1
|
Jiang J, Wan H, Zhang J, Shi S, Wang Y, Dong H, Chen D, Liao K, Xu Q, Lu J. Engineered Polymeric Microspheres with Synergistic Hydrogen-Bonding Nanotraps and Multisite Adsorption for Ultrafast Herbicide Decontamination. Angew Chem Int Ed Engl 2025; 64:e202504349. [PMID: 40045889 DOI: 10.1002/anie.202504349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/12/2025]
Abstract
The ultrafast removal of trace herbicides like paraquat (PQ) and diquat (DQ) from water is urgent yet challenging due to their highwater stability and strong-binding properties. Here, efficient PQ and DQ removal based on hydrogen-bonding nanotraps dominant multisite adsorption were developed. Two crosslinked polymeric microspheres, βCD-PF and γCD-PF, were synthesized from cyclodextrins (CDs) and hexafluorocyclotriphosphazene (HFP). The γCD-PF microsphere with sufficient hydrogen-bonding nanotraps on the pore surface prompts adsorption kinetics constants of PQ and DQ up to 127.09 and 192.64 g mg-1 min-1, achieving 99% removal efficiency for PQ and DQ within 5 s. γCD-PF exhibits exceptional selectivity for PQ and DQ over larger competing dyes. Importantly, trace PQ (1 ppm) can be effectively treated with γCD-PF to achieve a concentration far below the US Environmental Protection Agency (EPA) standard (0.003 ppm) within 30 s. The ultrafast adsorption is driven by a multisite mechanism: electrostatic and π-π interactions from HFP promote adsorbate accumulation on the CD surface, while the high-density hydrogen-bonding nanotraps in γCD-PF enhance hydrogen bond strength, enabling rapid capture. This work provides a valuable strategy for designing ultrafast adsorbents for effective herbicide removal from water.
Collapse
Affiliation(s)
- Jicai Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Jinchang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Shuai Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Yaru Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Huilong Dong
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P.R. China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University, Abu Dhabi, 127788, UAE
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
2
|
Meng Y, Liu M, Liao Y, Luo J, Fu X, Sun P. β-cyclodextrin polymers as a new sorbent for solid-phase extraction of xenobiotics in Urine. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137052. [PMID: 39752833 DOI: 10.1016/j.jhazmat.2024.137052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 03/12/2025]
Abstract
This study systematically assessed the performance of a newly developed solid-phase extraction (SPE) material, cellulose-supported aminated β-cyclodextrin polymer (amine-β-CDP@Cellulose), in determining 44 xenobiotics, encompassing endocrine-disrupting chemicals (EDCs), pharmaceuticals, and food additives in urine samples. The primary objective of the research was to synthesize a new sorbent, optimize the extraction protocol, and elucidate the underlying adsorption and desorption mechanisms. Following optimization, it was observed that amine-β-CDP@Cellulose achieved recoveries ranging from 80 % to 120 % for 28 of the 44 targeted xenobiotics, with only three compounds showing recoveries below 50 %. The superior extraction performance of this novel material can be attributed to the synergistic effects of its structural components: charged functional groups introduced via the cross-linking agent, the hydrophobic cyclodextrin cavity that facilitates inclusion complexation, and abundant hydroxyl groups that enhance adsorption. Additionally, the study included a comparative analysis between amine-β-CDP@Cellulose and commercially available HLB resins. This comparative analysis revealed that the amine-β-CDP@Cellulose method effectively mitigated matrix interferences while maintaining comparable extraction efficiency to the HLB-based method. Collectively, these findings suggest that amine-β-CDP@Cellulose could serve as a sustainable and cost-effective material for extracting xenobiotics from complex matrices.
Collapse
Affiliation(s)
- Yuan Meng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Minqi Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yicheng Liao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Junhuai Luo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoli Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Zhu Y, Gao Y, Liu W, Rebek J, Yu Y. Recent progress using novel tetraphenylethylene-based macrocyclic hosts in water. Chem Commun (Camb) 2025; 61:1275-1281. [PMID: 39688274 DOI: 10.1039/d4cc05970k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Macrocyclic structures are popular in supramolecular chemistry and have enjoyed considerable success as platforms for elaboration to container compounds and new materials. Host/guest studies in organic media have relied heavily on structures derived from crown ethers, calixarenes, cucurbiturils, resorcinarenes and pillararenes over the past decades. More recently, their water-soluble versions have been developed for potential applications in biology. Inspired by nature and the need for large-sized containers, Cao and co-workers have designed and synthesized a series of novel macrocyclic hosts based on the tetraphenylethylene (TPE) platform. These compounds have cationic frameworks with well-defined hydrophobic cavities for recognition of biomolecules (e.g. amino acids, nucleosides, peptides, proteins, coenzyme factors) in water. They offer multiple adaptive responses as sensors through fluorescence, circular dichroism and circularly polarized luminescence. These TPE-based hosts also show promising applications as stimuli-responsive fluorescent materials, in drug delivery and as artificial photofunctional systems. Herein, this review highlights this work as it establishes a new class of biomimetic, water-soluble supramolecular macrocyclic hosts.
Collapse
Affiliation(s)
- Yujie Zhu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
| | - Ya Gao
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
| | - Wanyu Liu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
| | - Julius Rebek
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Li H, Bie W, Zhang S, Zhang L, Sun X, Cai T, Wang Z, Wei M, Kong F, Wang W. Porous β-cyclodextrin polymers for rapid and efficient removal of organic micropollutants from water: The role of sulfonation and porosity on adsorption performance. CHEMOSPHERE 2024; 363:142740. [PMID: 38971442 DOI: 10.1016/j.chemosphere.2024.142740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Removal of organic micropollutants (OMPs) from water, especially hydrophilic and ionized ones, is challenging for water remediation. Herein, porous β-cyclodextrin polymers (PCPs) with tailored functionalization were prepared based on molecular expansion strategy and sulfonation. Partially benzylated β-cyclodextrin was knotted by external crosslinker to form PCP1, and knotting PCP1 by expansion molecule generated PCP2. PCP1 and PCP2 were sulfonated to achieve PCP1-SO3H and PCP2-SO3H. Based on systematical adsorption evaluation toward multiple categories of OMPs, it was found that the introduced strong polar -SO3H group could bring strong hydrogen bonding and electrostatic interactions. PCP2 showed the highest surface (998.97 m2/g) displayed more excellent adsorption performance toward neutral and anionic OMPs, and the adsorption mechanism for this property of PCP2 was dominated by hydrophobic interactions. In addition, the PCP1-SO3H with the lowest surface area (39.75 m2/g) rather than PCP2-SO3H with higher surface (519.28 m2/g) exhibited more superior adsorption towards hydrophilic and cationic OMPs, benefiting by hydrogen bonding and electrostatic interactions as well as appropriate porosity. These results not only confirmed the performance enhancement of PCPs through the integration of novel preparation strategy, but also provided fundamental guidance for PCPs design for water remediation.
Collapse
Affiliation(s)
- Hengye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China.
| | - Wenwen Bie
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Shuzhao Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Lin Zhang
- Comprehensive Testing Center, Yancheng Customs, Yancheng, 224002, PR China
| | - Xiaoyu Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Tianpei Cai
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Zhongxia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Meijie Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Fenying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| |
Collapse
|
5
|
Hafeez S, Khanam A, Cao H, Chaplin BP, Xu W. Novel Conductive and Redox-Active Molecularly Imprinted Polymer for Direct Quantification of Perfluorooctanoic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:871-877. [PMID: 39156924 PMCID: PMC11325644 DOI: 10.1021/acs.estlett.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
This study developed a novel molecularly imprinted polymer (MIP) that is both conductive and redox-active for directly quantifying perfluorooctanoic acid (PFOA) electrochemically. We synthesized the monomer 3,4-ethylenedioxythiophene-2,2,6,6-tetramethylpiperidinyloxy (EDOT-TEMPO) for electropolymerization on a glassy carbon electrode using PFOA as a template, which was abbreviated as PEDOT-TEMPO-MIP. The redox-active MIP eliminated the need for external redox probes. When exposed to PFOA, both anodic and cathodic peaks of MIP showed a decreased current density. This observation can be explained by the formation of a charge-assisted hydrogen bond between the anionic PFOA and MIP's redox-active moieties (TEMPO) that hinder the conversion between the oxidized and reduced forms of TEMPO. The extent of the current density decrease showed excellent linearity with PFOA concentrations, with a method detection limit of 0.28 ng·L-1. PEDOT-TEMPO-MIP also exhibited high selectivity toward PFOA against other per- and polyfluoroalkyl substances (PFAS) at environmentally relevant concentrations. Our results suggest electropolymerization of MIPs was highly reproducible, with a relative standard deviation of 5.1% among three separate MIP electrodes. PEDOT-TEMPO-MIP can also be repeatedly used with good stability and reproducibility for PFOA detection. This study provides an innovative platform for rapid PFAS quantification using redox-active MIPs, laying the groundwork for developing compact PFAS sensors.
