1
|
Veličković M, Wu R, Gao Y, Thairu MW, Veličković D, Munoz N, Clendinen CS, Bilbao A, Chu RK, Lalli PM, Zemaitis K, Nicora CD, Kyle JE, Orton D, Williams S, Zhu Y, Zhao R, Monroe ME, Moore RJ, Webb-Robertson BJM, Bramer LM, Currie CR, Piehowski PD, Burnum-Johnson KE. Mapping microhabitats of lignocellulose decomposition by a microbial consortium. Nat Chem Biol 2024; 20:1033-1043. [PMID: 38302607 PMCID: PMC11288888 DOI: 10.1038/s41589-023-01536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.
Collapse
Affiliation(s)
- Marija Veličković
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Margaret W Thairu
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dušan Veličković
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathalie Munoz
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chaevien S Clendinen
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Aivett Bilbao
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rosalie K Chu
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kevin Zemaitis
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarai Williams
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ying Zhu
- Department of Microchemistry, Proteomics, Lipidomics, and Next Generation Sequencing, Genentech, San Francisco, CA, USA
| | - Rui Zhao
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Paul D Piehowski
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kristin E Burnum-Johnson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
2
|
De Oliveira VH, Mazzafera P, Faleiro R, Mayer JLS, Hesterberg D, Pérez CA, Andrade SAL. Tissue-level distribution and speciation of foliar manganese in Eucalyptus tereticornis by µ-SXRF and µ-XANES shed light on its detoxification mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132555. [PMID: 37769448 DOI: 10.1016/j.jhazmat.2023.132555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
This study is the first to investigate the speciation and spatial distribution patterns of manganese (Mn) accumulated at elevated concentrations in Eucalyptus leaves by X-ray fluorescence (µ-XRF) and absorption near-edge spectroscopy (µ-XANES). Eucalyptus tereticornis is a tree species with great economic value and potential to accumulate and tolerate high Mn despite not being considered a hyperaccumulator. Seedlings grown under glasshouse conditions were irrigated with two Mn treatments: control Mn (9 µM) and high Mn solution (1000 µM). Biomass and total nutrient concentrations were assessed in roots, stems and leaves. Manganese, calcium (Ca) and potassium (K) spatial patterns were imaged by µ-SXRF in different foliar structures, and Mn speciation was conducted in these compartments by µ-XANES. Under high supply, Mn was distributed across the leaf mesophyll suggesting vacuolar sequestration in these cells. High Mn decreased cytosolic Ca by almost 50% in mesophyll cells, but K remained unaltered. Speciation suggests that a majority of the Mn fraction was complexed by organic ligands modeled as Mn-bound malate and citrate, instead of as free aqueous Mn2+ or oxidised forms. These two detoxification mechanisms: effective vacuolar sequestration and organic acid complexation, may be responsible for the impressively high Mn tolerance found in eucalypts.
Collapse
Affiliation(s)
- Vinicius H De Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil
| | - Rodrigo Faleiro
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil
| | - Juliana Lischka Sampaio Mayer
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil
| | - Dean Hesterberg
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | - Carlos Alberto Pérez
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | - Sara Adrián L Andrade
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil.
| |
Collapse
|
3
|
Letourneau DR, Volmer DA. Mass spectrometry-based methods for the advanced characterization and structural analysis of lignin: A review. MASS SPECTROMETRY REVIEWS 2023; 42:144-188. [PMID: 34293221 DOI: 10.1002/mas.21716] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lignin is currently one of the most promising biologically derived resources, due to its abundance and application in biofuels, materials and conversion to value aromatic chemicals. The need to better characterize and understand this complex biopolymer has led to the development of many different analytical approaches, several of which involve mass spectrometry and subsequent data analysis. This review surveys the most important analytical methods for lignin involving mass spectrometry, first looking at methods involving gas chromatography, liquid chromatography and then continuing with more contemporary methods such as matrix assisted laser desorption ionization and time-of-flight-secondary ion mass spectrometry. Following that will be techniques that directly ionize lignin mixtures-without chromatographic separation-using softer atmospheric ionization techniques that leave the lignin oligomers intact. Finally, ultra-high resolution mass analyzers such as FT-ICR have enabled lignin analysis without major sample preparation and chromatography steps. Concurrent with an increase in the resolution of mass spectrometers, there have been a wealth of complementary data analyses and visualization methods that have allowed researchers to probe deeper into the "lignome" than ever before. These approaches extract trends such as compound series and even important analytical information about lignin substructures without performing lignin degradation either chemically or during MS analysis. These innovative methods are paving the way for a more comprehensive understanding of this important biopolymer, as we seek more sustainable solutions for our human species' energy and materials needs.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
