1
|
Ferreira LL, de Carvalho AA, de Souza MLC, Costa ÍA, Duarte-Junior GF, Fonseca A, Paterno LG, Coltro WKT, Chagas CLS. A paper-based analytical device for rapid colorimetric detection of aluminium in aerosol antiperspirants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40309962 DOI: 10.1039/d5ay00229j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
This work focuses on developing a simple and low-cost methodology for colorimetric analysis of aluminum in aerosol antiperspirants using paper-based analytical devices (PADs). The devices were manufactured by combining a layer of paper with two layers of pouch film, consisting of 35 circular zones with a diameter of 6 mm each. Subsequently, analytical parameters were optimized by capturing the colorimetric responses of the reaction between aluminium (III) and Eriochrome Cyanine R in proportions of 3 μL of Eriochrome Cyanine R in the concentration of 1.5 g L-1 to 7 μL of aluminium solution. The effect of impregnating the paper with three different nanomaterials to improve the PAD response was also evaluated. With the help of a smartphone and an app capable of analyzing color generated from photos, the analytical curve was established in the concentration range from 1 to 6 mg L-1, achieving a LOD of 0.52 mg L-1 and a LOQ of 1.56 mg L-1, with the modification of the paper with multi-walled carbon nanotubes. Subsequently, aluminium levels in aerosol antiperspirant brands were analyzed by evaluating different sample preparation methods. The results were compared with those obtained by performing the analyses using Microwave Plasma-Atomic Emission Spectroscopy (MP-AES), revealing statistically comparable results, and the recovery assay achieved recoveries ranging from 91.7 to 105.9%. Among the innovations brought by this work are the testing of new methods for preparing aerosol antiperspirant samples and the first application of the proposed modified PAD. There is the possibility of performing chemical analyses in environments with few resources and opening opportunities for many applications.
Collapse
Affiliation(s)
- Letícia L Ferreira
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Almir A de Carvalho
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Marcela L C de Souza
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Ítalo A Costa
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | | | - Alexandre Fonseca
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Leonardo G Paterno
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Cyro L S Chagas
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
2
|
Manoharan
Nair Sudha Kumari S, Thankappan Suryabai X. Sensing the Future-Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances. ACS OMEGA 2024; 9:48918-48987. [PMID: 39713646 PMCID: PMC11656264 DOI: 10.1021/acsomega.4c07991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Biosensors are transforming healthcare by delivering swift, precise, and economical diagnostic solutions. These analytical instruments combine biological indicators with physical transducers to identify and quantify biomarkers, thereby improving illness detection, management, and patient surveillance. Biosensors are widely utilized in healthcare for the diagnosis of chronic and infectious diseases, tailored treatment, and real-time health monitoring. This thorough overview examines several categories of biosensors and their uses in the detection of numerous biomarkers, including glucose, proteins, nucleic acids, and infections. Biosensors are commonly classified based on the type of transducer employed or the specific biorecognition element utilized. This review introduces a novel classification based on substrate morphology, offering a comprehensive perspective on biosensor categorization. Considerable emphasis is placed on the advancement of point-of-care biosensors, facilitating decentralized diagnostics and alleviating the strain on centralized healthcare systems. Recent advancements in nanotechnology have significantly improved the sensitivity, selectivity, and downsizing of biosensors, rendering them more efficient and accessible. The study examines problems such as stability, reproducibility, and regulatory approval that must be addressed to enable the widespread implementation of biosensors in clinical environments. The study examines the amalgamation of biosensors with wearable devices and smartphones, emphasizing the prospects for ongoing health surveillance and individualized medical care. This viewpoint clarifies the distinct types of biosensors and their particular roles, together with recent developments in the "smart biosensor" sector, facilitated by artificial intelligence and the Internet of Medical Things (IoMT). This novel approach seeks to deliver a comprehensive evaluation of the present condition of biosensor technology in healthcare, recent developments, and prospective paths, emphasizing their significance in influencing the future of medical diagnostics and patient care.
Collapse
Affiliation(s)
- Sumitha Manoharan
Nair Sudha Kumari
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| | - Xavier Thankappan Suryabai
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| |
Collapse
|
3
|
Chen JL, Njoku DI, Tang C, Gao Y, Chen J, Peng YK, Sun H, Mao G, Pan M, Tam NFY. Advances in Microfluidic Paper-Based Analytical Devices (µPADs): Design, Fabrication, and Applications. SMALL METHODS 2024; 8:e2400155. [PMID: 38781604 DOI: 10.1002/smtd.202400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Microfluidic Paper-based Analytical Devices (µPADs) have emerged as a new class of microfluidic systems, offering numerous advantages over traditional microfluidic chips. These advantages include simplicity, cost-effectiveness, stability, storability, disposability, and portability. As a result, various designs for different types of assays are developed and investigated. In recent years, µPADs are combined with conventional detection methods to enable rapid on-site detection, providing results comparable to expensive and sophisticated large-scale testing methods that require more time and skilled personnel. The application of µPAD techniques is extensive in environmental quality control/analysis, clinical diagnosis, and food safety testing, paving the way for on-site real-time diagnosis as a promising future development. This review focuses on the recent research advancements in the design, fabrication, material selection, and detection methods of µPADs. It provides a comprehensive understanding of their principles of operation, applications, and future development prospects.
Collapse
Affiliation(s)
- Jian Lin Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Demian Ifeanyi Njoku
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Cui Tang
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Yaru Gao
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Jiayu Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Yung-Kang Peng
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Hongyan Sun
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Min Pan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Nora Fung-Yee Tam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
4
|
Chen JS, Wang CM, Chiang PY, Lo LC, Liao WS. Spatially Mediated Paper Reactors for On-Site Multicoded Encryption. JACS AU 2024; 4:2151-2159. [PMID: 38938820 PMCID: PMC11200220 DOI: 10.1021/jacsau.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 06/29/2024]
Abstract
This report develops a point-of-use chemical trigger and applies it to a dual-functional chemical encryption chip that enables manual and digital identification with enhanced coding security levels suitable for on-site information verification. The concept relies on conducting continuous chemical synthesis and chromatographic separation of specified compounds on a paper device in a straightforward sketch. In addition to single-step chemical reactions, cascade syntheses and operations involving components of distinct mobilities are also demonstrated. The condensation of dione and hydrazine is first demonstrated on a linear paper reactor, where precursors can mix to react, followed by final product separation under optimized conditions. This linear paper reactor design can also support a multistep cascade Wittig reaction by controlling the relative mobility of reactants, intermediates, and final products. Furthermore, a three-dimensional paper reactor with appropriate mobile phases helps to initiate complex solvent system-driven azide-alkyne cycloaddition. By the use of a three-dimensional device design for spatially limited interdevice reactant transportation, reactants crossing designated boundaries trigger confined chemical reactions at specific positions. Accumulation of repetitive reactions leads to successful product gradient generation and mixing effects, representing a fully controllable intersubstrate chemical operation on the platform. Standing on initiating desired chemical reactions at particular interface regions, integration of appropriate selective reaction area, numerical digits overlay, color diversity, and mobile recognition realizes this dual-functional multicoding encryption process.
Collapse
Affiliation(s)
- Jia-Syuan Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ming Wang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Yu Chiang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Lee-Chiang Lo
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center
for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Soman SS, Samad SA, Venugopalan P, Kumawat N, Kumar S. Microfluidic paper analytic device (μPAD) technology for food safety applications. BIOMICROFLUIDICS 2024; 18:031501. [PMID: 38706979 PMCID: PMC11068414 DOI: 10.1063/5.0192295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Foodborne pathogens, food adulterants, allergens, and toxic chemicals in food can cause major health hazards to humans and animals. Stringent quality control measures at all stages of food processing are required to ensure food safety. There is, therefore, a global need for affordable, reliable, and rapid tests that can be conducted at different process steps and processing sites, spanning the range from the sourcing of food to the end-product acquired by the consumer. Current laboratory-based food quality control tests are well established, but many are not suitable for rapid on-site investigations and are costly. Microfluidic paper analytical devices (μPADs) are a fast-growing field in medical diagnostics that can fill these gaps. In this review, we describe the latest developments in the applications of microfluidic paper analytic device (μPAD) technology in the food safety sector. State-of-the-art μPAD designs and fabrication methods, microfluidic assay principles, and various types of μPAD devices with food-specific applications are discussed. We have identified the prominent research and development trends and future directions for maximizing the value of microfluidic technology in the food sector and have highlighted key areas for improvement. We conclude that the μPAD technology is promising in food safety applications by using novel materials and improved methods to enhance the sensitivity and specificity of the assays, with low cost.