Collapse
Affiliation(s)
- Sumbul Hafeez
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Aysha Khanam
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Han Cao
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Brian P. Chaplin
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., 14, Chicago, Illinois 60607, United States
| | - Wenqing Xu
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
6
|
Perera S, Shaurya A, Baptiste M, Zavalij PY, Isaacs L. Acyclic Cucurbit[n]uril Receptors Function as Solid State Sequestrants for Organic Micropollutants. Angew Chem Int Ed Engl 2024; 63:e202407169. [PMID: 38661568 DOI: 10.1002/anie.202407169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
The accumulation of organic micropollutants (OMP) in aquatic systems is a major societal problem that can be addressed by approaches including nanofiltration, flocculation, reverse osmosis and adsorptive methods using insoluble materials (e.g. activated carbon, MOFs, nanocomposites). More recently, polymeric versions of supramolecular hosts (e.g. cyclodextrins, calixarenes, pillararenes) have been investigated as OMP sequestrants. Herein, we report our study of the use of water insoluble dimethylcatechol walled acyclic cucurbit[n]uril (CB[n]) hosts as solid state sequestrants for a panel of five OMPs. A series of hosts (H1-H4) were synthesized by reaction of glycoluril oligomer (monomer-tetramer) with 3,6-dimethylcatechol and fully characterized by spectroscopic means and x-ray crystallography. The solid hosts sequester OMPs from water with removal efficiencies exceeding 90 % in some cases. The removal efficiencies of the new hosts parallel the known molecular recognition properties of analogous water soluble acyclic CB[n]. OMP uptake by solid host occurs rapidly (≈120 seconds). Head-to-head comparison with CB[6] in batch-mode separation and DARCO activated carbon in flow-through separation mode show that tetramer derived host (H4) performs very well under identical conditions. The work establishes insoluble acyclic CB[n]-type receptors as a promising new platform for OMP sequestration.
Collapse
Affiliation(s)
- Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Alok Shaurya
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Michael Baptiste
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| |
Collapse
|
7
|
Lin ZW, Wang J, Dyakiv Y, Helbling DE, Dichtel WR. Structural Features of Styrene-Functionalized Cyclodextrin Polymers That Promote the Adsorption of Perfluoroalkyl Acids in Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28409-28422. [PMID: 38768313 DOI: 10.1021/acsami.4c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cross-linked β-cyclodextrin (β-CD) polymers are promising adsorbents for the removal of per- and polyfluoroalkyl substances (PFAS) from contaminated water sources, including contaminated groundwater, drinking water, and wastewater. We previously reported porous, styrene-functionalized β-cyclodextrin (StyDex) polymers derived from radical polymerization with vinyl comonomers. Because of the versatility of these polymerizations, StyDex polymer compositions are tunable, which facilitates efforts to establish structure-adsorption relationships and to discover improved materials. Here, we evaluate the material properties and PFAS adsorption of 20 StyDex derivatives with varied comonomer structure and loading, regiochemistry of styrene placement on the CD monomer, and CD size. A StyDex polymer containing N,N'-dimethylbutyl ammonium ions exhibited the most effective PFAS adsorption in batch experiments. Furthermore, a StyDex polymer containing β-CD exhibited size-selective host-guest interactions with perfluoroalkyl acids (PFAAs) and neutral contaminants in aqueous electrolyte when compared to similar polymers containing either α-CD or γ-CD. Polymers based on β-CD monomers with an average of seven styrene groups randomly positioned over the 21 available hydroxyl groups performed similarly to those based on a β-CD monomer functionalized regiospecifically at each of the seven 6' positions. The former β-CD monomer is prepared in a single step from unmodified β-CD, so the ability to use it without compromising performance demonstrates promise for developing economically competitive adsorbents. These results offered important insights into structure-adsorption properties of StyDex polymers and will inform the design of improved StyDex formulations.
Collapse
Affiliation(s)
- Zhi-Wei Lin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jieyuan Wang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yaryna Dyakiv
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Lu M, Liu Y, Zheng X, Liu W, Liu Y, Bao J, Feng A, Bao Y, Diao J, Liu H. Amino Group-Driven Adsorption of Sodium p-Perfluorous Nonenoxybenzene Sulfonate in Water by the Modified Graphene Oxide. TOXICS 2024; 12:343. [PMID: 38787122 PMCID: PMC11125578 DOI: 10.3390/toxics12050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS) is one of the key alternatives to perfluoroalkyl substances (PFASs). Its widespread tendency has increased extensive contamination in the aquatic environment. However, the present treatment technology for OBS exhibited insignificant adsorption capacity and long adsorption time. In this study, three proportions (1:5, 3:5, and 10:1) of chitosan-modified amino-driven graphene oxide (CS-GO) were innovated to strengthen the OBS adsorption capacity, compared with graphene oxide (GO) and graphene (GH). Through the characterization of SEM, BET, and FTIR, it was discovered that CS was synthetized on GO surfaces successfully with a low specific surface area. Subsequently, batch single influence factor studies on OBS removal from simulated wastewater were investigated. The optimum removal efficiency of OBS could be achieved up to 95.4% within 2 h when the adsorbent was selected as CS-GO (10:1), the dosage was 2 mg, and the pH was 3. The addition of inorganic ions could promote the adsorption efficiency of OBS. In addition, CS-GO presented the maximum adsorption energy due to additional functional groups of -NH3, and electrostatic interaction was the foremost motive for improving the adsorption efficiency of OBS. Moreover, OBS exhibited the fastest diffusion coefficient in the CS-GO-OBS solution, which is consistent with the fitting results of adsorption kinetics.
Collapse
Affiliation(s)
- Mengyuan Lu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Xinning Zheng
- Shenyang Zhenxing Sewage Treatment Co., Ltd., Shenyang 110143, China;
| | - Wenjuan Liu
- Dalian Xigang District Center for Disease Control and Prevention, Dalian 116021, China;
| | - Yang Liu
- Shenyang Hoper Group Co., Ltd., Shenyang 110112, China;
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Ao Feng
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Yueyao Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Jiangyong Diao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (J.D.); (H.L.)
| | - Hongyang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (J.D.); (H.L.)
| |
Collapse
|
9
|
Abaie E, Kumar M, Kumar N, Sun Y, Guelfo J, Shen Y, Reible D. Application of β-Cyclodextrin Adsorbents in the Removal of Mixed Per- and Polyfluoroalkyl Substances. TOXICS 2024; 12:264. [PMID: 38668487 PMCID: PMC11054934 DOI: 10.3390/toxics12040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
The extensive use of per- and polyfluoroalkyl substances (PFASs) in industrial consumer products has led to groundwater contamination, raising concerns for human health and the environment. These persistent chemicals exist in different forms with varying properties, which makes their removal challenging. In this study, we assessed the effectiveness of three different β-cyclodextrin (β-CD) adsorbents at removing a mixture of PFASs, including anionic, neutral, and zwitterionic compounds, at neutral pH. We calculated linear partition coefficient (Kd) values to quantify the adsorption affinity of each PFAS. β-CD polymers crosslinked with hexamethylene diisocyanate (β-CD-HDI) and epichlorohydrin (β-CD-EPI) displayed some adsorption of PFASs. Benzyl chloride β-CD (β-CD-Cl), an adsorbent that had not been previously reported, was also synthesized and tested for PFAS adsorption. β-CD-Cl exhibited higher PFAS adsorption than β-CD-HDI and β-CD-EPI, with log Kd values ranging from 1.9 L·g-1 to 3.3 L·g-1. β-CD-Cl displayed no affinity for zwitterionic compounds, as opposed to β-CD-HDI and β-CD-EPI, which removed N-dimethyl ammonio propyl perfluorohexane sulfonamide (AmPr-FHxSA). A comparison between Kd values and the log Kow of PFAS confirmed the significant role of hydrophobic interactions in thee adsorption mechanism. This effect was stronger in β-CD-Cl, compared to β-CD-HDI and β-CD-EPI. While no effect of PFAS charge was observed in β-CD-Cl, some influence of charge was observed in β-CD-HDI and β-CD-EPI, with less negative compounds being more adsorbed. The adsorption of PFASs by β-CD-Cl was similar in magnitude to that of other adsorbents proposed in literature. However, it offers the advantage of not containing fluorine, unlike many commonly proposed adsorbents.
