1
|
Wu J, Kreimendahl L, Greenfield JL. Enhancing the Photoswitching Properties of N-Alkyl Imines. J Am Chem Soc 2025. [PMID: 40374166 DOI: 10.1021/jacs.5c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
N-Alkyl imines are prevalent in dynamic-covalent chemistry and self-assembled structures, yet their E/Z photochromism is often overlooked due to the high-energy light required for isomerization. Here, we present a simple strategy to enhance their photoswitching properties, achieving switching wavelengths and photostationary state distributions comparable to azobenzene. Moreover, we demonstrate that these N-alkyl imines undergo photoisomerization in the condensed phase and exhibit isomer-dependent fluorescence. We anticipate that this study will inspire the design of photoresponsive architectures that operate directly at the dynamic-covalent bond, eliminating the need for dedicated photoswitchable motifs.
Collapse
Affiliation(s)
- Jiarong Wu
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, 97074 Würzburg, Germany
| | - Lasse Kreimendahl
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Jake L Greenfield
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Liu X, Liu P, Wang H, Khashab NM. Advanced Microporous Framework Membranes for Sustainable Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500310. [PMID: 40275732 DOI: 10.1002/adma.202500310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Advancements in membrane-based separation hinge on the design of materials that transcend conventional limitations. Microporous materials, including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), macrocycles, and porous organic cages (POCs) offer unprecedented control over pore architecture, chemical functionality, and transport properties, making them promising candidates for next-generation membrane technologies. The well-defined and tunable micropores provide a pathway to directly address the permeability-selectivity trade-off inherent in conventional polymer membranes. Here, this review explores the latest advancements in these four representative microporous membranes, emphasizing their breakthroughs in hydrocarbon separation, liquid-phase molecular sieving, and ion-selective transport, particularly focusing on their structure-performance relationships. While their tailored structures enable exceptional performance, practical adoption requires overcoming hurdles in scalability, durability, and compatibility with industrial processes. By offering insights into membrane structure optimization and innovative design strategies, this review provides a roadmap for advancing microporous membranes from laboratory innovation to real-world implementation, ultimately supporting global sustainability goals through energy-efficient separation processes.
Collapse
Affiliation(s)
- Xin Liu
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Haochen Wang
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Xu Z, Ying X, Li Y, Dong X, Liu J, Wang S, Little MA, Zhang D, Xie Y, Zhang Z, Yu L, Huang F, Li S. Template-directed self-assembly of porphyrin nanorings through an imine condensation reaction. Chem Sci 2025; 16:5166-5173. [PMID: 39981034 PMCID: PMC11837751 DOI: 10.1039/d4sc08569h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
Template-directed self-assembly has proven to be an extremely effective method for the precise fabrication of biomacromolecules in natural systems, while artificial template-directed self-assembly systems for the preparation of highly intricate molecules remain a great challenge. In this article, we report the template-directed self-assembly of porphyrin nanorings with different cavity sizes from a tetraaldehyde-derived Zn(ii) porphyrin and a diamine precursor through an imine condensation reaction. Up to 9 or 18 precursor molecules self-assemble together to produce a triporphyrin nanoring and a hexaporphyrin nanoring in one step, with the assistance of a tripyridine or hexapyridine template, respectively. The imine-linked porphyrin nanorings are further modified by reduction and acylation reactions to obtain more stable nanorings. The open cavities of porphyrin rings enable them to act as effective hosts to encapsulate fullerenes (C60 and C70). This work presents a highly efficient template-directed self-assembly strategy for the construction of complicated molecules by using dynamic covalent chemistry of imine bond formation.
Collapse
Affiliation(s)
- Ziwei Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Xinwen Ying
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Yi Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Xiaoyan Dong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Jiyong Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Shuping Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Marc A Little
- Department of Chemistry and Materials Innovation Factory, University of Liverpool Liverpool L7 3NY UK
| | - Dahao Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 P. R. China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Ling Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 311215 P. R. China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| |
Collapse
|
4
|
Zhu N, Wu J, Zhao D. Nanospace Engineering for C 8 Aromatic Isomer Separation. ACS NANO 2025; 19:2029-2046. [PMID: 39762116 DOI: 10.1021/acsnano.4c15755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
C8 aromatic isomers, namely para-xylene (PX), meta-xylene (MX), ortho-xylene (OX), and ethylbenzene (EB), are essential industrial chemicals with a wide range of applications. The effective separation of these isomers is crucial across various sectors, including petrochemicals, pharmaceuticals, and polymer manufacturing. Traditional separation methods, such as distillation and solvent extraction, are energy-intensive. In contrast, selective adsorption has emerged as an efficient technique for separating C8 aromatic isomers, in which nanospace engineering offers promising strategies to address existing challenges by precisely tailoring the structures and properties of porous materials at the nanoscale. This review explores the application of nanospace engineering in modifying the pore structures and characteristics of diverse porous materials─including zeolites, metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and other porous substances─to enhance their performance in C8 aromatic isomer separation. Additionally, this review provides a comprehensive summary of how different separation techniques, temperature fluctuations, enthalpy/entropy considerations, and desorption processes influence separation efficiency. It also presents a forward-looking perspective on remaining challenges and potential opportunities for advancing C8 aromatic isomer separation.
Collapse
Affiliation(s)
- Nengxiu Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Jiayi Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| |
Collapse
|
5
|
Fang F, Liu P, Lin W, Alimi LO, Moosa B, Maltseva E, Khashab NM. Supramolecular Interfacial Assembly: Integrating Supramolecular Hosts into Polymeric Membranes through an Aqueous Interface. Angew Chem Int Ed Engl 2025; 64:e202416050. [PMID: 39382223 DOI: 10.1002/anie.202416050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Efficient incorporation of macrocycles in polymeric membranes can impart the overall matrix with new properties for a range of cutting-edge applications. Here, we introduce a Supramolecular Interfacial Assembly (SIA) method for the fabrication of polymeric membranes featuring embedded macrocycles. Through harnessing the quasi-liquid nature of the concentrated polymer solution, SIA orchestrates the homogeneous spreading of macrocycles in an aqueous layer on its surface, leading to the creation of an interface between "water/water" phases, subsequently forming a cross-linked membrane driven by supramolecular electrostatic interactions. Remarkably, compared to the traditional interfacial polymerization, SIA adheres to a "green" paradigm without the need for organic solvents. The resultant composite membrane exhibits superior performance in organic solvent nanofiltration (OSN), owing to the precise molecular sieving property provided by the macrocycles with well-defined permanent cavities. This fabrication method holds great promise for the innovative design and production of composite membranes that seamlessly integrates macrocycles with conventional polymers, which can greatly impact the design and preparation of advanced membrane materials in the future.
Collapse
Affiliation(s)
- Fang Fang
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Weibin Lin
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elizaveta Maltseva
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Prusinowska N, Czapik A, Szymkowiak J, Kwit M. Thio-modified trianglimines, a novel group of chiral macrocyclic compounds of high structural dynamics. Sci Rep 2025; 15:890. [PMID: 39762350 PMCID: PMC11704344 DOI: 10.1038/s41598-025-85179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
The embellishing of the macrocycle core with sulfur substituents of varied sterical requirements changes the structural dynamics of chiral, triangular polyimines. Despite their formal high symmetry, these compounds adopt diverse conformations, in which the macrocycle core represents a non-changeable unit. DFT calculations reveal that the mutual arrangement of sulfur-containing substituents is controlled mainly by sterical interactions. The presence of sulfur atoms affects the chiroptical properties of these compounds and causes a red shift of respective absorption bands compared to the basic trianglimine. Unexpectedly, the aromatic fragments attached to the sulfur atom have less impact on ECD spectra, visible only in particular spectral regions. Such a possibility to adapt various conformations is also seen in the crystalline phase; however, a stiff basic unit - the triangular macrocycle core - caused macrocycles' self-assembly into columnar-like aggregates. In the crystal lattice, around the macrocycle having bulky SCPh3 groups, a space filled with solvent is formed; however, the macrocycle's internal cavity is closed and unavailable for guest molecules. Titration of the solutions of basic SBn-substituted imine and amine macrocycles by AgOTf results in significant changes in the ECD spectra, confirming possible binding interactions between macrocycle and metal cations.