4
|
Nematallah KA, Elmekkawy S, Abdollah MRA, Elmazar MM, Abdel-Sattar E, Meselhy MR. Cheminformatics Application in the Phytochemical and Biological Study of Eucalyptus globulus L. Bark as a Potential Hepatoprotective Drug. ACS OMEGA 2022; 7:7945-7956. [PMID: 35284740 PMCID: PMC8908522 DOI: 10.1021/acsomega.1c07011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Natural products are considered as a good source of antifibrotic agents, but identifying and isolating bioactive molecule(s) is still challenging. Fortunately, numerous computational techniques have evolved to save time and efforts in this field. The aim of the current study was to utilize several cheminformatics software to study the chemical and biological features of the bark of Eucalyptus globulus cultivated in Egypt. Sirius software, with the aid of online databases, was used to process liquid chromatography-mass spectrometry (LC-MS) chemical profiling and predict precise molecular formulae, chemical classes, and structures. Accordingly, 37 compounds were tentatively identified, including 15 reported here for the first time from this species. Also, the BioTransformer tool was successfully applied for in silico virtual study of the human metabolism of these compounds, and 1960 different products were obtained through various metabolic pathways. Finally, an electronic library of the identified compounds and their metabolites were developed and docked in silico against eight different protein targets that are involved in the liver fibrosis process. The results revealed that the extract may have a potential hepatoprotective effect through several mechanisms and that the metabolites have the highest binding affinities to the relevant enzymes than their parent compounds. The extract was found to show potent cytotoxic activity against the liver cancer cell lines HEPG2 and HUH-7, and its absorption was enhanced through nanoformulation, as proved using the ex vivo everted gut sac method.
Collapse
Affiliation(s)
- Khaled A. Nematallah
- Department
of Pharmacognosy and Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
- The
Center for Drug Research and Development (CDRD), Faculty of Pharmacy,
BUE, Cairo 11837, Egypt
| | - Sahar Elmekkawy
- Department
of Chemistry of Natural Compounds, National
Research Centre, Giza 12622, Egypt
| | - Maha R. A. Abdollah
- The
Center for Drug Research and Development (CDRD), Faculty of Pharmacy,
BUE, Cairo 11837, Egypt
- Department
of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Mohey M. Elmazar
- The
Center for Drug Research and Development (CDRD), Faculty of Pharmacy,
BUE, Cairo 11837, Egypt
- Department
of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | |
Collapse
|
5
|
Hu W, Nie H, Wang Y, Li N, Di S, Pan Q, Liu J, Han Y. Tracing the migration and transformation of metabolites in xylem during wood growth by mass spectrometry imaging. Analyst 2022; 147:1551-1558. [DOI: 10.1039/d1an02251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MALDI MSI was used to explore the rule of metabolite migration and transformation for the first time. The rules of heartwood formation and resin secretion were visualized and fully explored.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuangshuang Di
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Jikun Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| |
Collapse
|
6
|
Veličković D, Zhou M, Schilling JS, Zhang J. Using MALDI-FTICR-MS Imaging to Track Low-Molecular-Weight Aromatic Derivatives of Fungal Decayed Wood. J Fungi (Basel) 2021; 7:jof7080609. [PMID: 34436148 PMCID: PMC8397067 DOI: 10.3390/jof7080609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Low-molecular-weight (LMW) aromatics are crucial in meditating fungal processes for plant biomass decomposition. Some LMW compounds are employed as electron donors for oxidative degradation in brown rot (BR), an efficient wood-degrading strategy in fungi that selectively degrades carbohydrates but leaves modified lignins. Previous understandings of LMW aromatics were primarily based on “bulk extraction”, an approach that cannot fully reflect their real-time functions during BR. Here, we applied an optimized molecular imaging method that combines matrix-assisted laser desorption ionization (MALDI) with Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to directly measure the temporal profiles of BR aromatics as Rhodonia placenta decayed a wood wafer. We found that some phenolics were pre-existing in wood, while some (e.g., catechin-methyl ether and dihydroxy-dimethoxyflavan) were generated immediately after fungal activity. These pinpointed aromatics might be recruited to drive early BR oxidative mechanisms by generating Fenton reagents, Fe2+ and H2O2. As BR progressed, ligninolytic products were accumulated and then modified into various aromatic derivatives, confirming that R. placenta depolymerizes lignin. Together, this work confirms aromatic patterns that have been implicated in BR fungi, and it demonstrates the use of MALDI-FTICR-MS imaging as a new approach to monitor the temporal changes of LMW aromatics during wood degradation.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (D.V.); (M.Z.)
