1
|
Langford JB, Ahmed E, Fang M, Cupp-Sutton K, Smith K, Wu S. Strategies for Top-Down Hydrogen Deuterium Exchange-Mass Spectrometry: A Mini Review and Perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5097. [PMID: 39402881 PMCID: PMC11736408 DOI: 10.1002/jms.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 01/16/2025]
Abstract
Hydrogen deuterium-exchange mass spectrometry (HDX-MS) is commonly used in the study of protein dynamics and protein interactions. By measuring the isotopic exchange of backbone amide hydrogens in solution, HDX-MS offers valuable structural insights into challenging biological systems. Traditional HDX-MS approaches utilize bottom-up (BU) proteomics, in which deuterated proteins are digested before MS analysis. BU-HDX enables the characterization of proteins with various sizes in simple protein mixtures or complex biological samples such as cell lysates. However, BU methods are inherently limited by the inability to resolve protein sub-populations arising from different protein conformations, such as those arising from post-translational modifications (PTMs). Alternatively, top-down (TD) HDX-MS detects the global deuterium uptake at the intact proteoform level, allowing direct probing of structural changes due to protein-protein interactions, PTMs, or conformational changes. Combining TD-HDX-MS with electron-based fragmentation techniques, such as electron capture dissociation (ECD) and electron transfer dissociation (ETD), has demonstrated the feasibility of studying intact protein interactions with amino acid-level resolution. Here, we present a brief overview of methodologies, limitations, and applications of TD-HDX-MS using direct infusion techniques and LC-based approaches. Furthermore, we conclude with a perspective on the future directions for TD-HDX-MS.
Collapse
Affiliation(s)
- Joel B. Langford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Elizabeth Ahmed
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Kellye Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| |
Collapse
|
2
|
Peterle D, DePice D, Wales TE, Engen JR. Increase the flow rate and improve hydrogen deuterium exchange mass spectrometry. J Chromatogr A 2023; 1689:463742. [PMID: 36586285 PMCID: PMC9872520 DOI: 10.1016/j.chroma.2022.463742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Reversed-phase peptide separation in hydrogen deuterium exchange (HDX) mass spectrometry (MS) must be done with conditions where the back exchange is the slowest possible, the so-called quench conditions of low pH and low temperature. To retain maximum deuterium, separation must also be done as quickly as possible. The low temperature (0 °C) of quench conditions complicates the separation and leads primarily to a reduction in separation quality and an increase in chromatographic backpressure. To improve the separation in HDX MS, one could use a longer gradient, smaller particles, a different separation mechanism (for example, capillary electrophoresis), or multi-dimensional separations such as combining ion mobility separation with reversed-phase separation. Another way to improve separations under HDX MS quench conditions is to use a higher flow rate where separation efficiency at 0 °C is more ideal. Higher flow rates, however, require chromatographic systems (both pumps and fittings) with higher backpressure limits. We tested what improvements could be realized with a commercial UPLC/UHPLC system capable of ∼20,000 psi backpressure. We found that a maximum flow rate of 225 µL/min (using a 1 × 50 mm column packed with 1.8 µm particles) was possible and that higher flow rate clearly led to higher peak capacity. HDX MS analysis of both simple and particularly complex samples improved, permitting both shorter separation time, if desired, and providing more deuterium recovery.
Collapse
Affiliation(s)
- Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, Mailstop 412 TF, 360 Huntington Avenue, Boston, MA 02115, United States
| | - David DePice
- Department of Chemistry and Chemical Biology, Northeastern University, Mailstop 412 TF, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Mailstop 412 TF, 360 Huntington Avenue, Boston, MA 02115, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Mailstop 412 TF, 360 Huntington Avenue, Boston, MA 02115, United States.
