Ma
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, China
| | - Chen Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| |
Collapse
|
3
|
Zhang S, Wang C, Wu T, Fan D, Hu L, Wang H, Wei Q, Wu D. A sandwiched photoelectrochemical biosensing platform for detecting Cytokeratin-19 fragments based on Ag 2S-sensitized BiOI/Bi 2S 3 heterostructure amplified by sulfur and nitrogen co-doped carbon quantum dots. Biosens Bioelectron 2022; 196:113703. [PMID: 34656853 DOI: 10.1016/j.bios.2021.113703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 01/20/2023]
Abstract
A sandwiched photoelectrochemical (PEC) immunosensor based on BiOI/Bi2S3/Ag2S was designed for the quantitative detection of cytokeratin-19 fragments (CYFRA21-1) in serum. In this work, due to the intervention of the narrow band gap Bi2S3, the absorption of the light source by the BiOI/Bi2S3 heterostructure has been significantly enhanced. Meanwhile, the matched band structure of BiOI, Bi2S3 and Ag2S promoted the rapid transfer of electrons between the conduction bands and effectively inhibited the recombination of electron-hole pairs, thus enhanced the photoelectric signals. Sulfur and nitrogen co-doped carbon quantum dots (S,N-CQDs) with up-conversion luminescence properties provided more light energy for the base materials. On the other hand, S,N-CQDs were combined with Ab2 through polydopamine (PDA), as secondary antibody labels, further enhanced the sensitivity of the sensor. Herein, the linear range of the sensor was from 0.001 to 100 ng mL-1 and the detection limit was 1.72 pg mL-1. In addition, the sensor provides a feasible way for the detection of tumor markers due to its excellent selectivity, repeatability and good stability.
Collapse
Affiliation(s)
- Shitao Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Chao Wang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Lihua Hu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| |
Collapse
|
4
|
Li Z, Lu J, Wei W, Tao M, Wang Z, Dai Z. Recent advances in electron manipulation of nanomaterials for photoelectrochemical biosensors. Chem Commun (Camb) 2022; 58:12418-12430. [DOI: 10.1039/d2cc04298c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article discusses the recent advances and strategies of building photoelectrochemical (PEC) biosensors from the perspective of regulating the electron transfer of nanomaterials.
Collapse
Affiliation(s)
- Zijun Li
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jiarui Lu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wanting Wei
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Min Tao
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
5
|
Jiang Z, Zhao TT, Li CM, Li YF, Huang CZ. 2D MOF-Based Photoelectrochemical Aptasensor for SARS-CoV-2 Spike Glycoprotein Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49754-49761. [PMID: 34657424 PMCID: PMC8547163 DOI: 10.1021/acsami.1c17574] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 05/07/2023]
Abstract
A reliable and sensitive detection approach for SARS-CoV 2 is essential for timely infection diagnosis and transmission prevention. Here, a two-dimensional (2D) metal-organic framework (MOF)-based photoelectrochemical (PEC) aptasensor with high sensitivity and stability for SARS-CoV 2 spike glycoprotein (S protein) detection was developed. The PEC aptasensor was constructed by a plasmon-enhanced photoactive material (namely, Au NPs/Yb-TCPP) with a specific DNA aptamer against S protein. The Au NPs/Yb-TCPP fabricated by in situ growth of Au NPs on the surface of 2D Yb-TCPP nanosheets showed a high electron-hole (e-h) separation efficiency due to the enhancement effect of plasmon, resulting in excellent photoelectric performance. The modified DNA aptamer on the surface of Au NPs/Yb-TCPP can bind with S protein with high selectivity, thus decreasing the photocurrent of the system due to the high steric hindrance and low conductivity of the S protein. The established PEC aptasensor demonstrated a highly sensitive detection for S protein with a linear response range of 0.5-8 μg/mL with a detection limit of 72 ng/mL. This work presented a promising way for the detection of SARS-CoV 2, which may conduce to the impetus of clinic diagnostics.
Collapse
Affiliation(s)
- Zhong
Wei Jiang
- Key
Laboratory of Luminescence Analysis and Molecular Sensing, Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ting Ting Zhao
- Key
Laboratory of Luminescence Analysis and Molecular Sensing, Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chun Mei Li
- Key
Laboratory of Luminescence and Real-Time Analysis System, Chongqing
Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key
Laboratory of Luminescence Analysis and Molecular Sensing, Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key
Laboratory of Luminescence Analysis and Molecular Sensing, Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
- Key
Laboratory of Luminescence and Real-Time Analysis System, Chongqing
Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
6
|
Abstract
Electrochemistry represents an important analytical technique used to acquire and assess chemical information in detail, which can aid fundamental investigations in various fields, such as biological studies. For example, electrochemistry can be used as simple and cost-effective means for bio-marker tracing in applications, such as health monitoring and food security screening. In combination with light, powerful spatially-resolved applications in both the investigation and manipulation of biochemical reactions begin to unfold. In this article, we focus primarily on light-addressable electrochemistry based on semiconductor materials and light-readable electrochemistry enabled by electrochemiluminescence (ECL). In addition, the emergence of multiplexed and imaging applications will also be introduced.
Collapse
|
7
|
Cui L, Shen J, Li CC, Cui PP, Luo X, Wang X, Zhang CY. Construction of a Dye-Sensitized and Gold Plasmon-Enhanced Cathodic Photoelectrochemical Biosensor for Methyltransferase Activity Assay. Anal Chem 2021; 93:10310-10316. [PMID: 34260216 DOI: 10.1021/acs.analchem.1c01797] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA methyltransferases may function as important biomarkers of cancers and genetic diseases. Herein, we develop a dye-sensitized and gold plasmon-enhanced cathodic photoelectrochemical (PEC) biosensor on the basis of p-type covalent organic polymers (COPs) for the signal-on measurement of M.SssI methyltransferase (M.SssI MTase). The cathodic PEC biosensor is constructed by the in situ growth of p-type COP films onto a glass coated with indium tin oxide and the subsequent assembly of biotin- and HS-labeled double-stranded DNA (dsDNA) probes onto the COP film via biotin-streptavidin interaction. The dsDNA probe contains the recognition sequence of M.SssI MTase. The COP thin films possess a porous ultrathin nanosheet structure with abundant active sites, facilitating the generation of a high photocurrent compared with the hydrothermally synthesized ones. The presence of DNA methyltransferases can prevent the digestion of restriction endonuclease HpaII, consequently inducing the introduction of gold nanoparticles (AuNPs) to the dsDNA probes via the S-Au bond and the intercalation of rhodamine B (RhB) into the DNA grooves to produce a high photocurrent due to the dye-photosensitized enhancement and AuNP-mediated surface plasmon resonance. However, in the absence of M.SssI MTase, HpaII digests the dsDNA probes, and neither AuNPs nor RhB can be introduced onto the electrode surface, leading to a low photocurrent. This cathodic PEC biosensor possesses high sensitivity and good selectivity, and it can screen the inhibitors and detect M.SssI MTase in serum as well.