Collapse
Affiliation(s)
- Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | - Shafeek Abdul Samad
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | | - Nityanand Kumawat
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | |
Collapse
|
6
|
Mallikarjun A, Charendoff I, Moore MB, Wilson C, Nguyen E, Hendrzak AJ, Poulson J, Gibison M, Otto CM. Assessing Different Chronic Wasting Disease Training Aids for Use with Detection Dogs. Animals (Basel) 2024; 14:300. [PMID: 38254469 PMCID: PMC10812555 DOI: 10.3390/ani14020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic wasting disease (CWD) is a highly infectious, fatal prion disease that affects cervid species. One promising method for CWD surveillance is the use of detection dog-handler teams wherein dogs are trained on the volatile organic compound signature of CWD fecal matter. However, using fecal matter from CWD-positive deer poses a biohazard risk; CWD prions can bind to soil particles and remain infectious in contaminated areas for extended periods of time, and it is very difficult to decontaminate the affected areas. One solution is to use noninfectious training aids that can replicate the odor of fecal matter from CWD-positive and CWD-negative deer and are safe to use in the environment. Trained CWD detection dogs' sensitivity and specificity for different training aid materials (cotton, GetXent tubes, and polydimethylsiloxane, or PDMS) incubated with fecal matter from CWD-positive and CWD-negative deer at two different temperatures (21 °C and 37 °C) for three different lengths of time (6 h, 24 h, and 48 h) were evaluated. Cotton incubated at 21 °C for 24 h was identified as the best aid for CWD based on the dogs' performance and practical needs for training aid creation. Implications for CWD detection training and for training aid selection in general are discussed.
Collapse
Affiliation(s)
- Amritha Mallikarjun
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Ila Charendoff
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Madison B. Moore
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Clara Wilson
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Elizabeth Nguyen
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Abigail J. Hendrzak
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Jean Poulson
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Michelle Gibison
- Wildlife Futures Program, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA;
| | - Cynthia M. Otto
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| |
Collapse
|
7
|
Mishra P, Navariya S, Gupta P, Singh BP, Chopra S, Shrivastava S, Agrawal VV. A novel approach to low-cost, rapid and simultaneous colorimetric detection of multiple analytes using 3D printed microfluidic channels. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231168. [PMID: 38234445 PMCID: PMC10791535 DOI: 10.1098/rsos.231168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
This research paper presents an inventive technique to swiftly create microfluidic channels on distinct membrane papers, enabling colorimetric drug detection. Using a modified DIY RepRap 3D printer with a syringe pump, microfluidic channels (µPADs) are crafted on a flexible nylon-based substrate. This allows simultaneous detection of four common drugs with a single reagent. An optimized blend of polydimethylsiloxane (PDMS) dissolved in hexane is used to create hydrophobic channels on various filter papers. The PDMS-hexane mixture infiltrates the paper's pores, forming hydrophobic barriers that confine liquids within the channels. These barriers are cured on the printer's hot plate, controlling channel width and preventing spreading. Capillary action drives fluid along these paths without spreading. This novel approach provides a versatile solution for rapid microfluidic channel creation on membrane papers. The DIY RepRap 3D printer integration offers precise control and faster curing. The PDMS-hexane solution accurately forms hydrophobic barriers, containing liquids within desired channels. The resulting microfluidic system holds potential for portable, cost-effective drug detection and various sensing applications.
Collapse
Affiliation(s)
- Piyush Mishra
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar Navariya
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanshi Gupta
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Bhupendra Pratap Singh
- Liquid Crystal Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, India
- Department of Electro-Optical Engineering, National United University, Miao-Li-360, Taiwan
| | - Samridhi Chopra
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swapnil Shrivastava
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Ved Varun Agrawal
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| |
Collapse
|
8
|
Vloemans D, Van Hileghem L, Ordutowski H, Dal Dosso F, Spasic D, Lammertyn J. Self-Powered Microfluidics for Point-of-Care Solutions: From Sampling to Detection of Proteins and Nucleic Acids. Methods Mol Biol 2024; 2804:3-50. [PMID: 38753138 DOI: 10.1007/978-1-0716-3850-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Self-powered microfluidics presents a revolutionary approach to address the challenges of healthcare in decentralized and point-of-care settings where limited access to resources and infrastructure prevails or rapid clinical decision-making is critical. These microfluidic systems exploit physical and chemical phenomena, such as capillary forces and surface tension, to manipulate tiny volumes of fluids without the need for external power sources, making them cost-effective and highly portable. Recent technological advancements have demonstrated the ability to preprogram complex multistep liquid operations within the microfluidic circuit of these standalone systems, which enabled the integration of sensitive detection and readout principles. This chapter first addresses how the accessibility to in vitro diagnostics can be improved by shifting toward decentralized approaches like remote microsampling and point-of-care testing. Next, the crucial role of self-powered microfluidic technologies to enable this patient-centric healthcare transition is emphasized using various state-of-the-art examples, with a primary focus on applications related to biofluid collection and the detection of either proteins or nucleic acids. This chapter concludes with a summary of the main findings and our vision of the future perspectives in the field of self-powered microfluidic technologies and their use for in vitro diagnostics applications.
Collapse
Affiliation(s)
- Dries Vloemans
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | | | - Henry Ordutowski
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | | | - Dragana Spasic
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Gautam N, Verma R, Ram R, Singh J, Sarkar A. Development of a biodegradable microfluidic paper-based device for blood-plasma separation integrated with non-enzymatic electrochemical detection of ascorbic acid. Talanta 2024; 266:125019. [PMID: 37544255 DOI: 10.1016/j.talanta.2023.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
In the present article, we developed an electrochemical microfluidic paper-based device (EμPAD) for the non-enzymatic detection of Ascorbic Acid (AA) concentration in plasma using whole human blood. We combined LF1 blood plasma separation membrane and Whatman grade 1 filter paper to separate plasma from whole blood through wax printing. A screen-printed electrode (SPE) was modified with spherical-shaped MgFe2O4 nanomaterial (n-MgF) to improve the catalytic properties of SPE. The n-MgF was prepared via hydrothermal method, and its material phase and morphology were confirmed via XRD, FTIR, TEM, SEM, and AFM analysis. The fabricated n-MgF/SPE/EμPAD exhibited detection of AA ranging from 0 to 80 μM. The obtained value of the detection limit, limit of quantification, sensitivity, and response time are 2.44 μM, 8.135 μM, 5.71 × 10-3 mA μM-1 cm-2, and 10 s, respectively. Our developed n-MgF/SPE/EμPAD shows marginal interference with the common analytes present in plasma, such as uric acid, glutamic acid, glucose, urea, lactic acid, and their mixtures. Overall, our low-cost, portable device with its user-friendly design and efficient plasma separation capability offers a practical and effective solution for estimating AA concentration from whole human blood in a single step.
Collapse
Affiliation(s)
- Neha Gautam
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rahul Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rishi Ram
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arnab Sarkar
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
10
|
Luongo A, von Stockert AR, Scherag FD, Brandstetter T, Biesalski M, Rühe J. Controlling Fluorescent Readout in Paper-based Analytical Devices. ACS Biomater Sci Eng 2023; 9:6379-6389. [PMID: 37875260 PMCID: PMC10649804 DOI: 10.1021/acsbiomaterials.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
Paper is an ideal candidate for the development of new disposable diagnostic devices because it is a low-cost material, allows transport of the liquid on the device by capillary action, and is environmentally friendly. Today, colorimetric analysis is most often used as a detection method for rapid tests (test strips or lateral flow devices) but usually gives only qualitative results and is limited by a relatively high detection threshold. Here, we describe studies using fluorescence as a readout tool for paper-based diagnostics. We study how the optical readout is affected by light transmission, scattering, and fluorescence as a function of paper characteristics such as thickness (grammage), water content, autofluorescence, and paper type/composition. We show that paper-based fluorescence analysis allows better optical readout compared to that of nitrocellulose, which is currently the material of choice in colorimetric assays. To reduce the loss of analyte molecules (e.g., proteins) due to adsorption to the paper surface, we coat the paper fibers with a protein-repellent hydrogel. For this purpose, we use hydrophilic copolymers consisting of N,N-dimethyl acrylamide and a benzophenone-based cross-linker, which are photochemically transformed into a fiber-attached polymer hydrogel on the paper fiber surfaces in situ. We show that the combination of fluorescence detection and the use of a protein-repellent coating enables sensitive paper-based analysis. Finally, the success of the strategy is demonstrated by using a simple LFD application as an example.