| |
Collapse
|
3
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Sun H, Ma L, Wang L, Xiao P, Li H, Zhou M, Song D. Research advances in hydrogen-deuterium exchange mass spectrometry for protein epitope mapping. Anal Bioanal Chem 2021; 413:2345-2359. [PMID: 33404742 DOI: 10.1007/s00216-020-03091-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/01/2022]
Abstract
With the development of biomedical technology, epitope mapping of proteins has become critical for developing and evaluating new protein drugs. The application of hydrogen-deuterium exchange for protein epitope mapping holds great potential. Although several reviews addressed the hydrogen-deuterium exchange, to date, only a few systematic reviews have focused on epitope mapping using this technology. Here, we introduce the basic principles, development history, and review research progress in hydrogen-deuterium exchange epitope mapping technology and discuss its advantages. We summarize the main hurdles in applying hydrogen-deuterium exchange epitope mapping technology, combined with relevant examples to provide specific solutions. We describe the epitope mapping of virus assemblies, disease-associated proteins, and polyclonal antibodies as examples of pattern introduction. Finally, we discuss the outlook of hydrogen-deuterium exchange epitope mapping technology. This review will help researchers studying protein epitopes to gain a more comprehensive understanding of this technology.
Collapse
Affiliation(s)
- Haofeng Sun
- National Institute of Metrology, Beijing, 100029, China
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingyun Ma
- National Institute of Metrology, Beijing, 100029, China
| | - Leyu Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Xiao
- National Institute of Metrology, Beijing, 100029, China
| | - Hongmei Li
- National Institute of Metrology, Beijing, 100029, China
| | - Min Zhou
- School of Chemical and Engineering, Nanjing University of Science and Technology, Jiangsu, 210094, China.
| | - Dewei Song
- National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
5
|
Mehaffey MR, Lee J, Jung J, Lanzillotti MB, Escobar EE, Morgenstern KR, Georgiou G, Brodbelt JS. Mapping a Conformational Epitope of Hemagglutinin A Using Native Mass Spectrometry and Ultraviolet Photodissociation. Anal Chem 2020; 92:11869-11878. [PMID: 32867493 PMCID: PMC7808878 DOI: 10.1021/acs.analchem.0c02237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As the importance of effective vaccines and the role of protein therapeutics in the drug industry continue to expand, alternative strategies to characterize protein complexes are needed. Mass spectrometry (MS) in conjunction with enzymatic digestion or chemical probes has been widely used for mapping binding epitopes at the molecular level. However, advances in instrumentation and application of activation methods capable of accessing higher energy dissociation pathways have recently allowed direct analysis of protein complexes. Here we demonstrate a workflow utilizing native MS and ultraviolet photodissociation (UVPD) to map the antigenic determinants of a model antibody-antigen complex involving hemagglutinin (HA), the primary immunogenic antigen of the influenza virus, and the D1 H1-17/H3-14 antibody which has been shown to confer potent protection to lethal infection in mice despite lacking neutralization activity. Comparison of sequence coverages upon UV photoactivation of HA and of the HA·antibody complex indicates the elimination of some sequence ions that originate from backbone cleavages exclusively along the putative epitope regions of HA in the presence of the antibody. Mapping the number of sequence ions covering the HA antigen versus the HA·antibody complex highlights regions with suppressed backbone cleavage and allows elucidation of unknown epitopes. Moreover, examining the observed fragment ion types generated by UVPD demonstrates a loss in diversity exclusively along the antigenic determinants upon MS/MS of the antibody-antigen complex. UVPD-MS shows promise as a method to rapidly map epitope regions along antibody-antigen complexes as novel antibodies are discovered or developed.