Collapse
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Jingzhu Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chen-Chen Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pei-Pei Cui
- Shandong Provincial Key Laboratory of Biophysics, Shandong Universities Key Laboratory of Functional Biological Resources Utilization and Development, College of Life Science, Dezhou University, Dezhou 253023, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaolei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
8
|
Chen Y, Zhu Q, Zhou X, Wang R, Yang Z. Reusable, facile, and rapid aptasensor capable of online determination of trace mercury. ENVIRONMENT INTERNATIONAL 2021; 146:106181. [PMID: 33099062 DOI: 10.1016/j.envint.2020.106181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Herein, we reported a homemade waveguide-based evanescent wave aptasensor for the facile online monitoring of mercury pollution. The aptasensor exploited the high selectivity of hairpin structure-based thymidine-Hg2+-thymidine coordination chemistry (T-T mismatch) for Hg2+ recognition and the stably regenerable capability of DNA-functionalized waveguide surfaces. The presence of Hg2+ caused the T-T mismatch of Cy5.5-labeled T-rich single-stranded DNA sequences. The formed hairpin structures blocked the further hybridization of T-rich single-stranded DNA sequences with the complementary DNA strands that are modified on the waveguide surface; this phenomenon was accompanied by the decrease in the fluorescent signals excited by the evanescent wave. The limit of detection in real water samples was determined to be 0.2 μg/L, which was comparable with that of 0.4 μg/L in an ultrapure water under controlled conditions. And the linear range was observed from 1.4 µg/L to 240.7 µg/L. The negligible environmental matrix effect on the performance ensured the reliability of the proposed aptasensor. Moreover, the cross reactivity of this method toward other investigated metal ions was negligible. Through the delicate surface modification with DNA molecules covalently, the chip was reused at least 31 times with a relative standard deviation (RSD) of less than 19%. A Hg2+ pollution accident was successfully detected within 30 min, shedding new light in pollution monitoring, environment restoration, and emergency treatment.
Collapse
Affiliation(s)
- Yangyang Chen
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China; National Key Laboratory of Science & Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Advanced Technology and Equipment of Water Environment Pollution Monitoring, Changsha 410205, China.
| | - Ruoyu Wang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenchuan Yang
- National Key Laboratory of Science & Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Xie H, Niu Y, Deng Y, Cheng H, Ruan C, Li G, Sun W. Electrochemical aptamer sensor for highly sensitive detection of mercury ion with Au/Pt@carbon nanofiber‐modified electrode. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hui Xie
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Yanyan Niu
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Ying Deng
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Hui Cheng
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Chengxiang Ruan
- Jiangxi Key Laboratory of Surface Engineering Jiangxi Science and Technology Normal University Nanchang China
| | - Guangjiu Li
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Wei Sun
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| |
Collapse
|
10
|
Meng L, Liu M, Xiao K, Zhang X, Du C, Chen J. Sensitive photoelectrochemical assay of Pb 2+ based on DNAzyme-induced disassembly of the "Z-scheme" TiO 2/Au/CdS QDs system. Chem Commun (Camb) 2020; 56:8261-8264. [PMID: 32568311 DOI: 10.1039/d0cc03149f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, based on DNAzyme-induced disassembly of the "Z-scheme" TiO2/Au/CdS QDs system, a facile and sensitive photoelectrochemical biosensor was developed for lead ion assay and a low detection limit of 0.13 pM was obtained.
Collapse
Affiliation(s)
- Leixia Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | |
Collapse
|
11
|
Ratiometric assay of mercury ion based on nitrogen-doped carbon dots with two different optical signals: second-order scattering and fluorescence. Anal Bioanal Chem 2020; 412:4375-4382. [PMID: 32358647 DOI: 10.1007/s00216-020-02676-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Ratiometric assays, which can effectively surmount external interference, have attracted extensive research interests. Herein, a novel ratiometric sensing platform for Hg2+ is designed based on nitrogen-doped carbon dots (N-CDs) with two different optical signals. Under a single excitation, N-CDs have two emission peaks around 668 nm and 412 nm, which are second-order scattering and fluorescence, respectively. Upon the addition of Hg2+, the weak scattering emission at 668 nm can be increased apparently, while the strong fluorescence intensity at 412 nm is weakened. Moreover, the ratio of scattering intensity to fluorescence intensity is linearly dependent on Hg2+ concentration (0.1-10 μM and 10-30 μM, respectively), and the detection limit is 66 nM. In addition, the ratiometric sensing mechanism is investigated in detail, which is due to the combined effect of aggregation-induced fluorescence quenching and scattering enhancement. Furthermore, the developed sensing approach holds a promising application for Hg2+ detection in actual samples. Graphical abstract.