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (D.V.); (M.Z.)
| | - Jonathan S. Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
- Correspondence: (J.S.S.); (J.Z.); Tel.: +1-612-624-1761 (J.Z.); Fax: +1-612-625-6286 (J.Z.)
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
- Correspondence: (J.S.S.); (J.Z.); Tel.: +1-612-624-1761 (J.Z.); Fax: +1-612-625-6286 (J.Z.)
| |
Collapse
|
7
|
Zhu N, Zhao C, Wei Y, Sun C, Wu D, Chen K. Biosynthetic labeling with 3-O-propargylcaffeyl alcohol reveals in vivo cell-specific patterned lignification in loquat fruits during development and postharvest storage. HORTICULTURE RESEARCH 2021; 8:61. [PMID: 33750769 PMCID: PMC7943773 DOI: 10.1038/s41438-021-00497-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 05/31/2023]
Abstract
Lignification is a major cell wall modification that often results in the formation of sophisticated subcellular patterns during plant development or in response to environmental stresses. Precise localization of the spatiotemporal deposition of lignin is of great importance for revealing the lignification regulatory mechanism of individual cells. In loquat fruits, lignification typically increases the flesh lignin content and firmness, reducing their edibility and processing quality. However, the precise localization of the spatiotemporal active zones of lignification inside loquat fruit flesh remains poorly understood, and little is known about the contribution of patterned lignification to cell wall structure dynamics and the subsequent fruit-quality deterioration. Here, we performed an emerging bioorthogonal chemistry imaging technique to trace the in vivo patterned lignification dynamics in cells of loquat fruit flesh during development and storage. In developing fruits, lignified cells (LCs) and vascular bundles (VBs) were the zones of active lignification, and ring-like LCs deposited lignin at both the inner wall layer and the outer periphery sides. The domino effect of the generation of LCs was preliminarily visualized. In mature fruits, the newly formed lignin in the flesh of fruits during storage was specifically deposited in the corners and middle lamellae of parenchyma cells surrounding the VBs, resulting in the development of a reticular structure. Based on the findings, distinct spatiotemporal patterned lignification modes for different flesh cells in loquat fruits were proposed. These findings provide loquat lignification dynamics together with spatiotemporal data that can improve our understanding of the lignification process in planta.
Collapse
Affiliation(s)
- Nan Zhu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China
| | - Chenning Zhao
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China
| | - Yuqing Wei
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China
| | - Chongde Sun
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China.
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China
| |
Collapse
|
8
|
Cheng C, Li P, Yu W, Shen D, Gu S. Catalytic hydrogenolysis of lignin in ethanol/isopropanol over an activated carbon supported nickel-copper catalyst. BIORESOURCE TECHNOLOGY 2021; 319:124238. [PMID: 33254461 DOI: 10.1016/j.biortech.2020.124238] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Lignin is the renewable and abundant source of aromatics on earth, and the depolymerization of lignin provides significant potential for producing valuable monophenols. In this work, catalytic hydrogenolysis of organosolv poplar lignin (OPL) in ethanol/isopropanol solvent over monometallic and bimetallic nonprecious catalysts was investigated. Ni/C and a series of NiCu/C catalyst with different Cu loadings were prepared and applied for depolymerization of OPL. The highest yield of phenolic monomers was 63.4 wt% achieved over the Ni10Cu5/C catalyst at 270 °C without external H2. The introduction of Cu in catalysts further promoted the hydrogen donor process of ethanol/isopropanol solvent and facilitated the cleavage of lignin linkages, resulting in the decreased molecular weight of bio-oil. The possible lignin dimer type structures, such as diphenylethane (β-1) type, phenylcoumaran (β-5) type, and pinoresinol (β-β) type structures, were proposed and identified by MALDI-TOF MS, giving a better understanding of the NiCu/C catalyzed lignin depolymerization.
Collapse
Affiliation(s)
- Chongbo Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Pengfei Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Wenbing Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| | - Sai Gu
- The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
9
|
Zhang R, Qi Y, Ma C, Ge J, Hu Q, Yue FJ, Li SL, Volmer DA. Characterization of Lignin Compounds at the Molecular Level: Mass Spectrometry Analysis and Raw Data Processing. Molecules 2021; 26:molecules26010178. [PMID: 33401378 PMCID: PMC7795929 DOI: 10.3390/molecules26010178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Lignin is the second most abundant natural biopolymer, which is a potential alternative to conventional fossil fuels. It is also a promising material for the recovery of valuable chemicals such as aromatic compounds as well as an important biomarker for terrestrial organic matter. Lignin is currently produced in large quantities as a by-product of chemical pulping and cellulosic ethanol processes. Consequently, analytical methods are required to assess the content of valuable chemicals contained in these complex lignin wastes. This review is devoted to the application of mass spectrometry, including data analysis strategies, for the elemental and structural elucidation of lignin products. We describe and critically evaluate how these methods have contributed to progress and trends in the utilization of lignin in chemical synthesis, materials, energy, and geochemistry.