Collapse
Affiliation(s)
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | | | | | | | | | | | | |
Collapse
|
6
|
Ying Y, Li H. Recent progress in the analysis of protein deamidation using mass spectrometry. Methods 2020; 200:42-57. [PMID: 32544593 DOI: 10.1016/j.ymeth.2020.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Deamidation is a nonenzymatic and spontaneous posttranslational modification (PTM) that introduces changes in both structure and charge of proteins, strongly associated with aging proteome instability and degenerative diseases. Deamidation is also a common PTM occurring in biopharmaceutical proteins, representing a major cause of degradation. Therefore, characterization of deamidation alongside its inter-related modifications, isomerization and racemization, is critically important to understand their roles in protein stability and diseases. Mass spectrometry (MS) has become an indispensable tool in site-specific identification of PTMs for proteomics and structural studies. In this review, we focus on the recent advances of MS analysis in protein deamidation. In particular, we provide an update on sample preparation, chromatographic separation, and MS technologies at multi-level scales, for accurate and reliable characterization of protein deamidation in both simple and complex biological samples, yielding important new insight on how deamidation together with isomerization and racemization occurs. These technological progresses will lead to a better understanding of how deamidation contributes to the pathology of aging and other degenerative diseases and the development of biopharmaceutical drugs.
Collapse
Affiliation(s)
- Yujia Ying
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Huilin Li
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
7
|
Gamage CL, Hageman TS, Weis DD. Rapid Prediction of Deamidation Rates of Proteins to Assess Their Long-Term Stability Using Hydrogen Exchange–Mass Spectrometry. J Pharm Sci 2019; 108:1964-1972. [DOI: 10.1016/j.xphs.2019.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
8
|
Kan ZY, Ye X, Skinner JJ, Mayne L, Englander SW. ExMS2: An Integrated Solution for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis. Anal Chem 2019; 91:7474-7481. [PMID: 31082210 DOI: 10.1021/acs.analchem.9b01682] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX MS) has become an important technique for the analysis of protein structure and dynamics. Data analysis remains a bottleneck in the workflow. Sophisticated computer analysis is required to scan through the voluminous MS output in order to find, identify, and validate many partially deuterated peptides, elicit the HDX information, and extend the results to higher structural resolution. We previously made available two software suites, ExMS for identification and analysis of peptide isotopic envelopes in the HDX MS raw data and HDsite for residue-level resolution. Further experience has led to advances in the usability and performance of both programs. Also, newly added modules deal with ETD/ECD analysis, multimodal mass spectra analysis, and presentation options. These advances have been integrated into a stand-alone software solution named ExMS2. The package has been successfully tested by many workers in fine scale epitope mapping, in protein folding studies, and in dissecting structure and structure change of large protein complexes. A description and tutorial for this major upgrade are given here.
Collapse
Affiliation(s)
- Zhong-Yuan Kan
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Xiang Ye
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - John J Skinner
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Leland Mayne
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - S Walter Englander
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
9
|
Guerra A, von Stosch M, Glassey J. Toward biotherapeutic product real-time quality monitoring. Crit Rev Biotechnol 2019; 39:289-305. [DOI: 10.1080/07388551.2018.1524362] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- André Guerra
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Moritz von Stosch
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jarka Glassey
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Benhaim M, Lee KK, Guttman M. Tracking Higher Order Protein Structure by Hydrogen-Deuterium Exchange Mass Spectrometry. Protein Pept Lett 2019; 26:16-26. [PMID: 30543159 PMCID: PMC6386625 DOI: 10.2174/0929866526666181212165037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 11/17/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Structural biology has provided a fundamental understanding of protein structure and mechanistic insight into their function. However, high-resolution structures alone are insufficient for a complete understanding of protein behavior. Higher energy conformations, conformational changes, and subtle structural fluctuations that underlie the proper function of proteins are often difficult to probe using traditional structural approaches. Hydrogen/Deuterium Exchange with Mass Spectrometry (HDX-MS) provides a way to probe the accessibility of backbone amide protons under native conditions, which reports on local structural dynamics of solution protein structure that can be used to track complex structural rearrangements that occur in the course of a protein's function. CONCLUSION In the last 20 years the advances in labeling techniques, sample preparation, instrumentation, and data analysis have enabled HDX to gain insights into very complex biological systems. Analysis of challenging targets such as membrane protein complexes is now feasible and the field is paving the way to the analysis of more and more complex systems.