Collapse
|
12
|
Khoshbin Z, Housaindokht MR, Verdian A. A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions. Anal Biochem 2020; 597:113689. [PMID: 32199832 DOI: 10.1016/j.ab.2020.113689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/22/2020] [Accepted: 03/12/2020] [Indexed: 01/30/2023]
Abstract
Mercury (Hg2+) and silver (Ag+) ions possess the harmful effects on public health and environment that makes it essential to develop the sensing techniques with great sensitivity for the ions. Metal ions commonly coexist in the different biological and environmental systems. Hence, it is an urgent demand to design a simple method for the simultaneous detection of metal ions, peculiarly in the case of coexisting Hg2+ and Ag+. This study introduces a low-cost paper-based aptasensor to monitor Hg2+ and Ag+, simultaneously. The strategy of the sensing array is according to the conformational changes of Hg2+- and Ag+-specific aptamers and their release from the GO surface after the injection of the target sample on the sensing platform. Through monitoring the fluorescence recovery changes against the concentrations of the ions, Hg2+ and Ag+ can be determined as low as 1.33 and 1.01 pM. The paper-based aptasensor can simultaneously detect the ions within about 10 min. The aptasensor is applied prosperously to monitor Hg2+ and Ag+ in human serum, water, and milk. The designed aptasensor with the main advantages of simplicity and feasibility holds the supreme potential to develop a cost-effective sensing method for environmental monitoring, food control, and human diagnostics.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
13
|
Wang Q, Peng R, Wang Y, Zhu S, Yan X, Lei Y, Sun Y, He H, Luo L. Sequential colorimetric sensing of cupric and mercuric ions by regulating the etching process of triangular gold nanoplates. Mikrochim Acta 2020; 187:205. [PMID: 32152683 DOI: 10.1007/s00604-020-4176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
A triangular gold nanoplate (AuNPL)-based colorimetric assay is presented for ultrasensitive determination of cupric ions (Cu2+) and mercuric ions (Hg2+) in sequence. AuNPLs were found to be etched efficiently when producing triiodide ions (I3-) by a redox reaction between Cu2+ and iodide ions (I-), leading to a change of the shape of AuNPLs from triangular to sphere along with a color change from blue to pink. In the presence of Hg2+ the etching of AuNPLs was suppressed due to the consumption of I- by the formation of HgI2. With an increase of the concentration of the Hg2+ a transformation from sphere to triangular in the shape of AuNPLs occurred with a color change from pink to blue. The evolution of AuNPLs from etching to anti-etching state by sequential addition of Cu2+ and Hg2+ was accompanied with color variations and band shifts of localized surface plasmon resonance (LSPR), allowing for visual and spectroscopic determination of Cu2+ and Hg2+ successively within 15 min. In the range 0.01-1.5 μM for Cu2+ and 0.02-3.0 μM for Hg2+, the linear relationship between the band shift values and the target ions concentration was found good (R2 > 0.996). The limit of detections (3S/k) was 19 nM for Cu2+ and 9 nM for Hg2+, respectively. The lowest visual estimation concentration was 80 nM for both Cu2+ and Hg2+ through the distinguishable color changes. This system exhibited desirable selectivity for Cu2+ and Hg2+ over other common ions tested. The method has been successfully applied to sequential determination of Cu2+ and Hg2+ in real water and food samples. Graphical abstract Scheme 1 Schematic illustration for sequential detection of Cu2+ and Hg2+ based on etching of AuNPLs.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Ruifeng Peng
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yishan Wang
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Shouzhe Zhu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Xiaoxia Yan
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yunyi Lei
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Youbao Sun
- Shimadzu (China) Co., Ltd., Shanghai, 200052, People's Republic of China
| | - Haibo He
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China.
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
14
|
Zhang Y, Xiao JY, Zhu Y, Tian LJ, Wang WK, Zhu TT, Li WW, Yu HQ. Fluorescence Sensor Based on Biosynthetic CdSe/CdS Quantum Dots and Liposome Carrier Signal Amplification for Mercury Detection. Anal Chem 2020; 92:3990-3997. [DOI: 10.1021/acs.analchem.9b05508] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jing-Yu Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Li-Jiao Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wei-Kang Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
15
|
Wang X, Lv W, Wu J, Li H, Li F. In situ generated nanozyme-initiated cascade reaction for amplified surface plasmon resonance sensing. Chem Commun (Camb) 2020; 56:4571-4574. [DOI: 10.1039/d0cc01117g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel nanozyme-amplified surface plasmon resonance (SPR) sensor was successfully developed based on target-induced in situ generation of AuNPs and a AuNP-guided cascade amplification reaction, with Hg2+ as the target analyte.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao, 266109
- People's Republic of China
| | - Wenxin Lv
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao, 266109
- People's Republic of China
| | - Jiahui Wu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao, 266109
- People's Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao, 266109
- People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao, 266109
- People's Republic of China
| |
Collapse
|
16
|
Guo L, Yin H, Xu M, Zheng Z, Fang X, Chong R, Zhou Y, Xu L, Xu Q, Li J, Li H. In Situ Generated Plasmonic Silver Nanoparticle-Sensitized Amorphous Titanium Dioxide for Ultrasensitive Photoelectrochemical Sensing of Formaldehyde. ACS Sens 2019; 4:2724-2729. [PMID: 31564103 DOI: 10.1021/acssensors.9b01204] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Trace concentration of formaldehyde can damage human health and environment. Consequently, it is of great significance to develop an ultrasensitive sensor for its determination. Herein, an ingenious and efficient photoelectrochemical sensor for formaldehyde was constructed by amorphous TiO2 hollow spheres incorporated with Ag+ ions, which were brought about by silica template etching and then the exchange of Ag+/Na+ ions. The amorphous TiO2 acted the dual role of Ag+ ion probe carriers and photoelectric materials. Upon exposure to the increased concentration of formaldehyde, the Ag nanoparticles were produced in situ, and photocurrent amplification was then achieved in a proportional manner. It is attributed to the injection of hot electrons from plasmonic Ag nanoparticles into the conduction band of amorphous titanium dioxide and therefore enhanced the photocurrent. The linear relationship between 1 and 400 pmol L-1 resulted from the enhanced photocurrent and increased concentration of formaldehyde, and the detection limit was 0.4 pmol L-1. Benefiting from an in situ and unique sensitization strategy, this photoelectrochemical sensor exhibited many advantages such as sensitivity, selectivity, cost-effectiveness, convenience of fabrication, low power consumption, and stability.