Collapse
Affiliation(s)
- Anna Luongo
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| | | | - Frank D. Scherag
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| | - Thomas Brandstetter
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| | - Markus Biesalski
- Macromolecular
Chemistry & Paper Chemistry, Technical
University of Darmstadt, Darmstadt 64287, Germany
| | - Jürgen Rühe
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| |
Collapse
|
11
|
Zhang Z, Lang S, Pearson K, Farhan Y, Tao Y, Xiao G. Printed Capillary Microfluidic Devices and Their Application in Biosensing. MICROMACHINES 2023; 14:2059. [PMID: 38004916 PMCID: PMC10673002 DOI: 10.3390/mi14112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Microfluidic devices with a free-standing structure were printed directly on polymer films using the functional materials that form interconnected pores. The printed devices can transport fluids by capillary action in the same fashion as paper-based microfluidic devices, and they can handle much smaller sample volumes than typical paper-based devices. Detection of glucose was performed using both colorimetric and electrochemical methods, and the observed limits of detection (LOD) were similar to those obtained with paper-based microfluidic devices under comparable testing conditions. It is demonstrated that printed microfluidic devices can be fabricated using printing processes that are suitable for high-volume and low-cost production and that the integration of microfluidic channels with electrodes is straightforward with printing. Several materials that are printable and form interconnected pores are presented.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Advanced Electronic and Photonic Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada (K.P.); (Y.T.)
| | | | | | | | | | | |
Collapse
|
12
|
Ma T, Ren S, Wang Y, Yu H, Li L, Li X, Zhang L, Yu J, Zhang Y. Paper-based bipolar electrode electrochemiluminescence sensors for point-of-care testing. Biosens Bioelectron 2023; 235:115384. [PMID: 37244092 DOI: 10.1016/j.bios.2023.115384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
In the past few years, point-of-care testing (POCT) technology has crossed the boundaries of laboratory determination and entered the stage of practical applications. Herein, the latest advances and principal issues in the design and fabrication of paper-based bipolar electrode electrochemiluminescence (BPE-ECL) sensors, which are widely used in the POCT field, are highlighted. After introducing the attractive physical and chemical properties of cellulose paper, various approaches aimed at enhancing the functions of the paper, and their underlying principles are described. The materials typically employed for fabricating paper-based BPE are also discussed in detail. Subsequently, the universal method of enhancing BPE-ECL signal and improving detection accuracy is put forward, and the ECL detector widely used is introduced. Furthermore, the application of paper-based BPE-ECL sensors in biomedical, food, environmental and other fields are displayed. Finally, future opportunities and the remaining challenges are analyzed. It is expected that more design concepts and working principles for paper-based BPE-ECL sensors will be developed in the near future, paving the way for the development and application of paper-based BPE-ECL sensors in the POCT field and providing certain guarantee for the development of human health.
Collapse
Affiliation(s)
- Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Suyue Ren
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Luqing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
13
|
Ebrahimi G, Pakchin PS, Mota A, Omidian H, Omidi Y. Electrochemical microfluidic paper-based analytical devices for cancer biomarker detection: From 2D to 3D sensing systems. Talanta 2023; 257:124370. [PMID: 36858013 DOI: 10.1016/j.talanta.2023.124370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) offer a unique possibility for a cost-effective portable and rapid detection of a wide range of small molecules and macromolecules and even microorganisms. In this line, electrochemical detection methods are key techniques for the qualitative analysis of different types of ligands. The electrochemical sensing μPADs have been devised for the rapid, accurate, and quantitative detection of oncomarkers through two-/three-dimensional (2D/3D) approaches. The 2D μPADs were first developed and then transformed into 3D systems via folding and/or twisting of paper. The microfluidic channels and connections were created within the layers of paper. Based on the fabrication methods, 3D μPADs can be classified into origami and stacking devices. Various fabrication methods and materials have been used to create hydrophilic channels in μPADs, among which the wax printing technique is the most common method in fabricating μPADs. In this review, we discuss the fabrication and design strategies of μPADs, elaborate on their detection modes, and highlight their applications in affinity-based electrochemical μPADs methods for the detection of oncomarkers.
Collapse
Affiliation(s)
- Ghasem Ebrahimi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
14
|
Khan M, Zhao B, Wu W, Zhao M, Bi Y, Hu Q. Distance-based microfluidic assays for instrument-free visual point-of-care testing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
Mitrogiannopoulou AM, Tselepi V, Ellinas K. Polymeric and Paper-Based Lab-on-a-Chip Devices in Food Safety: A Review. MICROMACHINES 2023; 14:986. [PMID: 37241610 PMCID: PMC10223399 DOI: 10.3390/mi14050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Food quality and safety are important to protect consumers from foodborne illnesses. Currently, laboratory scale analysis, which takes several days to complete, is the main way to ensure the absence of pathogenic microorganisms in a wide range of food products. However, new methods such as PCR, ELISA, or even accelerated plate culture tests have been proposed for the rapid detection of pathogens. Lab-on-chip (LOC) devices and microfluidics are miniaturized devices that can enable faster, easier, and at the point of interest analysis. Nowadays, methods such as PCR are often coupled with microfluidics, providing new LOC devices that can replace or complement the standard methods by offering highly sensitive, fast, and on-site analysis. This review's objective is to present an overview of recent advances in LOCs used for the identification of the most prevalent foodborne and waterborne pathogens that put consumer health at risk. In particular, the paper is organized as follows: first, we discuss the main fabrication methods of microfluidics as well as the most popular materials used, and then we present recent literature examples for LOCs used for the detection of pathogenic bacteria found in water and other food samples. In the final section, we summarize our findings and also provide our point of view on the challenges and opportunities in the field.
Collapse
Affiliation(s)
| | | | - Kosmas Ellinas
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou & Makrygianni St, GR 81400 Myrina, Greece
| |
Collapse
|
16
|
Tony A, Badea I, Yang C, Liu Y, Wells G, Wang K, Yin R, Zhang H, Zhang W. The Additive Manufacturing Approach to Polydimethylsiloxane (PDMS) Microfluidic Devices: Review and Future Directions. Polymers (Basel) 2023; 15:1926. [PMID: 37112073 PMCID: PMC10147032 DOI: 10.3390/polym15081926] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
This paper presents a comprehensive review of the literature for fabricating PDMS microfluidic devices by employing additive manufacturing (AM) processes. AM processes for PDMS microfluidic devices are first classified into (i) the direct printing approach and (ii) the indirect printing approach. The scope of the review covers both approaches, though the focus is on the printed mold approach, which is a kind of the so-called replica mold approach or soft lithography approach. This approach is, in essence, casting PDMS materials with the mold which is printed. The paper also includes our on-going effort on the printed mold approach. The main contribution of this paper is the identification of knowledge gaps and elaboration of future work toward closing the knowledge gaps in fabrication of PDMS microfluidic devices. The second contribution is the development of a novel classification of AM processes from design thinking. There is also a contribution in clarifying confusion in the literature regarding the soft lithography technique; this classification has provided a consistent ontology in the sub-field of the fabrication of microfluidic devices involving AM processes.
Collapse
Affiliation(s)
- Anthony Tony
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Chun Yang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| | - Yuyi Liu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| | - Garth Wells
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source, Saskatoon, SK S7N 2V3, Canada;
| | - Kemin Wang
- School of Mechatronics and Automation, Shanghai University, Shanghai 200444, China;
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| |
Collapse
|
17
|
Aghababaie M, Foroushani ES, Changani Z, Gunani Z, Mobarakeh MS, Hadady H, Khedri M, Maleki R, Asadnia M, Razmjou A. Recent Advances In the development of enzymatic paper-based microfluidic biosensors. Biosens Bioelectron 2023; 226:115131. [PMID: 36804663 DOI: 10.1016/j.bios.2023.115131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Using microfluidic paper-based analytical devices has attracted considerable attention in recent years. This is mainly due to their low cost, availability, portability, simple design, high selectivity, and sensitivity. Owing to their specific substrates and catalytic functions, enzymes are the most commonly used bioactive agents in μPADs. Enzymatic μPADs are various in design, fabrication, and detection methods. This paper provides a comprehensive review of the development of enzymatic μPADs by considering the methods of detection and fabrication. Particularly, techniques for mass production of these enzymatic μPADs for use in different fields such as medicine, environment, agriculture, and food industries are critically discussed. This paper aims to provide a critical review of μPADs and discuss different fabrication methods as the central parts of the μPADs production categorized into printable and non-printable methods. In addition, state-of-the-art technologies such as fully printed enzymatic μPADs for rapid, low-cost, and mass production and improvement have been considered.