Collapse
Affiliation(s)
- Ruochun Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
- Correspondence: ; Fax: +86-022-27405051
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
| | - Jinfeng Ge
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
| | - Qiaozhuan Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Dietrich A. Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany;
| |
Collapse
|
10
|
Terrell E, Carré V, Dufour A, Aubriet F, Le Brech Y, Garcia-Pérez M. Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI-FT-ICR-MS Results. CHEMSUSCHEM 2020; 13:4428-4445. [PMID: 32174017 DOI: 10.1002/cssc.202000239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High-resolution mass spectrometry-specifically, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS)-offers new opportunities for analysis of oligomers with the assignment of formulae (Cx Hy Oz ) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT-ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT-ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin.
Collapse
Affiliation(s)
- Evan Terrell
- Biological Systems Engineering, Washington State University, Pullman, Washington, 99163, USA
| | - Vincent Carré
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 57078, Metz Cedex 03, France
| | - Anthony Dufour
- LRGP, CNRS, Université de Lorraine, ENSIC, 54000, Nancy, France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 57078, Metz Cedex 03, France
| | - Yann Le Brech
- LRGP, CNRS, Université de Lorraine, ENSIC, 54000, Nancy, France
| | - Manuel Garcia-Pérez
- Biological Systems Engineering, Washington State University, Pullman, Washington, 99163, USA
- Bioproducts, Sciences, & Engineering Laboratory, Washington State University Tri-Cities, Richland, Washington, 99354, USA
| |
Collapse
|
11
|
Terrell E, Dellon LD, Dufour A, Bartolomei E, Broadbelt LJ, Garcia-Perez M. A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05744] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Evan Terrell
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Lauren D. Dellon
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Anthony Dufour
- LRGP, CNRS, Universite de Lorraine, ENSIC, 54000 Nancy, France
| | | | - Linda J. Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Manuel Garcia-Perez
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
12
|
Aubriet F, Ghislain T, Hertzog J, Sonnette A, Dufour A, Mauviel G, Carré V. Characterization of biomass and biochar by LDI-FTICRMS - Effect of the laser wavelength and biomass material. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1951-1962. [PMID: 30062475 DOI: 10.1007/s13361-018-2005-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/31/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
The pyrolysis of the lignocellulosic biomass is a promising process to produce biofuels or green chemicals. Specific analytical methods have to be developed in order to better understand the composition of biomass and of its pyrolysis products and therefore to optimize the design of pyrolysis processes. For this purpose, different biomasses (Douglas and Miscanthus) and one biochar were analyzed by laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (LDI FT-ICR MS). This method allowed the biomass and biochar to be analyzed without any sample preparation and with a spatial resolution of about 100 μm. The influence of LDI conditions (laser wavelength and laser irradiance) and the nature of the biomass and biochar on the obtained mass spectrum were investigated. The nature and origin of the observed ions highly depended on LDI conditions. In the softest laser-biomass interaction conditions (low laser irradiance), the detected ions were related to the nature of the investigated biomass. Indeed, the main part of the detected species came from the different biomass subunits and was produced by photolysis of covalent bonds. When more severe laser irradiation conditions were used, the obtained mass spectra gathered the ions relative to (i) the chemical components of the investigated samples, (ii) the recombination products of these species in the gas phase after their ejection from the sample surface, and (iii) the compounds produced by laser pyrolysis of the sample. This was expected to be useful to mimic thermal pyrolysis. Graphical Abstract.
Collapse
Affiliation(s)
- Frédéric Aubriet
- LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078, Metz Cedex 03, France.