Collapse
Affiliation(s)
- Mark Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
11
|
Trabjerg E, Nazari ZE, Rand KD. Conformational analysis of complex protein states by hydrogen/deuterium exchange mass spectrometry (HDX-MS): Challenges and emerging solutions. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
MS-based conformation analysis of recombinant proteins in design, optimization and development of biopharmaceuticals. Methods 2018; 144:134-151. [PMID: 29678586 DOI: 10.1016/j.ymeth.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/18/2023] Open
Abstract
Mass spectrometry (MS)-based methods for analyzing protein higher order structures have gained increasing application in the field of biopharmaceutical development. The predominant methods used in this area include native MS, hydrogen deuterium exchange-MS, covalent labeling, cross-linking and limited proteolysis. These MS-based methods will be briefly described in this article, followed by a discussion on how these methods contribute at different stages of discovery and development of protein therapeutics.
Collapse
|
13
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
14
|
Wales TE, Fadgen KE, Eggertson MJ, Engen JR. Subzero Celsius separations in three-zone temperature controlled hydrogen deuterium exchange mass spectrometry. J Chromatogr A 2017; 1523:275-282. [PMID: 28596009 DOI: 10.1016/j.chroma.2017.05.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 02/04/2023]
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX MS) reports on the conformational landscape of proteins by monitoring the exchange between backbone amide hydrogen atoms and deuterium in the solvent. To maintain the label for analysis, quench conditions of low temperature and pH are required during the chromatography step performed after protease digestion but before mass spectrometry. Separation at 0°C is often chosen as this is the temperature where the most deuterium can be recovered without freezing of the typical water and acetonitrile mobile phases. Several recent reports of separations at subzero Celsius emphasize the promise for retaining more deuterium and using a much longer chromatographic gradient or direct infusion time. Here we present the construction and validation of a modified Waters nanoACQUITY HDX manager with a third temperature-controlled zone for peptide separations at subzero temperatures. A new Peltier-cooled door replaces the door of a traditional main cooling chamber and the separations and trapping column are routed through the door housing. To prevent freezing, 35% methanol is introduced post online digestion. No new pumps are required and online digestion is performed as in the past. Subzero separations, using conventional HPLC column geometry of 3μ m particles in a 1×50mm column, did not result in major changes to chromatographic efficiency when lowering the temperature from 0 to -20°C. There were significant increases in deuterium recovery for both model peptides and biologically relevant protein systems. Given the higher levels of deuterium recovery, expanded gradient programs can be used to allow for higher chromatographic peak capacity and therefore the analysis of larger and more complex proteins and systems.
Collapse
Affiliation(s)
- Thomas E Wales
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Keith E Fadgen
- The Waters Corporation, Milford, MA 01757, United States
| | | | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
15
|
Phillips JJ, Buchanan A, Andrews J, Chodorge M, Sridharan S, Mitchell L, Burmeister N, Kippen AD, Vaughan TJ, Higazi DR, Lowe D. Rate of Asparagine Deamidation in a Monoclonal Antibody Correlating with Hydrogen Exchange Rate at Adjacent Downstream Residues. Anal Chem 2017; 89:2361-2368. [DOI: 10.1021/acs.analchem.6b04158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jonathan J. Phillips
- Department of Chemical
Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, United Kingdom
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Andrew Buchanan
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - John Andrews
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Matthieu Chodorge
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Sudharsan Sridharan
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Laura Mitchell
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Nicole Burmeister
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Alistair D. Kippen
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Tristan J. Vaughan
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Daniel R. Higazi
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - David Lowe
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| |
Collapse
|
16
|