Collapse
Affiliation(s)
- Marzieh Aghababaie
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Elnaz Sarrami Foroushani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Zinat Changani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Zahra Gunani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, FInland.
| | - Mahsa Salehi Mobarakeh
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Mechanical and Aerospace Engineering, Carleton University, Colonel by Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Hanieh Hadady
- Cell Science Research Centre, Royan Institute of Biotechnology, Isfahan, Iran.
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
18
|
Kongkaew S, Meng L, Limbut W, Liu G, Kanatharana P, Thavarungkul P, Mak WC. Craft-and-Stick Xurographic Manufacturing of Integrated Microfluidic Electrochemical Sensing Platform. BIOSENSORS 2023; 13:bios13040446. [PMID: 37185521 PMCID: PMC10136003 DOI: 10.3390/bios13040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
An innovative modular approach for facile design and construction of flexible microfluidic biosensor platforms based on a dry manufacturing "craft-and-stick" approach is developed. The design and fabrication of the flexible graphene paper electrode (GPE) unit and polyethylene tetraphthalate sheet (PET)6/adhesive fluidic unit are completed by an economic and generic xurographic craft approach. The GPE widths and the microfluidic channels can be constructed down to 300 μm and 200 μm, respectively. Both units were assembled by simple double-sided adhesive tapes into a microfluidic integrated GPE (MF-iGPE) that are flexible, thin (<0.5 mm), and lightweight (0.4 g). We further functionalized the iGPE with Prussian blue and glucose oxidase for the fabrication of MF-iGPE glucose biosensors. With a closed-channel PET fluidic pattern, the MF-iGPE glucose biosensors were packaged and sealed to protect the integrated device from moisture for storage and could easily open with scissors for sample loading. Our glucose biosensors showed 2 linear dynamic regions of 0.05-1.0 and 1.0-5.5 mmol L-1 glucose. The MF-iGPE showed good reproducibility for glucose detection (RSD < 6.1%, n = 6) and required only 10 μL of the analyte. This modular craft-and-stick manufacturing approach could potentially further develop along the concept of paper-crafted model assembly kits suitable for low-resource laboratories or classroom settings.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Lingyin Meng
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Roller RM, Rea A, Lieberman M. The air-gap PAD: a roll-to-roll-compatible fabrication method for paper microfluidics. LAB ON A CHIP 2023; 23:1918-1925. [PMID: 36883463 DOI: 10.1039/d2lc01164f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Paper-based analytical devices (PADs) offer a low-cost, user-friendly platform for rapid point-of-use testing. Without scalable fabrication methods, however, few PADs make it out of the academic laboratory and into the hands of end users. Previously, wax printing was considered an ideal PAD fabrication method, but given that wax printers are no longer commercially available, alternatives are needed. Here, we present one such alternative: the air-gap PAD. Air-gap PADs consist of hydrophilic paper test zones, separated by "air gaps" and affixed to a hydrophobic backing with double-sided adhesive. The primary appeal of this design is its compatibility with roll-to-roll equipment for large-scale manufacturing. In this study, we examine design considerations for air-gap PADs, compare the performance of wax-printed and air-gap PADs, and report on a pilot-scale roll-to-roll production run of air-gap PADs in partnership with a commercial test-strip manufacturer. Air-gap devices performed comparably to their wax-printed counterparts in Washburn flow experiments, a paper-based titration, and a 12-lane pharmaceutical screening device. Using roll-to-roll manufacturing, we produced 2700 feet of air-gap PADs for as little as $0.03 per PAD.
Collapse
Affiliation(s)
- Rachel M Roller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Angela Rea
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Marya Lieberman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
20
|
Korotcenkov G. Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061110. [PMID: 36986004 PMCID: PMC10059663 DOI: 10.3390/nano13061110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023]
Abstract
In the first part of the review article "General considerations" we give information about conventional flexible platforms and consider the advantages and disadvantages of paper when used in humidity sensors, both as a substrate and as a humidity-sensitive material. This consideration shows that paper, especially nanopaper, is a very promising material for the development of low-cost flexible humidity sensors suitable for a wide range of applications. Various humidity-sensitive materials suitable for use in paper-based sensors are analyzed and the humidity-sensitive characteristics of paper and other humidity-sensitive materials are compared. Various configurations of humidity sensors that can be developed on the basis of paper are considered, and a description of the mechanisms of their operation is given. Next, we discuss the manufacturing features of paper-based humidity sensors. The main attention is paid to the consideration of such problems as patterning and electrode formation. It is shown that printing technologies are the most suitable for mass production of paper-based flexible humidity sensors. At the same time, these technologies are effective both in the formation of a humidity-sensitive layer and in the manufacture of electrodes.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
21
|
Ozefe F, Arslan Yildiz A. Fabrication and development of a microfluidic paper-based immunosorbent assay platform (μPISA) for colorimetric detection of hepatitis C. Analyst 2023; 148:898-905. [PMID: 36688900 DOI: 10.1039/d2an01761j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Paper-based microfluidics is an emerging analysis tool used in various applications, especially in point-of-care (PoC) diagnostic applications, due to its advantages over other types of microfluidic devices in terms of simplicity in both production and operation, cost-effectiveness, rapid response time, low sample consumption, biocompatibility, and ease of disposal. Recently, various techniques have been developed and utilized for the fabrication of paper-based microfluidics, such as photolithography, micro-embossing, wax and PDMS printing, etc. In this study, we offer a fabrication methodology for a microfluidic paper-based immunosorbent assay (μPISA) platform and the detection of Hepatitis C Virus (HCV) was carried out to validate this platform. A laser ablation technique was utilized to form hydrophobic barriers easily and rapidly, which was the major advantage of the developed fabrication methodology. The characterization of the μPISA platform was performed in terms of micro-channel properties using bright-field (BF) microscopy, and surface properties using scanning electron microscopy (SEM). At the same time, sample volume and liquid handling capacity were analyzed quantitatively. Ablation speed (S) and laser power (P) were optimized, and it was shown that one combination (10P60S) provided minimal deviation in micro-channel dimensions and prevented deterioration of hydrophobic barriers. Also, the minimum hydrophobic barrier width, which prevents cross-barrier bleeding, was determined to be 255.92 ± 10.01 μm. Furthermore, colorimetric HCV NS3 detection was implemented to optimize and validate the μPISA platform. Here, HCV NS3 in both PBS and human blood plasma was successfully detected by the naked eye at concentrations as low as 1 ng mL-1 and 10 ng mL-1, respectively. Moreover, the limit of detection (LoD) values for HCV NS3 were acquired as 0.796 ng mL-1 in PBS and 2.203 ng mL-1 in human blood plasma with a turnaround time of 90 min. In comparison with conventional ELISA, highly sensitive and rapid HCV NS3 detection was accomplished colorimetrically on the developed μPISA platform.
Collapse
Affiliation(s)
- Fatih Ozefe
- İzmir Institute of Technology (IZTECH), Faculty of Engineering, Department of Bioengineering, 35430, Urla, Izmir, Turkey.
| | - Ahu Arslan Yildiz
- İzmir Institute of Technology (IZTECH), Faculty of Engineering, Department of Bioengineering, 35430, Urla, Izmir, Turkey.
| |
Collapse
|
22
|
Anushka, Bandopadhyay A, Das PK. Paper based microfluidic devices: a review of fabrication techniques and applications. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 232:781-815. [PMID: 36532608 PMCID: PMC9743133 DOI: 10.1140/epjs/s11734-022-00727-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/09/2022] [Indexed: 06/14/2023]
Abstract
A wide range of applications are possible with paper-based analytical devices, which are low priced, easy to fabricate and operate, and require no specialized equipment. Paper-based microfluidics offers the design of miniaturized POC devices to be applied in the health, environment, food, and energy sector employing the ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free and Deliverable to end users) principle of WHO. Therefore, this field is growing very rapidly and ample research is being done. This review focuses on fabrication and detection techniques reported to date. Additionally, this review emphasises on the application of this technology in the area of medical diagnosis, energy generation, environmental monitoring, and food quality control. This review also presents the theoretical analysis of fluid flow in porous media for the efficient handling and control of fluids. The limitations of PAD have also been discussed with an emphasis to concern on the transformation of such devices from laboratory to the consumer.
