1
|
Liu R, Wei J, Hao J, Yang Z. Controlling Circularly Polarized Luminescence Enabled by Chirality and Energy Transfer from Optimized Chiral Molecules to Quantum Dots. ACS NANO 2025. [PMID: 40399769 DOI: 10.1021/acsnano.5c05946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Chirality transfer/amplification and energy transfer in artificial assembly systems are longstanding challenges inspired by biological systems. In particular, controlling intercomponent interactions to engineer CPL-active materials in multicomponent chiral coassemblies remains difficult. Here, we report the simultaneous realization of chirality and energy transfer in self-assembled hybrid systems comprising quantum dots with high photoluminescence quantum yield and organic molecules featuring aggregation-induced emission (AIE). Three chiral AIE molecules based on the tetraphenylethylene core, differing in the number and/or position of alkyl chains, were designed and synthesized. These structural variations led to distinct self-assembled morphologies, including helical fibrils, fibril bundles, and ribbons. Co-assembly with luminescent CdSe/CdS nanorods yielded organic-inorganic hybrid nanocomposites, where chirality transfer from the organic molecules to the nanorods strongly depended on the molecular structure. In parallel, efficient energy transfer from chiral donors to the nanorod acceptors was observed across all systems. Notably, the synergistic action of both chirality and energy transfer enabled the construction of CPL-active materials with high luminescence asymmetry factors. This work presents a strategy for designing chiroptical systems with enhanced chiroptical performance.
Collapse
Affiliation(s)
- Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| |
Collapse
|
2
|
Ji S, Zhou Y, Xiong L, Liu X, Zhu T, Zhan X, Yan Y, Yao J, Wang K, Zhao YS. Nonreciprocal Circularly Polarized Lasing from Organic Achiral Microcrystals. J Am Chem Soc 2025; 147:16674-16680. [PMID: 40310369 DOI: 10.1021/jacs.5c05118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Organic materials are particularly appealing for circularly polarized (CP) lasers due to their remarkable chiroptical activities and exceptional optical gain properties. However, conventional organic CP lasers based on chiral molecules or microstructures typically exhibit reciprocal behavior, which complicates material synthesis and device fabrication for practical applications. In this study, we present nonreciprocal CP lasing from achiral organic microcrystals through the coupling between fluorescence linear anisotropy (f) and linear birefringence (LB), known as f-LB effect. By carefully controlling the crystallization process, we prepared triclinic and orthorhombic polymorphs with distinct molecular packing arrangements, which unlock the precise manipulation of f-LB coupling for efficient polarization state conversion of photons. The triclinic crystals exhibited stronger f-LB effect owing to the suitable angle between the emission plane and birefringence axis, resulting in robust nonreciprocal CP luminescence. More importantly, this coupling was further amplified during lasing oscillation, ultimately enabling nonreciprocal CP lasing with a dissymmetry factor of ∼1.0. These findings provide a novel approach to exploring high-performance nonreciprocal CP lasers and offer new insights into chiral photonics and optoelectronics.
Collapse
Affiliation(s)
- Shiyang Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhou
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Xiong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Liu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tong Zhu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuqin Zhan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Kang Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Garain S, Kongasseri AA, Wagalgave SM, Konar R, Deb D, Narayan KS, Samanta PK, George SJ. Supramolecular Charge-Transfer Approach for Tunable and Efficient Circularly Polarized Delayed Fluorescence and Phosphorescence. Angew Chem Int Ed Engl 2025:e202501330. [PMID: 40317807 DOI: 10.1002/anie.202501330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Achieving efficient circularly polarized luminescence (CPL) with a high luminescence dissymmetry factor (|glum|) in purely organic systems is a vibrant and rapidly evolving field of research. Recently, the growing interest in ambient organic phosphors has offered a promising alternative for achieving CPL with remarkable quantum yields by utilizing triplet states. While supramolecular charge-transfer (CT) interactions are well-established to improve |glum| by enhancing magnetic transition dipole components, their application to triplet-harvesting organic systems remains unexplored. In this context, our current work introduces a supramolecular strategy to achieve highly efficient and tunable circularly polarized thermally activated delayed fluorescence (TADF) and phosphorescence by the involvement of intermolecular triplet CT states. Through-space intermolecular CT interactions between heavy atom-substituted bis-chromophoric pyromellitic diimides (PmDIs) (acceptors) and achiral phenyl carbazole derivatives (donors) enable one of the most efficient circularly polarized delayed luminescent systems, characterized by a high quantum yield (∼46%) and a significant |glum| ∼3.6 × 10⁻2. Additionally, the modularity of this non-covalent design allows for the tuning of emission from the orange to deep-red regions by incorporating various donors. The strategy presented here opens new avenues for designing efficient CPL-active organic phosphors.
Collapse
Affiliation(s)
- Swadhin Garain
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Anju Ajayan Kongasseri
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Sopan M Wagalgave
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Rishika Konar
- Chemistry and Physics of Materials Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Darshana Deb
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - K S Narayan
- Chemistry and Physics of Materials Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Pralok K Samanta
- Department of Chemistry, Birla Institute of Technology and Science Pilani (BITS Pilani), Hyderabad Campus, Hyderabad, 500078, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
4
|
Yu ZX, Chen XW, Chen CF, Li M. Intrinsically Luminescent Nematic Liquid Crystals Enabling High-Brightness Full-Color and White Circularly Polarized Luminescence via Chiral Coassembly. Angew Chem Int Ed Engl 2025:e202507802. [PMID: 40313138 DOI: 10.1002/anie.202507802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/03/2025]
Abstract
Circularly polarized luminescence (CPL) materials with simultaneous high dissymmetry factor (glum) and brightness are pivotal for advanced photonic applications but remain challenging due to inherent trade-offs betwwen glum value and photoluminescenc quantum yield (PLQY). Here, we report a supramolecular engineering strategy to construct intrinsically luminescent chiral nematic liquid crystal (N*-LC) films via coassembly of luminescent liquid crystals (LLCs) and chiral dopant. First, five intrinsic LLCs molecules (2PFQ, 2PFBQ, 2PFB, 2PFSe, and 2PFS) were synthesized by combining the biphenyl framework with dioctyl-functionalized fluorene, achieving exceptional nematic phases and high brightness with PLQY up to 99%. Then, chiral coassembly of the obtained LLCs with chiral dopants (P/M-THH) followed by rapid thermal quenching yielded Bragg reflection-free N*-LC films exhibiting high-brightness CPL with recorded glum values (up to 0.75) and PLQY (up to 71%). Full-color tunability and white CPL (CIE: 0.33, 0.33) were realized through precise compositional control. The simultaneous optimization of glum and PLQY enables high-brightness CPL with advanced anticounterfeiting capabilities, opening new avenues for developing high-brighness CPL materials for polarized photonic and optoelectronic applications.
Collapse
Affiliation(s)
- Zhen-Xing Yu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xu-Wei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| |
Collapse
|
5
|
Cui J, Wang H, Liu H, Yu H, Wang W, Wang Y, Zhao Y. Single-crystal chiral two-dimensional supramolecular organic frameworks for tunable circularly polarized luminescence. Chem Sci 2025; 16:7513-7522. [PMID: 40160369 PMCID: PMC11951166 DOI: 10.1039/d4sc08811e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Chiral supramolecular organic frameworks (SOFs) and hydrogen-bonded organic frameworks (HOFs) remain an unexplored field, with very few reported examples. Here, three chiral SOFs with perfect two-dimensional (2D) framework structures are constructed by self-assembly between the chiral macrocyclic host molecule and different guest molecules through host-guest and hydrogen-bonding interactions. Variations in the guest structures lead to different host-guest interactions. The formation of the 2D frameworks of the chiral host and the guest molecules realizes chirality transfer and enhances the performance of circularly polarized luminescence (CPL) through strong charge transfer (CT) mechanisms, leading to the successful regulation of the CPL of the obtained SOF series. Chiral SOFs are significant enough due to their ability to combine chirality with versatile porous frameworks, leading to innovative solutions in optical devices, separations, catalysis, and beyond. Their tunability and eco-friendly synthesis further enhance their importance in chiral materials.
Collapse
Affiliation(s)
- Jialin Cui
- Qingdao University of Science and Technology 53 Zhengzhou Road Qingdao 266000 China
| | - Hui Wang
- Qingdao University of Science and Technology 53 Zhengzhou Road Qingdao 266000 China
| | - Hui Liu
- Qingdao University of Science and Technology 53 Zhengzhou Road Qingdao 266000 China
| | - Hailong Yu
- Qingdao University of Science and Technology 53 Zhengzhou Road Qingdao 266000 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N. Zhongshan Road Shanghai 200062 China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N. Zhongshan Road Shanghai 200062 China
| | - Yingjie Zhao
- Qingdao University of Science and Technology 53 Zhengzhou Road Qingdao 266000 China
| |
Collapse
|
6
|
Liu H, Yu G, Huo P, Guo R, Li Y, Qi H, Zheng J, Jin T, Zhao Z, Bian Z, Liu Z. Structural relaxation chirality transfer enhanced circularly polarized luminescence in heteronuclear Ce III-Mn II complexes. MATERIALS HORIZONS 2025; 12:2650-2655. [PMID: 39812417 DOI: 10.1039/d4mh01760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Circularly polarized luminescence (CPL) materials have developed rapidly in recent years due to their wide application prospects in fields like 3D displays and anti-counterfeiting. Utilizing energy transfer processes to transfer chirality has been proven as an efficient way to obtain CPL materials. However, the physics behind energy-transfer induced CPL is still not clear. Herein, in a well-designed heteronuclear CeIII-MnII complex system [(Ce((R/S)-L)Br(μ-Br))2]MnBr4 [(R/S)-L = (2R,3R)- or (2S,3S)-2,3-dimethyl-1,4,7,10,13,16-hexaoxacyclooctadecane] with intra energy transfer from CeIII to MnII, the luminescence dissymmetry factor of MnII obtained by excitation of CeIII is around 10 times higher than that obtained by direct excitation of MnII, while the CeIII center itself shows an almost negligible CPL. To address this unusual phenomenon, we proposed a new mechanism named structural relaxation chirality transfer (SRCT) where structural relaxation of the excited chiral donor amplified chirality transfer to the acceptor by intramolecular interactions. As an assistant proof, a mixture of CeIII-ZnII and LaIII-MnII complexes with inter energy transfer showed no CPL amplification. These results will inspire more breakthroughs in the physics nature and development of energy-transfer induced CPL.