Collapse
Affiliation(s)
- Lei Guo
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Hui Yin
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Minglan Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhaoting Zheng
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaohu Fang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ran Chong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yuanyuan Zhou
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lingqiu Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Jing Li
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Hongbo Li
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| |
Collapse
|
17
|
Zhu M, Zhong X, Deng H, Huang L, Yuan R, Yuan Y. Dependent signal quenching and enhancing triggered by bipedal DNA walker for ultrasensitive photoelectrochemical biosensor. Biosens Bioelectron 2019; 143:111618. [DOI: 10.1016/j.bios.2019.111618] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
|
18
|
Victorious A, Saha S, Pandey R, Didar TF, Soleymani L. Affinity-Based Detection of Biomolecules Using Photo-Electrochemical Readout. Front Chem 2019; 7:617. [PMID: 31572709 PMCID: PMC6749010 DOI: 10.3389/fchem.2019.00617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/26/2019] [Indexed: 11/22/2022] Open
Abstract
Detection and quantification of biologically-relevant analytes using handheld platforms are important for point-of-care diagnostics, real-time health monitoring, and treatment monitoring. Among the various signal transduction methods used in portable biosensors, photoelectrochemcial (PEC) readout has emerged as a promising approach due to its low limit-of-detection and high sensitivity. For this readout method to be applicable to analyzing native samples, performance requirements beyond sensitivity such as specificity, stability, and ease of operation are critical. These performance requirements are governed by the properties of the photoactive materials and signal transduction mechanisms that are used in PEC biosensing. In this review, we categorize PEC biosensors into five areas based on their signal transduction strategy: (a) introduction of photoactive species, (b) generation of electron/hole donors, (c) use of steric hinderance, (d) in situ induction of light, and (e) resonance energy transfer. We discuss the combination of strengths and weaknesses that these signal transduction systems and their material building blocks offer by reviewing the recent progress in this area. Developing the appropriate PEC biosensor starts with defining the application case followed by choosing the materials and signal transduction strategies that meet the application-based specifications.
Collapse
Affiliation(s)
- Amanda Victorious
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Sudip Saha
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Richa Pandey
- Department of Engineering Physics, McMaster University, Hamilton, ON, Canada
| | - Tohid F. Didar
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Engineering Physics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Zhu MH, Mu XM, Deng HM, Zhong X, Yuan R, Yuan YL. Ultrasensitive photoelectrochemical biosensor for MiRNA-21 assay based on target-catalyzed hairpin assembly coupled with distance-controllable multiple signal amplification. Chem Commun (Camb) 2019; 55:9622-9625. [PMID: 31342017 DOI: 10.1039/c9cc04987h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here, with the target-catalyzed hairpin assembly generated dsDNA (HP1-HP2) to synchronously control the departure of quencher ferrocene and approach of sensitizer methylene blue, a distance-controllable multiple signal amplification based photoelectrochemical biosensor was proposed for MiRNA-21 assay.
Collapse
Affiliation(s)
- Ming-Hui Zhu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Xiao-Mei Mu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Han-Mei Deng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Xia Zhong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ya-Li Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
20
|
Li Z, Zhou X, Yang J, Fu B, Zhang Z. Near-Infrared-Responsive Photoelectrochemical Aptasensing Platform Based on Plasmonic Nanoparticle-Decorated Two-Dimensional Photonic Crystals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21417-21423. [PMID: 31140775 DOI: 10.1021/acsami.9b07128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The photoelectrochemical (PEC) analysis is an emerging and fast developing biosensing technique. However, the in vivo PEC biosensing in deep tissue is seriously hampered because of the shallow penetration depth of ultraviolet and visible light. Expanding the optical absorption wavelength of photoelectrodes from the visible light region into the near-infrared (NIR) light region is highly desirable because of its deep tissue penetrability and minimal invasiveness for organisms, but the exploration of the facile strategy to implement efficient NIR absorption with good biocompatibility is still challenging. Herein, a NIR PEC aptasensor is proposed by coupling plasmonic nanoparticles (NPs) into periodic two-dimensional nanocavity (NC) photonic crystals as photoelectrodes, where the Au NPs are sputtered on a periodic two-dimensional TiO2 NC photonic crystal substrate to significantly enhance the NIR PEC response and successfully achieve sensitive PEC detection of Hg2+ under irradiation of NIR light in blood. We believe that the proposed NIR-responsive Au/TiO2 NC-based PEC aptasensor will open a new in vivo biosensing model for a series of important biomolecules and pave up an avenue for the practical applications of PEC biosensing in deep tissue or even in organs and brain of the living body.
Collapse
Affiliation(s)
- Zhenzhen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Jing Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Baihe Fu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| |
Collapse
|
21
|
Yang L, Zhong X, Huang L, Deng H, Yuan R, Yuan Y. C 60@C 3N 4 nanocomposites as quencher for signal-off photoelectrochemical aptasensor with Au nanoparticle decorated perylene tetracarboxylic acid as platform. Anal Chim Acta 2019; 1077:281-287. [PMID: 31307720 DOI: 10.1016/j.aca.2019.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/03/2023]
Abstract
Herein, a novel signal-off photoelectrochemical (PEC) aptasensor was proposed for sensitive detection of thrombin on the basis of C60@C3N4 nanocomposites as quencher and Au nanoparticles (depAu) decorated perylene tetracarboxylic acid (PTCA) as sensing platform. Owing to the excellent membrane-forming of PTCA and superior conductivity of depAu, the PTCA between two depAu layers can simply and effectively produce an extremely high initial photocurrent to afford a precondition for sensitive biodetection. Thereafter, the assembly of C60@C3N4 nanocomposites on electrode via typical sandwich reaction enabled the generation of a significantly decreased photocurrent. Here, the C3N4 with high surface area not only provided massive binding sites for C60 immobilization, but also partly competed with PTCA in light absorption for producing a significantly smaller photocurrent in the presence of electron donor ascorbic acid (AA). Additionally, both the C3N4 and C60 have the poor conductivity, which could inhibit the electron transfer to achieve a further decreased photocurrent, effectively improving the sensitivity of proposed biosensor. As a result, the PEC biosensor in a "signal-off" mode showed an extremely low detection limit down to 1.5 fM, providing a sensitive and universal strategy for protein detection.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xia Zhong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Liaojing Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hanmei Deng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yali Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
22
|
Li H, Wang J, Wang X, Lin H, Li F. Perylene-Based Photoactive Material as a Double-Stranded DNA Intercalating Probe for Ultrasensitive Photoelectrochemical Biosensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16958-16964. [PMID: 30993969 DOI: 10.1021/acsami.9b04299] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photoelectrochemical (PEC) sensing techniques have attracted considerable concerns because of the intrinsic merit of complete separation between the excitation light and responsive current but still remain a great challenge for further potential application. It is assigned to the scarcity of photoactive materials with narrow band gap, good biosafety, and high photon-to-electron conversion efficiency and unfavorable processing methods for photoactive materials on indium tin oxide. Herein, we employed a perylene-based polymer (PTC-NH2) with exceptional photoelectrical properties to develop a red-light-driven PEC sensor for ultrasensitive biosensing based on its superior electrostatic intercalation efficiency in double-stranded DNA to that in single-stranded DNA, with DNA adenine methyltransferase (Dam MTase) as the model target. The prepared PTC-NH2 was characterized by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and PEC techniques, and the results demonstrated that PTC-NH2 rather than metal oxides/metal sulfides/C3N4/metal complexes enjoyed the prominent capacity of converting light to current. Benefiting from the unique PEC properties of PTC-NH2 and target-initiated hybridization chain reaction (HCR) signal amplification, ultrasensitive detection of Dam MTase was accessibly realized with the detection limit of 0.015 U/mL, which is lower than that of PEC, electrochemical, or fluorescent biosensors previously reported. Furthermore, the proposed PEC sensor has been also applied in screening Dam MTase activity inhibitors. Therefore, the perylene-based PEC sensor exhibits great potential in early accurate diagnosis of DNA methylation-related diseases.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Jiao Wang