Collapse
Affiliation(s)
- Anushka
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Prasanta Kumar Das
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
23
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
24
|
Ma P, Wang S, Wang J, Wang Y, Dong Y, Li S, Su H, Chen P, Feng X, Li Y, Du W, Liu BF. Rapid Assembly of Cellulose Microfibers into Translucent and Flexible Microfluidic Paper-Based Analytical Devices via Wettability Patterning. Anal Chem 2022; 94:13332-13341. [PMID: 36121740 DOI: 10.1021/acs.analchem.2c01424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) are emerging as powerful analytical platforms in clinical diagnostics, food safety, and environmental protection because of their low cost and favorable substrate properties for biosensing. However, the existing top-down fabrication methods of paper-based chips suffer from low resolution (>200 μm). Additionally, papers have limitations in their physical properties (e.g., thickness, transmittance, and mechanical flexibility). Here, we demonstrate a bottom-up approach for the rapid fabrication of heterogeneously controlled paper-based chip arrays. We simply print a wax-patterned microchip with wettability contrasts, enabling automatic and selective assembly of cellulose microfibers to construct predefined paper-based microchip arrays with controllable thickness. This paper-based microchip printing technology is feasible for various substrate materials ranging from inorganic glass to organic polymers, providing a versatile platform for the full range of applications including transparent devices and flexible health monitoring. Our bottom-up printing technology using cellulose microfibers as the starting material provides a lateral resolution down to 42 ± 3 μm and achieves the narrowest channel barrier down to 33 ± 2 μm. As a proof-of-concept demonstration, a flexible paper-based glucose monitor is built for human health care, requiring only 0.3 μL of sample for testing.
Collapse
Affiliation(s)
- Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shanshan Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huiying Su
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,School of Biological Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
25
|
Kumawat N, Soman SS, Vijayavenkataraman S, Kumar S. Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process. LAB ON A CHIP 2022; 22:3377-3389. [PMID: 35801817 DOI: 10.1039/d2lc00452f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microfluidic paper-based analytical devices (microPADs) are emerging as simple-to-use, low-cost point-of-care testing platforms. Such devices are mostly fabricated at present by creating hydrophobic barriers using wax or photoresist patterning on porous paper sheets. Even though devices fabricated using these methods are used and tested with a wide variety of analytes, still they pose many serious practical limitations for low-cost automated mass fabrication for their widespread applicability. We present an affordable and simple two-step process - cut and heat (CH-microPADs) - for the selective fabrication of hydrophilic channels and reservoirs on a wide variety of porous media such as tissue/printing/filter paper and cloth types, such as cotton and polyester, by a lamination process. The technique presents many advantages as compared to existing commonly used methods. The devices possess excellent mechanical strength against bending, folding and twisting, making them virtually unbreakable. They are structurally flexible and show good chemical resistance to various solvents, acids and bases, presenting widespread applicability in areas such as clinical diagnostics, biological sensing applications, food processing, and the chemical industry. Fabricated paper media 96 well-plate CH-microPAD configurations were tested for cell culture applications using mice embryonic fibroblasts and detection of proteins and enzymes using ELISA. With a simple two-step process and minimal human intervention, the technique presents a promising step towards mass fabrication of inexpensive disposable diagnostic devices for both resource-limited and developed regions.
Collapse
Affiliation(s)
- Nityanand Kumawat
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| | - Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| | - Sanjairaj Vijayavenkataraman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
- Department of Mechanical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Sunil Kumar
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
- Department of Mechanical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
26
|
Chen C, Meng H, Guo T, Deshpande S, Chen H. Development of Paper Microfluidics with 3D-Printed PDMS Barriers for Flow Control. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40286-40296. [PMID: 36001301 DOI: 10.1021/acsami.2c08541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Paper microfluidics has been extensively exploited as a powerful tool for environmental and medical detection applications. Both flow delay and compatibility with either polar or non-polar reagents are indispensable for the automation of detections requiring multiple reaction steps. This article reports the systematic studies of a 3D-printing protocol, characterization, and application of both the partially and fully penetrated polydimethylsiloxane (PDMS) barriers for flexible flow control in paper microfluidics. The physical parameters of PDMS barriers printed using a simple liquid dispenser were found related to the printing pressure, speed, diffusion time after printing, baking temperature, and PDMS viscosity. The capability of PDMS barriers to confine the flow of non-polar solvents was demonstrated using oil flow in both wax- and PDMS-surrounded channels. It was identified that the minimum width of channels to prevent leakage was 470 ± 54 μm, which was as narrow as that fabricated using stamps from lithography. Both the partially penetrated barriers (PPBs) and constriction channels were of the capability to delay flow in paper microfluidics. Additionally, an in silico investigation led to the further understanding that the reduction of channel cross-section resulting from PPBs was the primary reason for flow delay. Our results suggest that increasing the penetration depth of the barriers is more efficient in delaying flow than increasing the PPB length. Finally, devices with four inlet channels and 0-6 PPBs across each channel were successfully applied in flow delay for sequential fluid delivery. These results improve the understanding of the major factors, affecting the 3D PDMS barrier fabrication and the resulting flow control in paper microfluidics, providing practical implications for applications in various fields.
Collapse
Affiliation(s)
- Chang Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Haixu Meng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
27
|
A fully handwritten-on-paper copper nanoparticle ink-based electroanalytical sweat glucose biosensor fabricated using dual-step pencil and pen approach. Anal Chim Acta 2022; 1227:340257. [DOI: 10.1016/j.aca.2022.340257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
|
28
|
Sarabi MR, Yigci D, Alseed MM, Mathyk BA, Ata B, Halicigil C, Tasoglu S. Disposable Paper-Based Microfluidics for Fertility Testing. iScience 2022; 25:104986. [PMID: 36105592 PMCID: PMC9465368 DOI: 10.1016/j.isci.2022.104986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fifteen percent of couples of reproductive age suffer from infertility globally and the burden of infertility disproportionately impacts residents of developing countries. Assisted reproductive technologies (ARTs), including in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), have been successful in overcoming various reasons for infertility including borderline and severe male factor infertility which consists of 20%–30% of all infertile cases. Approximately half of male infertility cases stem from suboptimal sperm parameters. Therefore, healthy/normal sperm enrichment and sorting remains crucial in advancing reproductive medicine. Microfluidic technologies have emerged as promising tools to develop in-home rapid fertility tests and point-of-care (POC) diagnostic tools. Here, we review advancements in fabrication methods for paper-based microfluidic devices and their emerging fertility testing applications assessing sperm concentration, sperm motility, sperm DNA analysis, and other sperm functionalities, and provide a glimpse into future directions for paper-based fertility microfluidic systems. Paper-based technologies are emerging to develop in-home rapid fertility tests Fabrication methods for paper-based microfluidic devices are presented Emerging disposable paper-based fertility testing applications are reviewed
Collapse
Affiliation(s)
| | - Defne Yigci
- School of Medicine, Koç University, Istanbul, Türkiye 34450
| | - M. Munzer Alseed
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye 34684
| | - Begum Aydogan Mathyk
- Department of Obstetrics and Gynecology, HCA Healthcare, University of South Florida Morsani College of Medicine GME, Brandon Regional Hospital, Florida 33511, USA
| | - Baris Ata
- School of Medicine, Koç University, Istanbul, Türkiye 34450
- ART Fertility Clinics, Dubai, United Arab Emirates 337-1500
| | - Cihan Halicigil
- Yale School of Medicine, Yale University, Connecticut 06520, USA
| | - Savas Tasoglu
- School of Mechanical Engineering, Koç University, Istanbul, Türkiye 34450
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye 34684
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul, Türkiye 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul, Türkiye 34450
- Koç University Is Bank Artificial Intelligence Lab (KUIS AI Lab), Koç University, Istanbul, Türkiye 34450
- Corresponding author
| |
Collapse
|
29
|
Carbon dots on paper for determination of Cu2+ in sugar cane spirits samples for fluorescence digital image-based method. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Luo H, Liu S, Shi L, Li Z, Bai Q, Du X, Wang L, Zha H, Li C. Paper-Based Fluidic Sensing Platforms for β-Adrenergic Agonist Residue Point-of-Care Testing. BIOSENSORS 2022; 12:bios12070518. [PMID: 35884321 PMCID: PMC9313176 DOI: 10.3390/bios12070518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The illegal use of β-adrenergic agonists during livestock growth poses a threat to public health; the long-term intake of this medication can cause serious physiological side effects and even death. Therefore, rapid detection methods for β-adrenergic agonist residues on-site are required. Traditional detection methods such as liquid chromatography have limitations in terms of expensive instruments and complex operations. In contrast, paper methods are low cost, ubiquitous, and portable, which has led to them becoming the preferred detection method in recent years. Various paper-based fluidic devices have been developed to detect β-adrenergic agonist residues, including lateral flow immunoassays (LFAs) and microfluidic paper-based analytical devices (μPADs). In this review, the application of LFAs for the detection of β-agonists is summarized comprehensively, focusing on the latest advances in novel labeling and detection strategies. The use of μPADs as an analytical platform has attracted interest over the past decade due to their unique advantages and application for detecting β-adrenergic agonists, which are introduced here. Vertical flow immunoassays are also discussed for their shorter assay time and stronger multiplexing capabilities compared with LFAs. Furthermore, the development direction and prospects for the commercialization of paper-based devices are considered, shedding light on the development of point-of-care testing devices for β-adrenergic agonist residue detection.