Collapse
Affiliation(s)
- Elham Abaie
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Manish Kumar
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Naveen Kumar
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Yilang Sun
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Jennifer Guelfo
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Yuexiao Shen
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Danny Reible
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
- Chemical Engineering Department, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
10
|
Tian J, Ji J, Zhu Y, He Y, Li H, Li Y, Luo D, Xing J, Qie L, Sessler JL, Chi X. Phenylboronic Acid Functionalized Calix[4]pyrrole-Based Solid-State Supramolecular Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308507. [PMID: 37885345 DOI: 10.1002/adma.202308507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Solid-state polymer electrolytes (SPEs) suffer from the low ionic conductivity and poor capability of suppressing lithium (Li) dendrites, which limits their utility in the preparation of all solid-state Li-metal batteries (LMBs). It is reported here a flexible solid supramolecular electrolyte that incorporates a new anion capture agent, namely a phenylboronic acid functionalized calix[4]pyrrole (C4P), into a poly(ethylene oxide) (PEO) matrix. The resulting solid-state supramolecular electrolyte demonstrates high ionic conductivity (1.9 × 10-3 S cm-1 at 60 °C) and a high Li+ transference number (t Li + ${t}_{{\mathrm{Li}}^{\mathrm{ + }}}$ = 0.70). Furthermore, the assembled Li|C4P-PEO-LiTFSI|LiFePO4 cell allows for stable cycling over 1200 cycles at 1 C at 60 °C, as well as good rate performance. The favorable performance of the C4P-PEO-LiTFSI SPE leads to suggest it can prove useful in the creation of high energy density solid-state LMBs.
Collapse
Affiliation(s)
- Jinya Tian
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jie Ji
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yaling Zhu
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanlei He
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongbing Li
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi Li
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dan Luo
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiapeng Xing
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Long Qie
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Xiaodong Chi
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
11
|
Cao XM, Zhang AY, Cui WR, Liu LY, Zhang YX, Lin H, Zhang Y. Azo-Linked Porous Polycalix[ n]arenes for the Efficient Removal of Organic Micropollutants from Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:957-965. [PMID: 38151466 DOI: 10.1021/acsami.3c18069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Developing novel porous adsorbents for efficient wastewater treatment is significant to the environment protection. Herein, three porous polycalix[n]arenes (n = 4, 6, and 8) which had varying cavity sizes of the macrocycle (Azo-CX4P, Azo-CX6P, and Azo-CX8P) were prepared under mild conditions and tested for their potential application in water purification. Azo-CX8P with a larger cavity size of the macrocycle outperformed Azo-CX4P and Azo-CX6P in screening studies involving a range of organic micropollutants. It was proved that Azo-CX8P was especially efficient in the removal of cationic dyes because of its high negative surface charge. In terms of the adsorption of Rhodamine B with Azo-CX8P, the pseudo-second-order rate constant reaches 5.025 g·mg-1·min-1 with the maximum adsorption capacity being 1345 mg·g-1. These values are significantly higher compared with those recorded for most adsorbents. In addition, the easily prepared Azo-CX8P can be reused at least six times without a loss of the adsorption efficiency, demonstrating its potential use in water purification.
Collapse
Affiliation(s)
- Xiao-Mei Cao
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ai-Ying Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Wei-Rong Cui
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Lu-Yao Liu
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yu-Xuan Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Hui Lin
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yong Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
12
|
Lin ZW, Shapiro EF, Barajas-Rodriguez FJ, Gaisin A, Ateia M, Currie J, Helbling DE, Gwinn R, Packman AI, Dichtel WR. Trace Organic Contaminant Removal from Municipal Wastewater by Styrenic β-Cyclodextrin Polymers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19624-19636. [PMID: 37934073 DOI: 10.1021/acs.est.3c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Trace organic contaminants (TrOCs) present major removal challenges for wastewater treatment. TrOCs, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), are associated with chronic toxicity at ng L-1 exposure levels and should be removed from wastewater to enable safe reuse and release of treated effluents. Established adsorbents, such as granular activated carbon (GAC), exhibit variable TrOC removal and fouling by wastewater constituents. These shortcomings motivate the development of selective novel adsorbents that also maintain robust performance in wastewater. Cross-linked β-cyclodextrin (β-CD) polymers are promising adsorbents with demonstrated TrOC removal efficacy. Here, we report a simplified and potentially scalable synthesis of a porous polymer composed of styrene-linked β-CD and cationic ammonium groups. Batch adsorption experiments demonstrate that the polymer is a selective adsorbent exhibiting complete removal for six out of 13 contaminants with less adsorption inhibition than GAC in wastewater. The polymer also exhibits faster adsorption kinetics than GAC and ion exchange (IX) resin, higher adsorption affinity for PFAS than GAC, and is regenerable by solvent wash. Rapid small-scale column tests show that the polymer exhibits later breakthrough times compared to GAC and IX resin. These results demonstrate the potential for β-CD polymers to remediate TrOCs from complex water matrices.
Collapse
Affiliation(s)
- Zhi-Wei Lin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emma F Shapiro
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Arsen Gaisin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | | | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rosa Gwinn
- AECOM, Dallas, Texas 75240, United States
| | - Aaron I Packman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Glöckler D, Harir M, Schmitt-Kopplin P, Elsner M, Bakkour R. Selectivity of β-Cyclodextrin Polymer toward Aquatic Contaminants: Insights from Ultrahigh-Resolution Mass Spectrometry of Dissolved Organic Matter. Anal Chem 2023; 95:15505-15513. [PMID: 37831967 DOI: 10.1021/acs.analchem.3c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Selectivity in solid-phase extraction (SPE) materials has become increasingly important for analyte enrichment in sensitive analytical workflows to alleviate detrimental matrix effects. Molecular-level investigation of matrix constituents, which are preferentially extracted or excluded, can provide the analytical chemist with valuable information to learn about their control on sorbent selectivity. In this work, we employ nontargeted Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to elucidate the molecular chemodiversity of freshwater-derived dissolved organic matter (DOM) extracted by the selective model sorbent β-cyclodextrin polymer (β-CDP) in comparison to conventional, universal SPE sorbents (i.e., Oasis HLB, Supel-Select HLB, and LiChrolut EN). Statistical analysis of MS data corroborated the highly selective nature of β-CDP by revealing the extracted DOM spectra that are most dissimilar to original compositions. We found that its selectivity was characterized by pronounced discrimination against highly oxygenated and unsaturated DOM compounds, which were associated with the classes of lignin-like, tannin-like, and carboxylic-rich alicyclic molecules. In contrast, conventional sorbents excluded less highly oxygenated compounds and showed a more universal extraction behavior for a wide range of DOM compositional space. We lay these findings in a larger context that aids the analyst in obtaining an a priori estimate of sorbent selectivity toward any target analyte of interest serving thereby an optimization of sample preparation. This study highlights the great value of nontargeted ultrahigh-resolution MS for better understanding of targeted analytics and provides new insights into the selective sorption behavior of novel sorbents.