| | - Thierry Ghislain
- LRGP, CNRS, ENSIC, Université de Lorraine, 1, Rue Grandville, 54000, Nancy, France
| | - Jasmine Hertzog
- LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078, Metz Cedex 03, France
| | - Alexander Sonnette
- LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078, Metz Cedex 03, France
| | - Anthony Dufour
- LRGP, CNRS, ENSIC, Université de Lorraine, 1, Rue Grandville, 54000, Nancy, France
| | - Guillain Mauviel
- LRGP, CNRS, ENSIC, Université de Lorraine, 1, Rue Grandville, 54000, Nancy, France
| | - Vincent Carré
- LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078, Metz Cedex 03, France
| |
Collapse
|
13
|
Kosyakov DS, Anikeenko EA, Ul'yanovskii NV, Khoroshev OY, Shavrina IS, Gorbova NS. Ionic liquid matrices for MALDI mass spectrometry of lignin. Anal Bioanal Chem 2018; 410:7429-7439. [PMID: 30229310 DOI: 10.1007/s00216-018-1353-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the study of lignin is still extremely limited due to its low ionization efficiency. We have developed an approach for obtaining high-intensity MALDI mass spectra of lignin, based on the use of ionic liquids as matrices. Thirty-two ionic liquids consisting of large nitrogen-containing cations and anions of aromatic acids, traditionally used as crystalline matrices, were tested. It was established that ionic liquids based on N,N-diisopropyl-N-ethylammonium, N-isopropyl-N-methyl-N-tert-butylammonium, 3-aminoquinolinium, pyridinium, and 1-methylimidazolium cations and anions of ferulic, α-cyanohydroxycinnamic, and 2,5-dihydroxybenzoic acids as MALDI matrices provided high efficiency of lignin desorption/ionization with generation of singly charged protonated molecules of its oligomers. The use of such matrices in combination with the MALDI quadrupole ion trap-time-of-flight technique allows high-intensity mass spectra of lignin to be obtained without interferences from the matrix in the molecular weight range up to 3 kDa, adequately reflecting the molecular mass characteristics of lignin preparations. Using ionic liquid matrices, MS2 and MS3 MALDI mass spectra of lignins for various precursor ions were first obtained, including in the region of large (> 2 kDa) molecular weights. Differences in tandem mass spectra of coniferous and deciduous lignins, reflecting the structural features of corresponding oligomers were demonstrated. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Dmitry S Kosyakov
- Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, 163002, Russia.
| | - Elena A Anikeenko
- Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, 163002, Russia
| | - Nikolay V Ul'yanovskii
- Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, 163002, Russia
| | - Oleg Yu Khoroshev
- Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, 163002, Russia
| | - Irina S Shavrina
- Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, 163002, Russia
| | - Natalya S Gorbova
- Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk, 163000, Russia
| |
Collapse
|
14
|
Qin L, Zhang Y, Liu Y, He H, Han M, Li Y, Zeng M, Wang X. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:351-364. [PMID: 29667236 DOI: 10.1002/pca.2759] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Mass spectrometry imaging (MSI) as a label-free and powerful imaging technique enables in situ evaluation of a tissue metabolome and/or proteome, becoming increasingly popular in the detection of plant endogenous molecules. OBJECTIVE The characterisation of structure and spatial information of endogenous molecules in plants are both very important aspects to better understand the physiological mechanism of plant organism. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a commonly-used tissue imaging technique, which requires matrix to assist in situ detection of a variety of molecules on the surface of a tissue section. In previous studies, MALDI-MSI was mostly used for the detection of molecules from animal tissue sections, compared to plant samples due to cell structural limitations, such as plant cuticles, epicuticular waxes, and cell walls. Despite the enormous progress that has been made in tissue imaging, there is still a challenge for MALDI-MSI suitable for the imaging of endogenous compounds in plants. RESULTS This review summarises the recent advances in MALDI-MSI, focusing on the application of in situ detection of endogenous molecules in different plant organs, i.e. root, stem, leaf, flower, fruit, and seed. CONCLUSION Further improvements on instrumentation sensitivity, matrix selection, image processing and sample preparation will expand the application of MALDI-MSI in plant research.