Collapse
Affiliation(s)
- Hongzhi Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi 563002, China;
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu 610072, China;
| | - Lina Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Zhu Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Qianwen Bai
- Sichuan Jinxin Women & Children Hospital, Chengdu 610066, China;
| | - Xiaoxin Du
- Office of Scientific Research & Development, University of Electronic Science and Technology, Chengdu 610054, China;
| | - Lijun Wang
- Department of Ophthalmology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
- Correspondence: (L.W.); (H.Z.); (C.L.)
| | - He Zha
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi 563002, China;
- Correspondence: (L.W.); (H.Z.); (C.L.)
| | - Chenzhong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (L.W.); (H.Z.); (C.L.)
| |
Collapse
|
31
|
Beard JW, Murty S, Caulkins C, Strenk AR, Luta EP, Hunt SL, Yates MZ, Miller BL. Leveraging Arylboronic Acid - Cellulose Binding as a Versatile and Scalable Approach to Hydrophobic Patterning. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101280. [PMID: 35935145 PMCID: PMC9355117 DOI: 10.1002/admt.202101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 06/15/2023]
Abstract
Paper-based analytical devices, or μPADs, have proven to be valuable bioanalytical tools for a broad range of applications. New methods for μPAD fabrication are needed, however, to facilitate their mass production at a competitive cost. To address this need, we report the use of a boronic acid-containing siloxane polymer (BorSilOx) for patterning hydrophobic barriers for μPADs. This material functions by covalently binding to hydroxyl groups in the paper substrate. It is compatible with inkjet printing or roll-to-roll (stamping) processes, as demonstrated here using three different deposition methods. BorSilOx is able to render a broad range of cellulosic materials (from paper towels to wood) hydrophobic, with contact angle measurements demonstrating superhydrophobicity in many cases. We further demonstrate the utility of the polymer in μPADs via assays for pH and glucose.
Collapse
Affiliation(s)
- Jeffrey W Beard
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Shannon Murty
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Christina Caulkins
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Amanda R Strenk
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Ethan P Luta
- Department of Dermatology, University of Rochester, Rochester, NY 14642
| | - Samuel L Hunt
- Department of Dermatology, University of Rochester, Rochester, NY 14642
| | - Matthew Z Yates
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Benjamin L Miller
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
32
|
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Environmental Studies, University of Delhi, Delhi - 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
| |
Collapse
|
33
|
Guo H, Yin Z, Namkoong M, Li Y, Nguyen T, Salcedo E, Arizpe I, Tian L. Printed Ultrastable Bioplasmonic Microarrays for Point-of-Need Biosensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10729-10737. [PMID: 35171552 PMCID: PMC9359782 DOI: 10.1021/acsami.1c24458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Paper-based point-of-need (PON) biosensors are attractive for various applications, including food safety, agriculture, disease diagnosis, and drug screening, owing to their low cost and ease of use. However, existing paper-based biosensors mainly rely on biolabels, colorimetric reagents, and biorecognition elements and exhibit limited stability under harsh environments. Here, we report a label-free paper-based biosensor composed of bioplasmonic microarrays for sensitive detection and quantification of protein targets in small volumes of biofluids. Bioplasmonic microarrays were printed using an ultrastable bioplasmonic ink, rendering the PON sensors excellent thermal, chemical, and biological stability for their reliable performance in resource-limited settings. We fabricated silicone hydrophobic barriers and bioplasmonic microarrays with direct writing and droplet jetting approaches on a three-dimensional (3D) nanoporous paper. Direct writing hydrophobic barriers can define hydrophilic channels less than 100 μm wide. High-resolution patterning of hydrophilic test domains enables the handling and analysis of small fluid volumes. We show that the plasmonic sensors based on a vertical flow assay provide similar sensitivity and low limit of detection with a 60 μL sample volume compared to those with 500 μL samples based on an immersion approach and can shorten assay time from 90 to 20 min.
Collapse
Affiliation(s)
- Heng Guo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ze Yin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Myeong Namkoong
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yixuan Li
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Tan Nguyen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Elizabeth Salcedo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ivanna Arizpe
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
34
|
Juang YJ, Hsu SK. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper. Polymers (Basel) 2022; 14:639. [PMID: 35160629 PMCID: PMC8840650 DOI: 10.3390/polym14030639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022] Open
Abstract
Since the monumental work conducted by Whitesides et al. in 2007, research and development of paper-based microfluidics has been widely carried out, with its applications ranging from chemical and biological detection and analysis, to environmental monitoring and food-safety inspection. Paper-based microfluidics possesses several competitive advantages over other substrate materials, such as being simple, inexpensive, power-free for fluid transport, lightweight, biodegradable, biocompatible, good for colorimetric tests, flammable for easy disposal of used paper-based diagnostic devices by incineration, and being chemically modifiable. Myriad methods have been demonstrated to fabricate paper-based microfluidics, such as solid wax printing, cutting, photolithography, microembossing, etc. In this study, fabrication of paper-based microfluidics was demonstrated by spray on the printed paper. Different from the normally used filter papers, printing paper, which is much more accessible and cheaper, was utilized as the substrate material. The toner was intended to serve as the mask and the patterned hydrophobic barrier was formed after spray and heating. The processing parameters such as toner coverage on the printing paper, properties of the hydrophobic spray, surface properties of the paper, and curing temperature and time were systematically investigated. It was found that, after repetitive printing four times, the toner was able to prevent the hydrophobic spray (the mixture of PDMS and ethyl acetate) from wicking through the printing paper. The overall processing time for fabrication of paper-based microfluidic chips was less than 10 min and the technique is potentially scalable. Glucose detection was conducted using the microfluidic paper-based analytical devices (µPADs) as fabricated and a linear relationship was obtained between 1 and 10 mM.
Collapse
Affiliation(s)
- Yi-Je Juang
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan;
- Center for Micro/Nano Science and Technology, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan
- Research Center for Energy Technology and Strategy, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan
| | - Shu-Kai Hsu
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan;
| |
Collapse
|
35
|
Suvanasuthi R, Chimnaronk S, Promptmas C. 3D printed hydrophobic barriers in a paper-based biosensor for point-of-care detection of dengue virus serotypes. Talanta 2022; 237:122962. [PMID: 34736687 DOI: 10.1016/j.talanta.2021.122962] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/24/2022]
Abstract
Paper-based biosensor is one of the most commonly used platforms for point-of-care testing (POCT). Among these platforms, microfluidic paper-based analytical devices (μPADs) have the most versatile designs due to the different hydrophobic barrier patterns and layers of the devices. In addition, μPADs can also be used in combination with other biosensor platforms to improve the performance of the device. Simple and convenient methods for fabricating low-cost and design-adjustable hydrophobic barriers on paper are one of the most challenging aspects for creating μPADs. This work demonstrated a simple technique for using the common polylactic acid (PLA) filament and wax filament to create hydrophobic barriers on paper for μPADs using a commercialized 3D printer. As a proof of concept, the papers with 3D printed PLA barrier were used in combination with a fluidic chip in a prototype biosensor, in which the barrier paper housed four cell-free reactions and the fluidic chip achieved sample delivery to the reactions in the device. Our designed prototype was capable of discriminating dengue virus serotypes based on small nucleotide sequence differences. The proposed combination of 3D-printed barrier paper and fluidic chip provides a versatile platform for rapid prototyping of POCT with possible compatibility with various detection systems.
Collapse
Affiliation(s)
- Rooge Suvanasuthi
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sarin Chimnaronk
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Chamras Promptmas
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
36
|
Wang J, Yang T, Li Z, Zhou K, Xiao B, Yu P. Semi-quantitative analysis of nickel: counting-based μPADs built via hand drawing and yellow oily double-sided adhesive tape. RSC Adv 2022; 12:30457-30465. [PMCID: PMC9598315 DOI: 10.1039/d2ra03892g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Counting-based μPADs were fabricated by hand drawing and yellow oily double-sided adhesive tape, and then successfully applied for the semi-quantitative analysis of nickel.
Collapse
Affiliation(s)
- Jian Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Tong Yang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zhengjia Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Kecen Zhou
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Bo Xiao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Peng Yu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
37
|
Kasetsirikul S, Tran KT, Clack K, Soda N, Shiddiky MJA, Nguyen NT. Low-cost electrochemical paper-based device for exosome detection. Analyst 2022; 147:3732-3740. [DOI: 10.1039/d2an00875k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A low-cost electrochemical paper-based analytical device was developed to quantify cancer cell-derived exosomes.