Collapse
Affiliation(s)
- Natalia Prusinowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznan, 61 614, Poland
| | - Agnieszka Czapik
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznan, 61 614, Poland
| | - Joanna Szymkowiak
- Faculty of Science, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Marcin Kwit
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznan, 61 614, Poland.
| |
Collapse
|
7
|
Zhang W, Dong Q, Ai X, Wang Y, Xu G, Xu Z, Li E, Shen J, Ma B, Du Z, Pan Z. Fabrication cellulose/epoxy sponge via surface embedding for efficient and continuously oil/water separation. Colloids Surf A Physicochem Eng Asp 2025; 705:135635. [DOI: 10.1016/j.colsurfa.2024.135635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
8
|
Lin W, Cao L, Liu X, Alimi LO, Wang J, Moosa BA, Lai Z, Khashab NM. A Smart Polycage Membrane with Responsive Osmotic Energy Conversion Based on Synchronously Switchable Microporosity and Chargeability. J Am Chem Soc 2024; 146:34528-34535. [PMID: 39533477 DOI: 10.1021/jacs.4c11709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Membranes with specific pore sizes are widely used in molecular separation, ion transport, and energy conversion. However, the molecular understanding of structure-property performance in membrane science has been an urgent and long-standing problem. A promising but challenging solution lies in the fine-tuning of the membrane microstructure and properties to control membrane performance. Here, we designed an exofunctionalized triskelion cage to construct smart polycage membranes with concurrently responsive pore apertures and charge property. The synthetic polyaza cage is decorated with exoextended aldehyde groups for membrane fabrication and multiple amine sites for postmodification. The engineered polycage membranes thereby are endowed with pH-responsive porosity and chargeability, which serve as excellent candidates to explore the influence of the pore size and charge properties on membrane performance. In this regard, we successfully demonstrated the responsive osmotic energy conversion of the polycage membrane with a power density increase of over fourfold. This result indicates that the chargeability here outcompetes microporosity in energy conversion performance, which is further supported by molecular simulations. Therefore, this smart polycage membrane not only offers a feasible strategy to regulate the membrane microstructure and charge property reversibly but also balances pore size and chargeability to control the membrane performance at the molecular level.
Collapse
Affiliation(s)
- Weibin Lin
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Li Cao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xin Liu
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jinrong Wang
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Basem A Moosa
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Tsoukatos S, Maibam A, Babarao R, Bloch WM. Topological control in paddlewheel metal-organic cages via ligand length variation. Chem Commun (Camb) 2024; 60:13183-13186. [PMID: 39354805 DOI: 10.1039/d4cc03769c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Varying the length of phenanthrene-derived ligands switches the selective assembly of MIInLn metal-organic cages (MOCs, n = 6 or 8) between tetrahedral, square, or triangular architectures. The limit of this approach is explored for both Cu2 and Rh2 paddlewheel MOCs, and supported by solution, solid-state and computational analysis.
Collapse
Affiliation(s)
- Steven Tsoukatos
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Ashakiran Maibam
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, 3001 Victoria, Australia
| | - Ravichandar Babarao
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, 3001 Victoria, Australia
- CSIRO, Clayton 3168, Victoria, Australia
| | - Witold M Bloch
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| |
Collapse
|
10
|
Xiao W, Wang Z, Gui Y. Adsorption Properties of Metal Atom (Co, V, W, Zr)-Modified MoTe 2 for CO, CH 3CHO, and C 6H 6 Gases: A DFT Study. Molecules 2024; 29:5086. [PMID: 39519727 PMCID: PMC11547787 DOI: 10.3390/molecules29215086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigates the adsorption characteristics of the pristine MoTe2 monolayer and the metal atom (Co, V, W, Zr)-modified MoTe2 monolayer on the hazardous gases CO, CH3CHO, and C6H6 based on the density functional theory. The adsorption mechanism was studied from the perspectives of molecular density differences, band structures, molecular orbitals, and the density of states. Research analysis showed that the changes in conductivity caused by the adsorption of different gases on the substrate were significantly different, which can be used to prepare gas sensing materials with selective sensitivity for CO, CH3CHO, and C6H6. This study lays a reliable theoretical foundation for the gas sensing analysis of toxic and hazardous gases using metal atom-modified MoTe2 materials.
Collapse
Affiliation(s)
- Weizhong Xiao
- College of Energy Engineering, Huanghuai University, Zhumadian 463000, China;
| | - Zixuan Wang
- School of Intelligent Manufacturing, Huanghuai University, Zhumadian 463000, China
| | - Yingang Gui
- College of Engineering and Technology, Southwest University, Chongqing 400715, China;
| |
Collapse
|
11
|
Ono Y, Hirao T, Kawata N, Haino T. Latent porosity of planar tris(phenylisoxazolyl)benzene. Nat Commun 2024; 15:8314. [PMID: 39333129 PMCID: PMC11436937 DOI: 10.1038/s41467-024-52526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate cis- and trans-decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for cis-decalin over trans-decalin with a cis-/trans-ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π-π stacking interactions, which determines the remarkable selectivity of molecular recognition.
Collapse
Affiliation(s)
- Yudai Ono
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Naomi Kawata
- Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| |
Collapse
|
12
|
Singh M, Kaur SP, Chakraborty B. Modeling and tuning the electronic, mechanical and optical properties of a recently synthesized 2D polyaramid: a first principles study. Phys Chem Chem Phys 2024; 26:21874-21887. [PMID: 39105423 DOI: 10.1039/d4cp02027h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
This work delves into a methodology of modeling 2D materials and their structural engineering, considering an example of a recently synthesized 2D polyaramid (2DPA-1). A bottom-up approach similar to experimental techniques is implemented for modeling, and then its electronic structures and phonon spectrum and the quadratic nature of flexural phonons are analyzed. Furthermore, boron and nitrogen atoms are substituted for the carbon atom of the amide group of 2DPA-1, and their effects on its electronic properties, phonon spectrum, and mechanical properties are compared with those of pristine 2DPA-1 using density functional theory calculations. The ab initio molecular dynamics (AIMD) simulations validate the thermal stability of our system at high temperatures. The spin-polarized electronic structures reveal the transformation of pristine 2DPA-1 from a semiconductor to a half-metal and its magnetic behaviour upon nitrogen substitution. Constraining the quadratic nature of flexural phonons using the Born-Huang criteria significantly enhances the phonon spectra, leading to more accurate and reliable simulations. For modulated 2DPA-1, the elastic modulus varies between 17 and 27 N m-1, and the absorption peaks shift from ∼5.15 eV to 2.42 eV, enabling the application of polymeric 2D nanomaterials in photocatalysis and sensing, where light absorption in the near-infrared region is important. Finally, validation of our methodology is confirmed, as computed Young's modulus (11.26-11.76 GPa) of 2DPA-1 matches excellently with the experimental value (12.7 ± 3.8 GPa). Overall, this study reveals the modeling of a newly synthesized polymeric 2D material, and tuning its properties results in smaller bandgaps and half-metallic and magnetic behaviours.