Collapse
Affiliation(s)
- David Glöckler
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Martin Elsner
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| |
Collapse
|
14
|
Xie Z, Hu Y, Lin J, Li G, Zhong Q. Calix[4]arene-based covalent organic frameworks with host-guest recognition for selective adsorption of six per- and polyfluoroalkyl substances in food followed by UHPLC-MS/MS detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132198. [PMID: 37541121 DOI: 10.1016/j.jhazmat.2023.132198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Long-term ingestion or exposure to food contaminated with per- and polyfluoroalkyl substances (PFASs) may cause potential harm to human health. Due to the low contents of PFASs in complex food matrices, it is of great significance to develop adsorbents with excellent properties to enrich PFASs before analysis. Herein, calix[4]arene (CX4) was used as building block to prepare ordered crystalline covalent organic frameworks (COFs). The perfect combination of the host-guest recognition ability of CX4 and the porosity of COFs makes the CX4-COFs selective and high adsorption capacity for linear molecular PFASs (261-1055 mg/g). The adsorption behavior and mechanism were verified by isotherm adsorption experiments and simulation calculations. The CX4-COFs were then used as adsorbents for membrane solid-phase extraction (M-SPE), combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) to determine PFASs in food. The method has low detection limits (0.11-0.28 ng/kg) and good precision (1.3%-9.8%), and has been successfully applied to the simultaneous enrichment and determination of six PFASs in fish, shrimp and shellfish. Satisfactory recoveries (79.9%-118%) were obtained. This study provides a new strategy for preparing CX4-COFs containing macrocyclic molecules with different morphologies and expands the application of COFs as attractive enrichment media for sample pretreatment.
Collapse
Affiliation(s)
- Zenghui Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jiana Lin
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510656, China
| |
Collapse
|
15
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
16
|
Ateia M, Sigmund G, Bentel MJ, Washington JW, Lai A, Merrill NH, Wang Z. Integrated data-driven cross-disciplinary framework to prevent chemical water pollution. ONE EARTH (CAMBRIDGE, MASS.) 2023; 6:10.1016/j.oneear.2023.07.001. [PMID: 38264630 PMCID: PMC10802893 DOI: 10.1016/j.oneear.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Access to a clean and healthy environment is a human right and a prerequisite for maintaining a sustainable ecosystem. Experts across domains along the chemical life cycle have traditionally operated in isolation, leading to limited connectivity between upstream chemical innovation to downstream development of water-treatment technologies. This fragmented and historically reactive approach to managing emerging contaminants has resulted in significant externalized societal costs. Herein, we propose an integrated data-driven framework to foster proactive action across domains to effectively address chemical water pollution. By implementing this integrated framework, it will not only enhance the capabilities of experts in their respective fields but also create opportunities for novel approaches that yield co-benefits across multiple domains. To successfully operationalize the integrated framework, several concerted efforts are warranted, including adopting open and FAIR (findable, accessible, interoperable, and reusable) data practices, developing common knowledge bases/platforms, and staying vigilant against new substance "properties" of concern.
Collapse
Affiliation(s)
- Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH 45220, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Gabriel Sigmund
- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubeck-Platz 2, 1090 Vienna, Austria
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Michael J. Bentel
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - John W. Washington
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Athens, GA 30605, USA
| | - Adelene Lai
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Nathaniel H. Merrill
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Narragansett, RI, USA
| | - Zhanyun Wang
- Empa Swiss – Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| |
Collapse
|
17
|
Li H, Han X, Zhang L, Yu W, Bie W, Wei M, Wang Z, Kong F, Wang W. Sulfonated polyhedral oligomeric silsesquioxane-cyclodextrin hybrid polymers for efficient removal of micropollutants from water. Carbohydr Polym 2023; 312:120832. [PMID: 37059548 DOI: 10.1016/j.carbpol.2023.120832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
Herein, β-cyclodextrin-containing hybrid polymers (P1, P2 and P3) were prepared through crosslinking partially benzylated β-cyclodextrin (PBCD) by octavinylsilsesquioxane (OVS). P1 stood out in screening studies and the residual hydroxyl groups of PBCD was sulfonate-functionalized. The obtained P1-SO3Na showed greatly enhanced adsorption towards cationic MPs and maintained the excellent adsorption performance towards neutral MPs. The rate constants (k2) of cationic MPs upon P1-SO3Na were 9.8-34.8 times larger than those upon P1. The equilibrium uptakes of the neutral and cationic MPs upon P1-SO3Na were above 94.5 %. Meanwhile, P1-SO3Na demonstrated appreciable adsorption capacities, excellent selectivity, effective adsorption of mixed MPs at environmental levels and good reusability. These results confirmed the great potential of P1-SO3Na as effective adsorbent to remove MPs from water.
Collapse
|
18
|
Li H, Han X, Yu W, Zhang L, Bie W, Wei M, Wang Z, Kong F, Wang W. Synthesis of porous dimethoxypillar[5]arene knitted β-cyclodextrin copolymers for efficient adsorption of organic micropollutants. Carbohydr Polym 2023; 310:120719. [PMID: 36925245 DOI: 10.1016/j.carbpol.2023.120719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Herein, through knitting benzylated β-cyclodextrin (BnCD) by dimethoxypillar[5]arene (P[5]), porous copolymers (P[5]-BnCDs) containing two kinds of macrocycles were synthesized with yields not <97 %. The molar ratio of P[5]/BnCD greatly influenced the P[5]-BnCDs' porosity and adsorption performance. When the molar ratio of P[5]/BnCD was 4/1, the P[5]-BnCD (4-1), demonstrated a surface area up to 515.95 m2/g and showed fast adsorption kinetic, high adsorption capacity and good reusability towards the model organic micropollutants (OMPs). The adsorption fitted well with the pseudo-second-order and the Langmuir models, while the thermodynamic studies revealed spontaneous physisorption process. The adsorption mechanism was dominant by host-guest and hydrophobic interactions and the adsorption at environmentally relevant concentrations experiments showed the practicality and superiority in extraction of the OMPs at μg/L level. This study paves a way for the development of versatile porous organic polymers with multiple macrocycles for efficient removal of OMPs from water.
Collapse
Affiliation(s)
- Hengye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China.
| | - Xingwei Han
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Wenjie Yu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Lin Zhang
- Comprehensive Testing Center, Yancheng Customs, Yancheng 224002, PR China
| | - Wenwen Bie
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Meijie Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Zhongxia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Fenying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
19
|
Glöckler D, Wabnitz C, Elsner M, Bakkour R. Avoiding Interferences in Advance: Cyclodextrin Polymers to Enhance Selectivity in Extraction of Organic Micropollutants for Carbon Isotope Analysis. Anal Chem 2023; 95:7839-7848. [PMID: 37167407 DOI: 10.1021/acs.analchem.2c05465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Compound-specific isotope analysis (CSIA) of organic water contaminants can provide important information about their sources and fate in the environment. Analyte enrichment from water remains nonetheless a critical yet inevitable step before measurement. Commercially available solid-phase extraction (SPE) sorbents are inherently nonselective leading to co-extraction of concurrent dissolved organic matter (DOM) and in turn to analytical interferences, especially for low-occurring contaminants. Here, we (i) increased extraction selectivity by synthesizing cyclodextrin polymers (α-, β-, γ-CDP) as SPE sorbents, (ii) assessed their applicability to carbon isotope analysis for a selection of pesticides, and (iii) compared them with commonly used commercial sorbents. Extraction with β-CDP significantly reduced backgrounds in gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and enhanced sensitivity by a factor of 7.5, which was further confirmed by lower carbon-normalized CDOM/Canalyte ratios in corresponding extracts as derived from dissolved organic carbon (DOC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Gibbs free energies of adsorption demonstrated weak competition between DOM and analyte on the three CDPs. No isotopic fractionation (Δδ13C within ± 0.3‰) was observed for the investigated pesticides after using β-CDP as an SPE sorbent covering a range of concentrations (5-500 μg L-1), flow velocities (5-40 cm min-1), and sorbent regeneration (up to six times). The present study highlights the benefit of selecting innovative extraction sorbents to avoid interferences in advance. This strategy in combination with existing cleanup approaches offers new prospects for CSIA at field concentrations of tens to hundreds of nanograms per liter.