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Xin Wang
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Haiyang Lin
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| |
Collapse
|
23
|
Hu Y, Liu Y, Wang S, Guo Z, Hu Y, Xie H. A Novel Surface-Tethered Double-Signal Electrochemiluminescence Sensor Based on Luminol@Au and CdS Quantum Dots for Mercury Ion Detection. ChemistrySelect 2019. [DOI: 10.1002/slct.201802150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunxia Hu
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Yuan Liu
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Sui Wang
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Yufang Hu
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Hongzhen Xie
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| |
Collapse
|
24
|
Deng HM, Huang LJ, Chai YQ, Yuan R, Yuan YL. Ultrasensitive Photoelectrochemical Detection of Multiple Metal Ions Based on Wavelength-Resolved Dual-Signal Output Triggered by Click Reaction. Anal Chem 2019; 91:2861-2868. [DOI: 10.1021/acs.analchem.8b04831] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Han-Mei Deng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Liao-Jing Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Li Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
25
|
Wang L, Wu A, Wei G. Graphene-based aptasensors: from molecule-interface interactions to sensor design and biomedical diagnostics. Analyst 2019. [PMID: 29528071 DOI: 10.1039/c8an00081f] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graphene-based nanomaterials have been widely utilized to fabricate various biosensors for environmental monitoring, food safety, and biomedical diagnostics. The combination of aptamers with graphene for creating biofunctional nanocomposites improved the sensitivity and selectivity of fabricated biosensors due to the unique molecular recognition and biocompatibility of aptamers. In this review, we highlight recent advances in the design, fabrication, and biomedical sensing application of graphene-based aptasensors within the last five years (2013-current). The typical studies on the biomedical fluorescence, colorimetric, electrochemical, electrochemiluminescence, photoelectrochemical, electronic, and force-based sensing of DNA, proteins, enzymes, small molecules, ions, and others are demonstrated and discussed in detail. More attention is paid to a few key points such as the conjugation of aptamers with graphene materials, the fabrication strategies of sensor architectures, and the importance of aptamers on improving the sensing performances. It is expected that this work will provide preliminary and useful guidance for readers to understand the fabrication of graphene-based biosensors and the corresponding sensing mechanisms in one way, and in another way will be helpful to develop novel high performance aptasensors for biological analysis and detection.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, P. R. China.
| | | | | |
Collapse
|
26
|
Wang Z, Liu J, Liu X, Shi X, Dai Z. Photoelectrochemical Approach to Apoptosis Evaluation via Multi-Functional Peptide- and Electrostatic Attraction-Guided Excitonic Response. Anal Chem 2018; 91:830-835. [DOI: 10.1021/acs.analchem.8b03195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jia Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xin Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiaoyu Shi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Nanjing Normal University Center for Analysis and Testing, Nanjing, 210023, P. R. China
| |
Collapse
|
27
|
Yang T, Cui Y, Li Z, Zeng H, Luo S, Li W. Enhancement of the corrosion resistance of epoxy coating by highly stable 3, 4, 9, 10-perylene tetracarboxylic acid functionalized graphene. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:475-482. [PMID: 29936345 DOI: 10.1016/j.jhazmat.2018.06.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
In this paper, the 3, 4, 9, 10-perylene tetracarboxylic acid-graphene (PTCA-G) composite was synthesized and the corrosion protection property of epoxy coating-coated Q235 steel containing PTCA-G composite was investigated. The results of Fourier transform infrared spectroscopy (FT-IR) proved that 3, 4, 9, 10-perylene tetracarboxylic acid (PTCA) and graphene (G) were combined via π-π interactions and hydrophobic forces between PTCA and G. The results of electrochemical tests indicated that with additives of sole PTCA, sole G and PTCA-G composite, the corrosion resistance of epoxy coating was increased compared with pure epoxy coating. And the most significant improved corrosion resistance of PTCA-G/epoxy coating might be attributed to the good dispersion and barrier performance of PTCA-G composite in the epoxy coating. Besides, compared with the corrosion protection property of PTCA-G/epoxy coating with other volume ratios, the corrosion resistance of epoxy coating containing PTCA-G composite with 10:4 vol ratio of PTCA and G was the best. It might be attributed to the excellent barrier and dispersion properties of PTCA-G composite with 10:4 vol ratio of PTCA and G.
Collapse
Affiliation(s)
- Tao Yang
- Key Laboratory of Sensor Analysis of Tumor Marker of Education Ministry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; College of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yanan Cui
- Key Laboratory of Sensor Analysis of Tumor Marker of Education Ministry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zeshan Li
- Key Laboratory of Sensor Analysis of Tumor Marker of Education Ministry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui Zeng
- College of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Shizhong Luo
- Key Laboratory of Sensor Analysis of Tumor Marker of Education Ministry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Weihua Li
- College of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| |
Collapse
|
28
|
Tu W, Wang Z, Dai Z. Selective photoelectrochemical architectures for biosensing: Design, mechanism and responsibility. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
An aptamer-based colorimetric Pt(II) assay based on the use of gold nanoparticles and a cationic polymer. Mikrochim Acta 2018; 185:267. [DOI: 10.1007/s00604-018-2794-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
|
30
|
Li J, Fu W, Bao J, Wang Z, Dai Z. Fluorescence Regulation of Copper Nanoclusters via DNA Template Manipulation toward Design of a High Signal-to-Noise Ratio Biosensor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6965-6971. [PMID: 29363949 DOI: 10.1021/acsami.7b19055] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because of bioaccumulation of food chain and disability of biodegradation, concentration of toxic mercury ions (Hg2+) in the environment dramatically varies from picomolar to micromolar, indicating the importance of well-performed Hg2+ analytical methods. Herein, reticular DNA is constructed by introducing thymine (T)-Hg2+-T nodes in poly(T) DNA, and copper nanoclusters (CuNCs) with aggregate morphology are prepared using this reticular DNA as a template. Intriguingly, the prepared CuNCs exhibit enhanced fluorescence. Meanwhile, the reticular DNA reveals evident resistance to enzyme digestion, further clarifying the fluorescence enhancement of CuNCs. Relying on the dual function of DNA manipulation, a high signal-to-noise ratio biosensor is designed. This analytical approach can quantify Hg2+ in a very wide range (50 pM to 500 μM) with an ultralow detection limit (16 pM). Besides, depending on the specific interaction between Hg2+ and reduced l-glutathione (GSH), this biosensor is able to evaluate the inhibition of GSH toward Hg2+. In addition, pollution of Hg2+ in three lakes is tested using this method, and the obtained results are in accord with those from inductively coupled plasma mass spectrometry. In general, this work provides an alternative way to regulate the properties of DNA-templated nanomaterials and indicates the applicability of this way by fabricating an advanced biosensor.