Collapse
Affiliation(s)
- Mukesh Singh
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Surinder Pal Kaur
- Quantum Dynamics Lab, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Li Y, Yang X, Jiang W, Huang G, Wang Y, Xiao Y. Highly Efficient Separation of BTEX via Amide Naphthotube Cavity-Confined Tandem C/N-H···π Interactions. Anal Chem 2024; 96:12622-12629. [PMID: 38973321 DOI: 10.1021/acs.analchem.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The separation of BTEX [benzene, toluene, ethylbenzene (EB), and xylene isomers] poses a huge challenge in the industry, attributed to their similar structures and physical properties. Supramolecular compounds show great promise for hydrocarbon separation. Herein, we designed two pairs of endo-functionalized amide naphthotubes with methyl and benzyl side chains, which were first employed as chromatographic separation materials and exhibited high shape-selectivity for BTEX. In particular, the amide naphthotubes with methyl side chains provided complete separation toward BTEX and anti-3a showed high selectivity for the p-xylene over other isomers with αPX/OX = 9.34, αPX/MX = 5.50, and αPX/EB = 4.30. The mechanism of BTEX separation originates from the synergistic effect of specially confined tandem N-H···π and C-H···π interactions toward aromatic compounds. The findings of this research show promise for practical applications in efficiently separating crucial aromatic isomers.
Collapse
Affiliation(s)
- Yuan Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Xiran Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen 518055, China
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen 518055, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
14
|
Jupiter I, Loya JD, Lutz N, Sittinger PM, Reinheimer EW, Campillo-Alvarado G. Confinement and Separation of Benzene from an Azeotropic Mixture Using a Chlorinated B←N Adduct. CRYSTAL GROWTH & DESIGN 2024; 24:5883-5888. [PMID: 39044733 PMCID: PMC11261595 DOI: 10.1021/acs.cgd.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
Separations of azeotropic mixtures are typically carried out using energy-demanding processes (e.g., distillation). Here, we report the capacity of a self-assembled chlorinated boronic ester-based adduct to confine acetonitrile and benzene in channels upon crystallization. The solvent confinement occurs via a combination of hydrogen bonding and [π···π] interactions. Quantitative separation of benzene from an azeotropic 1:1 mixture of a benzene/acetonitrile (v/v), and methanol is achieved through crystallization with the chlorinated adduct by complementary [C-H···O] and [C-H···π] interactions. Inclusion behavior is rationalized by molecular modeling and crystallographic analysis. The chlorinated boronic ester adduct shows the potential of modularity via isosteric substitution for the separation of challenging chemical mixtures (e.g., azeotropes).
Collapse
Affiliation(s)
- Isabella
J. Jupiter
- Department
of Chemistry, Reed College, Portland, Oregon 97202-8199, United
States
| | - Jesus Daniel Loya
- Department
of Chemistry, Reed College, Portland, Oregon 97202-8199, United
States
| | - Nicholas Lutz
- Department
of Chemistry, Reed College, Portland, Oregon 97202-8199, United
States
| | - Paulina M. Sittinger
- Department
of Chemistry, Reed College, Portland, Oregon 97202-8199, United
States
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | | | | |
Collapse
|
15
|
Alemayehu HG, Hou J, Qureshi AA, Yao Y, Sun Z, Yan M, Wang C, Liu L, Tang Z, Li L. Discrimination of Xylene Isomers by Precisely Tuning the Interlayer Spacing of Reduced Graphene Oxide Membrane. ACS NANO 2024; 18:18673-18682. [PMID: 38951732 DOI: 10.1021/acsnano.4c05461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Separating xylene isomers is a challenging task due to their similar physical and chemical properties. In this study, we developed a molecular sieve incorporating a reduced graphene oxide (rGO) membrane for the precise differentiation of xylene isomers. We fabricated GO membranes using a vacuum filtration technique followed by thermal-induced reduction to produce rGO membranes with precisely controllable interlayer spacing. Notably, we could finely tune the interlayer spacing of the rGO membrane from 8.0 to 5.0 Å by simply varying the thermal reduction temperature. We investigated the reverse osmosis separation ability of the rGO membranes for xylene isomers and found that the rGO membrane with an interlayer spacing of 6.1 Å showed a high single component permeance of 0.17 and 0.04 L m-2 h-1 bar-1 for para- and ortho-xylene, respectively, exhibiting clear permselectivity. The separation factor reached 3.4 and 2.8 when 90:10 and 50:50 feed mixtures were used, respectively, with permeance 1 order of magnitude higher than that of current state-of-the-art reverse osmosis membranes. Additionally, the membrane showed negligible permeance and selectivity decay even after continuous operation for more than 5 days, suggesting commendable membrane resistance to solvent swelling and operating pressure.
Collapse
Affiliation(s)
- Haftu Gebrekiros Alemayehu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
- Department of Chemistry, College of Natural Sciences, Arba Minch University, PO Box 21, Arba Minch, Ethiopia
| | - Junjun Hou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Adeel Ahmad Qureshi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yongji Yao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
| | - Zhifei Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Mingzheng Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Congying Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Lianshan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| |
Collapse
|
16
|
Jiang C, Wang JX, Liu D, Wu E, Gu XW, Zhang X, Li B, Chen B, Qian G. Supramolecular Entanglement in a Hydrogen-Bonded Organic Framework Enables Flexible-Robust Porosity for Highly Efficient Purification of Natural Gas. Angew Chem Int Ed Engl 2024; 63:e202404734. [PMID: 38635373 DOI: 10.1002/anie.202404734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The development of porous materials with flexible-robust characteristics shows some unique advantages to target high performance for gas separation, but remains a daunting challenge to achieve so far. Herein, we report a carboxyl-based hydrogen-bonded organic framework (ZJU-HOF-8a) with flexible-robust porosity for efficient purification of natural gas. ZJU-HOF-8a features a four-fold interpenetrated structure with dia topology, wherein abundant supramolecular entanglements are formed between the adjacent subnetworks through weak intermolecular hydrogen bonds. This structural configuration could not only stabilize the whole framework to establish the permanent porosity, but also enable the framework to show some flexibility due to its weak intermolecular interactions (so-called flexible-robust framework). The flexible-robust porosity of ZJU-HOF-8a was exclusively confirmed by gas sorption isotherms and single-crystal X-ray diffraction studies, showing that the flexible pore pockets can be opened by C3H8 and n-C4H10 molecules rather by C2H6 and CH4. This leads to notably higher C3H8 and n-C4H10 uptakes with enhanced selectivities than C2H6 over CH4 under ambient conditions, affording one of the highest n-C4H10/CH4 selectivities. The gas-loaded single-crystal structures coupled with theoretical simulations reveal that the loading of n-C4H10 can induce an obvious framework expansion along with pore pocket opening to improve n-C4H10 uptake and selectivity, while not for C2H6 adsorption. This work suggests an effective strategy of designing flexible-robust HOFs for improving gas separation properties.
Collapse
Affiliation(s)
- Chenghao Jiang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Xin Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Di Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Enyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Wen Gu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xu Zhang
- Jiangsu Engineering Laboratory for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Bin Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
17
|
Shields CE, Fellowes T, Slater AG, Cooper AI, Andrews KG, Szczypiński FT. Exploration of the polymorphic solid-state landscape of an amide-linked organic cage using computation and automation. Chem Commun (Camb) 2024; 60:6023-6026. [PMID: 38775039 PMCID: PMC11155718 DOI: 10.1039/d4cc01407c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Organic cages can possess complex, functionalised cavities that make them promising candidates for synthetic enzyme mimics. Conformationally flexible, chemically robust structures are needed for adaptable guest binding and catalysis, but rapidly exchanging systems are difficult to resolve in solution. Here, we use low-cost calculations and high-throughput crystallisation to identify accessible conformers of a recently reported organic cage by 'locking' them in the solid state. The conformers exhibit varying distances between the internal carboxylic acid groups, suggesting adaptability for binding a wide array of target guest molecules.