Collapse
Affiliation(s)
- David Glöckler
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Christopher Wabnitz
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Martin Elsner
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
20
|
Song Y, Phipps J, Zhu C, Ma S. Porous Materials for Water Purification. Angew Chem Int Ed Engl 2023; 62:e202216724. [PMID: 36538551 DOI: 10.1002/anie.202216724] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Water pollution is a growing threat to humanity due to the pervasiveness of contaminants in water bodies. Significant efforts have been made to separate these hazardous components to purify polluted water through various methods. However, conventional remediation methods suffer from limitations such as low uptake capacity or selectivity, and current water quality standards cannot be met. Recently, advanced porous materials (APMs) have shown promise in improved segregation of contaminants compared to traditional porous materials in uptake capacity and selectivity. These materials feature merits of high surface area and versatile functionality, rendering them ideal platforms for the design of novel adsorbents. This Review summarizes the development and employment of APMs in a variety of water treatments accompanied by assessments of task-specific adsorption performance. Finally, we discuss our perspectives on future opportunities for APMs in water purification.
Collapse
Affiliation(s)
- Yanpei Song
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Joshua Phipps
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Changjia Zhu
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| |
Collapse
|
21
|
Lu RQ, Yuan W, Feng H, Lennon Luo SX, Mason Wu YC, Etkind SI, Kumar M, Swager TM. Porous Polymers Containing Metallocalix[4]arene for the Extraction of Tobacco-Specific Nitrosamines. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10623-10630. [PMID: 37323159 PMCID: PMC10262809 DOI: 10.1021/acs.chemmater.2c02713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We designed porous polymers with a tungsten-calix[4]arene imido complex as the nitrosamine receptor for the efficient extraction of tobacco-specific nitrosamines (TSNAs) from water. The interaction between the metallocalix[4]arene and the TSNA, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) was investigated. We found that the incorporation of the nitrosamine receptor into porous polymers increased their selectivity toward NNK over nicotine. The polymer with an optimal ratio of calixarene-containing and porosity-inducing building blocks showed a high maximum adsorption capacity of up to 203 mg/g toward NNK under sonication, which was among the highest values reported. The adsorbed NNK could be removed from the polymer by soaking it in acetonitrile, enabling the adsorbent to be reused. A similar extraction efficiency to that under sonication could be achieved using the polymer-coated magnetic particles under stirring. We also proved that the material could efficiently extract TSNAs from real tobacco extract. This work not only provides an efficient material for the extraction of TSNAs but also offers a design strategy for efficient adsorbents.
Collapse
Affiliation(s)
- Ru-Qiang Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Weize Yuan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Haosheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shao-Xiong Lennon Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - You-Chi Mason Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel I Etkind
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohanraja Kumar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Li H, Han X, Yu W, Zhang L, Wei M, Wang Z, Kong F, Wang W. Dimethoxypillar[5]arene knitted porous polymers for efficient removal of organic micropollutants from water. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
23
|
Pfeuffer‐Rooschüz J, Heim S, Prescimone A, Tiefenbacher K. Megalo-Cavitands: Synthesis of Acridane[4]arenes and Formation of Large, Deep Cavitands for Selective C70 Uptake. Angew Chem Int Ed Engl 2022; 61:e202209885. [PMID: 35924716 PMCID: PMC9826223 DOI: 10.1002/anie.202209885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 01/11/2023]
Abstract
Deep cavitands, concave molecular containers, represent an important supramolecular host class that has been explored for a variety of applications ranging from sensing, switching, purification and adsorption to catalysis. A major limitation in the field has been the cavitand volume that is restricted by the size of the structural platform utilized (diameter approx. 7 Å). We here report the synthesis of a novel, unprecedentedly large structural platform, named acridane[4]arene (diameter approx. 14 Å), suitable for the construction of cavitands with volumes of up to 814 Å3 . These megalo-cavitands serve as size-selective hosts for fullerenes with mM to sub-μM binding affinity for C60 and C70 . Furthermore, the selective binding of fullerene C70 in the presence of C60 was demonstrated.
Collapse
Affiliation(s)
| | - Salome Heim
- Department of ChemistryUniversity of BaselMattenstrasse 24a4002BaselSwitzerland
| | | | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselMattenstrasse 24a4002BaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland
| |
Collapse
|
24
|
He Y, Luo D, Lynch VM, Ahmed M, Sessler JL, Chi X. Porous adaptive luminescent metallacage for the detection and removal of perfluoroalkyl carboxylic acids. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Pfeuffer-Rooschüz J, Heim S, Prescimone A, Tiefenbacher K. Megalo‐Cavitands: Synthesis of Acridane[4]arenes and Formation of Large, Deep Cavitands for Selective C70 Uptake. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Salome Heim
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | | | | |
Collapse
|
26
|
Duan Z, Bian H, Zhu L, Xia D. Efficient removal of thiophenic sulfides from fuel by micro-mesoporous 2-hydroxypropyl-β-cyclodextrin polymers through synergistic effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Chen F, Liu LL, Wu JH, Rui XH, Chen JJ, Yu Y. Single-Atom Iron Anchored Tubular g-C 3 N 4 Catalysts for Ultrafast Fenton-Like Reaction: Roles of High-Valency Iron-Oxo Species and Organic Radicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202891. [PMID: 35679161 DOI: 10.1002/adma.202202891] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton-like systems. However, the complex preparation, single active site, lack of understanding of the fundamental mechanism, and harsh pH conditions currently limit their practical applications. In this work, single-atom iron anchored nitrogen-rich g-C3 N4 nanotubes (FeCNs) are designed and synthesized by a facile approach, and eco-friendly peracetic acid (PAA) is selected as the oxidant for Fenton-like reactions. The constructed heterogenous system achieves an enhanced degradation of various organic contaminants over a wide pH range of 3.0-9.0, exhibiting an ultrahigh and stable catalytic activity, outperforming equivalent quantities of pristine g-C3 N4 by 75 times. The 18 O isotope-labeling technique, probe method, and theoretical calculations demonstrate that the efficient catalytic activity relies on the high-valency iron-oxo species coupled with organic radicals generated by PAA. An increase in electron transport from the contaminant to the formed "metastable PAA/FeCN catalyst surface complex" is detected. A double driving mechanism for the tubular g-C3 N4 regulated by a single Fe site and PAA activation is proposed. This work opens an avenue for developing novel catalysts with the coexistence of multiple active units and providing opportunities for significantly improving catalytic efficiency.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Lian-Lian Liu
- Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
| | - Jing-Hang Wu
- Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
| | - Xian-Hong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jie-Jie Chen
- Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, National Synchrotron Radiation Laboratory, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
28
|
Wang R, Lin ZW, Klemes MJ, Ateia M, Trang B, Wang J, Ching C, Helbling DE, Dichtel WR. A Tunable Porous β-Cyclodextrin Polymer Platform to Understand and Improve Anionic PFAS Removal. ACS CENTRAL SCIENCE 2022; 8:663-669. [PMID: 35647288 PMCID: PMC9136966 DOI: 10.1021/acscentsci.2c00478] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 05/26/2023]
Abstract
Cross-linked polymers containing β-cyclodextrin (β-CD) are promising adsorbents with demonstrated removal performances for per- and polyfluoroalkyl substances (PFASs) from contaminated water sources. Despite the promising performance of some β-CD-based adsorbents for PFAS removal, many of these materials are not amenable for rational performance improvement or addressing fundamental questions about the PFAS adsorption mechanisms. These ambiguities arise from the poorly defined structure of the cross-linked polymers, especially with respect to the random substitution patterns of the cyclodextrins as well as side reactions that modify the structures of some cross-linkers. Here, we report a new β-CD polymer platform in which styrene groups are covalently attached to β-CD to form a discrete monomer that is amenable to radical polymerization. This monomer was polymerized with styrene and methacrylate comonomers to provide three β-CD polymers with high specific surface areas and high isolated yields (all >93%). A β-CD polymer copolymerized with a methacrylate bearing a cationic functional group achieved nearly 100% removal for eight anionic PFASs (initial concentration of 1 μg/L for each compound) in nanopure water at an exceedingly low adsorbent loading of 1 mg L-1, as compared to previous cyclodextrin polymers that required loadings at least 1 order of magnitude higher to achieve an equivalent degree of PFAS removal. Furthermore, when the adsorbents were studied in a challenging salt matrix, we observed that long-chain PFAS adsorption was controlled by a complementary interplay of hydrophobic and electrostatic interactions, whereas short-chain PFASs primarily relied on electrostatic interactions. This approach demonstrates great promise for anionic PFAS removal, and we anticipate that new compositions will be tailored using the versatility of radical polymerization to simultaneously target PFASs and other classes of micropollutants in the future.