Collapse
Affiliation(s)
- Junyao Li
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, and ‡Center for Analysis and Testing, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Wenxin Fu
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, and ‡Center for Analysis and Testing, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, and ‡Center for Analysis and Testing, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Zhaoyin Wang
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, and ‡Center for Analysis and Testing, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, and ‡Center for Analysis and Testing, Nanjing Normal University , Nanjing 210023, P. R. China
| |
Collapse
|
31
|
Liu S, He P, Hussain S, Lu H, Zhou X, Lv F, Liu L, Dai Z, Wang S. Conjugated Polymer-Based Photoelectrochemical Cytosensor with Turn-On Enable Signal for Sensitive Cell Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6618-6623. [PMID: 29368919 DOI: 10.1021/acsami.7b18275] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, a new photoelectrochemical (PEC) cytosensor was constructed by using cationic polyfluorene derivative, poly(9,9-bis(6'-(N,N,N,-trimethylammonium)hexyl)fluorene-co-alt-1,4-phenylene)bromide (PFP) as the photoelectric-responsive material for sensitive cell detection. Positive-charged PFP with high photoelectric conversion efficiency can generate robust photocurrent under light illumination. In the PEC cytosensor, 3-phosphonopropionic acid was linked to the indium tin oxide electrode, followed by modification with antiepithelial-cell-adhesion-molecule (EpCAM) antibody via amide condensation reaction. Thus, target SKBR-3 cells with overexpressed EpCAM antigen could be captured onto the electrode via the specific antibody-antigen interactions. Upon adding cationic PFP, a favorable electrostatic interaction between cationic PFP and negatively charged cell membrane led to a turn-on detection signal for target SKBR-3 cells. This new cytosensor not only exhibits good sensitivity because of the good photoelectric performance of conjugated polymers, but also offers decent selectivity to target cells by taking advantage of the specific antibody-antigen recognition.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Ping He
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Sameer Hussain
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Huan Lu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Xin Zhou
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
32
|
Liu Y, Hu Y, Wang S, Guo Z, Hu Y. A Novel Surface-tethered Analysis Method for Mercury (II) ion Detection via Self-assembly of Individual Electrochemiluminescence Signal Units. ELECTROANAL 2018. [DOI: 10.1002/elan.201700660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuan Liu
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Yunxia Hu
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Sui Wang
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Yufang Hu
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| |
Collapse
|
33
|
Hao Y, Cui Y, Qu P, Sun W, Liu S, Zhang Y, Li D, Zhang F, Xu M. A novel strategy for the construction of photoelectrochemical sensing platform based on multifunctional photosensitizer. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Huang L, Zhang L, Yang L, Yuan R, Yuan Y. Manganese porphyrin decorated on DNA networks as quencher and mimicking enzyme for construction of ultrasensitive photoelectrochemistry aptasensor. Biosens Bioelectron 2017; 104:21-26. [PMID: 29294407 DOI: 10.1016/j.bios.2017.12.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 11/24/2022]
Abstract
In this work, the manganese porphyrin (MnPP) decorated on DNA networks could serve as quencher and mimicking enzyme to efficiently reduce the photocurrent of photoactive material 3,4,9,10-perylene tetracarboxylic acid (PTCA), which was elaborately used to construct a novel label-free aptasensor for ultrasensitive detection of thrombin (TB) in a signal-off manner. The Au-doped PTCA (PTCA-PEI-Au) with outstanding membrane-forming and photoelectric property was modified on electrode to acquire a strong initial photoelectrochemistry (PEC) signal. Afterward, target binding aptamer Ι (TBAΙ) was modified on electrode to specially recognize target TB, which could further combine with TBAII and single-stranded DNA P1-modified platinum nanoparticles (TBAII-PtNPs-P1) for immobilizing DNA networks with abundant MnPP. Ingeniously, the MnPP could not only directly quench the photocurrent of PTCA, but also acted as hydrogen peroxide (HRP) mimicking enzyme to remarkably stimulate the deposition of benzo-4-chlorhexidine (4-CD) on electrode for further decreasing the photocurrent of PTCA, thereby obtaining a definitely low photocurrent for detection of TB. As a result, the proposed PEC aptasensor illustrated excellent sensitivity with a low detection limit down to 3 fM, exploiting a new avenue about intergrating two functions in one substance for ultrasensitive biological monitoring.
Collapse
Affiliation(s)
- Liaojing Huang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Li Zhang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Liu Yang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Yali Yuan
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
35
|
Li Z, Su C, Wu D, Zhang Z. Gold Nanoparticles Decorated Hematite Photoelectrode for Sensitive and Selective Photoelectrochemical Aptasensing of Lysozyme. Anal Chem 2017; 90:961-967. [PMID: 29211440 DOI: 10.1021/acs.analchem.7b04015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photoelectrochemical aptasensor (PECAS) is a new and promising detection platform with both high sensitivity and good selectivity. Exploration of new photoelectrode materials and establishment of effective charge transfer channel between photoelectrode and aptamer are the main challenges in this field. In this work, an efficient PECAS based on Au nanoparticles (NPs) decorated Fe2O3 nanorod photoelectrode is rationally designed, fabricated, and exhibited excellent sensitivity and selectivity for detection of lysozyme (Lys) with an ultralow detection limit of 3 pM and wide detection range from 10 pM to 100 nM. The Au NPs not only act as anchor to establish an efficient charge transfer channel between the photoelectrode and the aptamer, but also help to enhance the PEC performance through adjusting the carrier density of Fe2O3. The rationally designed photoelectrode opens up a distinctive avenue for promoting the PECAS to be a versatile analysis method.