Pan J, Zhang S, Borchers CH. Comparative higher-order structure analysis of antibody biosimilars using combined bottom-up and top-down hydrogen-deuterium exchange mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1801-1808. [DOI: 10.1016/j.bbapap.2016.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/13/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
|
17
|
E. Nazari Z, van de Weert M, Bou-Assaf G, Houde D, Weiskopf A, D. Rand K. Rapid Conformational Analysis of Protein Drugs in Formulation by Hydrogen/Deuterium Exchange Mass Spectrometry. J Pharm Sci 2016; 105:3269-3277. [DOI: 10.1016/j.xphs.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/29/2016] [Accepted: 07/12/2016] [Indexed: 01/21/2023]
|
18
|
Yamamoto S, Kinoshita M, Suzuki S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J Pharm Biomed Anal 2016; 130:273-300. [PMID: 27461579 DOI: 10.1016/j.jpba.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 12/25/2022]
Abstract
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans. We hope the techniques have accommodated most of the requests from glycoproteomics researchers.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
19
|
Sung WC, Chang CW, Huang SY, Wei TY, Huang YL, Lin YH, Chen HM, Chen SF. Evaluation of disulfide scrambling during the enzymatic digestion of bevacizumab at various pH values using mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1188-1194. [PMID: 27238563 DOI: 10.1016/j.bbapap.2016.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022]
Abstract
Disulfide linkages play an important role in protein stability and activity. Thus, it is critical to characterize disulfide bonds to ensure the quality and function of protein pharmaceuticals. There are, however, problems associated with maintaining disulfide linkages in the conventional procedures that are used to digest a protein. In order to preserve enzyme activity during the digestion of a protein, it is commonly carried out at neutral to basic environment which increases the possibilities of disulfide bond scrambling. However, it is not easy to differentiate whether the scrambled disulfide linkages are initiated by the sample itself or whether they are induced during the protease digestion process. In this study, the optimum pH for minimizing disulfide bond rearrangements during the digestion process was determined. Three sets of proteases, trypsin plus Glu-C, Lys-C and thermolysin were used, followed by dimethyl labeling and mass spectrometry for a bevacizumab (Avastin) disulfide linkage analysis. No disulfide linkage scrambling was detected at pH6 when Lys-C or trypsin plus Glu-C were used as enzymes. When thermolysin was applied, some scrambled disulfide bonds were identified at pH5, 6 and 7. Nevertheless, there was less disulfide bond scrambling at a lower pH. All correct disulfide bonds on bevacizumab could be identified using this approach. The results demonstrated that by choosing the proper enzymes, using a lower pH environment for the digestion could reduce the degree of artifact disulfide scrambling.
Collapse
Affiliation(s)
- Wang-Chou Sung
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli, Taiwan
| | - Chiung-Wen Chang
- National Taiwan Normal University, Department of Chemistry, Taipei, Taiwan
| | | | - Ting-Yu Wei
- National Taiwan Normal University, Department of Chemistry, Taipei, Taiwan
| | - Yi-Li Huang
- National Taiwan Normal University, Department of Chemistry, Taipei, Taiwan
| | - Yu-Hua Lin
- National Taiwan Normal University, Department of Chemistry, Taipei, Taiwan
| | - Han-Min Chen
- Catholic Fu-Jen University, Department of Life Science, Taipei, Taiwan
| | - Sung-Fang Chen
- National Taiwan Normal University, Department of Chemistry, Taipei, Taiwan.
| |
Collapse
|
20
|
Protein species-specific characterization of conformational change induced by multisite phosphorylation. J Proteomics 2016; 134:138-143. [DOI: 10.1016/j.jprot.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/29/2015] [Accepted: 12/01/2015] [Indexed: 01/29/2023]
|
21
|
Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016; 13:157-83. [PMID: 26653789 DOI: 10.1586/14789450.2016.1132167] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.
Collapse
Affiliation(s)
- Alain Beck
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Guillaume Terral
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - François Debaene
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Julien Marcoux
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | | | - Olivier Colas
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Van Dorsselaer
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Sarah Cianférani
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| |
Collapse
|
22
|
Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal Chem 2015; 88:480-507. [DOI: 10.1021/acs.analchem.5b04561] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Szabolcs Fekete
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| |
Collapse
|