Collapse
Affiliation(s)
- Huanyu Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Gang Yu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Peihao Huo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Ruoyao Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yujia Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Hao Qi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Jiayin Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tong Jin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Jia XX, Tao SP, Wei TB, Lin Q, Shi B, Yao H, Qu WJ, Chen JF. A Pillar[5]arene-Based π-Conjugated Organic Small Molecule Emitter: Synthesis, Self-Assembly, and Selective Sensing of Cr 2O 7 2- Anion. Chem Asian J 2025; 20:e202401392. [PMID: 39688474 DOI: 10.1002/asia.202401392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
A triphenylamine-containing π-conjugated pillar[5]arene luminescent small organic molecule has been synthesized via Suzuki-coupling reaction. This molecule can self-assemble to form linear supramolecular polymers in both solution and solid state. The molecule shows enhanced emission compared with parent pillar[5]arene in dilute solution. Based on the bright luminescent behavior, its sensing ability for Cr2O7 2- anion was studied.
Collapse
Affiliation(s)
- Xu-Xu Jia
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Shao-Ping Tao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Bingbing Shi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Wen-Juan Qu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| |
Collapse
|
8
|
Zhou B, Cao LH, Huang MF, Yang Y, Qi S, Cao XJ, Chen XY. Temperature and Solvent Dual Switch Photochromic Chiral Ionic Hydrogen-Bonded Organic Framework for Circularly Polarized Luminescence and Advanced Encryption. Angew Chem Int Ed Engl 2025:e202504645. [PMID: 40152082 DOI: 10.1002/anie.202504645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
Multi-response encryption materials with temperature control and time resolution have attracted widespread attention due to their unique response characteristics and higher application security. The design and development of photochromic crystalline materials with multiple stimulus responses remain challenging. In this study, we report a pair of responsive photochromic chiral ionic hydrogen-bonded organic framework (iHOF) R/S-iHOF-19, controlled by both temperature and solvent through charge-assisted synthesis. The chromophore tetrakis(4-sulfophenyl)ethylene (H4TPE) acts as an electron donor and (1R/S,2R/S)-1,2-diphenylethylenediamine (R/S-DPEN) as an electron acceptor and chiral source. Water and methanol molecules connect the donor and acceptor and interact to build a 3D supramolecular framework. Notably, water and methanol molecules form independent hydrogen-bonding channels within the iHOF structural framework, providing a transfer path for the photoinduced electrons. Surprisingly, the formation of a continuous chiral supramolecular framework by R/S-DPEN while generating photo-induced radicals under ultraviolet (UV) irradiation at -20 °C imparts excellent circularly polarized luminescence (CPL) properties to R/S-iHOF-19. The glum values reach -1.8 × 10-3 and +3.75 × 10-3, respectively, and show an enhancement of the circular polarization of light with decreasing temperature. This CPL with unique low-temperature stimulus-responsive photochromism provides new guidance and perspectives for the development of information security and multiple encryption materials.
Collapse
Affiliation(s)
- Bin Zhou
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ming-Feng Huang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yi Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Simeng Qi
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xu-Yong Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
9
|
Feng Z, Li J, Yang P, Xu X, Wang D, Li J, Zhang C, Li J, Zhang H, Zou G, Chen X. Dynamic multimodal information encryption combining programmable structural coloration and switchable circularly polarized luminescence. Nat Commun 2025; 16:2264. [PMID: 40050269 PMCID: PMC11885572 DOI: 10.1038/s41467-025-57649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Multimodal optical-materials are highly desirable due to their advantages in enhancing information security, though independent modulation is challenging, especially accurately controlling the orthogonal relationship between the structural coloration (SC) and fluorescence (FL) pattern. Herein, we report a strategy which combines programmable structural coloration and switchable circularly polarized luminescence (CPL) for multimodal information encryption. Using photomask with aligned grating, programmable periodic patterns are fabricated on a polydiacetylene (PDA) gel film, which produces image in tunable structural colors. Introducing a chiral fluorescence layer containing perovskite nanocrystals and twisted-stacking Ag nanowires (NWs) bilayers, which provides stimuli-responsive FL and CPL with high dissymmetry factor (glum, up to 1.3). Importantly, the structural coloration information and FL patterns (including CPL pattern) can be independently modulated without mutual interference, even selectively concealed or exposed by varying microstructure design of the cross-linked PDA gel or by acetonitrile treatment.
Collapse
Affiliation(s)
- Zeyu Feng
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jialei Li
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Yang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Laboratory, Suzhou, Jiangsu, China
| | - Xiangxiang Xu
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Wang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiahe Li
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chutian Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingguo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Hongli Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| | - Gang Zou
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
- Suzhou Laboratory, Suzhou, Jiangsu, China.
| | - Xin Chen
- Suzhou Laboratory, Suzhou, Jiangsu, China.
| |
Collapse
|
10
|
Wu S, Song X, Lu J, Hao W, Liu M. 2,3 : 6,7-Naphthalenediimide-Based Chiral Triangular Macrocycle: Self-Assembled Helix, Outer π-Surface Directed Co-Assembly and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2025; 64:e202421108. [PMID: 39743678 DOI: 10.1002/anie.202421108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Here, we report the synthesis and self-assembly of a novel chiral 2,3 : 6,7-naphthalenediimide-based triangular macrocycle (NDI-Δ) and its chiroptical properties. The enantiomeric NDI-Δ is synthesized by condensation of (RR) or (SS)-trans-1,2-cyclohexanediamine and 2,3,6,7-naphthalenetetracarboxylic 2,3 : 6,7-dianhydride, in which the chirality of the macrocycles is controlled by the diamine. With the rigid outer π-surface, the macrocycle exhibits unique chiroptical properties and self-assembly modes. The NDI-Δ shows circularly polarized luminescence (CPL) in solution and can self-assemble into helical structures with the inversion of CPL signal and the enhancement of |glum|. Moreover, the NDI-Δ has a tailored electron-deficient outer π-surface, which can co-assemble with an electron-rich anthracene (AN) to form an intermolecular charge transfer (CT) complex, generating a yellow-green CT-CPL. Crystal structure analysis confirms that AN is mounted on the outer surface of NDI-Δ through π-π stacking and C-H ⋯ ${\cdots }$ π interactions. This work provides a critical example for the self-assembly of macrocycles into helical structures and outer π-surface directed CT complexes formation, opening up a new clue for designing chiral macrocycle-based chiroptical materials.
Collapse
Affiliation(s)
- Shengfu Wu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A, Yuquan Road, Beijing, 100049, China
| | - Xin Song
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Jie Lu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Wenchao Hao
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A, Yuquan Road, Beijing, 100049, China
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A, Yuquan Road, Beijing, 100049, China
| |
Collapse
|
11
|
Wang Y, Zhou S, Zhao Y, Xiao H, Xing LB, Sun X, Zhou J, Lu S. Construction of Carbon Dot-Based Color-Tunable Circularly Polarized Long Afterglow via in Situ Phosphorescence Resonance Energy Transfer. NANO LETTERS 2025. [PMID: 40017324 DOI: 10.1021/acs.nanolett.5c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Carbon dots (CDs) with circularly polarized long afterglow (CPLA) properties have received increasing attention as a cutting-edge research field. However, because the CDs with both long afterglow and chirality are difficult to prepare and the afterglow color of most phosphorescent CDs is mainly concentrated in short wavelengths, it is still a formidable challenge to explore a facile route to achieve intrinsic CD-based color-tunable CPLA materials on a large scale. Herein, we developed a facile gram-scale synthesis method to prepare intrinsic CD-based color-tunable CPLA materials via a simple hydrothermal mixture of boric acid, arginine, and various fluorescent dyes. The tunable afterglow color is successfully achieved by engineering in situ phosphorescence resonance energy transfer (PRET) between the CDs formed by carbonization of arginine with some of the dyes and those uncarbonized dyes. Finally, the applications of CD composites in multimode advanced anti-counterfeiting and information encryption were explored.