Collapse
Affiliation(s)
- Zhenzhen Li
- School of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| | - Changjiang Su
- School of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| | - Dan Wu
- School of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| | - Zhonghai Zhang
- School of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
36
|
Zang Y, Lei J, Ju H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 2017; 96:8-16. [DOI: 10.1016/j.bios.2017.04.030] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
37
|
Ruan YF, Zhang N, Zhu YC, Zhao WW, Xu JJ, Chen HY. Photoelectrochemical Bioanalysis Platform of Gold Nanoparticles Equipped Perovskite Bi4NbO8Cl. Anal Chem 2017. [DOI: 10.1021/acs.analchem.6b05153] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yi-Fan Ruan
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Zhang
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuan-Cheng Zhu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department
of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Liu Q, Huan J, Hao N, Qian J, Mao H, Wang K. Engineering of Heterojunction-Mediated Biointerface for Photoelectrochemical Aptasensing: Case of Direct Z-Scheme CdTe-Bi 2S 3 Heterojunction with Improved Visible-Light-Driven Photoelectrical Conversion Efficiency. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18369-18376. [PMID: 28497956 DOI: 10.1021/acsami.7b04310] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work presents a heterojunction-mediated photoelectrochemical (PEC) biointerface for selective detection of microcystin-LR (MC-LR) by introducing a direct Z-scheme heterojunction as efficient visible-light-driven photoactive species. Specifically, the Z-scheme type CdTe-Bi2S3 heterojunction was designed and synthesized as an ideal photoactive material, which exhibited higher PEC activity as compared with either CdTe quantum dots or Bi2S3 nanorods due to the improved photogenerated charges separation efficiency of heterojunction. Then the MC-LR aptamer was employed for selective recognition of MC-LR target, which was immobilized on the CdTe-Bi2S3 film by the formation of phosphor-amidate bonds between the phosphate group of aptamer and amino group of the chitosan film on the electrode. The proposed aptasensor showed a photocurrent signal due to the photoactive CdTe-Bi2S3 heterojunction, while the presence of MC-LR resulted in a dose-responsive decrease in PEC response, which allowed the quantification analysis of MC-LR by measuring the photocurrent signal of the fabricated aptasensor. Under optimal conditions, the resulted PEC aptasensor showed wide linear range (0.01-100 pM) and low detection limit (0.005 pM) for MC-LR determination with high selectivity and acceptable reproducibility. Finally, the proposed aptasensing method was successfully applied in MC-LR detection in real water samples.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Equipment Engineering, Jiangsu University , Zhenjiang 212013, P.R. China
| | - Juan Huan
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, P.R. China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, P.R. China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, P.R. China
| | - Hanping Mao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Equipment Engineering, Jiangsu University , Zhenjiang 212013, P.R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, P.R. China
| |
Collapse
|
39
|
Huang J, Su X, Li Z. Metal ion detection using functional nucleic acids and nanomaterials. Biosens Bioelectron 2017; 96:127-139. [PMID: 28478384 DOI: 10.1016/j.bios.2017.04.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
Metal ion detection is critical in a variety of areas. The past decade has witnessed great progress in the development of metal ion sensors using functional nucleic acids (FNAs) and nanomaterials. The former has good recognition selectivity toward metal ions and the latter possesses unique properties for enhancing the performance of metal ion sensors. This review offers a summary of FNA- and nanomaterial-based metal ion detection methods. FNAs mainly include DNAzymes, G-quadruplexes, and mismatched base pairs and nanomaterials cover gold nanoparticles (GNPs), quantum dots (QDs), carbon nanotubes (CNTs), and graphene oxide (GO). The roles of FNAs and nanomaterials are introduced first. Then, various methods based on the combination of different FNAs and nanomaterials are discussed. Finally, the challenges and future directions of metal ion sensors are presented.
Collapse
Affiliation(s)
- Jiahao Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Xuefen Su
- School of Public Health and Primary Care, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
40
|
Li Y, Zhang N, Zhao WW, Jiang DC, Xu JJ, Chen HY. Polymer Dots for Photoelectrochemical Bioanalysis. Anal Chem 2017; 89:4945-4950. [DOI: 10.1021/acs.analchem.7b00162] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yu Li
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Nan Zhang
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - De-Chen Jiang
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
41
|
Du X, Dai L, Jiang D, Li H, Hao N, You T, Mao H, Wang K. Gold nanrods plasmon-enhanced photoelectrochemical aptasensing based on hematite/N-doped graphene films for ultrasensitive analysis of 17β-estradiol. Biosens Bioelectron 2017; 91:706-713. [PMID: 28126660 DOI: 10.1016/j.bios.2017.01.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
It remains a vital task to establish ultrasensitive sensing interfaces for detection of target analytes to meet the demands of modern analysis. Herein, a highly sensitive turn-on photoelectrochemical (PEC) platform for trace 17β-estradiol (E2) assay was developed based on Au nanrods (AuNRs) with surface plasmon resonance (SPR) properties induced signal amplification. Specifically, a ternary hybrid was prepared by integrating hematite (α-Fe2O3) nanocrystals and N-doped graphene (NG) with AuNRs, which further served as highly efficient photoactive species. Subsequently, a PEC sensing platform was fabricated based on the specific binding of E2 and its aptamer. On such a sensor, the capture of E2 molecules by aptamers led to increased photocurrent. This was attributed to that the specific recognition reaction between E2 and aptamer resulted in the conformational change of the aptamers and complete dissociation of some aptamers on the PEC sensing interface. It can be confirmed by the electrochemical impedance spectroscopy (EIS) results. This process decreased the steric hindrances between the electrode surface and solution and thus increased the photocurrent response. Under the optimal conditions, the as-prepared PEC aptasensor exhibited superb analytical performances for detection of E2 in the range from 1×10-15M to 1×10-9M with a detection limit of 3.3×10-16M. The aptasensor manifested outstanding selectivity towards E2 when other endocrine disrupting compounds with similar structure coexisted. Furthermore, the aptasensor was successfully applied for the determination of E2 in milk powder. The present strategy provides a potential way to boost the activity of photoactive materials and improve the sensitivity of PEC biosensor.