Collapse
Affiliation(s)
- Liang Qin
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yawen Zhang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yaqin Liu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Huixin He
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Manman Han
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yanyan Li
- The Hospital of Minzu University of China, Minzu University of China, Beijing, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| |
Collapse
|
15
|
Size exclusion chromatography of lignin: The mechanistic aspects and elimination of undesired secondary interactions. J Chromatogr A 2018; 1534:101-110. [DOI: 10.1016/j.chroma.2017.12.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022]
|
16
|
Sheng H, Tang W, Gao J, Riedeman JS, Li G, Jarrell TM, Hurt MR, Yang L, Murria P, Ma X, Nash JJ, Kenttämaa HI. (-)ESI/CAD MS n Procedure for Sequencing Lignin Oligomers Based on a Study of Synthetic Model Compounds with β-O-4 and 5-5 Linkages. Anal Chem 2017; 89:13089-13096. [PMID: 29116757 DOI: 10.1021/acs.analchem.7b01911] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Seven synthesized G-lignin oligomer model compounds (ranging in size from dimers to an octamer) with 5-5 and/or β-O-4 linkages, and three synthesized S-lignin model compounds (a dimer, trimer, and tetramer) with β-O-4 linkages, were evaporated and deprotonated using negative-ion mode ESI in a linear quadrupole ion trap/Fourier transform ion cyclotron resonance mass spectrometer. The collision-activated dissociation (CAD) fragmentation patterns (obtained in MS2 and MS3 experiments, respectively) for the negative ions were studied to develop a procedure for sequencing unknown lignin oligomers. On the basis of the observed fragmentation patterns, the measured elemental compositions of the most abundant fragment ions, and quantum chemical calculations, the most important reaction pathways and likely mechanisms were delineated. Many of these reactions occur via charge-remote fragmentation mechanisms. Deprotonated compounds with only β-O-4 linkages, or both 5-5 and β-O-4 linkages, showed major 1,2-eliminations of neutral compounds containing one, two, or three aromatic rings. The most likely mechanisms for these reactions are charge-remote Maccoll and retro-ene eliminations resulting in the cleavage of a β-O-4 linkage. Facile losses of H2O and CH2O were also observed for all deprotonated model compounds, which involve a previously published charge-driven mechanism. Characteristic "ion groups" and "key ions" were identified that, when combined with their CAD products (MS3 experiments), can be used to sequence unknown oligomers.
Collapse
Affiliation(s)
- Huaming Sheng
- Merck & Company, Inc., Process Research , 126 East Lincoln Avenue RY800-C262, Rahway, New Jersey 07065, United States
| | - Weijuan Tang
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jinshan Gao
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - James S Riedeman
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Guannan Li
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Tiffany M Jarrell
- Merck Animal Health , 2 Giralda Farms, Madison, New Jersey 07940-1026, United States
| | - Matthew R Hurt
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Linan Yang
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Priya Murria
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Xin Ma
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John J Nash
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Hilkka I Kenttämaa
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
de Santana Costa MG, Mazzafera P, Balbuena TS. Insights into temperature modulation of the Eucalyptus globulus and Eucalyptus grandis antioxidant and lignification subproteomes. PHYTOCHEMISTRY 2017; 137:15-23. [PMID: 28190676 DOI: 10.1016/j.phytochem.2017.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/23/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
Eucalyptus grandis and Eucalyptus globulus are among the most widely cultivated trees, differing in lignin composition and plantation areas, as E. grandis is mostly cultivated in tropical regions while E. globulus is preferred in temperate areas. As temperature is a key modulator in plant metabolism, a large-scale proteome analysis was carried out to investigate changes in the antioxidant system and the lignification metabolism in plantlets grown at different temperatures. Our strategy allowed the identification of 3111 stem proteins. A total of 103 antioxidant proteins were detected in the stems of both species. Hierarchical clustering revealed that alterations in the antioxidant proteins are more prominent when Eucalyptus seedlings were exposed to high temperature and that the superoxide isoforms coded by the gene Eucgr.B03930 are the most abundant antioxidant enzymes induced by thermal stimulus. Regarding the lignin biosynthesis, our proteomics approach resulted in the identification of 13 of the 17 core proteins involved in this metabolism, corroborating with gene predictions and the proposed lignin toolbox. Quantitative analyses revealed significant differences in 8 protein isoforms, including the ferulate 5-hydroxylase isoform F5H1, a key enzyme in catalyzing the synthesis of sinapyl alcohol, and the cinnamyl alcohol dehydrogenase isoform CAD2, the last enzyme in monolignol biosynthesis. Data are available via ProteomeXchange with identifier PXD005743.
Collapse
Affiliation(s)
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Tiago Santana Balbuena
- Department of Technology, São Paulo State University, Faculty of Agriculture and Veterinary Sciences, Jaboticabal, SP, Brazil.