Collapse
Affiliation(s)
- Ri Wang
- School
of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhi-Wei Lin
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Max J. Klemes
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mohamed Ateia
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Brittany Trang
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jieyuan Wang
- School
of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Casey Ching
- School
of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Damian E. Helbling
- School
of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - William R. Dichtel
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
29
|
Chen K, Wu X, Zou Z, Dong Y, Zhang S, Li X, Gouda M, Chu B, Li CM, Li X, He Y. Assess heavy metals-induced oxidative stress of microalgae by Electro-Raman combined technique. Anal Chim Acta 2022; 1208:339791. [PMID: 35525583 DOI: 10.1016/j.aca.2022.339791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/16/2023]
Abstract
Oxidative stress of aquatic microorganisms under heavy metal stress is closely reflected by metabolite changes in cells but it is very difficult to study due to the fast metabolism process and severe in-situ measurements hurdle. Herein, the oxidative stress of cadmium on Euglena gracilis was systematically studied through multi-combined techniques. In particular, for the first time electrochemical approach was associated with Raman spectroscopy imaging to vividly to investigate temporal-spatially varied oxidative stress and its effects on cells metabolism, in which former real-time measured a volcanic relation of extracellular hydrogen peroxide versus the increase of cadmium stress, while the latter shows the corresponding metabolic changes by Raman imaging of single cells. This work builds a bridge to unravel the mechanism of cellular oxidative stress under harsh conditions in a more systematic and holistic approach, while holding a great promise to construct heavy metal biosensors precisely monitoring high heavy metal tolerance strains for environmental modification.
Collapse
Affiliation(s)
- Kai Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hang Zhou, 310058, Zhejiang, PR China
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, Jiangsu, PR China
| | - Zhuo Zou
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, Jiangsu, PR China
| | - Yulun Dong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hang Zhou, 310058, Zhejiang, PR China
| | - Shuai Zhang
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330000, Zhejiang, PR China
| | - Xiaofen Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, Jiangsu, PR China
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hang Zhou, 310058, Zhejiang, PR China; Department of Nutrition & Food Science, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Bingquan Chu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hang Zhou, 310058, Zhejiang, PR China
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, Jiangsu, PR China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hang Zhou, 310058, Zhejiang, PR China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hang Zhou, 310058, Zhejiang, PR China
| |
Collapse
|
30
|
Peng W, Liao J, Chen L, Wu X, Zhang X, Sun W, Ge C. Constructing a 3D interconnected "trap-zap" β-CDPs/Fe-g-C 3N 4 catalyst for efficient sulfamethoxazole degradation via peroxymonosulfate activation: Performance, mechanism, intermediates and toxicity. CHEMOSPHERE 2022; 294:133780. [PMID: 35104553 DOI: 10.1016/j.chemosphere.2022.133780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
A novel and high-efficiency catalyst Fe doped g-C3N4 (Fe-g-C3N4) composited with β-cyclodextrin polymers (β-CDPs) was synthesized for activating peroxymonosulfate (PMS). The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed that the catalyst was 3D interconnected porous structure. The degradation rate constant of sulfamethoxazole (SMX) in β-CDPs/Fe-g-C3N4+PMS system was estimated to be 0.132 min-1, which was 14.7 times and 2.2 times that of g-C3N4+PMS and Fe-g-C3N4+PMS system, respectively. In addition, the β-CDPs/Fe-g-C3N4 exhibited superior degradation performance in a wide pH range (3.0-9.0) and good selectivity in the presence of other inorganic anions and natural organics. Radical scavenging, electron paramagnetic resonance (EPR) and electrochemical measurements indicated that 1O2 and Fe(V)O were the main active species for SMX degradation in β-CDPs/Fe-g-C3N4+PMS system. Moreover, β-CDPs accelerated electron transfer between catalyst and PMS and promoted the generation of reactive oxygen species (ROS) during PMS activation. The loading of β-CDPs increased the yields of Fe(V)O and 1O2 in the system and limited the leaching of Fe3+. In addition, the possible degradation pathways of SMX were described based on the intermediates detected by liquid chromatography-mass spectrometry (LC-MS), and the toxicity of the intermediates was also evaluated. This work investigate the role of β-CDPs in PMS activation for the first time and develop a promising material with potential for water treatment.
Collapse
Affiliation(s)
- Wenxing Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| | - Jianjun Liao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China.
| | - Liqin Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| | - Xiaochen Wu
- Hainan Research Academy of Environmental Sciences, Haikou, 571126, China
| | - Xiaodong Zhang
- School of Applied Science and Technology, Hainan University, Haikou, 570228, China
| | - Wei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| |
Collapse
|
31
|
Wang X, Quan M, Yao H, Pang XY, Ke H, Jiang W. Switchable bifunctional molecular recognition in water using a pH-responsive Endo-functionalized cavity. Nat Commun 2022; 13:2291. [PMID: 35484144 PMCID: PMC9051166 DOI: 10.1038/s41467-022-30012-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
The construction of water-soluble synthetic hosts with a stimuli-responsive endo-functionalized cavity is challenging. These hosts feature a switchable cavity and may bring new properties to the fields of self-assembly, molecular machines, and biomedical sciences. Herein, we report a pair of water-soluble naphthotubes with a pH-responsive endo-functionalized cavity. The inward-directing secondary amine group of the hosts can be protonated and deprotonated. Thus, the hosts have different cavity features at the two states and show drastically different binding preference and selectivity in water. We reveal that the binding difference of the two host states is originated from the differences in charge repulsion, hydrogen bonding and the hydrophobic effects. Moreover, the guest binding can be easily switched in a ternary mixture with two guest molecules by adjusting the pH value of the solution. These pH-responsive hosts may be used for the construction of smart self-assembly systems and water-soluble molecular machines.
Collapse
Affiliation(s)
- Xiaoping Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Mao Quan
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Hua Ke
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China.
| |
Collapse
|
32
|
Liu X, Zhu C, Yin J, Li J, Zhang Z, Li J, Shui F, You Z, Shi Z, Li B, Bu XH, Nafady A, Ma S. Installation of synergistic binding sites onto porous organic polymers for efficient removal of perfluorooctanoic acid. Nat Commun 2022; 13:2132. [PMID: 35440580 PMCID: PMC9019033 DOI: 10.1038/s41467-022-29816-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Herein, we report a strategy to construct highly efficient perfluorooctanoic acid (PFOA) adsorbents by installing synergistic electrostatic/hydrophobic sites onto porous organic polymers (POPs). The constructed model material of PAF-1-NDMB (NDMB = N,N-dimethyl-butylamine) demonstrates an exceptionally high PFOA uptake capacity over 2000 mg g-1, which is 14.8 times enhancement compared with its parent material of PAF-1. And it is 32.0 and 24.1 times higher than benchmark materials of DFB-CDP (β-cyclodextrin (β-CD)-based polymer network) and activated carbon under the same conditions. Furthermore, PAF-1-NDMB exhibits the highest k2 value of 24,000 g mg-1 h-1 among all reported PFOA sorbents. And it can remove 99.99% PFOA from 1000 ppb to <70 ppt within 2 min, which is lower than the advisory level of Environmental Protection Agency of United States. This work thus not only provides a generic approach for constructing PFOA adsorbents, but also develops POPs as a platform for PFOA capture.