Collapse
Affiliation(s)
- Yijie Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yi Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
12
|
Chen L, Zou P, Chen J, Xu L, Tang BZ, Zhao Z. Hyperfluorescence circularly polarized OLEDs consisting of chiral TADF sensitizers and achiral multi-resonance emitters. Nat Commun 2025; 16:1656. [PMID: 39952979 PMCID: PMC11829008 DOI: 10.1038/s41467-025-56923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Developing circularly polarized organic light-emitting diodes (CP-OLEDs) that simultaneously achieve narrow-spectrum emission and high electroluminescence (EL) efficiency remains a formidable challenge. This work prepares two pairs of efficient circularly polarized thermally activated delayed fluorescence (CP-TADF) materials, featuring high photoluminescence quantum yields, short delayed fluorescence lifetimes, good luminescence dissymmetry factors and large horizontal dipole ratios. They can function as emitters for efficient sky-blue CP-OLEDs, providing high maximum external quantum efficiencies (ηext,maxs) (33.8%) and good EL dissymmetry factors (gELs) (-2.64 × 10-3). More importantly, they can work as sensitizers for achiral multi-resonance (MR) TADF emitters, furnishing high-performance blue and green hyperfluorescence (HF) CP-OLEDs with intense narrow-spectrum CP-EL and good ηext,maxs (31.4%). Moreover, tandem HF CP-OLEDs are fabricated for the first time by employing CP-TADF sensitizers and achiral MR-TADF emitters, which radiate narrow-spectrum CP-EL with an extraordinary ηext,maxs (51.3%) and good gELs (4.87 × 10-3). The circularly polarized energy transfer as well as chirality-induced spin selectivity effect of CP-TADF sensitizers are considered to contribute greatly to the generation of efficient CP-EL from achiral MR-TADF emitters. This work not only explores efficient CP-TADF materials but also provides a facile approach to construct HF CP-OLEDs with achiral MR-TADF emitters.
Collapse
Affiliation(s)
- Letian Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Peng Zou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Letian Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
13
|
Tian E, Cao G, Dong H, Xu Z, Shen Z. Triple circularly polarized luminescence of phenylalanine-based supramolecular gels regulated by kinetic and thermodynamic assembly pathways. Chem Commun (Camb) 2025; 61:2965-2968. [PMID: 39840990 DOI: 10.1039/d4cc05548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A single phenylalanine-based gelator can self-assemble into various chiral nanostructures with triple circularly polarized luminescence (CPL). Its supramolecular assembly and CPL emission are found to be dependent on the kinetic and thermodynamic pathways. This work provides new insight into the regulation of CPL-active functional materials.
Collapse
Affiliation(s)
- Enquan Tian
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| | - Guanghui Cao
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| | - Huanhuan Dong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Zhichao Xu
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| | - Zhaocun Shen
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
14
|
Xu XQ, Li WJ, Zhang DY, Zhu Y, Xu WT, Wang Y, Wang XQ, Wang W, Yang HB. Chiral Rotaxane-Branched Dendrimers as Relays in Artificial Light-Harvesting Systems with Boosted Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2025; 64:e202419434. [PMID: 39578231 DOI: 10.1002/anie.202419434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Starting from AIEgen-functionalized chiral [2]rotaxane building block, we have successfully synthesized a new class of chiral rotaxane-branched dendrimers through controllable divergent strategy for the first time, based on which novel chiral artificial light-harvesting systems (LHSs) were successfully constructed in aqueous phase by sequentially introducing achiral donor and acceptor. More importantly, accompanied by the two-step Förster resonance energy transfer (FRET) process in the resultant artificial LHSs, the sequentially amplified circularly polarized luminescence (CPL) performances were achieved, highlighting that the chiral rotaxane-branched dendrimers could serve as excellent relay for both energy transfer and chirality transmission. Impressively, compared with the sole chiral rotaxane-branched dendrimers, the dissymmetry factors (glum) values of the resultant artificial LHSs were amplified by one order of magnitude up to 0.038, enabling their further applications in information storage and encryption. The proof-of concept study provides not only a feasible approach for the efficient amplification of CPL performances but also a novel platform for the construction of novel chiral luminescent materials.
Collapse
Affiliation(s)
- Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
15
|
Shi CM, Lu H, Wang JY, Long G, Xu LJ, Chen ZN. Stepwise amplification of circularly polarized luminescence in indium-based metal halides by regulating their structural dimension. Nat Commun 2025; 16:1505. [PMID: 39929818 PMCID: PMC11811174 DOI: 10.1038/s41467-025-56394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
The pursuit of chiral lead-free metal halides with both high photoluminescence quantum yield (PLQY) and large luminescence dissymmetry factor (glum) remains a priority for designing efficient circularly polarized light sources. However, a tradeoff exists between PLQY and glum in chiral materials due to the mismatched electric (μ) and magnetic transition dipole moment (m). Herein, we address this contradiction and develop the efficient circularly polarized luminescence (CPL) emitters through structural dimension modulation. By tuning the size and polarization of chiral organic cations and employing the cascade cationic insertion strategy, 0D, 1D and 3D indium-based chiral metal halides are constructed. These hybrids exhibit self-trapped excitons emission with near-unity PLQY, while the |glum| boosts exponentially from 10-3 to nearly 10-1 as the structural dimension increases from 0D to 3D, and the highest |glum| of 0.89 × 10-1 has been achieved. Structural analysis and theoretical calculation indicate the increased structural dimension promotes the formation of helical structure and enlarges magnetic transition dipole moment, thus resulting in improved CPL performance. Our research provides valuable insights on the relationship between glum and structural dimension, thus will advance the development of efficient CPL-active materials for practical applications.
Collapse
Affiliation(s)
- Cui-Mi Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haolin Lu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Liang-Jin Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Sun Y, Zhang D, Dong Z, Lyu J, Wang C, Gong J, Wong KH, Wu C, Zhang X. Microbe-assisted fabrication of circularly polarized luminescent bacterial cellulosic hybrids. Nat Commun 2025; 16:1115. [PMID: 39880863 PMCID: PMC11779823 DOI: 10.1038/s41467-025-56253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
The fabrications of circularly polarized luminescent (CPL) material are mainly based on the chemical and physical strategies. Controlled biosynthesis of CPL-active materials is beset with difficulties due to the lack of bioactive luminescent precursors and bio-reactors. Enlighted by microbe-assisted asymmetric biosynthesis, herein, we show the in situ bacterial fermentation of Komagataeibacter sucrofermentants to fabricate a series of bacterial cellulosic biofilms with CPL of green, orange, red, and near-infrared colors. This process can trigger CPL emission for CPL-silent glycosylated luminophores and amplify the glum of weak CPL-active luminophores up to a 10-2 scale. To confirm glycosidic bonds formation during the bacterial copolymerization process, we develop an assay utilizing the cellulase-catalyzed biodegradation of BC hybrids. More importantly, we achieve the information encryption and Fe3+ dual-channel detection based on hybrid bacterial cellulosic biofilms. Therefore, this study not only provides another vision for CPL materials preparation but also broadens the application of bacterial cellulosic hybrids.
Collapse
Affiliation(s)
- Yongjie Sun
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Dan Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jinxiao Lyu
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chunfei Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jun Gong
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
17
|
Yu J, Yu H, Qiu Y, Zhang HY, Xu X, Liu Y. Biofuel-Driven Stepping Chiral Supramolecular Transfer Container. Angew Chem Int Ed Engl 2025; 64:e202418938. [PMID: 39513650 DOI: 10.1002/anie.202418938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
Herein, we reported a biofuel-driven recyclable chiral supramolecular transfer container based on hexacationic triphenylamine cage and nucleotides. Possessing rotatable paddle rigid backbones, the artificial receptor effectively encapsulated nucleotides with a high binding constant up to 5.37×105 M-1 in water, displaying guest-induced efficient fluorescence enhancement with quantum yield increased from 6.5 % to 16.6 %. Especially, the achiral cage could effectively bind with adenosine triphosphate to activate chirality transfer from substrates to the single molecular container, giving circularly polarized luminescence at 575 nm and positive Cotton effect peaks with significant asymmetric factor (gabs=+6.4×10-4). Meanwhile, the adaptive chiral supramolecule not only has reversible thermal responsiveness but also could stepwise regulate chirality transfer by the catalysis of hexokinase and apyrase in tandem, showing recovery adaptive chirality after refueled, achieving dynamically regulated programmable multistate chiral luminescent supramolecules. Therefore, the biofuel-driven chiral supramolecular transfer container could be successfully applied in chiral logic gates and multilevel information encryption, providing new insight into intelligent chiral materials.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Huijia Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yugui Qiu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Heng-Yi Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
18
|
Wang Y, Zhao WL, Gao Z, Qu C, Li X, Jiang Y, Hu L, Wang XQ, Li M, Wang W, Chen CF, Yang HB. Switchable Topologically Chiral [2]Catenane as Multiple Resonance Thermally Activated Delayed Fluorescence Emitter for Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2025; 64:e202417458. [PMID: 39379791 DOI: 10.1002/anie.202417458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Aiming at the fabrication of circularly polarized organic light-emitting diodes (CP-OLEDs) with high dissymmetry factors (gEL) and color purity through the employment of novel chiral source, topologically chiral [2]catenanes were first utilized as the key chiral skeleton to construct novel multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters. Impressively, the efficient chirality induction and unique switchable feature of topologically chiral [2]catenane not only lead to a high |gPL| value up to 1.6×10-2 but also facilitate in situ dynamic switching of the full-width at half-maximum (FWHM) and circularly polarized luminescence (CPL). Furthermore, the solution-processed CP-OLEDs based on the resultant topologically chiral emitters exhibit a narrow FWHM of 36 nm, maximum external quantum efficiency of 17.6 %, and CPEL with |gEL| of 2.1×10-3. This study demonstrates the successful construction of the first CP-MR-TADF emitters based on topological chirality with the highest |gPL| among the reported CP-MR-TADF emitters and excellent device performance to the best of our knowledge. Moreover, it endowed the MR-TADF emitter with distinctive switchable CPL performances, thus providing a novel design strategy as well as a promising platform for developing intelligent CP-OLEDs.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhiwen Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yefei Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
19
|
Kang W, Meng X, Ren T, Guo J. Tunable Circularly Polarized Luminescence Enabled by Photo-induced Phase Transition in a Blue-phase Liquid Crystal with a Wide Room-temperature Window. Chem Asian J 2025; 20:e202401211. [PMID: 39500730 DOI: 10.1002/asia.202401211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/31/2024] [Indexed: 11/30/2024]
Abstract
Chiral luminescent liquid crystal (LC) materials with switchable circularly polarized luminescence (CPL) signals have received extensive attention, in which the use of light stimulation to achieve different CPL states is of great significance. However, there are very few reports on the generation and regulation of CPL signals enabled by blue phase LC (BPLC). Herein, achieving CPL signal inversion based on the phase transition induced by light/temperature stimulation in a BPLC system with a wide room-temperature window is reported. A binaphthalene azo-based chiral photoswitch (S)-switch 3 with high helical twisted power (HTP) and large HTP variation is synthesized, and a BP system with a wide room temperature range is further fabricated by doping (S)-switch 3 and a fluorescence molecule into a bulk LC. By regulating the doping amount of (S)-switch 3, a phase transition from BP to cholesteric (Ch) phase at room temperature is observed upon 365 nm UV light irradiation or during cooling process, and the polarization inversion of CPL signal is correspondingly found due to the different CPL generation mechanisms of BPLC and CLC. This study provides a new strategy for the flexible regulation of CPL signals in a BPLC system.