| |
Collapse
|
18
|
Biological valorization of low molecular weight lignin. Biotechnol Adv 2016; 34:1318-1346. [DOI: 10.1016/j.biotechadv.2016.10.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
|
19
|
Yoshinaga A, Kamitakahara H, Takabe K. Distribution of coniferin in differentiating normal and compression woods using MALDI mass spectrometric imaging coupled with osmium tetroxide vapor treatment. TREE PHYSIOLOGY 2016; 36:643-52. [PMID: 26507270 PMCID: PMC4886284 DOI: 10.1093/treephys/tpv116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/02/2015] [Indexed: 05/25/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to detect monolignol glucosides in differentiating normal and compression woods of two Japanese softwoods, Chamaecyparis obtusa and Cryptomeria japonica Comparison of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry collision-induced dissociation fragmentation analysis and structural time-of-flight (MALDI-TOF CID-FAST) spectra between coniferin and differentiating xylem also confirmed the presence of coniferin in differentiating xylem. However, as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI-TOF CID-FAST spectra of sucrose were similar to those of coniferin, it was difficult to distinguish the distribution of coniferin and sucrose using MALDI-MSI and collision-induced dissociation measurement only. To solve this problem, osmium tetroxide vapor was applied to sections of differentiating xylem. This vapor treatment caused peak shifts corresponding to the introduction of two hydroxyl groups to the C=C double bond in coniferin. The treatment did not cause a peak shift for sucrose, and therefore was effective in distinguishing coniferin and sucrose. Thus, it was found that MALDI-MSI combined with osmium tetroxide vapor treatment is a useful method to detect coniferin in differentiating xylem.
Collapse
Affiliation(s)
- Arata Yoshinaga
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kamitakahara
- Laboratory of The Chemistry of Biomaterials, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keiji Takabe
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
20
|
|
21
|
Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr Opin Biotechnol 2015; 37:53-60. [PMID: 26613199 DOI: 10.1016/j.copbio.2015.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 01/13/2023]
Abstract
Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. It is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.
Collapse
|
22
|
Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U. Mass spectrometry imaging for plant biology: a review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2015; 15:445-488. [PMID: 27340381 PMCID: PMC4870303 DOI: 10.1007/s11101-015-9440-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/25/2015] [Indexed: 05/09/2023]
Abstract
Mass spectrometry imaging (MSI) is a developing technique to measure the spatio-temporal distribution of many biomolecules in tissues. Over the preceding decade, MSI has been adopted by plant biologists and applied in a broad range of areas, including primary metabolism, natural products, plant defense, plant responses to abiotic and biotic stress, plant lipids and the developing field of spatial metabolomics. This review covers recent advances in plant-based MSI, general aspects of instrumentation, analytical approaches, sample preparation and the current trends in respective plant research.
Collapse
Affiliation(s)
- Berin A. Boughton
- />Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Dinaiz Thinagaran
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Daniel Sarabia
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Antony Bacic
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
- />ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC 3010 Australia
- />Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Ute Roessner
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
23
|
Annangudi SP, Myung K, Avila Adame C, Bowling AJ, Dasari M, Gilbert JR. Response to Comment on "MALDI-MS Imaging Analysis of Fungicide Residue Distributions on Wheat Leaf Surfaces". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10747-10749. [PMID: 26266690 DOI: 10.1021/acs.est.5b03670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Suresh P Annangudi
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Kyung Myung
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Cruz Avila Adame
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Andrew J Bowling
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Mallika Dasari
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Jeffrey R Gilbert
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
24
|
Dong D, Zheng W, Zhao C. Comment on "MALDI-MS Imaging Analysis of Fungicide Residue Distributions on Wheat Leaf Surfaces". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10745-10746. [PMID: 26266689 DOI: 10.1021/acs.est.5b02513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- D Dong
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097, China
| | - W Zheng
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097, China
| | - C Zhao
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097, China
| |
Collapse
|
25
|
Annangudi SP, Myung K, Avila Adame C, Gilbert JR. MALDI-MS Imaging Analysis of Fungicide Residue Distributions on Wheat Leaf Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5579-5583. [PMID: 25830667 DOI: 10.1021/es506334y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Improved retention and distribution of agrochemicals on plant surfaces is an important attribute in the biological activity of pesticide. Although retention of agrochemicals on plants after spray application can be quantified using traditional analytical techniques including LC or GC, the spatial distribution of agrochemicals on the plants surfaces has received little attention. Matrix assisted laser desorption/ionization (MALDI) imaging technology has been widely used to determine the distribution of proteins, peptides and metabolites in different tissue sections, but its application to environmental research has been limited. Herein, we probed the potential utility of MALDI imaging in characterizing the distribution of three commercial fungicides on wheat leaf surfaces. Using this MALDI imaging method, we were able to detect 500 ng of epoxiconazole, azoxystrobin, and pyraclostrobin applied in 1 μL drop on the leaf surfaces using MALDI-MS. Subsequent dilutions of pyraclostrobin revealed that the compound can be chemically imaged on the leaf surfaces at levels as low as 60 ng of total applied in the area of 1 μL droplet. After application of epoxiconazole, azoxystrobin, and pyraclostrobin at a field rate of 100 gai/ha in 200 L water using a track sprayer system, residues of these fungicides on the leaf surfaces were sufficiently visualized. These results suggest that MALDI imaging can be used to monitor spatial distribution of agrochemicals on leaf samples after pesticide application.