Collapse
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Changjia Zhu
- Department of Chemistry, University of North Texas 1508W Mulberry St, Denton, TX, 76201, USA
| | - Jun Yin
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Advanced Membranes and Porous Materials Center, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Kingdom of Saudi Arabia; KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jixin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Feng Shui
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China.
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China.
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas 1508W Mulberry St, Denton, TX, 76201, USA.
| |
Collapse
|
33
|
Ching C, Ling Y, Trang B, Klemes M, Xiao L, Yang A, Barin G, Dichtel WR, Helbling DE. Identifying the physicochemical properties of β-cyclodextrin polymers that determine the adsorption of perfluoroalkyl acids. WATER RESEARCH 2022; 209:117938. [PMID: 34910992 DOI: 10.1016/j.watres.2021.117938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Cyclodextrin polymers (CDPs) are emerging adsorbents with demonstrated potential to remove perfluoroalkyl acids (PFAAs) from water. However, little is known about how the physicochemical properties of different types of CDPs determine PFAA adsorption on CDPs. In this study, we investigated the adsorption performance of 34 CDPs which consist of 14 different crosslinkers and exhibit a wide range of physicochemical properties. The performance metrics included adsorption kinetics, equilibrium adsorption density, and adsorption affinity for six PFAAs. We then used complementary bivariate and multivariate analyses to discover relationships between sixteen measurable physicochemical properties of the CDPs and their performance as adsorbents. We found that: (1) CDPs with a less negative or more positive surface charge will exhibit enhanced adsorption of all types of PFAAs; (2) CDPs with greater porosity and surface area will exhibit enhanced adsorption kinetics for all types of PFAAs; (3) CDPs with greater crosslinker content will exhibit enhanced adsorption of short-chain PFAAs; (4) CDPs containing more hydrophobic crosslinkers will exhibit enhanced equilibrium adsorption density and adsorption affinity for longer-chain PFAAs; and (5) CDPs with smaller particle sizes will exhibit enhanced adsorption kinetics and equilibrium adsorption density for all PFAAs. These insights will enable the further development of CDPs and other novel adsorbents to optimize their performance for removing PFAAs during water and wastewater treatment or groundwater remediation.
Collapse
Affiliation(s)
- Casey Ching
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yuhan Ling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; Cyclopure, Inc., Skokie, IL 60077, USA
| | - Brittany Trang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Max Klemes
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Leilei Xiao
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Anna Yang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | | | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Li Z, Yang YW. Macrocycle-Based Porous Organic Polymers for Separation, Sensing, and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107401. [PMID: 34676932 DOI: 10.1002/adma.202107401] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of materials science, porous organic polymers (POPs) have received remarkable attentions because of their unique properties such as the exceptionally high surface area and flexible molecular design. The ability to incorporate specific functions in a precise manner makes POPs promising platforms for a myriad of applications in molecular adsorption, separation, and catalysis. Therefore, many different types of POPs have been rationally designed and synthesized to expand the scope of advanced materials, endowing them with distinct structures and properties. Recently, supramolecular macrocycles with excellent host-guest complexation abilities are emerging as powerful crosslinkers for developing novel POPs with hierarchical structures and improved performance, which can be well-organized at different spatial scales. Macrocycle-based POPs could have unusual porous, adsorptive, and optical properties when compared to their nonmacrocycle-incorporated counterparts. This cooperation provides valuable insights for the molecular-level understanding of skeletal complexity and diversity. Here, the research advances of macrocycle-based POPs are aptly summarized by showing their syntheses, properties, and applications in terms of separation, sensing, and catalysis. Finally, the current challenging issues in this exciting research field are delineated and a comprehensive outlook is offered for their future directions.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
35
|
Zheng Q, Unruh DK, Hutchins KM. Removal of the Micropollutants Propranolol Hydrochloride and 2-Naphthol From Water by Pyridine-Functionalized Polymers. Front Chem 2022; 9:793870. [PMID: 35127646 PMCID: PMC8815703 DOI: 10.3389/fchem.2021.793870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022] Open
Abstract
The number and concentration of micropollutants in aqueous environments are increasing. Two such micropollutants include the pharmaceutical, propranolol hydrochloride, and dye intermediate, 2-naphthol. Here, we describe the synthesis of both linear and crosslinked pyridine-functionalized copolymers that bind and remove propranolol hydrochloride and 2-naphthol from water solutions. Propranolol hydrochloride and 2-naphthol both contain hydrogen-bond-donor groups, and the pyridine moiety on the polymer acts as a hydrogen-bond acceptor to facilitate removal. Copolymers with different amounts of pyridine comonomer are synthesized, and as the amount of the pyridine comonomer is increased, the ability of the polymer to bind and remove the contaminant also increases. The concentrations of propranolol hydrochloride and 2-naphthol decreased by approximately 20–40% and 60–88%, respectively, depending on the polymer type that is used in the binding experiment. A control polymer was synthesized by using styrene in place of the pyridine monomer. In analogous binding experiments, the styrene polymer decreases the concentration of propranolol hydrochloride by 2% and 2-naphthol by 26%. Thus, the binding effectiveness is significantly reduced when the hydrogen-bond-acceptor group is not present on the polymer. We also show that the best performing crosslinked pyridine-functionalized polymer is reusable. Overall, these polymer adsorbents demonstrate the potential for removal of micropollutants from water.
Collapse
|
36
|
Liang R, Bu D, Su X, Wei X, Orentas E, Rebek J, Shi Q. Organic pollutants in water-soluble cavitands and capsules: contortions of molecules in nanospace. Org Chem Front 2022. [DOI: 10.1039/d2qo00139j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the binding properties of deep cavitand for various industrial pollutants in water. Depending on the guest type, monomeric cavitands, dimeric capsules or both acted as receptors and...
Collapse
|
37
|
Wang Y, Darling SB, Chen J. Selectivity of Per- and Polyfluoroalkyl Substance Sensors and Sorbents in Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60789-60814. [PMID: 34911297 PMCID: PMC8719322 DOI: 10.1021/acsami.1c16517] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of engineered chemicals that have been widely used in industrial production. PFAS have drawn increasing attention due to their frequent occurrence in the aquatic environment and their toxicity to animals and humans. Developing effective and efficient detection and remediation methods for PFAS in aquatic systems is critical to mitigate ongoing exposure and promote water reuse. Adsorption-based removal is the most common method for PFAS remediation since it avoids hazardous byproducts; in situ sensing technology is a promising approach for PFAS monitoring due to its fast response, easy operation, and portability. This review summarizes current materials and devices that have been demonstrated for PFAS adsorption and sensing. Selectivity, the key factor underlying both sensor and sorbent performance, is discussed by exploring the interactions between PFAS and various probes. Examples of selective probes will be presented and classified by fluorinated groups, cationic groups, and cavitary groups, and their synergistic effects will also be analyzed. This review aims to provide guidance and implication for future material design toward more selective and effective PFAS sensors and sorbents.