Collapse
Affiliation(s)
- C E Shields
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| | - T Fellowes
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| | - A G Slater
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| | - A I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| | - K G Andrews
- Department of Chemistry, Durham University, Lower Mount Joy, South Rd, Durham, DH1 3LE, UK.
| | - F T Szczypiński
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| |
Collapse
|
18
|
Li Q, Yu Z, Redshaw C, Xiao X, Tao Z. Double-cavity cucurbiturils: synthesis, structures, properties, and applications. Chem Soc Rev 2024; 53:3536-3560. [PMID: 38414424 DOI: 10.1039/d3cs00961k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Double-cavity Q[n]s are relatively new members of the Q[n] family and have garnered significant interest due to their distinctive structures and novel properties. While they incorporate n glycoluril units, akin to their single-cavity counterparts, their geometry can best be described as resembling a figure-of-eight or a handcuff, distinguishing them from single-cavity Q[n]s. Despite retaining the core molecular recognition traits of single-cavity Q[n]s, these double-cavity variants introduce fascinating new attributes rooted in their distinct configurations. This overview delves into the synthesis, structural attributes, properties, and intriguing applications of double-cavity Q[n]s. Some of the applications explored include their role in supramolecular polymers, molecular machinery, supra-amphiphiles, sensors, artificial light-harvesting systems, and adsorptive separation materials. Upon concluding this review, we discuss potential challenges and avenues for future development and offer valuable insights for other scholars working in this area with the aim of stimulating further exploration and interest.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhengwei Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| |
Collapse
|
19
|
He Y, Zhou J, Li Y, Yang YD, Sessler JL, Chi X. Fluorinated Nonporous Adaptive Cages for the Efficient Removal of Perfluorooctanoic Acid from Aqueous Source Phases. J Am Chem Soc 2024; 146:6225-6230. [PMID: 38386658 DOI: 10.1021/jacs.3c14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) accumulate in water resources and pose serious environmental and health threats due to their nonbiodegradable nature and long environmental persistence times. Strategies for the efficient removal of PFAS from contaminated water are needed to address this concern. Here, we report a fluorinated nonporous adaptive crystalline cage (F-Cage 2) that exploits electrostatic interaction, hydrogen bonding, and F-F interactions to achieve the efficient removal of perfluorooctanoic acid (PFOA) from aqueous source phases. F-Cage 2 exhibits a high second-order kobs value of approximately 441,000 g mg-1 h-1 for PFOA and a maximum PFOA adsorption capacity of 45 mg g-1. F-Cage 2 can decrease PFOA concentrations from 1500 to 6 ng L-1 through three rounds of flow-through purification, conducted at a flow rate of 40 mL h-1. Elimination of PFOA from PFOA-loaded F-Cage 2 is readily achieved by rinsing with a mixture of MeOH and saturated NaCl. Heating at 80 °C under vacuum then makes F-Cage 2 ready for reuse, as demonstrated across five successive uptake and release cycles. This work thus highlights the potential utility of suitably designed nonporous adaptive crystals as platforms for PFAS remediation.
Collapse
Affiliation(s)
- Yanlei He
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianqiao Zhou
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Li
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu-Dong Yang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Xiaodong Chi
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
20
|
Li M, Shao L, Liu Z, Liu R, Stoikov II, Khashab NM, Hua B, Huang F. Cis- Trans and Length-Selective Molecular Discrimination of Halogenated Organic Compounds by a Crystalline Hybrid Macrocyclic Arene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6614-6622. [PMID: 38276951 DOI: 10.1021/acsami.3c15729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The development of adsorbents with robust molecular discrimination capabilities for halogenated organic compounds (HOCs) holds significant importance due to their potential in adsorptive separation and mitigation of associated health risks. In this study, we report a molecular discrimination behavior based on crystalline hybrid macrocyclic arene H, offering precise capture of cis-trans isomers and length-selective separation of HOCs. The activated H crystals (Hα) demonstrate exceptional discrimination and separation performance by selectively capturing trans-1,2-dichloroethylene (trans-DCE) from cis/trans-isomer mixtures with a high selectivity of 98.8%. Evidenced by single-crystal X-ray diffraction and density functional theory (DFT) calculations, this high adsorption selectivity arises from the formation of more stable complex crystals between H and the preferred guest trans-DCE. Moreover, Hα exhibits the ability to selectively trap size-matched 1,2-dibromoethane (DBE) from mixtures of alkylene dibromides with varying alkane-chain lengths, although their capture and separation are recognized to be difficult as a consequence of low-polarity bonds. The solid-state transformations between guest-free and guest-containing Hα crystals indicate their recyclability, showcasing promising prospects for potential applications.
Collapse
Affiliation(s)
- Ming Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zhongwen Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Rui Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Ivan I Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
21
|
Zhou W, Lavendomme R, Zhang D. Recent progress in iodine capture by macrocycles and cages. Chem Commun (Camb) 2024; 60:779-792. [PMID: 38126398 DOI: 10.1039/d3cc05337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The effective capture of radioiodine is vital to the development of the nuclear industry and ecological environmental protection. There is, therefore, a continuously growing research exploration in various types of solid-state materials for iodine capture. During the last decade, the potential of using macrocycle and cage-based supramolecular materials in effective uptake and separation of radioactive iodine has been demonstrated. Interest in the application of these materials in iodine capture originates from their diversified porous characteristics, abundant host-guest chemistry, high iodine affinity and adsorption capacity, high stability in various environments, facile modification and functionalization, and intrinsic structural flexibility, among other attributes. Herein, recent progress in macrocycle and cage-based solid-state materials, including pure discrete macrocycles and cages, and their polymeric forms, for iodine capture is summarized and discussed with an emphasis on iodine capture capacities, mechanisms, and design strategies.
Collapse
Affiliation(s)
- Weinan Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Roy Lavendomme
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/08, B-1050 Brussels, Belgium
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
22
|
Ferrando-Soria J, Fernandez A. Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials. NANO-MICRO LETTERS 2024; 16:88. [PMID: 38214764 PMCID: PMC10786801 DOI: 10.1007/s40820-023-01237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/24/2023] [Indexed: 01/13/2024]
Abstract
Porous organic molecular materials (POMMs) are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks, mainly held by non-covalent interactions. POMMs represent a variety of chemical families, such as hydrogen-bonded organic frameworks, porous organic salts, porous organic cages, C - H⋅⋅⋅π microporous crystals, supramolecular organic frameworks, π-organic frameworks, halogen-bonded organic framework, and intrinsically porous molecular materials. In some porous materials such as zeolites and metal organic frameworks, the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties. Therefore, considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials, we consider it appropriate to dedicate for the first time a critical review covering both topics. Herein, we will provide a summary of literature examples showcasing hierarchical POMMs, with a focus on their main synthetic approaches, applications, and the advantages brought forth by introducing hierarchy.
Collapse
Affiliation(s)
- Jesus Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Valencia, Spain.
| | - Antonio Fernandez
- School of Science, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
23
|
Rahmani M, Matos CMO, Wang SQ, Bezrukov AA, Eaby AC, Sensharma D, Hjiej-Andaloussi Y, Vandichel M, Zaworotko MJ. Highly Selective p-Xylene Separation from Mixtures of C8 Aromatics by a Nonporous Molecular Apohost. J Am Chem Soc 2023; 145:27316-27324. [PMID: 38055597 PMCID: PMC10739993 DOI: 10.1021/jacs.3c07198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
High and increasing production of separation of C8 aromatic isomers demands the development of purification methods that are efficient, scalable, and inexpensive, especially for p-xylene, PX, the largest volume C8 commodity. Herein, we report that 4-(1H-1,2,4-triazol-1-yl)-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (TPBD), a molecular compound that can be prepared and scaled up via solid-state synthesis, exhibits exceptional PX selectivity over each of the other C8 isomers, o-xylene (OX), m-xylene (MX), and ethylbenzene (EB). The apohost or α form of TPBD was found to exhibit conformational polymorphism in the solid state enabled by rotation of its triazole and benzene rings. TPBD-αI and TPBD-αII are nonporous polymorphs that transformed to the same PX inclusion compound, TPBD-PX, upon contact with liquid PX. TPBD enabled highly selective capture of PX, as established by competitive slurry experiments involving various molar ratios in binary, ternary, and quaternary mixtures of C8 aromatics. Binary selectivity values for PX as determined by 1H NMR spectroscopy and gas chromatography ranged from 22.4 to 108.4, setting new benchmarks for both PX/MX (70.3) and PX/EB (59.9) selectivity as well as close to benchmark selectivity for PX/OX (108.4). To our knowledge, TPBD is the first material of any class to exhibit such high across-the-board PX selectivity from quaternary mixtures of C8 aromatics under ambient conditions. Crystallographic and computational studies provide structural insight into the PX binding site in TPBD-PX, whereas thermal stability and capture kinetics were determined by variable-temperature powder X-ray diffraction and slurry tests, respectively. That TPBD offers benchmark PX selectivity and facile recyclability makes it a prototypal molecular compound for PX purification or capture under ambient conditions.