Collapse
Affiliation(s)
- Wenxin Kang
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianyu Meng
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianqi Ren
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
20
|
Zou X, Gan N, Gao Y, Gu L, Huang W. Organic Circularly Polarized Room-Temperature Phosphorescence: Strategies, Applications and Challenges. Angew Chem Int Ed Engl 2025; 64:e202417906. [PMID: 39548951 DOI: 10.1002/anie.202417906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 11/18/2024]
Abstract
Organic circularly polarized luminescence (CPL) plays crucial roles in chemistry and biology for the potential in chiral recognition, asymmetric catalysis, 3D displays, and biological probes. The long-lived luminescence, large Stokes shift, and unique chiroptical properties make organic circularly polarized room-temperature phosphorescence (CPP) a new research hotspot in recent years. Nevertheless, achieving high-performance organic CPP is still challenging due to the sensitivity and complexity of integrating triplet excitons and polarization within organic materials. This review summarizes the latest advances in organic CPP, ranging from design strategies and photophysical properties to underlying luminescence mechanisms and potential applications. Specifically, the design strategies for generating CPP are systemically categorized and discussed according to the interactions between chiral units and chromophores. The applications of organic CPP in organic light-emitting diodes, sensing, chiral recognition, afterglow displays, and information encryption are also illustrated. In addition, we present the current challenges and perspectives on developing organic CPP. We expect this review to provide some instructive design principles to fabricate high-performance organic CPP materials, offering an in-depth understanding of the luminescence mechanism and paving the way toward diverse practical applications.
Collapse
Affiliation(s)
- Xin Zou
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Nan Gan
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yaru Gao
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore, 117543
| | - Long Gu
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
21
|
Guo R, Ling Z, Zheng B, Sun X, Yuan Z, Li H. Aggregation-Induced Emission Carbon Dot-Based Multicolor Circularly Polarized Afterglow with a High Luminescence Dissymmetry Factor. J Phys Chem Lett 2025; 16:140-147. [PMID: 39706824 DOI: 10.1021/acs.jpclett.4c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Carbon dots (CDs) with circularly polarized afterglow (CPA) materials have drawn increasing attention as cutting-edge research in the field of chiral luminescence owing to their promising applications in various fields. However, due to the weak optical activity of chiral CDs and the limited afterglow color of phosphorescent CDs, it is still a formidable challenge to construct multicolor CD-based CPA materials with a high luminescence dissymmetry factor (glum). Herein, positively charged aggregation-induced emission (AIE) CDs were prepared using dithiosalicylic acid and ionic liquid as precursors. Encapsulating the positively charged AIE CDs in the chiral nematic structure of negatively charged cellulose nanocrystal (CNC) films enabled the production of a surprising warm white CPA with glum up to -0.16. To further expand the color of afterglow, the phosphorescence resonance energy transfer between CDs and commercial fluorescent dyes was constructed in CNC films. Finally, the potential applications in advanced dynamic information encryption were explored by virtue of the different afterglow lifetimes.
Collapse
Affiliation(s)
- Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zijun Ling
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Boyan Zheng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zaiwu Yuan
- Key Laboratory of Fine Chemicals in Universities of Shandong, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
22
|
Lai L, Wang S, Sang Y, Feng C, Liu M, Wang F, Lin S, Zhou Q. Multicolor and sign-invertible circularly polarized luminescence from nonchiral charge-transfer complexes assembled with N-terminal aromatic amino acids. NANOSCALE 2025; 17:788-796. [PMID: 39618310 DOI: 10.1039/d4nr04308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Circularly polarized luminescence (CPL) materials with precisely controlled emission colors and handedness are highly desirable for their promising applications in advanced optical technologies, but it is rather challenging to obtain them primarily due to the lack of convenient, powerful, and universal preparation strategies. Herein, we report a simple yet versatile solution route for constructing multicolor CPL materials with controllable handedness from nonchiral luminescent charge-transfer (CT) complexes through co-assembly with chiral N-terminal aromatic amino acids. The resulting ternary co-assemblies exhibit obvious CPL signals from 489 to 601 nm, covering from blue via green and yellow to orange-red. Notably, the CPL sign can be readily inverted by changing the substituents at the α-position of amino acids or the molecular structure of achiral electron donors due to effects on the hydrogen bonds, CT interactions, and stacking patterns. This work provides a new insight into developing CPL materials with tunable color and inverted handedness.
Collapse
Affiliation(s)
- Liyun Lai
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shunan Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yunxiao Sang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Chen Feng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fang Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Quan Zhou
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
23
|
Zhai ZM, Hou T, Xu Y, Teng Q, Bao SS, Zheng LM. Hollow Superhelices Based on Chiral Europium Coordination Polymers. Chemistry 2025; 31:e202403699. [PMID: 39441551 DOI: 10.1002/chem.202403699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
The construction of helical nanotubes based on chiral coordination polymers (CPs) is an intriguing but challenging task, which is important for the development of functional materials that combine macroscopic chirality with tube-related properties. Here, we selected a chiral europium phosphonate system, e. g., Eu(NO3)3/R-,S-pempH2, and carried out a systematic work. By controlling the hydrothermal reaction conditions such as the pH value of the reaction mixture, the molar ratio and concentration of the reactants, we obtained block-like crystals of R/S-1 b, rod-like crystals of R/S-3 r, hollow superhelices of R/S-2 hh, and solid superhelices of R/S-4 sh. In the latter two cases, the chirality has been successfully transferred and amplificated from the molecular level to the macroscopic level. Interestingly, compounds R/S-2 hh and R/S-4 sh have the same chemical composition of Eu(R/S-pempH)3⋅2H2O and show identical PXRD patterns, thus can be considered as the same material except for different morphologies. We further investigated their circularly polarized luminescence (CPL) properties and found that the hollow superhelix of R/S-2 hh had a larger dissymmetry factor than the solid superhelix of R/S-4 sh. This study not only provides the first example of hollow superhelices of chiral CPs, but also offers the possibility of modulating the chiroptical properties of CPs through morphological control.
Collapse
Affiliation(s)
- Zhi-Min Zhai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ting Hou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institute of Information Engineering, Suqian College, Suqian, 223800, China
| | - Qian Teng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
24
|
Ji L, Li J, Meng T, Li Z, Zhu H, Ouyang G, Liu M. Photo-Induced Radical Generation of Supramolecular Gel with Sign-Inverted and White-Light Circularly Polarized Luminescence. SMALL METHODS 2025; 9:e2400824. [PMID: 39491819 DOI: 10.1002/smtd.202400824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/09/2024] [Indexed: 11/05/2024]
Abstract
The realization of persistent luminescence and in particular circularly polarized luminescence (CPL) of organic radicals remains a challenge due to their sensitivity to oxygen at ambient conditions and elusive excited state chirality control. Here, it is reported that UV-irradiation on a supramolecular gel from a chiral triarylamine derivative, TPA-Ala, led to the formation of luminescent radicals with bright CPL. TPA-Ala can form an organogel in chloroform with blue emission and supramolecular chirality as demonstrated by both CD and CPL signals. Upon UV 365 nm irradiation, an emission color change from blue to cyan is observed due to the formation of photo-induced radicals. Interestingly, it is found that the supramolecular gel radicals showed stable luminescence with a lifetime ≈ 10 days in dark environments and inverted CPL, which represents a scarce example with persistent CPL from doublet-state due to oxygen isolation ability of the gel network. Furthermore, doping a guest dye, Rhodamine B (RhB), into the supramolecular gel (RhB/TPA-Ala = 30% in molar ratio) successfully obtained a transient white-light CPL through the superposition of photo-induced radical and guest dye emissions. This work provides a useful methodology for the fabrication of radical-based CPL materials via a supramolecular assembly approach.