Collapse
Affiliation(s)
- Xiaojiao Du
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Liming Dai
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ding Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Henan Li
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tianyan You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hanping Mao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
42
|
Xin Y, Zhao Y, Qiu B, Zhang Z. Sputtering gold nanoparticles on nanoporous bismuth vanadate for sensitive and selective photoelectrochemical aptasensing of thrombin. Chem Commun (Camb) 2017; 53:8898-8901. [DOI: 10.1039/c7cc05126c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient photoelectrochemical aptasensor based on sputtering Au NP-modified nanoporous BiVO4 was rationally designed and fabricated, and it exhibited excellent sensitivity and selectivity for the detection of thrombin with a low detection limit of 0.5 pM.
Collapse
Affiliation(s)
- Yanmei Xin
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Yina Zhao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Beilei Qiu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Zhonghai Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
43
|
Zhang N, Ruan YF, Ma ZY, Zhao WW, Xu JJ, Chen HY. Simultaneous photoelectrochemical and visualized immunoassay of β-human chorionic gonadotrophin. Biosens Bioelectron 2016; 85:294-299. [DOI: 10.1016/j.bios.2016.04.103] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 11/25/2022]
|
44
|
|
45
|
Abstract
Depending on the situation, metal ions may either play beneficial roles or be harmful to human health and ecosystems. Sensitive and accurate detection of metal ions is thus a critical issue in the field of analytical sciences and great efforts have been devoted to the development of various metal ion sensors. Photoelectrochemical (PEC) detection is an emerging technique for the bio/chemical detection of metal ions, and features a fast response, low cost and high sensitivity. Using representative examples, this review will first introduce the fundamentals and summarize recent progress in the PEC detection of metal ions. In addition, interesting strategies for the design of particular PEC metal ion sensors are discussed. Challenges and opportunities in this field are also presented.
Collapse
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | | | | |
Collapse
|
46
|
Han D, Ma W, Wang L, Ni S, Zhang N, Wang W, Dong X, Niu L. Design of two electrode system for detection of antioxidant capacity with photoelectrochemical platform. Biosens Bioelectron 2016; 75:458-64. [DOI: 10.1016/j.bios.2015.08.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/21/2015] [Accepted: 08/28/2015] [Indexed: 11/24/2022]
|
47
|
Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition. Biosens Bioelectron 2016; 75:359-64. [DOI: 10.1016/j.bios.2015.08.063] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
|
48
|
Yan Z, Wang Z, Miao Z, Liu Y. Dye-Sensitized and Localized Surface Plasmon Resonance Enhanced Visible-Light Photoelectrochemical Biosensors for Highly Sensitive Analysis of Protein Kinase Activity. Anal Chem 2015; 88:922-9. [PMID: 26648204 DOI: 10.1021/acs.analchem.5b03661] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel visible-light photoelectrochemical (PEC) biosensor based on localized surface plasmon resonance (LSPR) enhancement and dye sensitization was fabricated for highly sensitive analysis of protein kinase activity with ultralow background. In this strategy, DNA conjugated gold nanoparticles (DNA@AuNPs) were assembled on the phosphorylated kemptide modified TiO2/ITO electrode through the chelation between Zr(4+) ions and phosphate groups, then followed by the intercalation of [Ru(bpy)3](2+) into DNA grooves. The adsorbed [Ru(bpy)3](2+) can harvest visible light to produce excited electrons that inject into the TiO2 conduction band to form photocurrent under visible light irradiation. In addition, the photocurrent efficiency was further improved by the LSPR of AuNPs under the irradiation of visible light. Moreover, because of the excellent conductivity and large surface area of AuNPs that facilitate electron-transfer and accommodate large number of [Ru(bpy)3](2+), the photocurrent was significantly amplified, affording an extremely sensitive PEC analysis of kinase activity with ultralow background signals. The detection limit of as-proposed PEC biosensor was 0.005 U mL(-1) (S/N = 3). The biosensor also showed excellent performances for quantitative kinase inhibitor screening and PKA activities detection in MCF-7 cell lysates under forskolin and ellagic acid stimulation. The developed dye-sensitization and LSPR enhancement visible-light PEC biosensor shows great potential in protein kinases-related clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Zhiyong Yan
- Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Chemical Science and Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University , Qingdao, Shandong 266071, China.,Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Zonghua Wang
- Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Chemical Science and Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University , Qingdao, Shandong 266071, China
| | - Zhuang Miao
- Departments of Neurosurgery, China-Japan Union Hospital of Jilin University , Changchun, Jilin 130033, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University , Beijing 100084, China
| |
Collapse
|
49
|
Li H, Chen D, Wang H, Li J, Wang W. Sub-picomole level photoelectrochemical sensing of l-cysteine based on plasmonic silver nanoparticles modified hierarchically structured zinc oxide. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Li J, Chen J, Chen Y, Li Y, Shahzad SA, Wang Y, Yang M, Yu C. Fluorescence turn-on detection of mercury ions based on the controlled adsorption of a perylene probe onto the gold nanoparticles. Analyst 2015; 141:346-51. [PMID: 26618370 DOI: 10.1039/c5an01992c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescence turn-on strategy based on Au nanoparticles and a perylene probe for the sensing of Hg(2+) ions has been developed. It was observed that a perylene probe could be adsorbed onto the surface of Au NPs through strong electrostatic and hydrophobic interactions. Its fluorescence was efficiently quenched by the Au nanoparticles. However, in the presence of Hg(2+) and NaBH4, Hg(2+) was reduced and an Au/Hg amalgam was formed on the surface of the Au nanoparticles. The perylene probe could hardly be adsorbed and quenched by the Au/Hg amalgam. A turn on fluorescence signal was therefore detected. The assay is quite sensitive, and 5 nM Hg(2+) could be easily detected. It is also very selective, a number of metal ions were tested and no noticeable interference was observed. The assay was also successfully applied for the determination of Hg(2+) in lake water samples. A simple, fast, inexpensive, highly sensitive and selective Hg(2+) sensing strategy is therefore established.
Collapse
Affiliation(s)
- Juanmin Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|