Collapse
Affiliation(s)
- Maryam Rahmani
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Catiúcia
R. M. O. Matos
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shi-Qiang Wang
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, 138634 Singapore
| | - Andrey A. Bezrukov
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Alan C. Eaby
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Debobroto Sensharma
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Yassin Hjiej-Andaloussi
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Matthias Vandichel
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Michael J. Zaworotko
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| |
Collapse
|
24
|
Moosa B, Alimi LO, Lin W, Fakim A, Bhatt PM, Eddaoudi M, Khashab NM. Fluorine-Boosted Kinetic and Selective Molecular Sieving of C6 Derivatives. Angew Chem Int Ed Engl 2023; 62:e202311555. [PMID: 37747113 DOI: 10.1002/anie.202311555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Porous molecular sorbents have excellent selectivity towards hydrocarbon separation with energy saving techniques. However, to realize commercialization, molecular sieving processes should be faster and more efficient compared to extended frameworks. In this work, we show that utilizing fluorine to improve the hydrophobic profile of leaning pillararenes affords a substantial kinetic selective adsorption of benzene over cyclohexane (20 : 1 for benzene). The crystal structure shows a porous macrocycle that acts as a perfect match for benzene in both the intrinsic and extrinsic cavities with strong interactions in the solid state. The fluorinated leaning pillararene surpasses all reported organic molecular sieves and is comparable to the extended metal-organic frameworks that were previously employed for this separation such as UIO-66. Most importantly, this sieving system outperformed the well-known zeolitic imidazolate frameworks under low pressure, which opens the door to new generations of molecular sieves that can compete with extended frameworks for more sustainable hydrocarbon separation.
Collapse
Affiliation(s)
- Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Weibin Lin
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aliyah Fakim
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Prashant M Bhatt
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
Zhang G, Lin W, Huang F, Sessler J, Khashab NM. Industrial Separation Challenges: How Does Supramolecular Chemistry Help? J Am Chem Soc 2023; 145:19143-19163. [PMID: 37624708 DOI: 10.1021/jacs.3c06175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The chemical industry and the chemical processes underscoring it are under intense scrutiny as the demands for the transition to more sustainable and environmentally friendly practices are increasing. Traditional industrial separation systems, such as thermally driven distillation for hydrocarbon purification, are energy intensive. The development of more energy efficient separation technologies is thus emerging as a critical need, as is the creation of new materials that may permit a transition away from classic distillation-based separations. In this Perspective, we focus on porous organic cages and macrocycles that can adsorb guest molecules selectively through various host-guest interactions and permit molecular sieving behavior at the molecular level. Specifically, we summarize the recent advances where receptor-based adsorbent materials have been shown to be effective for industrially relevant hydrocarbon separations, highlighting the underlying host-guest interactions that impart selectivity and permit the observed separations. This approach to sustainable separations is currently in its infancy. Nevertheless, several receptor-based adsorbent materials with extrinsic/intrinsic voids or special functional groups have been reported in recent years that can selectively capture various targeted guest molecules. We believe that the understanding of the interactions that drive selectivity at a molecular level accruing from these initial systems will permit an ever-more-effective "bottom-up" design of tailored molecular sieves that, in due course, will allow adsorbent material-based approaches to separations to transition from the laboratory into an industrial setting.
Collapse
Affiliation(s)
- Gengwu Zhang
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Weibin Lin
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| | - Jonathan Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
26
|
Cheng K, Li H, Wang JR, Li PZ, Zhao Y. From Supramolecular Organic Cages to Porous Covalent Organic Frameworks for Enhancing Iodine Adsorption Capability by Fully Exposed Nitrogen-Rich Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301998. [PMID: 37162443 DOI: 10.1002/smll.202301998] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Indexed: 05/11/2023]
Abstract
In order to overcome the limitations of supramolecular organic cages for their incomplete accessibility of active sites in the solid state and uneasy recyclability in liquid solution, herein a nitrogen-rich organic cage is rationally linked into framework systems and four isoreticular covalent organic frameworks (COFs), that is, Cage-TFB-COF, Cage-NTBA-COF, Cage-TFPB-COF, and Cage-TFPT-COF, are successfully synthesized. Structure determination reveals that they are all high-quality crystalline materials derived from the eclipsed packing of related isoreticular two-dimensional frameworks. Since the nitrogen-rich sites usually have a high affinity toward iodine species, iodine adsorption investigations are carried out and the results show that all of them display an enhancement in iodine adsorption capacities. Especially, Cage-NTBA-COF exhibits an iodine adsorption capacity of 304 wt%, 14-fold higher than the solid sample packed from the cage itself. The strong interactions between the nitrogen-rich sites and the adsorbed iodine species are revealed by spectral analyses. This work demonstrates that, utilizing the reticular chemistry strategy to extend the close-packed supramolecular organic cages into crystalline porous framework solids, their inherent properties can be greatly exploited for targeted applications.
Collapse
Affiliation(s)
- Ke Cheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Hailian Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Jia-Rui Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Pei-Zhou Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
27
|
Zhang L, Wang N, Li Y. Design, synthesis, and application of some two-dimensional materials. Chem Sci 2023; 14:5266-5290. [PMID: 37234883 PMCID: PMC10208047 DOI: 10.1039/d3sc00487b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Two-dimensional (2D) materials are widely used as key components in the fields of energy conversion and storage, optoelectronics, catalysis, biomedicine, etc. To meet the practical needs, molecular structure design and aggregation process optimization have been systematically carried out. The intrinsic correlation between preparation methods and the characteristic properties is investigated. This review summarizes the recent research achievements of 2D materials in the aspect of molecular structure modification, aggregation regulation, characteristic properties, and device applications. The design strategies to fabricate functional 2D materials starting from precursor molecules are introduced in detail referring to organic synthetic chemistry and self-assembly technology. It provides important research ideas for the design and synthesis of related materials.
Collapse
Affiliation(s)
- Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| |
Collapse
|
28
|
Carvalho S, Pires J, Moiteiro C, Pinto ML. Evaluation of an Imine-Linked Polymer Organic Framework for Storage and Release of H 2S and NO. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1655. [PMID: 36837282 PMCID: PMC9967787 DOI: 10.3390/ma16041655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are especially known as toxic and polluting gases, yet they are also endogenously produced and play key roles in numerous biological processes. These two opposing aspects of the gases highlight the need for new types of materials to be developed in addition to the most common materials such as activated carbons and zeolites. Herein, a new imine-linked polymer organic framework was obtained using the inexpensive and easy-to-access reagents isophthalaldehyde and 2,4,6-triaminopyrimidine in good yield (64%) through the simple and catalyst-free Schiff-base reaction. The polymeric material has microporosity, an ABET surface area of 51 m2/g, and temperature stability up to 300 °C. The obtained 2,4,6-triaminopyrimidine imine-linked polymer organic material has a higher capacity to adsorb NO (1.6 mmol/g) than H2S (0.97 mmol/g). Release studies in aqueous solution showed that H2S has a faster release (3 h) from the material than NO, for which a steady release was observed for at least 5 h. This result is the first evaluation of the possibility of an imine-linked polymer organic framework being used in the therapeutic release of NO or H2S.