Collapse
Affiliation(s)
- Lukang Ji
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Jinqi Li
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, 050018, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Tianzi Meng
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Zujian Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Huajie Zhu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, 050018, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
25
|
Ai L, Xiang W, Li ZW, Liu H, Xiao J, Song H, Yu J, Song Z, Zhu K, Pan Z, Wang H, Lu S. Hydrogen Bond-Induced Flexible and Twisted Self-Assembly of Functionalized Carbon Dots with Customized-Color Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202410988. [PMID: 39283269 DOI: 10.1002/anie.202410988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Indexed: 11/01/2024]
Abstract
Circularly polarized luminescence (CPL) has numerous applications in optical data storage, quantum computing, bioresponsive imaging, liquid crystal displays, and backlights in three-dimensional (3D) displays. In addition to their competitive optical properties, carbon dots (CDs) benefit from simple and low-cost preparation, facile post-modification, and excellent resistance to photo- and chemical bleaching after carbonization. Combining the superior optical performance with polarization peculiarities through hierarchical structure engineering is imperative for the development of CDs. In this study, hydrophobic interactions of aromatic ligands, which participate in the surface-ligand post-modification process on the ground-state chiral carbon core, are employed to drive the oriented assembly. Furthermore, the residual chiral amides on CDs form multiple hydrogen bonds during gradual aggregation, causing the assembled materials to form an asymmetric bending structure. Superficial ligands interfere with the optical dynamics of the exciton radiation transition and stabilize the excited state of the assembled materials to achieve a circularly polarized signal. The linkage ligands overcome the frequent aggregation-induced quenching phenomenon that present difficulties in conventional CDs, facilitate the assembly of self-supporting films, and improve chiral optical expression. The full-color and white CPL are manipulated by simply adjusting the functional groups of the ligands, which also illustrates the versatility of the post-modification strategy. Finally, large chiral flexible films and multicolor chiral light-emitting diodes based on the stable chiral powder phosphors were constructed, thereby providing feasible materials and technical support for flexible 3D displays.
Collapse
Affiliation(s)
- Lin Ai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Wenjuan Xiang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhan-Wei Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Huimin Liu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Jiping Xiao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Haoqiang Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Jingkun Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Ziqi Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Kai Zhu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhuohan Pan
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Haolin Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| |
Collapse
|
26
|
Han J, Fujikawa S, Kimizuka N. Living Hybrid Exciton Materials: Enhanced Fluorescence and Chiroptical Properties in Living Supramolecular Polymers with Strong Frenkel/Charge-Transfer Exciton Coupling. Angew Chem Int Ed Engl 2024; 63:e202410431. [PMID: 38987230 DOI: 10.1002/anie.202410431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
A family of chiral perylene diimides (PDIs) was newly developed as excellent circularly polarized luminescence (CPL) materials. They are asymmetrically derivatized with a double-alkyl-chained L- or D-glutamate unit and a linear or branched alkyl chain. When water is added to the tetrahydrofuran (THF) solution of glutamate-PDI-linear-alkyl chain compounds, kinetically formed H-aggregates are formed in globular nanoparticles (NPs). These NPs undergo spontaneous transformation into thermodynamically stable nanotubes via helical nanostructures, which showed structured broad spectra originating from the strong coupling of delocalized Frenkel excitations (FE) and charge transfer excitations (CTE). Significant enhancement of circular dichroism (CD), fluorescence quantum yield, and circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) are observed during the transformation of NPs to the FE/CTE-coupled helical and tubular structures. This transformation process is significantly accelerated by applying physical stimuli, i.e., ultrasonication or adding helical aggregates as seed crystals, a feature unique to living supramolecular polymerization. Meanwhile, the branched chain-containing PDIs only form H-aggregates and did not show FE/CTE hybrid exciton states with living supramolecular polymerization properties. This study unveils that suitably designed chiral PDI derivatives show FE/CTE coupling accompanied by high fluorescence quantum yields, enhanced chiroptical properties, and supramolecular living polymerization characteristics.
Collapse
Affiliation(s)
- Jianlei Han
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigenori Fujikawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
27
|
Li H, Kang X, Zhu M. Superlattice Assembly for Empowering Metal Nanoclusters. Acc Chem Res 2024; 57:3194-3205. [PMID: 39374418 DOI: 10.1021/acs.accounts.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
ConspectusAtomically precise metal nanoclusters, serving as an aggregation state of metal atoms, display unique physicochemical properties owing to their ultrasmall sizes with discrete electronic energy levels and strong quantum size effects. Such intriguing properties endow nanoclusters with potential utilization as efficient nanomaterials in catalysis, electron transfer, drug delivery, photothermal conversion, optical control, etc. With the assistance of atomically precise operations and theoretical calculations on metal nanoclusters, significant progress has been accomplished in illustrating their structure-performance correlations at the single-molecule level. Such research achievements, in turn, have contributed to the rational design and customization of functional nanoclusters and cluster-based nanomaterials.Most previous studies have focused on investigating structure-property correlations of nanocluster monomers, while the exploration of electronic structures and physicochemical properties of hierarchical cluster-based assembled structures was far from enough. Indeed, from the application aspect, the nanoclusters with controllably assembly states (e.g., crystalline assembled materials, host-guest hybrid materials, amorphous powders, and so on) were more suitable for performance expression relative to those in the monomeric state and more directed to downstream solid-state applications. In this context, more attention should be paid to the state-correlated property variations of metal nanoclusters occurring in their aggregating and assembling processes for better applications in accordance with their aptitude.Crystalline aggregates are crucial in the structural determination of metal nanoclusters, also acting as a cornerstone to analyze the structure-property correlations by affording atomic-level information. The regular arrangement, uniform composition, and close intermolecular distance of the cluster molecules in their supercrystal lattices are beneficial for property retention and amplification from the molecule itself as a monomeric state. Besides, for these nanoparticles with strong quantum size effects, the intercluster distances in the supercrystal lattices are still located at the nanoscale level, wherein the quantum size effect is highly likely to take effect with additional intermolecular synergistic effects. Accordingly, it is expected that novel performances might occur in the crystalline aggregates of nanoclusters that are completely different from those in the monomolecular state.In this Account, we emphasize our efforts in exploring the performance enhancement of atomically precise metal nanoclusters in their crystalline aggregate states, such as thermal stability, photoluminescence, optical activity, and an optical waveguide. Such performance enhancements further supported the practical uses of metal nanoclusters in structure determination, a polarization switch, an optical waveguide device, and so on. We also demonstrated that the differences in physicochemical properties between crystalline aggregates and monomers of metal nanoclusters might be attributed to the change in electronic structures during the crystalline aggregation processes in the superlattice. The "superlattice assembly" is intended to customize the function of cluster-based aggregates for downstream solid-state applications.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
28
|
Guo Y, Zhang Y, Ma J, Liao R, Wang F. Wide-range tunable circularly polarized luminescence in triphenylamine supramolecular polymers via charge-transfer complexation. Nat Commun 2024; 15:9303. [PMID: 39468039 PMCID: PMC11519326 DOI: 10.1038/s41467-024-53297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Circularly polarized luminescence materials with broad color tunability are highly valuable for applications in 3D display and photonic technologies. Here we show that incorporating intermolecular charge-transfer complexation into chiral supramolecular polymers is an efficient strategy to achieve this objective. Adjusting the charge-transfer strength between triphenylamine donors and naphthalenemonoimide acceptors enables tunable circularly polarized luminescence signals across the visible light spectrum. This includes blue-colored emission for the supramolecular donor polymers, as well as green, yellow, orange and red-colored emission for supramolecular donor-acceptor polymers. The donor-acceptor packing modes are further influenced by the presence or absence of acetylene linkages on the triphenylamine donors, resulting in ground- or excited-state charge transfer with varying luminescent lifetimes. Additionally, white-light circularly polarized luminescence is achieved by encapsulating blue- and orange-emitting species into surfactant-based micelles in a compartmentalized manner. Overall, manipulating charge-transfer complexation in supramolecular polymers provides an effective approach to wide-range tunable circularly polarized luminescence materials.
Collapse
Affiliation(s)
- Yuchen Guo
- Department of Vascular Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Yifei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Jianfei Ma
- Department of Vascular Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Rui Liao
- Department of Vascular Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Feng Wang
- Department of Vascular Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
29
|
Lu M, Li P, Dong X, Jiang Z, Ren S, Yao J, Dong H, Zhao YS. Adaptive Helical Chirality in Supramolecular Microcrystals for Circularly Polarized Lasing. Angew Chem Int Ed Engl 2024; 63:e202408619. [PMID: 38924245 DOI: 10.1002/anie.202408619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Chiral organic molecules offer a promising platform for exploring circularly polarized lasing, which, however, faces a great challenge that the spatial separation of molecular chiral and luminescent centers limits chiroptical activity. Here we develop a helically chiral supramolecular system with completely overlapped chiral and luminescent units for realizing high-performance circularly polarized lasing. Adaptive helical chirality is obtained by incorporating chiral agents into organic microcrystals. Benefiting from the efficient coupling of stimulated emission with the adaptive helical chirality, the supramolecular microcrystals enable high-performance circularly polarized lasing emission with dissymmetry factors up to ~0.7. This work opens up the way to rational design of chiral organic materials for circularly polarized lasing.