Collapse
Affiliation(s)
- Surasak Kasetsirikul
- Queensland Micro-and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Engineering and Build Environment (EBE), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Kim Thinh Tran
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Kimberley Clack
- Queensland Micro-and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro-and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Muhammad J. A. Shiddiky
- Queensland Micro-and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| |
Collapse
|
38
|
Rapid, Simple and Inexpensive Fabrication of Paper-Based Analytical Devices by Parafilm ® Hot Pressing. MICROMACHINES 2021; 13:mi13010048. [PMID: 35056213 PMCID: PMC8780184 DOI: 10.3390/mi13010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
Paper-based analytical devices have been substantially developed in recent decades. Many fabrication techniques for paper-based analytical devices have been demonstrated and reported. Herein, we report a relatively rapid, simple, and inexpensive method for fabricating paper-based analytical devices using parafilm hot pressing. We studied and optimized the effect of the key fabrication parameters, namely pressure, temperature, and pressing time. We discerned the optimal conditions, including a pressure of 3.8 MPa, temperature of 80 °C, and 3 min of pressing time, with the smallest hydrophobic barrier size (821 µm) being governed by laminate mask and parafilm dispersal from pressure and heat. Physical and biochemical properties were evaluated to substantiate the paper functionality for analytical devices. The wicking speed in the fabricated paper strips was slightly lower than that of non-processed paper, resulting from a reduced paper pore size after hot pressing. A colorimetric immunological assay was performed to demonstrate the protein binding capacity of the paper-based device after exposure to pressure and heat from the fabrication. Moreover, mixing in a two-dimensional paper-based device and flowing in a three-dimensional counterpart were thoroughly investigated, demonstrating that the paper devices from this fabrication process are potentially applicable as analytical devices for biomolecule detection. Fast, easy, and inexpensive parafilm hot press fabrication presents an opportunity for researchers to develop paper-based analytical devices in resource-limited environments.
Collapse
|
39
|
Shin G, Jeon JG, Kim JH, Lee JH, Lee J, Kim HJ, Baek JY, Kang KM, Han Y, So BJ, Kang TJ. Paper-Based Ionic Thermocouples for Inexpensive and High-Precision Measurement of Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60154-60162. [PMID: 34844404 DOI: 10.1021/acsami.1c17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate and yet cost-effective temperature measurements are required in various sectors of academia and industry. Thermocouples (TCs) are most widely used for temperature measurements; however, their low temperature sensitivity and high thermal conductivity should be improved to ensure the reliable measurement of output voltage for small temperature differences. To address this, a paper-based ionic thermocouple (P-iTC) presented here utilizes a pair of paper strips soaked with the electrolytes of potassium ferri-/ferrocyanide and iron (II/III) chloride redox couples, which are used as p- and n-type elements, respectively. The fabricated P-iTC provides 70× higher temperature sensitivity (α, 2.8 mV/K) and 30× lower thermal conductivity (k, 0.8 W/m K) than those of commercial K-type TCs, thereby yielding a remarkably high α/k ratio of 3.5 mV m/W. Reliable sensing performance is measured during three weeks of operation, which indicates that the P-iTC should be stable in long-term operation. To demonstrate the practicality of the P-iTC, a 3 × 3 planar array of P-iTCs is fabricated to monitor the temperature profile of a surface in contact with heat sources. Using pencil-drawn graphite electrodes on paper, a highly cost-effective P-iTC with the material cost of ∼0.5 cents per device is also fabricated, which is successfully used to monitor cold chain temperatures while retaining its excellent temperature-sensing performance.
Collapse
Affiliation(s)
- Gilyong Shin
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jei Gyeong Jeon
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ju Hyeon Kim
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ju Hwan Lee
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Junho Lee
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Hyeong Jun Kim
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jae Yun Baek
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Kyung Mook Kang
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Yusu Han
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Byeong Jun So
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Tae June Kang
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
40
|
Shokouhi M, Vahidi M, Abbasghorbani M. Investigation of H2S Solubility in Aqueous N- Methyldiethanolamine + Amine Functionalized UiO-66 as a nano solvent. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this paper, the experimental solubility of hydrogen sulfide in aqueous N- Methyldiethanolamine + Amine Functionalized UiO-66 (UiO-66-NH2) was studied. UiO-66-NH2 was produced using solvothermal process, and its physicochemical properties were investigated by different techniques including XRD, TGA, TEM, BET, and FTIR to realize its crystalline structure, morphology, thermal stability, and porous structure. The Zeta potential of the solution was turned out to be about 26.6 mV (millivolt), meaning that UiO-66-NH2 particles are moderately stable in aqueous 40 wt.% MDEA. The solubility of hydrogen sulfide has been carried out using the isochoric saturation / or static method in two concentration grades of 0.1 and 0.5 wt.% of UiO-66-NH2 in the aqueous solution of 40 wt.% MDEA known as nanofluid. Experimental measurements were carried out at temperatures of 303.15 through 333.15 K, and pressures up 1100 kPa. Results showed that the addition of UiO-66-NH2 nanoparticles to the MDEA solution altered the results less than 3% , while the mean value of uncertainty reported in this work is about 4% , meaning that the addition of nanoparticles do not have remarkable effect on H2S solubility. In contrast, it causes an increased capacity of CO2 absorption of that solution up to 10% .
Collapse
Affiliation(s)
- Mohammad Shokouhi
- Gas Science Department, Gas Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Mehdi Vahidi
- Gas Science Department, Gas Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Maryam Abbasghorbani
- Gas Science Department, Gas Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| |
Collapse
|
41
|
McNeill L, Megson D, Linton PE, Norrey J, Bradley L, Sutcliffe OB, Shaw KJ. Lab-on-a-Chip approaches for the detection of controlled drugs, including new psychoactive substances: A systematic review. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Wu S, Wu M, Wang G, Chen TH. Visual quantitation of silver contamination in fresh water via accumulative length of microparticles in capillary-driven microfluidic devices. Talanta 2021; 235:122707. [PMID: 34517580 DOI: 10.1016/j.talanta.2021.122707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Silver is a heavy metal commonly used as bacteriostatic agents or disinfectants. However, excess amount of silver ion (Ag+) could lead to adverse biological effects on human health. To monitor silver ions in environmental samples, we report a visual quantitative method for analyzing the trace amount of Ag+. A sliver-specific RNA-cleaving DNAzyme Ag10C firstly makes the connection between magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) forming a complex as "MMPs-Ag10C-PMPs". When Ag+ is present, the Ag10C is cleaved, resulting in an increase of free PMPs. By dropping 3 μL of reacted particle solution to a capillary-driven microfluidic chip, MMPs and MMPs-Ag10C-PMPs are removed by a magnetic separator during the flow, while free PMPs can continue flowing until being trapped and accumulating at a particle dam with a narrow nozzle. The accumulation length of PMPs linearly increases with the increment of Ag+ concentrations in the range of 0-10 μM, and readable by the naked eye. We have achieved a limit of detection (LOD) down to 453.7 nM, which is significantly lower than the maximum contaminant level of 926 nM set by World Health Organization (WHO). More importantly, after validating the high selectivity against other metal ions and stable performance in different pH and water hardness, we demonstrate recovery rate >96.8% for tests of multiple fresh water sources, manifesting the feasibility in practical detection in real water samples.
Collapse
Affiliation(s)
- Siying Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Minghui Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Gaobo Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong.
| |
Collapse
|
43
|
Morita K, Koiso H, Kudo R, Hirayama N. An absorption spectrophotometer compatible paper-based thin-layer cuvette with an integrated pneumatic pump. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4858-4863. [PMID: 34606531 DOI: 10.1039/d1ay01138c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study presents a paper-based thin-layer optical cuvette for absorption spectroscopy with a pneumatically driven pump for the introduction of an aqueous sample. The three major components, a sample reservoir, an open-channel as an optical path and a pneumatic pump, are patterned in polypropylene paper using an electronic cutting machine. When sealed with transparent tape, the patterned paper serves as the side walls of the paper-based cuvette with an integrated pneumatic pump. Due to the reduced pressure inside the open-channel caused by the depression of the pump with a finger, aqueous samples spotted onto the reservoir are introduced into the open-channel of the paper-based cuvette. We demonstrated that the paper-based cuvettes are compatible with conventional spectrophotometers for absorption spectroscopic measurements and capable of quantifying the concentrations of various colored dyes in aqueous samples.