Collapse
Affiliation(s)
- Sílvia Carvalho
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Campus Alameda, 1049-001 Lisboa, Portugal
- CQE, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - João Pires
- CQE, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cristina Moiteiro
- CQE, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Moisés L. Pinto
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Campus Alameda, 1049-001 Lisboa, Portugal
| |
Collapse
|
29
|
Prusinowska N, Szymkowiak J, Kwit M. Unravelling Structural Dynamics, Supramolecular Behavior, and Chiroptical Properties of Enantiomerically Pure Macrocyclic Tertiary Ureas and Thioureas. J Org Chem 2023; 88:285-299. [PMID: 36480555 PMCID: PMC9830626 DOI: 10.1021/acs.joc.2c02319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The introduction of urea or thiourea functionality to the macrocycle skeleton represents an alternative way to control conformational dynamics of chiral, polyamines of a figure-shaped periodical structure. Formally highly symmetrical, these macrocycles may adapt diverse conformations, depending on the nature of an amide linker and on a substitution pattern within the aromatic units. The type of heteroatom X in the N-C(═X)-N units present in each vertex of the macrocycle core constitutes the main factor determining the chiroptical properties. In contrast to the urea-containing derivatives, the electronic circular dichroism of thioureas is controlled by the chiral neighborhood closest to the chromophore. The dynamically induced exciton couplet is observed when the biphenyl chromophores are present in the macrocycle core. In the solid state, the seemingly disordered molecules may create ordered networks stabilized by intermolecular S···halogen, H···halogen, and S···H interactions. The presence of two bromine substituents in each aromatic unit in thiourea-derived trianglamine gives rise to a self-sorting phenomenon in the crystal. In solution, this particular macrocycle exists as a dynamic equimolar mixture of two conformational diastereoisomers, differing in the spatial (clockwise and counter clockwise) arrangement of the C-Br bonds. In the crystal lattice, macrocycles of a given handedness assemble into homohelical layers.
Collapse
Affiliation(s)
- Natalia Prusinowska
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznan, Poland
| | - Joanna Szymkowiak
- Faculty
of Science, Department of Chemistry University
of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Marcin Kwit
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznan, Poland,E-mail:
| |
Collapse
|
30
|
Selective gradient separation of aminophenol isomers by cucurbit[6]uril. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Sumida R, Matsumoto T, Yokoi T, Yoshizawa M. A Porous Polyaromatic Solid for Vapor Adsorption of Xylene with High Efficiency, Selectivity, and Reusability. Chemistry 2022; 28:e202202825. [PMID: 36129172 PMCID: PMC10092481 DOI: 10.1002/chem.202202825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 12/29/2022]
Abstract
Development of porous materials capable of capturing volatile organic compounds (VOCs), such as benzene and its derivatives, with high efficiency, selectivity, and reusability is highly demanded. Here we report unusual vapor adsorption behavior toward VOCs by a new porous solid, composed of a polyaromatic capsule bearing a spherical nanocavity with subnano-sized windows. Without prior crystallization and high-temperature vacuum drying, the porous polyaromatic solid exhibits the following five features: vapor adsorption of benzene over cyclohexane with 90 % selectivity, high affinity toward o-xylene over benzene and toluene with >80 % selectivity, ortho-selective adsorption ability (>50 %) from mixed xylene isomers, tight VOCs storage even under high temperature and vacuum conditions, and at least 5 times reusability for xylene adsorption. The observed adsorption abilities are accomplished at ambient temperature and pressure within 1 h, which has not been demonstrated by organic/inorganic porous materials reported previously.
Collapse
Affiliation(s)
- Ryuki Sumida
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research Tokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Takeshi Matsumoto
- Nanospace Catalysis Unit Institute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Toshiyuki Yokoi
- Nanospace Catalysis Unit Institute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research Tokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| |
Collapse
|
32
|
Li G, Gong W, Yang L, Cheng M, Yan H, Quan J, Zhang F, Lu Z, Li H. Guest-Induced Planar-Chiral Pillar[5]arene Surface for Selectively Adsorbing Protein Based on Host-Guest Chemistry. Bioconjug Chem 2022; 33:2237-2244. [PMID: 34898177 DOI: 10.1021/acs.bioconjchem.1c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In living systems, the adsorption of a protein on biointerfaces is a universal phenomenon, such as the specific binding of an antibody and antigen, which plays an important role in body growth and life maintenance. The exploration of a protein-selective adsorption on the biointerface is of great significance for understanding the life process and treatment in vitro. Herein, on the basis of biomimetic strategies, we fabricated a planar-chiral NH2-pillar[5]arene modified silicon surface (pR-/pS-NP5 surfaces) for a highly enantioselective adsorption of protein by taking advantage of the guest-induced planar chirality of pillar[5]arenes. Results from practical experiments and theoretical calculations show that the pR-NP5 surface possesses a high adsorption capacity and chiral selectivity for bovine serum albumin (BSA). Moreover, it was identified that the guest-induced chiral effect the generation and amplification of planar chirality, which was much beneficial for enhancing the interaction between planar-chiral pillar[5]arene host and BSA. The binding capacity of pR-NP5 and BSA is stronger than that of pS-NP5, thus promoting the chiral selective adsorption of BSA. This work affords a deeper understanding of the chiral influence of protein adsorption on biointerfaces and meanwhile provides a new perspective for chiral-sensing applications.
Collapse
Affiliation(s)
- Guang Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen Gong
- Department of Cardiology, The Third People's Hospital of Hubei Province Hospital of Hubei Province, Wuhan 430030, P. R. China
| | - Lei Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hewei Yan
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jiaxin Quan
- Department of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, P. R. China
| | - Fan Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhiyan Lu
- Department of Forensic Medicine, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang District, Wuhan 430071, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
33
|
Chiappone A, Pedico A, Porcu S, Pirri CF, Lamberti A, Roppolo I. Photocurable 3D-Printable Systems with Controlled Porosity towards CO 2 Air Filtering Applications. Polymers (Basel) 2022; 14:polym14235265. [PMID: 36501659 PMCID: PMC9740396 DOI: 10.3390/polym14235265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
Porous organic polymers are versatile platforms, easily adaptable to a wide range of applications, from air filtering to energy devices. Their fabrication via vat photopolymerization enables them to control the geometry on a multiscale level, obtaining hierarchical porosity with enhanced surface-to-volume ratio. In this work, a photocurable ink based on 1,6 Hexanediol diacrylate and containing a high internal phase emulsion (HIPE) is presented, employing PLURONIC F-127 as a surfactant to generate stable micelles. Different parameters were studied to assess the effects on the morphology of the pores, the printability and the mechanical properties. The tests performed demonstrates that only water-in-oil emulsions were suitable for 3D printing. Afterwards, 3D complex porous objects were printed with a Digital Light Processing (DLP) system. Structures with large, interconnected, homogeneous porosity were fabricated with high printing precision (300 µm) and shape fidelity, due to the addition of a Radical Scavenger and a UV Absorber that improved the 3D printing process. The formulations were then used to build scaffolds with complex architecture to test its application as a filter for CO2 absorption and trapping from environmental air. This was obtained by surface decoration with NaOH nanoparticles. Depending on the surface coverage, tested specimens demonstrated long-lasting absorption efficiency.