Collapse
Affiliation(s)
- Miaosen Lu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghao Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengjun Jiang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhe Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Li S, Wang J, Tian M, Meng X, Wang J, Guo J. A Halogen-Bonded Fluorescent Molecular Photoswitch: Transition from 3D Cubic Lattice to 1D Helical Superstructure for Polarization Inversion of Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202405615. [PMID: 38856204 DOI: 10.1002/anie.202405615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
The fabrication of materials that can switch between circularly polarized luminescence (CPL) signals is both essential and challenging. Here, two new halogen-bonded fluorescent molecular photoswitches, namely, HB-switch 1 and HB-switch 2, containing α-cyano-substituted diarylethene compounds with different end groups were developed. Upon exposure to specific UV or visible light wavelengths, they exhibited controllable and reversible Z/E photoisomerization. When these switches were integrated into blue-phase liquid crystals (BPLCs), the temperature range of BP significantly expanded. Notably, the BP system incorporating HB-switch 1 exclusively achieved reversible polarization inversion of CPL signals under irradiation with specific UV/Visible light and during cooling/heating. The photo/thermal dual-response behavior of the CPL signals can be attributed to the phase transition from a high-symmetry 3D BP Icubic lattice to a low-symmetry 1D helical superstructure induced by the Z/E photoisomerization of HB-switch 1 and temperature changes. This study underscores the significance of employing halogen-bond assembly strategies to design materials with switchable CPL signals, opening new possibilities for CPL-active systems.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingjing Wang
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Tian
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianyu Meng
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
31
|
Wang W, Gong J, Zhao J, Zhang H, Wen W, Zhao Z, Li YJ, Wang J, Huang CZ, Gao PF. Integration of Wallach's Rule into Intermolecular Charge Transfer: A Visual Strategy for Chiral Purification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403249. [PMID: 39013078 PMCID: PMC11425254 DOI: 10.1002/advs.202403249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Indexed: 07/18/2024]
Abstract
Exploring the molecular packing and interaction between chiral molecules, no matter single enantiomer or racemates, is important for recognition and resolution of chiral drugs. However, sensitive and non-destructive analysis methods are lacking. Herein, an intermolecular-charge transfer (ICT) based spectroscopy is reported to reveal the differences in interaction between the achiral acceptor 1,2,4,5-tetracyanobenzene (TCNB) and the chiral donors, including S, R, and racemic naproxen (S/R/rac-NAP). In this process, S-NAP+TCNB and R-NAP+TCNB display a narrower band gap attributed to the newly formed ICT state. In contrast, the mixed rac-NAP and TCNB exhibit almost no significant change due to the strong affinity between the stereoisomers according to the Wallach's rule. Thus, S/R-NAP can be easily distinguished from rac-NAP based on significantly different optical behavior. The single crystal analysis, infrared spectroscopy, fluorescence spectroscopy, and theoretical calculation of naproxen confirm the importance of carboxyl for this differentiation in molecular packing and interaction. In addition, the esterification derivatization of naproxen achieves the manipulation of the intermolecular interaction model of racemates from the absolute Wallach's rule to a coexisting form of Wallach's rule and ICT. Further, visualized chiral purification of naproxen by the simple cocrystallization method is achieved through the collaboration of ICT and Wallach's rule.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Jianye Gong
- College of Chemistry and Chemical EngineeringInner Mongolia Key Laboratory of Fine Organic SynthesisInner Mongolia UniversityHohhot010021China
| | - Jiaqiang Zhao
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Hao Zhang
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Wei Wen
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
| | - Yan Jie Li
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Jianguo Wang
- College of Chemistry and Chemical EngineeringInner Mongolia Key Laboratory of Fine Organic SynthesisInner Mongolia UniversityHohhot010021China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Peng Fei Gao
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| |
Collapse
|
32
|
Ji S, Zeng M, Zhan X, Liu H, Zhou Y, Wang K, Yan Y, Yao J, Zhao YS. Exceptionally High- glum Circularly Polarized Lasers Empowered by Strong 2D-Chiroptical Response in a Host-Guest Supramolecular Microcrystal. J Am Chem Soc 2024; 146:22583-22589. [PMID: 39102645 DOI: 10.1021/jacs.4c06903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Circularly polarized (CP) lasers hold tremendous potential for advancing spin information communication and display technologies. Organic materials are emerging candidates for high-performance CP lasers because of their abundant chiral structures and excellent gain characteristics. However, their dissymmetry factor (glum) in CP emission is typically low due to the weak chiral light matter interactions. Here, we presented an effective approach to significantly amplifying glum by leveraging the intrinsic 2D-chiroptical response of an anisotropic organic supramolecular crystal. The organic complex microcrystal was designed to exhibit large 2D-chiroptical activities through strong coupling interactions between their remarkable linear birefringence (LB) and high degree of fluorescence linear polarization. Such 2D-chiroptical response can be further enhanced by the stimulated emission resulted from an increased degree of linear polarization, yielding a nearly pure CP laser with an exceptionally high glum of up to 1.78. Moreover, exploiting the extreme susceptibility of LB to temperature, we demonstrate a prototype of temperature-controlled chiroptical switches. These findings offer valuable insights for harnessing organic crystals to facilitate the development of high-performance CP lasers and other chiroptical devices.
Collapse
Affiliation(s)
- Shiyang Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zeng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiuqin Zhan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haidi Liu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhou
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Lu Y, Zhang R, Hong Z, Liang P, Liao R, Wang F. Light-triggered transformation of stilbene supramolecular polymers: thermodynamic versus kinetic control. Chem Commun (Camb) 2024; 60:8585-8588. [PMID: 39045673 DOI: 10.1039/d4cc01977f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Light irradiation of stilbene supramolecular polymers produces [2+2] cycloadducts in the kinetically trapped state, which convert to the thermodynamically favorable state upon thermal annealing due to the shift of hydrogen bonds from intra- to inter-complexation modes.
Collapse
Affiliation(s)
- Yi Lu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Ruilong Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhilong Hong
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Pingping Liang
- School of Life Sciences, Anhui Medical University, Hefei 230032, P. R. China.
| | - Rui Liao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Feng Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
34
|
Sukumaran DP, Shoyama K, Dubey RK, Würthner F. Cooperative Binding and Chirogenesis in an Expanded Perylene Bisimide Cyclophane. J Am Chem Soc 2024; 146:22077-22084. [PMID: 39045838 DOI: 10.1021/jacs.4c08073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The encapsulation of more than one guest molecule into a synthetic cavity is a highly desirable yet a highly challenging task to achieve for neutral supramolecular hosts in organic media. Herein, we report a neutral perylene bisimide cyclophane, which has a tailored chiral cavity with an interchromophoric distance of 11.2 Å, capable of binding two aromatic guests in a π-stacked fashion. Detailed host-guest binding studies with a series of aromatic guests revealed that the encapsulation of the second guest in this cyclophane is notably more favored than the first one. Accordingly, for the encapsulation of the coronene dimer, a cooperativity factor (α) as high as 485 was observed, which is remarkably high for neutral host-guest systems. Furthermore, a successful chirality transfer, from the chiral host to encapsulated coronenes, resulted in a chiral charge-transfer (CT) complex and the rare observation of circularly polarized emission originating from the CT state for a noncovalent donor-acceptor assembly in solution. The involvement of the CT state also afforded an enhancement in the luminescence dissymmetry factor (glum) value due to its relatively large magnetic transition dipole moment. The 1:2 binding pattern and chirality-transfer were unambiguously verified by single-crystal X-ray diffraction analysis of the host-guest superstructures.
Collapse
Affiliation(s)
- Divya P Sukumaran
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany
| | - Rajeev K Dubey
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany
| |
Collapse
|
35
|
Shen P, Jiao S, Zhuang Z, Dong X, Song S, Li J, Tang BZ, Zhao Z. Switchable Dual Circularly Polarized Luminescence in Through-Space Conjugated Chiral Foldamers. Angew Chem Int Ed Engl 2024; 63:e202407605. [PMID: 38698703 DOI: 10.1002/anie.202407605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Organic materials with switchable dual circularly polarized luminescence (CPL) are highly desired because they can not only directly radiate tunable circularly polarized light themselves but also induce CPL for guests by providing a chiral environment in self-assembled structures or serving as the hosts for energy transfer systems. However, most organic molecules only exhibit single CPL and it remains challenging to develop organic molecules with dual CPL. Herein, novel through-space conjugated chiral foldamers are constructed by attaching two biphenyl arms to the 9,10-positions of phenanthrene, and switchable dual CPL with opposite signs at different emission wavelengths are successfully realized in the foldamers containing high-polarizability substitutes (cyano, methylthiol and methylsulfonyl). The combined experimental and computational results demonstrate that the intramolecular through-space conjugation has significant contributions to stabilizing the folded conformations. Upon photoexcitation in high-polar solvents, strong interactions between the biphenyl arms substituted with cyano, methylthio or methylsulfonyl and the polar environment induce conformation transformation for the foldamers, resulting in two transformable secondary structures of opposite chirality, accounting for the dual CPL with opposite signs. These findings highlight the important influence of the secondary structures on the chiroptical property of the foldamers and pave a new avenue towards efficient and tunable dual CPL materials.
Collapse
Affiliation(s)
- Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, 637371, Singapore
| | - Shaoshao Jiao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, 637371, Singapore
| | - Xiaobin Dong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Shaoxin Song
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinshi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
36
|
Moreno-Naranjo JM, Furlan F, Wang J, Ryan STJ, Matulaitis T, Xu Z, Zhang Q, Minion L, Di Girolamo M, Jávorfi T, Siligardi G, Wade J, Gasparini N, Zysman-Colman E, Fuchter MJ. Enhancing Circularly Polarized Electroluminescence through Energy Transfer within a Chiral Polymer Host. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402194. [PMID: 38865650 DOI: 10.1002/adma.202402194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Organic light-emitting diodes (OLEDs) that are able to emit high levels of circularly polarized (CP) light hold significant promise in numerous future technologies. Such devices require chiral emissive materials to enable CP electroluminescence. However, the vast majority of current OLED emitter classes, including the state-of-the-art triplet-harvesting thermally activated delayed fluorescence (TADF) materials, produce very low levels of CP electroluminescence. Here a host-guest strategy that allows for energy transfer between a chiral polymer host and a representative chiral TADF emitter is showcased. Such a mechanism results in a large amplification of the circular polarization of the emitter. As such, this study presents a promising avenue to further boost the performance of circularly polarized organic light-emitting diode devices, enabling their further development and eventual commercialization.