Collapse
Affiliation(s)
- Kotaro Morita
- Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
| | - Honomi Koiso
- Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
| | - Reina Kudo
- Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
| | - Naoki Hirayama
- Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
| |
Collapse
|
44
|
Agustini D, Caetano FR, Quero RF, Fracassi da Silva JA, Bergamini MF, Marcolino-Junior LH, de Jesus DP. Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4830-4857. [PMID: 34647544 DOI: 10.1039/d1ay01337h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic devices based on textile threads have interesting advantages when compared to systems made with traditional materials, such as polymers and inorganic substrates (especially silicon and glass). One of these significant advantages is the device fabrication process, made more cheap and simple, with little or no microfabrication apparatus. This review describes the fundamentals, applications, challenges, and prospects of microfluidic devices fabricated with textile threads. A wide range of applications is discussed, integrated with several analysis methods, such as electrochemical, colorimetric, electrophoretic, chromatographic, and fluorescence. Additionally, the integration of these devices with different substrates (e.g., 3D printed components or fabrics), other devices (e.g., smartphones), and microelectronics is described. These combinations have allowed the construction of fully portable devices and consequently the development of point-of-care and wearable analytical systems.
Collapse
Affiliation(s)
- Deonir Agustini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Fábio Roberto Caetano
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Reverson Fernandes Quero
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
| | - José Alberto Fracassi da Silva
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| | - Márcio Fernando Bergamini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Dosil Pereira de Jesus
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| |
Collapse
|
45
|
Meng H, Chen C, Zhu Y, Li Z, Ye F, Ho JWK, Chen H. Automatic flow delay through passive wax valves for paper-based analytical devices. LAB ON A CHIP 2021; 21:4166-4176. [PMID: 34541589 DOI: 10.1039/d1lc00638j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) have been widely explored for point-of-care testing due to their simplicity, low cost, and portability. μPADs with multiple-step reactions usually require precise flow control, especially flow-delay. This paper reports the numerical, mathematical, and experimental studies of flow delay through wax valves surrounded by PDMS walls on paper microfluidics. The predried surfactant in the sample zone diffuses into the liquid sample which can therefore flow through the wax valves. The delay time is automatically regulated by the diffusion of the surfactant after sample loading. The numerical study suggested that both the elevated contact angle and the reduced porosity and pore size in the wax printed region could effectively prevent water but allow liquids with lower contact angles (e.g., surfactant solutions) to flow through. The PDMS walls fabricated using a low-cost liquid dispenser effectively prevented the leakage of surfactant solutions. By controlling the quantity, diffusion distance, and type of the surfactant predried on the chip, the system successfully achieved a delay time ranging from 1.6 to 20 minutes. A mathematical model involving the above parameters was developed based on Fick's second law to predict the delay time. Finally, the flow-delay systems were applied in sequential mixing and distance-based detection of either glucose or alcohol. Linear ranges of 1-100 mg dL-1 and 1-40 mg dL-1 were achieved for glucose and alcohol, respectively. The lower limit detection (LOD) of glucose and alcohol was 1 mg dL-1. The LOD of glucose was only 1/11 of that detected using μPADs without flow control, indicating the advantage of controlling fluid flow. The systematic findings in this study provide critical guidelines for the development and applications of wax valves in automatic flow delay for point-of-care testing.
Collapse
Affiliation(s)
- Haixu Meng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Chang Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Zhengtu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Feng Ye
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
46
|
Qin X, Liu J, Zhang Z, Li J, Yuan L, Zhang Z, Chen L. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116371] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Lee D, Ozkaya-Ahmadov T, Chu CH, Boya M, Liu R, Sarioglu AF. Capillary flow control in lateral flow assays via delaminating timers. SCIENCE ADVANCES 2021; 7:eabf9833. [PMID: 34597143 PMCID: PMC10938491 DOI: 10.1126/sciadv.abf9833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/11/2021] [Indexed: 05/10/2023]
Abstract
Lateral flow assays (LFAs) use capillary flow of liquids for simple detection of analytes. While useful for spontaneously wicking samples, the capillary flow inherently limits performing complex reactions that require timely application of multiple solutions. Here, we introduce a technique to control capillary flow on paper by imprinting roadblocks on the flow path with water-insoluble ink and using the gradual formation of a void between a wetted paper and a sheath polymer tape to create timers. Timers are drawn at strategic nodes to hold the capillary flow for a desired period and thereby enable multiple liquids to be introduced into multistep chemical reactions following a programmed sequence. Using our technique, we developed (i) an LFA with built-in signal amplification to detect human chorionic gonadotropin with an order of magnitude higher sensitivity than the conventional assay and (ii) a device to extract DNA from bodily fluids without relying on laboratory instruments.
Collapse
Affiliation(s)
- Dohwan Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tevhide Ozkaya-Ahmadov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chia-Heng Chu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mert Boya
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ruxiu Liu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - A. Fatih Sarioglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
48
|
Saadati A, Farshchi F, Hasanzadeh M, Seidi F. A microfluidic paper-based colorimetric device for the visual detection of uric acid in human urine samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3909-3921. [PMID: 34387641 DOI: 10.1039/d1ay01192h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The monitoring of uric acid (UA) as a clinically relevant toxic biomolecule is of particular importance for the diagnosis of various syndromes and for the monitoring of patients undergoing chemotherapy or radiation therapy. Owing to its speed, low consumption of materials, high sensitivity, convenience, and the easy detection of color changes, colorimetric methods have attracted a lot of attention compared to other methods. The use of nanoparticles has been suggested for the non-enzymatic POC detection of biological molecules such as UA. Here, a sensitive, quantitative, and rapid diagnostic method for UA using silver nanoparticles (AgNPs) is reported. The main purpose of this work is to introduce a suitable tool for future studies based on various types of AgNPs for the on-site detection of clinical samples and biomarkers using portable devices. In the present study, a novel μPCD made to measure UA was used in human urine samples. AgNPs with their peroxidase-like activity led to the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and a bluish-green color upon the decomposition of hydrogen peroxide to ˙OH. UA also reduced the oxidized TMB. The proposed method showed linear responses from 500 to 10 000 μM (using silver citrate nanoparticles (Ag-Cit)), 50 to 10 000 μM (using Ag NPrs and Au@AgNPs), and 1 to 10 000 μM (using Ag NWs). The lower limits of quantification of the proposed method for the detection of UA using Ag-Cit, Ag nanoprisms, Au@Ag core-shell nanoparticles, and Ag nanowires were 500, 50, 50, and 1 μM, respectively. As a result, the proposed assay system could potentially be utilized to detect UA in human urine samples.
Collapse
Affiliation(s)
- Arezoo Saadati
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Farshchi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
49
|
Sharma A, Tok AIY, Alagappan P, Liedberg B. Point of care testing of sports biomarkers: Potential applications, recent advances and future outlook. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
O Kare SP, Das D, Chaudhury K, Das S. Hand-drawn electrode based disposable paper chip for artificial sweat analysis using impedance spectroscopy. Biomed Microdevices 2021; 23:42. [PMID: 34468895 DOI: 10.1007/s10544-021-00578-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 11/30/2022]
Abstract
Low cost, disposable paper based electrical sensor to examine the analyte concentration in an extremely small volume of sample solution is essential for environmental and healthcare applications. For the development of paper based devices, sophisticated instruments are essential to pattern electrode on the top surface of the paper. In most cases, such fabricated device results in direct contact with the analyte solution on the surface of the electrode during electrical detection and leads to high electrical double layer capacitance. In this work, we have focused to reduce the double layer capacitance by fabricating hand drawn electrode paper sensor utilising the reverse side of the paper. This design acts as a sample storage and facilitate impedimetric sensing of ionic concentration of analyte solution using a few microlitre. Droplet formation at the bottom of the paper in the confined area is visually monitored to reduce sample wastage. The interaction between two different electrode materials (graphite and silver) on the paper substrate with the different volume and concentration of the electrolyte is analysed to improve the robustness and sensitivity of the measurement. Simultaneously, we observed a reduction in the electrical double layer effect on the low sample volumes. The proposed paper based sensor shows the enhanced impedance stability on silver electrode patterned paper chip than graphite electrode paper chip to detect the different ionic concentration of artificial sweat sample. Finally, it demonstrates that paper chip has great potential as a disposable diagnostics sensor in healthcare applications.
Collapse
Affiliation(s)
- Siva Prakasam O Kare
- BioMEMS Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Debanjan Das
- Department of Electronics and Communications Engineering, DSP M IIIT, Naya Raipur, India
| | - Koel Chaudhury
- Clinical Biomarker Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumen Das
- BioMEMS Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|