Collapse
Affiliation(s)
- Annalisa Chiappone
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, S.S. 554 bivio Sestu, 09042 Monserrato, Italy
| | - Alessandro Pedico
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technology Polito, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
| | - Stefania Porcu
- Department of Physics, Università di Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, Italy
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technology Polito, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
| | - Andrea Lamberti
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technology Polito, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technology Polito, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
- Correspondence: ; Tel.: +39-0110907412
| |
Collapse
|
34
|
Halliwell CA, Dann SE, Ferrando‐Soria J, Plasser F, Yendall K, Ramos‐Fernandez EV, Vladisavljević GT, Elsegood MRJ, Fernandez A. Hierarchical Assembly of a Micro- and Macroporous Hydrogen-Bonded Organic Framework with Tailored Single-Crystal Size. Angew Chem Int Ed Engl 2022; 61:e202208677. [PMID: 36161683 PMCID: PMC9827975 DOI: 10.1002/anie.202208677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 01/12/2023]
Abstract
Porous organic molecular materials represent an emergent field of research in Chemistry and Materials Science due to their unique combination of properties. To enhance their performance and expand the number of applications, the incorporation of hierarchical porosity is required, as exclusive microporosity entails several limitations. However, the integration of macropores in porous organic molecular materials is still an outstanding challenge. Herein, we report the first example of a hydrogen-bonded organic framework (MM-TPY) with hierarchical skeletal morphology, containing stable micro- and macroporosity. The crystal size, from micro to centimetre scale, can be controlled in a single step without using additives or templates. The mechanism of assembly during the crystal formation is compatible with a skeletal crystal growth. As proof of concept, we employed the hierarchical porosity as a platform for the dual, sequential and selective co-recognition of molecular species and microparticles.
Collapse
Affiliation(s)
| | - Sandra E. Dann
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | | | - Felix Plasser
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | - Keith Yendall
- School of AeronauticalAutomotiveChemical and Materials EngineeringAACME)Loughborough UniversityLoughboroughLE11 3TUUK
| | - Enrique V. Ramos‐Fernandez
- Laboratorio de Materiales AvanzadosDepartamento de Química Inorgánica-Instituto Universitario de Materiales de AlicanteUniversity of AlicanteAlicanteE-03080Spain
| | - Goran T. Vladisavljević
- School of AeronauticalAutomotiveChemical and Materials EngineeringAACME)Loughborough UniversityLoughboroughLE11 3TUUK
| | - Mark R. J. Elsegood
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | - Antonio Fernandez
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| |
Collapse
|
35
|
Wu JR, Wu G, Yang YW. Pillararene-Inspired Macrocycles: From Extended Pillar[ n]arenes to Geminiarenes. Acc Chem Res 2022; 55:3191-3204. [PMID: 36265167 DOI: 10.1021/acs.accounts.2c00555] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
chemistry since their establishment due to their innate functional features of molecular recognition and complexation. The rapid development of modern supramolecular chemistry has also significantly benefited from creating new macrocycles with distinctive geometries and properties. For instance, pillar[n]arenes (pillarenes), a relatively young generation of star macrocyclic hosts among the well-established ones (e.g., crown ethers, cyclodextrins, cucurbiturils, and calixarenes), promoted a phenomenal research hotspot all over the world in the past decade. Although the synthesis, host-guest properties, and various supramolecular functions of pillarenes have been intensively studied, many objective limitations and challenges still cannot be ignored. For example, high-level pillar[n]arenes (n > 7) usually do not possess applicable large-sized cavities due to structural folding and cannot be synthesized on a large scale because of the uncompetitive cyclization process. Furthermore, two functional groups must be covalently para-connected to each repeating phenylene unit, which severely limits their structural diversity and flexibility. In this context, we have developed a series of pillarene-inspired macrocycles (PIMs) using a versatile and modular synthetic strategy during the past few years, aiming to break through the synthetic limitations in traditional pillarenes and find new opportunities and challenges in supramolecular chemistry and beyond. Specifically, by grafting biphenyl units into the pillarene backbones, extended pillar[n]arenes with rigid and nanometer-sized cavities could be obtained with reasonable synthetic yields by selectively removing hydroxy/alkoxy substitutes on pillarene backbones, leaning pillar[6]arenes and leggero pillar[n]arenes with enhanced structural flexibility and cavity adaptability were obtained. By combining the two types of bridging modes in pillarenes and calixarenes, a smart macrocyclic receptor with two different but interconvertible conformational features, namely geminiarene, was discovered. Benefiting from the synthetic accessibility, facile functionalization, and superior host-guest properties in solution or the solid state, this new family of macrocycles has exhibited a broad range of applications, including but not limited to supramolecular assembly/gelation/polymers, pollutant detection and separation, porous organic polymers, crystalline/amorphous molecular materials, hybrid materials, and controlled drug delivery. Thus, in this Account, we summarize our research efforts on these PIMs. We first present an overview of their design and modular synthesis and a summary of their derivatization strategies. Thereafter, particular attention is paid to their structural features, supramolecular functions, and application exploration. Finally, the remaining challenges and perspectives are outlined for their future development. We hope that this Account and our works can stimulate further advances in synthetic macrocyclic chemistry and supramolecular functional systems, leading to practical applications in various research areas.
Collapse
Affiliation(s)
- Jia-Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| |
Collapse
|
36
|
King D, Wilson CR, Herron L, Deng CL, Mehdi S, Tiwary P, Hof F, Isaacs L. Molecular recognition of methylated amino acids and peptides by Pillar[6]MaxQ. Org Biomol Chem 2022; 20:7429-7438. [PMID: 36097881 PMCID: PMC9632254 DOI: 10.1039/d2ob01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the molecular recognition properties of Pillar[n]MaxQ (P[n]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N-methylated amino acid side chains. P6MQ recognized the H3K4Me3 peptide with Kd = 16 nM in phosphate buffered saline.
Collapse
Affiliation(s)
- David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Chelsea R Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lukas Herron
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Shams Mehdi
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
37
|
La Cognata S, Mobili R, Milanese C, Boiocchi M, Gaboardi M, Armentano D, Jansen JC, Monteleone M, Antonangelo AR, Carta M, Amendola V. CO 2 Separation by Imide/Imine Organic Cages. Chemistry 2022; 28:e202201631. [PMID: 35762229 PMCID: PMC9545214 DOI: 10.1002/chem.202201631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 11/12/2022]
Abstract
Two novel imide/imine-based organic cages have been prepared and studied as materials for the selective separation of CO2 from N2 and CH4 under vacuum swing adsorption conditions. Gas adsorption on the new compounds showed selectivity for CO2 over N2 and CH4 . The cages were also tested as fillers in mixed-matrix membranes for gas separation. Dense and robust membranes were obtained by loading the cages in either Matrimid® or PEEK-WC polymers. Improved gas-transport properties and selectivity for CO2 were achieved compared to the neat polymer membranes.