Collapse
Affiliation(s)
- Juan Manuel Moreno-Naranjo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Francesco Furlan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Seán Timothy James Ryan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Zhiyu Xu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Qianyi Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Louis Minion
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Marta Di Girolamo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Tamás Jávorfi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Giuliano Siligardi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jessica Wade
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Nicola Gasparini
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Matthew John Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
37
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
38
|
Ma Z, Guo Z, Gao Y, Wang Y, Du M, Han Y, Xue Z, Yang W, Ma X. Boosting Excited-State Energy Transfer by Anchoring Dipole Orientation in Binary Thermally Activated Delayed Fluorescence/J-Aggregate Assemblies. Chemistry 2024; 30:e202400046. [PMID: 38619364 DOI: 10.1002/chem.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Förster resonance energy transfer (FRET) has been widely applied in fluorescence imaging, sensing and so on, while developing useful strategy of boosting FRET efficiency becomes a key issue that limits the application. Except optimizing spectral properties, promoting orientation factor (κ2) has been well discussed but rarely utilized for boosting FRET. Herein, we constructed binary nano-assembling of two thermally activated delayed fluorescence (TADF) emitters (2CzPN and DMAC-DPS) with J-type aggregate of cyanine dye (C8S4) as doping films by taking advantage of their electrostatic interactions. Time-resolved spectroscopic measurements indicated that 2CzPN/Cy-J films exhibit an order of magnitude higher kFRET than DMAC-DPS/Cy-J films. Further quantitative analysing on kFRET and kDET indicated higher orientation factor (κ2) in 2CzPN/Cy-J films play a key role for achieving fast kFRET, which was subsequently confirmed by anisotropic measurements. Corresponding DFT/TDDFT calculation revealed strong "two-point" electrostatic anchoring in 2CzPN/Cy-J films that is responsible for highly orientated transitions. We provide a new strategy for boosting FRET in nano-assemblies, which might be inspired for designing FRET-based devices of sensing, imaging and information encryption.
Collapse
Affiliation(s)
- Zhuoming Ma
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yixuan Gao
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Min Du
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Zheng Xue
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| |
Collapse
|
39
|
Fu HR, Ren DD, Zhang K, Wang S, Yang XJ, Ding QR, Wu YP. Hierarchical chiral MOFs with the induced chirality of AIE ligands exhibiting non-reciprocal CPL. Chem Commun (Camb) 2024; 60:6182-6185. [PMID: 38804974 DOI: 10.1039/d4cc00925h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Two pairs of chiral MOFs with hierarchical chiral structures were constructed through assembly of achiral AIE-type multidentate linkers and chiral camphoric acid. Non-reciprocal circularly polarized luminescence (CPL) can be observed on the macroscopic due to the coexistence of optical anisotropic and chiroptical nature. This study provides a new perspective to recognize and construct chiral crystalline materials.
Collapse
Affiliation(s)
- Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- State College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- State College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Shuang Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xu-Jing Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Qing-Rong Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| | - Ya-Pan Wu
- State College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
40
|
Tang B, Wei Q, Wang S, Liu H, Mou N, Liu Q, Wu Y, Portniagin AS, Kershaw SV, Gao X, Li M, Rogach AL. Ultraviolet Circularly Polarized Luminescence in Chiral Perovskite Nanoplatelet-Molecular Hybrids: Direct Binding Versus Efficient Triplet Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311639. [PMID: 38204283 DOI: 10.1002/smll.202311639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 01/12/2024]
Abstract
The development of ultraviolet circularly polarized light (UVCPL) sources has the potential to benefit plenty of practical applications but remains a challenge due to limitations in available material systems and a limited understanding of the excited state chirality transfer. Herein, by constructing hybrid structures of the chiral perovskite CsPbBr3 nanoplatelets and organic molecules, excited state chirality transfer is achieved, either via direct binding or triplet energy transfer, leading to efficient UVCPL emission. The underlying photophysical mechanisms of these two scenarios are clarified by comprehensive optical studies. Intriguingly, UVCPL realized via the triple energy transfer, followed by the triplet-triplet annihilation upconversion processes, demonstrates a 50-fold enhanced dissymmetry factor glum. Furthermore, stereoselective photopolymerization of diacetylene monomer is demonstrated by using such efficient UVCPL. This study provides both novel insights and a practical approach for realizing UVCPL, which can also be extended to other material systems and spectral regions, such as visible and near-infrared.
Collapse
Affiliation(s)
- Bing Tang
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Shixun Wang
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Haochen Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Nanli Mou
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Qi Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Ye Wu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Arsenii S Portniagin
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
41
|
Chu B, Song F, Wang P, Cheng Y, Geng Z. Amplified Circularly Polarized Luminescence Behavior in Chiral Co-assembled Liquid Crystal Polymer Films via the Strategic Manipulation of Chiral Inducers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26604-26612. [PMID: 38723622 DOI: 10.1021/acsami.4c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
One of the most important factors for the future application of circularly polarized luminescence (CPL) materials is their high dissymmetry factors (gem), and more and more studies are working tirelessly to focus on increasing the gem value. Herein, we chose an achiral liquid crystal polymer (LC-P) and two chiral binaphthyl-based inducers (R/S-3 and R/S-6) with different substitution positions (3,3' positions for R/S-3 and 6,6' positions for R/S-6) to construct chiral co-assemblies and explored their induced amplification CPL behaviors. Interestingly, after the thermal annealing treatment, this kind of chiral co-assembly (R/S-3)0.05-(LC-P)0.95 can emit a superior CPL signal (|gem| = 0.31 and λem = 424 nm), which achieves about 13-fold signal amplification in the spin-coated film, compared to (R/S-6)0.1-(LC-P)0.9 (|gem| = 0.023 and λem = 424 nm). This is because (R/S-3)0.05-(LC-P)0.95 could further co-assemble to form a more ordered arrangement LC state and generate regular helix nanofibers than that of (R/S-6)0.1-(LC-P)0.9. This work provides an efficient method for synthesizing high-quality CPL-active materials through the strategic manipulation of the structure of chiral binaphthyl-based inducers in chiral co-assembled LCP systems.
Collapse
Affiliation(s)
- Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Feiyang Song
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Zhongxing Geng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
42
|
Wang Y, Xu T, Jin S, Wang JY, Yuan Q, Liu H, Tang Y, Zhang S, Yan W, Jiao Y, Li G. Design and Asymmetric Control of Orientational Chirality by Using the Combination of C(sp 2)-C(sp) Levers and Achiral N-Protecting Group. Chemistry 2024; 30:e202400005. [PMID: 38497560 DOI: 10.1002/chem.202400005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
New chiral targets of orientational chirality have been designed and asymmetrically synthesized by taking advantage of N-sulfinyl imine-directed nucleophilic addition/oxidation, Suzuki-Miyaura, and Sonogashira cross-coupling reactions. Orientation of single isomers has been selectively controlled by using aryl/alkynyl levers [C(sp2)-C(sp) axis] and tBuSO2- protecting group on nitrogen as proven by X-ray diffraction analysis. The key structural characteristic of resulting orientational products is shown by remote through-space blocking manner. Seventeen examples of multi-step synthesis were obtained with modest to good chemical yields and complete orientational selectivity.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Hao Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wenxin Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| |
Collapse
|
43
|
Xu T, Wang JY, Wang Y, Jin S, Tang Y, Zhang S, Yuan Q, Liu H, Yan W, Jiao Y, Yang XL, Li G. C(sp)-C(sp) Lever-Based Targets of Orientational Chirality: Design and Asymmetric Synthesis. Molecules 2024; 29:2274. [PMID: 38792134 PMCID: PMC11123770 DOI: 10.3390/molecules29102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, the design and asymmetric synthesis of a series of chiral targets of orientational chirality were conducted by taking advantage of N-sulfinylimine-assisted nucleophilic addition and modified Sonogashira catalytic coupling systems. Orientational isomers were controlled completely using alkynyl/alkynyl levers [C(sp)-C(sp) axis] with absolute configuration assignment determined by X-ray structural analysis. The key structural element of the resulting orientational chirality is uniquely characterized by remote through-space blocking. Forty examples of multi-step synthesis were performed, with modest to good yields and excellent orientational selectivity. Several chiral orientational amino targets are attached with scaffolds of natural and medicinal products, showing potential pharmaceutical and medical applications in the future.
Collapse
Affiliation(s)
- Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, School of Pharmacy, Changzhou University, Changzhou 213164, China;
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Hao Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Wenxin Yan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (W.Y.); (Y.J.)
| | - Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (W.Y.); (Y.J.)
| | - Xiao-Liang Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| |
Collapse
|
44
|
Zhang G, Bao Y, Ma H, Wang N, Cheng X, He Z, Wang X, Miao T, Zhang W. Precise Modulation of Circularly Polarized Luminescence via Polymer Chiral Co-assembly and Contactless Dynamic Chiral Communication. Angew Chem Int Ed Engl 2024; 63:e202401077. [PMID: 38456382 DOI: 10.1002/anie.202401077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Circularly polarized luminescence (CPL) plays a pivotal role in cutting-edge display and information technologies. Currently achieving precise color control and dynamic signal regulation in CPL still remains challenging due to the elusory relationship between fluorescence and chirality. Inspired by the natural mechanisms governing color formation and chiral interaction, we proposed an addition-subtraction principle theory to address this issue. Three fluorene-based polymers synthesized by Suzuki polycondensation with different electron-deficient monomers exhibit similar structures and UV/Vis absorption, but distinct fluorescence emissions due to intramolecular charge transfer. Based on this, precise-color CPL-active films are obtained through quantitative supramolecular co-assembly directed by addition principle. Particularly, an ideal white-emitting CPL film (CIE coordinates: (0.33, 0.33)) is facilely fabricated with a high quantum yield of 80.8 % and a dissymmetry factor (glum) of 1.4×10-2. Structural analysis reveals that the ordered stacking orientation favors higher glum. Furthermore, to address the dynamically regulated challenge, the comparable subtraction principle is proposed, involving a contactless chiral communication between excited and ground states. The representative system consisting of as-prepared fluorene-based polymers and chirality-selective absorption azobenzene (Azo)-containing polymers is constructed, achieving CPL weakening, reversal, and enhancement. Finally, a switchable quick response code is realized based on trans-cis isomerization of Azo moiety.