Collapse
Affiliation(s)
- Yuqin Wang
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced
Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Seth B. Darling
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced
Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Junhong Chen
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
38
|
Quaratesi I, Della Sala P, Capacchione C, Talotta C, Geremia S, Hickey N, Gliubizzi R, Bruno I, Sgarlata C, Migliore R, Gaeta C, Neri P. Selective recognition of bisphenol S isomers in water by β-cyclodextrin. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1991925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ilaria Quaratesi
- Dipartimento di Chimica E Biologia “A. Zambelli”, Università di Salerno, Fisciano , Italy
- Bi-qemrties Spa, Zona Industriale - Buccino, Italy
| | - Paolo Della Sala
- Dipartimento di Chimica E Biologia “A. Zambelli”, Università di Salerno, Fisciano , Italy
| | - Clotilde Capacchione
- Dipartimento di Chimica E Biologia “A. Zambelli”, Università di Salerno, Fisciano , Italy
- Bi-qemrties Spa, Zona Industriale - Buccino, Italy
| | - Carmen Talotta
- Dipartimento di Chimica E Biologia “A. Zambelli”, Università di Salerno, Fisciano , Italy
| | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche E Farmaceutiche, Università di Trieste, Trieste, Italy
| | - Neal Hickey
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche E Farmaceutiche, Università di Trieste, Trieste, Italy
| | | | | | - Carmelo Sgarlata
- Dipartimento di Scienze Chimiche, Università Degli Studi Di Catania, Catania, Italy
| | - Rossella Migliore
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Delle Ricerche, Catania, Italy
| | - Carmine Gaeta
- Dipartimento di Chimica E Biologia “A. Zambelli”, Università di Salerno, Fisciano , Italy
| | - Placido Neri
- Dipartimento di Chimica E Biologia “A. Zambelli”, Università di Salerno, Fisciano , Italy
| |
Collapse
|
39
|
Chen W, Chen P, Zhang G, Xing G, Feng Y, Yang YW, Chen L. Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chem Soc Rev 2021; 50:11684-11714. [PMID: 34491253 DOI: 10.1039/d1cs00545f] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Porous organic polymers (POPs), as a new category of advanced porous materials, have received broad research interests owing to the advantages of light-weight, robust scaffolds, high specific surface areas and good functional tailorability. According to the long-range ordering of polymer skeletons, POPs can be either crystalline or amorphous. Macrocycles with inherent cavities can serve as receptors for recognizing or capturing specific guest molecules through host-guest interactions. Incorporating macrocycles in POP skeletons affords win-win merits, e.g. hierarchical porosity and novel physicochemical properties. In this review, we focus on the recent progress associated with new architectures of macrocycle-based POPs. Herein, these macrocycles are divided into two subclasses: non-planar (crown ether, calixarene, pillararene, cyclodextrin, cyclotricatechylene, etc.) and planar (arylene-ethynylene macrocycles). We summarize the synthetic methods of each macrocyclic POP in terms of the functions of versatile building blocks. Subsequently, we discuss the performance of macrocyclic POPs in environmental remediation, gas adsorption, heterogeneous catalysis, fluorescence sensing and ionic conduction. Although considerable examples are reported, the development of macrocyclic POPs is still in its infancy. Finally, we propose the underlying challenges and opportunities of macrocycle-based POPs.
Collapse
Affiliation(s)
- Weiben Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Pei Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Guolong Xing
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Yu Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China. .,College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
40
|
Huang H, Shi R, Zhang X, Zhao J, Su C, Zhang T. Photothermal‐Assisted Triphase Photocatalysis Over a Multifunctional Bilayer Paper. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Huining Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xuerui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiaqing Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
41
|
Yang L, Ke H, Yao H, Jiang W. Effective and Rapid Removal of Polar Organic Micropollutants from Water by Amide Naphthotube‐Crosslinked Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Liu‐Pan Yang
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Academy of Advanced Interdisciplinary Studies Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Hua Ke
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Academy of Advanced Interdisciplinary Studies Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Huan Yao
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Academy of Advanced Interdisciplinary Studies Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Academy of Advanced Interdisciplinary Studies Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
42
|
Huang H, Shi R, Zhang X, Zhao J, Su C, Zhang T. Photothermal-assisted triphase photocatalysis over a multifunctional bilayer paper. Angew Chem Int Ed Engl 2021; 60:22963-22969. [PMID: 34374187 DOI: 10.1002/anie.202110336] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/07/2022]
Abstract
Photocatalysis as one of the future environment technologies has been investigated for decades. Despite great efforts in catalyst engineering, the widely used powder dispersion and photoelectrode systems are still restricted by sluggish interfacial mass transfer and chemical processes. Here we develop a scalable bilayer paper from commercialized TiO 2 and carbon nanomaterials, self-supported at gas-liquid-solid interfaces for photothermal-assisted triphase photocatalysis. The photogeneration of reactive oxygen species can be facilitated through fast oxygen diffusion over triphase interfaces, while the interfacial photothermal effect promotes the following free radical reaction for advanced oxidation of phenol. Under full spectrum irradiation, the triphase system shows 13 times higher reaction rate than diphase controlled system, achieving 88.4% mineralization of high concentration phenol within 90 min full spectrum irradiation. The bilayer paper also exhibits high stability over 40 times cycling experiments and sunlight driven feasibility, showing potentials for large scale photocatalytic applications by being further integrated into a triphase flow reactor.
Collapse
Affiliation(s)
- Huining Huang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry, KLPCOM, CHINA
| | - Run Shi
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry, KLPCOM, CHINA
| | - Xuerui Zhang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry, KLPCOM, CHINA
| | - Jiaqing Zhao
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry, KLPCOM, CHINA
| | - Chenliang Su
- Shenzhen University, Institute of microscale and optoelectronics, CHINA
| | - Tierui Zhang
- Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS), Key Laboratory of Photochemical Conversion and Optoelectronic Materials, No.29 Zhongguancun East Road, Haidian District,, 100190, Beijing, CHINA
| |
Collapse
|
43
|
Yang LP, Ke H, Yao H, Jiang W. Effective and Rapid Removal of Polar Organic Micropollutants from Water by Amide Naphthotube-Crosslinked Polymers. Angew Chem Int Ed Engl 2021; 60:21404-21411. [PMID: 34227192 DOI: 10.1002/anie.202106998] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Indexed: 12/29/2022]
Abstract
It is challenging to remove polar organic micropollutants from water through adsorption-mediated processes. Macrocycle-crosslinked polymers were recently shown to be effective adsorbents for nonpolar or charged organic micropollutants through specific host-guest binding, but are rarely used for the treatment of neutral and polar organic micropollutants. This is due to the challenge of recognizing polar molecules in water by macrocyclic hosts. In this research, we report two amide naphthotube-crosslinked polymers which can effectively and rapidly adsorb a wide scope of polar organic micropollutants from water through biomimetic molecular recognition. Amide naphthotubes possess hydrogen bonding sites in their deep hydrophobic cavities and can effectively bind polar organic micropollutants in water through the hydrophobic effects and shielded hydrogen bonds. The cross-linked polymers containing amide naphthotubes are even able to remove a complex mixture of organic micropollutants from water and the used materials can be easily regenerated through washing with MeOH or EtOH. This research provides a solution for the treatment of polar organic micropollutants by using biomimetic molecular recognition in water.
Collapse
Affiliation(s)
- Liu-Pan Yang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Academy of Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Hua Ke
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Academy of Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Huan Yao
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Academy of Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Academy of Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
44
|
Zhang Y, Hong X, Cao XM, Huang XQ, Hu B, Ding SY, Lin H. Functional Porous Organic Polymers with Conjugated Triaryl Triazine as the Core for Superfast Adsorption Removal of Organic Dyes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6359-6366. [PMID: 33517654 DOI: 10.1021/acsami.0c21374] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing efficient adsorbents for the removal of water pollutants is of great significance for environmental protection. In this study, conjugated triaryl triazines (CTT), containing intramolecular hydrogen-bonding patterns, were recognized to be intriguing building blocks for the construction of porous organic polymer (POP) adsorbents. These planar monomers with multiple phenolic hydroxyl groups facilitated the formation of aza-linked polymers with hierarchical porous structures, sheet-like morphology, good surface wettability, and high degree of functionality. Such structural characteristics of the CTT-POP adsorbents provided superfast adsorption of various cationic dyes from water. For the adsorption of methylene blue dye, the pseudo-second-order rate constant of CTT-POP-1 is 12.9 g mg-1 min-1, superior to those reported in the existing literature. In addition, CTT-POP-1 can be regenerated at least seven times with no loss in performance, indicating its potential application in water treatment.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xin Hong
- Key Laboratory of Organo-Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xiao-Mei Cao
- Key Laboratory of Organo-Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xiao-Qing Huang
- Key Laboratory of Organo-Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Bing Hu
- Key Laboratory of Organo-Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hui Lin
- Key Laboratory of Jiangxi Province for the Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330000, China
| |
Collapse
|
45
|
Jeevan AK, Krishnan SB, Gopidas KR. Structural Deformation to
β
‐Cyclodextrin Due to Strong π‐Stacking in the Self‐Assembly of Inclusion Complex. ChemistrySelect 2020. [DOI: 10.1002/slct.202004488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Athira K. Jeevan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| | - Sumesh B. Krishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| | - Karical R. Gopidas
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| |
Collapse
|