Collapse
Affiliation(s)
- Suresh P Annangudi
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Kyung Myung
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Cruz Avila Adame
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Jeffrey R Gilbert
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
26
|
de Oliveira DN, Delafiori J, Ferreira MS, Catharino RR. In vitro evaluation of Sun Protection Factor and stability of commercial sunscreens using mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 988:13-9. [PMID: 25743700 DOI: 10.1016/j.jchromb.2015.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 11/17/2022]
Abstract
Sunlight exposure causes several types of injury to humans, especially on the skin; among the most common harmful effects due to ultraviolet (UV) exposure are erythema, pigmentation and lesions in DNA, which may lead to cancer. These long-term effects are minimized with the use of sunscreens, a class of cosmetic products that contains UV filters as the main component in the formulation; such molecules can absorb, reflect or diffuse UV rays, and can be used alone or as a combination to broaden the protection on different wavelengths. Currently, worldwide regulatory agencies define which ingredients and what quantities must be used in each country, and enforce companies to conduct tests that confirm the Sun Protection Factor (SPF) and the UVA (Ultraviolet A) factor. Standard SPF determination tests are currently conducted in vivo, using human subjects. In an industrial mindset, apart from economic and ethical reasons, the introduction of an in vitro method emerges as an interesting alternative by reducing risks associated to UV exposure on tests, as well as providing assertive analytical results. The present work aims to describe a novel methodology for SPF determination directly from sunscreen formulations using the previously described cosmetomics platform and mass spectrometry as the analytical methods of choice.
Collapse
Affiliation(s)
- Diogo Noin de Oliveira
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, 13083-877 Campinas, São Paulo, Brazil
| | - Jeany Delafiori
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, 13083-877 Campinas, São Paulo, Brazil
| | - Mônica Siqueira Ferreira
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, 13083-877 Campinas, São Paulo, Brazil
| | - Rodrigo Ramos Catharino
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, 13083-877 Campinas, São Paulo, Brazil.
| |
Collapse
|
27
|
Banoub J, Delmas GH, Joly N, Mackenzie G, Cachet N, Benjelloun-Mlayah B, Delmas M. A critique on the structural analysis of lignins and application of novel tandem mass spectrometric strategies to determine lignin sequencing. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:5-48. [PMID: 25601673 DOI: 10.1002/jms.3541] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 05/27/2023]
Abstract
This review is devoted to the application of MS using soft ionization methods with a special emphasis on electrospray ionization, atmospheric pressure photoionization and matrix-assisted laser desorption/ionization MS and tandem MS (MS/MS) for the elucidation of the chemical structure of native and modified lignins. We describe and critically evaluate how these soft ionization methods have contributed to the present-day knowledge of the structure of lignins. Herein, we will introduce new nomenclature concerning the chemical state of lignins, namely, virgin released lignins (VRLs) and processed modified lignins (PML). VRLs are obtained by liberation of lignins through degradation of vegetable matter by either chemical hydrolysis and/or enzymatic hydrolysis. PMLs are produced by subjecting the VRL to a series of further chemical transformations and purifications that are likely to alter their original chemical structures. We are proposing that native lignin polymers, present in the lignocellulosic biomass, are not made of macromolecules linked to cellulose fibres as has been frequently reported. Instead, we propose that the lignins are composed of vast series of linear related oligomers, having different lengths that are covalently linked in a criss-cross pattern to cellulose and hemicellulose fibres forming the network of vegetal matter. Consequently, structural elucidation of VRLs, which presumably have not been purified and processed by any other type of additional chemical treatment and purification, may reflect the structure of the native lignin. In this review, we present an introduction to a MS/MS top-down concept of lignin sequencing and how this technique may be used to address the challenge of characterizing the structure of VRLs. Finally, we offer the case that although lignins have been reported to have very high or high molecular weights, they might not exist on the basis that such polymers have never been identified by the mild ionizing techniques used in modern MS.
Collapse
Affiliation(s)
- Joseph Banoub
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5X1, Canada; Science Branch, Special Projects, Fisheries and Oceans Canada, St John's, NL, A1C 5X1, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Crecelius AC, Schubert US, von Eggeling F. MALDI mass spectrometric imaging meets “omics”: recent advances in the fruitful marriage. Analyst 2015; 140:5806-20. [DOI: 10.1039/c5an00990a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) is a method that allows the investigation of the molecular content of surfaces, in particular, tissues, within its morphological context.
Collapse
Affiliation(s)
- A. C. Crecelius
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - U. S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - F. von Eggeling
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Physical Chemistry
| |
Collapse
|