Collapse
Affiliation(s)
- Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yinglong Bao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tengfei Miao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Department School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
45
|
Chen X, Zhu R, Zhang B, Zhang X, Cheng A, Liu H, Gao R, Zhang X, Chen B, Ye S, Jiang J, Zhang G. Rapid room-temperature phosphorescence chiral recognition of natural amino acids. Nat Commun 2024; 15:3314. [PMID: 38632229 PMCID: PMC11024135 DOI: 10.1038/s41467-024-47648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Chiral recognition of amino acids is very important in both chemical and life sciences. Although chiral recognition with luminescence has many advantages such as being inexpensive, it is usually slow and lacks generality as the recognition module relies on structural complementarity. Here, we show that one single molecular-solid sensor, L-phenylalanine derived benzamide, can manifest the structural difference between the natural, left-handed amino acid and its right-handed counterpart via the difference of room-temperature phosphorescence (RTP) irrespective of the specific chemical structure. To realize rapid and reliable sensing, the doped samples are obtained as nanocrystals from evaporation of the tetrahydrofuran solutions, which allows for efficient triplet-triplet energy transfer to the chiral analytes generated in situ from chiral amino acids. The results show that L-analytes induce strong RTP, whereas the unnatural D-analytes produce barely any afterglow. The method expands the scope of luminescence chiral sensing by lessening the requirement for specific molecular structures.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Baicheng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Xiaolong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Aoyuan Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Hongping Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Ruiying Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Biao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China.
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230094, China.
| |
Collapse
|
46
|
Liu Y, Duan B, Zhou L, Wu Y, Wang F, Ding C, Hu J. Large enhancement of red upconversion luminescence in beta Ba 2Sc 0.67Yb 0.3Er 0.03AlO 5 phosphor via Mn 2+ ions doping for thermometry. Sci Rep 2024; 14:8893. [PMID: 38632459 PMCID: PMC11024212 DOI: 10.1038/s41598-024-59732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
Here, this study reports single-band red upconversion emission in β-Ba2ScAlO5: Yb3+/Er3+ phosphor by doping Mn2+. The optimum concentration of Mn2+ ions in β-Ba2ScAlO5: Yb3+/Er3+ phosphor was 0.20. The intensity of red and green emissions is increased by 27.4 and 19.3 times, respectively. Compared with the samples without Mn2+ ions, the red-green integral strength ratio of β-Ba2ScAlO5: Yb3+/Er3+/Mn2+ sample was significantly increased by 28.4 times, reaching 110.9. The UCL mechanism was explored by analyzing the down-conversion luminescence spectra, absorption spectra, UCL spectra, and upconversion fluorescence lifetime decay curves of Yb3+/Er3+/Mn2+ co-doped β-Ba2ScAlO5. The enhancement of upconversion red light is achieved through energy transfer between defect bands and Er3+ ions, as well as energy transfer between Mn2+ ions and Er3+ ions. In addition, the Mn2+ doped β-Ba2ScAlO5: Yb3+/Er3+ red UCL phosphors have great potential for ambient temperature sensing in the 298-523 K temperature range. The maximum sensitivity of β-Ba2ScAlO5: Yb3+/Er3+/Mn2+ phosphor as a temperature sensor at 523 K is 0.0247 K-1.
Collapse
Affiliation(s)
- Yongtao Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Bin Duan
- School of Science, Xihua University, Chengdu, 610039, China
| | - Lin Zhou
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yuxiang Wu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Fengyi Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Changchun Ding
- School of Science, Xihua University, Chengdu, 610039, China
| | - Junshan Hu
- School of Science, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
47
|
Wang Y, Zhong H, Zhao B, Deng J. High Internal Phase Emulsion for Constructing Chiral Helical Polymer-Based Circularly Polarized Luminescent Porous Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17918-17926. [PMID: 38535995 DOI: 10.1021/acsami.4c01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Polymerized high internal phase emulsions (polyHIPEs) with circularly polarized luminescence (CPL), as an interesting class of porous materials, are of great significance for the development of CPL porous materials but have not been reported so far. Herein, we report the construction of polyHIPE-based CPL porous materials, taking advantage of an adsorption strategy. The pristine polyHIPEs constructed by chiral helical polymers, which acted as a chiral microenvironment, were fabricated by coordination polymerization of chiral acetylene monomers (R/S-SA) using HIPEs as templates. Achiral fluorescent small molecules were dispersed in the pores of the 3D porous organic chiral polymer matrix provided by polyHIPEs through the adsorption strategy, and CPL-active porous materials with blue, cyan, and green emissions were constructed using a fluorescence-selective absorption mechanism that does not rely on chirality transfer at the molecular level. The maximum luminescence dissymmetry factor (glum) value was -2.6 × 10-2. This work establishes a new and simple way for developing CPL porous materials.
Collapse
Affiliation(s)
- Yanan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
48
|
Li H, Luo J, Liu C, Yu W, Cheng Y. Strong Circularly Polarized Luminescence Promoted by AIE-active Chiral Co-assemblies in Liquid Crystal Polymer Films. Chemistry 2024; 30:e202303852. [PMID: 38299784 DOI: 10.1002/chem.202303852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Recently, extensive works have focused on increasing the dissymmetry factors (glum) of various circularly polarized luminescence (CPL) materials, which is one of the most important factors for future applications of CPL. Herein, we designed a chiral co-assembled liquid crystal polymer (LCP) PTZ@R/S-PB2, which was prepared by chiral binary co-polymer (R/S-PB2) doped with achiral phenothiazine derivation dye (PTZ). For comparison, ternary co-polymerized LCP (R/S-PT) was synthesized by co-polymerizing with mesogenic monomer, chiral monomer and emissive monomer. Both PTZ@R/S-PB2 and R/S-PT showed aggregation-induced emission (AIE) properties. Interestingly, the CPL signals of both PTZ@R/S-PB2 and R/S-PT were reversed and amplified after thermal annealing treatment. The |glum| values of the co-assembled PTZ@R/S-PB2 were up to 0.13 at a 32 nm thickness, which was 5.4 times that of R/S-PT (|glum|=0.024). This is due to PTZ@R/S-PB2 could form more orderly chiral co-assembly structures. Noticeably, increasing the LCP film thickness could further improve the glum value, and the maximum glum of PTZ@R/S-PB2 could be enhanced to +0.91/-0.82 at a 220 nm thickness.
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaxin Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chao Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenting Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
49
|
Pan H, Hou B, Jiang Y, Liu M, Ren XK, Chen Z. Control of Kinetic Pathways toward Supramolecular Chiral Polymorphs for Tunable Circularly Polarized Luminescence. Chemistry 2024:e202400899. [PMID: 38576216 DOI: 10.1002/chem.202400899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
An amphiphilic aza-BODIPY dye (S)-1 bearing two chiral hydrophilic side chains with S-stereogenic centers was synthesized. This dye exhibited kinetic-controlled self-assembly pathways and supramolecular chiral polymorphism properties in MeOH/H2O (9/1, v/v) mixed solvent. The (S)-1 monomers first aggregated into a kinetic controlled, off-pathway species Agg. A, which was spontaneously transformed into an on-pathway metastable aggregate (Agg. B) and subsequently into the thermodynamic Agg. C. The three aggregate polymorphs of dye (S)-1 displayed distinct optical properties and nanomorphologies. In particular, chiral J-aggregation characteristics were observed for both Agg. B and Agg. C, such as Davydov-split absorption bands (Agg. B), extremely sharp and intense J-band with large bathochromic shift (Agg. C), non-diminished fluorescence upon aggregation, as well as strong bisignated Cotton effects. Moreover, the AFM and TEM studies revealed that Agg. A had the morphology of nanoparticle while fibril or rod-like helical nanostructures with left-handedness were observed respectively for Agg. B and Agg. C. By controlling the kinetic transformation process from Agg. B to Agg. C, thin films consisting of Agg. B and Agg. C with different ratios were prepared, which displayed tunable CPL with emission maxima at 788-805 nm and g-factors between -4.2×10-2 and -5.1×10-2.
Collapse
Affiliation(s)
- Hongfei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Baokai Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuanyuan Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
50
|
Li YL, Wang HL, Zhu ZH, Wang YF, Liang FP, Zou HH. Aggregation induced emission dynamic chiral europium(III) complexes with excellent circularly polarized luminescence and smart sensors. Nat Commun 2024; 15:2896. [PMID: 38575592 PMCID: PMC10994944 DOI: 10.1038/s41467-024-47246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
The synthesis of dynamic chiral lanthanide complex emitters has always been difficult. Herein, we report three pairs of dynamic chiral EuIII complex emitters (R/S-Eu-R-1, R = Et/Me; R/S-Eu-Et-2) with aggregation-induced emission. In the molecular state, these EuIII complexes have almost no obvious emission, while in the aggregate state, they greatly enhance the EuIII emission through restriction of intramolecular rotation and restriction of intramolecular vibration. The asymmetry factor and the circularly polarized luminescence brightness are as high as 0.64 (5D0 → 7F1) and 2429 M-1cm-1 of R-Eu-Et-1, achieving a rare double improvement. R-Eu-Et-1/2 exhibit excellent sensing properties for low concentrations of CuII ions, and their detection limits are as low as 2.55 and 4.44 nM, respectively. Dynamic EuIII complexes are constructed by using chiral ligands with rotor structures or vibration units, an approach that opens a door for the construction of dynamic chiral luminescent materials.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Yu-Feng Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| |
Collapse
|