Collapse
Affiliation(s)
- Sonia La Cognata
- Department of ChemistryUniversity of PaviaViale Tarquato Taramelli 12Pavia27100Italy
| | - Riccardo Mobili
- Department of ChemistryUniversity of PaviaViale Tarquato Taramelli 12Pavia27100Italy
| | - Chiara Milanese
- Department of ChemistryUniversity of PaviaViale Tarquato Taramelli 12Pavia27100Italy
| | - Massimo Boiocchi
- Centro Grandi StrumentiUniversity of PaviaVia Bassi 21Pavia27100Italy
| | - Mattia Gaboardi
- Elettra sincrotrone Trieste S.C.p.a.Area science parkBasovizza (TS)34149Italy
| | - Donatella Armentano
- Department of Chemistry & Chemical TechnologiesUniversity of CalabriaVia P. Bucci, 13/C87036Rende (CS)Italy
| | - Johannes C. Jansen
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)Via P. Bucci 17/CRende (CS)87036Italy
| | - Marcello Monteleone
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)Via P. Bucci 17/CRende (CS)87036Italy
| | - Ariana R. Antonangelo
- Department of ChemistryCollege of ScienceSwansea UniversitySingleton ParkSwanseaWales, SA2 8PPUK
| | - Mariolino Carta
- Department of ChemistryCollege of ScienceSwansea UniversitySingleton ParkSwanseaWales, SA2 8PPUK
| | - Valeria Amendola
- Department of ChemistryUniversity of PaviaViale Tarquato Taramelli 12Pavia27100Italy
| |
Collapse
|
38
|
Liu M, Cen R, Li J, Li Q, Tao Z, Xiao X, Isaacs L. Double‐Cavity
Nor
‐
Seco
‐Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine. Angew Chem Int Ed Engl 2022; 61:e202207209. [DOI: 10.1002/anie.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ming Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Ran Cen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Jisen Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Qing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Zhu Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland, College Park College Park MD 20742 USA
| |
Collapse
|
39
|
Zhai C, Isaacs L. New Synthetic Route to Water‐Soluble Prism[5]arene Hosts and Their Molecular Recognition Properties**. Chemistry 2022; 28:e202201743. [DOI: 10.1002/chem.202201743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Canjia Zhai
- Department of Chemistry and Biochemistry University of Maryland College Park 20742 Maryland USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland College Park 20742 Maryland USA
| |
Collapse
|
40
|
Liyana Gunawardana VW, Finnegan TJ, Ward CE, Moore CE, Badjić JD. Dissipative Formation of Covalent Basket Cages. Angew Chem Int Ed Engl 2022; 61:e202207418. [PMID: 35723284 PMCID: PMC9544755 DOI: 10.1002/anie.202207418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/23/2022]
Abstract
Living systems use chemical fuels to transiently assemble functional structures. As a step toward constructing abiotic mimics of such structures, we herein describe dissipative formation of covalent basket cage CBC 5 by reversible imine condensation of cup-shaped aldehyde 2 (i.e., basket) with trivalent aromatic amine 4. This nanosized [4+4] cage (V=5 nm3 , Mw =6150 Da) has shape of a truncated tetrahedron with four baskets at its vertices and four aromatic amines forming the faces. Importantly, tris-aldehyde basket 2 and aliphatic tris-amine 7 undergo condensation to give small [1+1] cage 6. The imine metathesis of 6 and aromatic tris-amine 4 into CBC 5 was optimized to bias the equilibrium favouring 6. Addition of tribromoacetic acid (TBA) as a chemical fuel perturbs this equilibrium to result in the transient formation of CBC 5, with subsequent consumption of TBA via decarboxylation driving the system back to the starting state.
Collapse
Affiliation(s)
| | - Tyler J. Finnegan
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Carson E. Ward
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Curtis E. Moore
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Jovica D. Badjić
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| |
Collapse
|
41
|
Hou Y, Duan YR, Ding MH, Tang LL, Zeng F. Adsorptive separation of para-xylene by nonporous adaptive crystals of phenanthrene[2]arene. RSC Adv 2022; 12:22060-22063. [PMID: 36043113 PMCID: PMC9362102 DOI: 10.1039/d2ra03773d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, we developed a new method for the preparation of phenanthrene[2]arene on a large-scale. Meanwhile, the synthetic phenanthrene[2]arene has been successfully used as nonporous adaptive crystals for the separation of para-xylene (pX) from xylene isomers. The crystal structure revealed that one host molecule can adsorb one pX molecule to form the 1@pX complex, in which pX is located in the cavity of the host. A new method for the preparation of phenanthrene[2]arene on a large-scale was developed. The synthetic phenanthrene[2]arene has been successfully used as nonporous adaptive crystals for the separation of para-xylene from xylene isomers.![]()
Collapse
Affiliation(s)
- Ying Hou
- Department of Biology and Chemistry, Hunan University of Science and Engineering Yongzhou 425199 China
| | - Yin-Rong Duan
- Department of Biology and Chemistry, Hunan University of Science and Engineering Yongzhou 425199 China
| | - Man-Hua Ding
- Department of Biology and Chemistry, Hunan University of Science and Engineering Yongzhou 425199 China
| | - Lin-Li Tang
- Department of Biology and Chemistry, Hunan University of Science and Engineering Yongzhou 425199 China
| | - Fei Zeng
- Department of Biology and Chemistry, Hunan University of Science and Engineering Yongzhou 425199 China
| |
Collapse
|
42
|
Duan Z, Bian H, Zhu L, Xia D. Efficient removal of thiophenic sulfides from fuel by micro-mesoporous 2-hydroxypropyl-β-cyclodextrin polymers through synergistic effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Liu M, Cen R, Li J, Li Q, Tao Z, Xiao X, Isaacs L. Double‐Cavity Nor‐Seco‐Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ming Liu
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Ran Cen
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Jisen Li
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Qing Li
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Zhu Tao
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Xin Xiao
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Lyle Isaacs
- University of Maryland at College Park Department of Chemistry and Biochemistry Building 091 20742 College Park UNITED STATES
| |
Collapse
|
44
|
Geng T, Wang F, Fang X, Xia H. An eight‐membered cyclosiloxane conjugated microporous polymer performed a rapid and sensitive fluorescence detection of 2,4‐dinitrophenol. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tongmou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| | - Fengqiang Wang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| | - Xuechun Fang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| | - Hongyu Xia
- School of Resources and Environment Anqing Normal University Anqing China
| |
Collapse
|
45
|
Liu C, Jin Y, Yu Z, Gong L, Wang H, Yu B, Zhang W, Jiang J. Transformation of Porous Organic Cages and Covalent Organic Frameworks with Efficient Iodine Vapor Capture Performance. J Am Chem Soc 2022; 144:12390-12399. [PMID: 35765245 DOI: 10.1021/jacs.2c03959] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The reaction of 5,5'-([2,2'-bipyridine]-5,5'-diyl)diisophthalaldehyde (BPDDP) with cyclohexanediamine and [benzidine (BZ)/[2,2'-bipyridine]-5,5'-diamine (BPDA)], respectively, affords a nitrogen-rich porous organic cage BPPOC and two two-dimensional (2D) covalent organic frameworks (COFs), USTB-1 and USTB-2 (USTB = University of Science and Technology Beijing), under suitable conditions. Interestingly, BPPOC with a single-crystal X-ray diffraction structure is able to successfully transform into USTB-1 and USTB-2 (newly converted COFs denoted as USTB-1c and USTB-2c, respectively) upon exchange of the imine unit of cyclohexanediamine in the cage by BZ and BPDA. Such a transformation also enables the isolation of analogous COFs (USTB-3c and USTB-4c) on the basis of an isostructural organic cage, BTPOC, which is derived from 5,5'-([2,2'-bithiophene]-4,4'-diyl)diisophthalaldehyde (BTDDP) and cyclohexanediamine. However, the conventional solvothermal reaction between BTDDP and BPDA leads to an impure phase of USTB-4 containing incompletely converted aldehyde groups due to the limited solubility of the building block. The newly prepared COFs have been characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. In particular, BPPOC is able to absorb the iodine vapor with an uptake of 5.64 g g-1, breaking the porous organic cage's (POC's) record value of 3.78 g g-1. Nevertheless, the cage-derived COFs exhibit improved iodine vapor adsorption capability in comparison with the directly synthesized counterparts, with the highest uptake of 5.80 g g-1 for USTB-1c. The mechanism investigation unveils the superiority of nitrogen atoms to sulfur atoms for POCs in iodine vapor capture with the assistance of definite crystal structures. This, in combination with porosity, synergistically influences the iodine vapor capture capacity of COFs.
Collapse
Affiliation(s)
- Chao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zonghua Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Zhang
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
46
|
Badjic JD, Liyana Gunawardana VW, Finnegan TJ, Ward CE, Moore CE. Dissipative Formation of Covalent Basket Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jovica D Badjic
- Ohio State University Department of Chemistry 100 W. 18th Avenue 43210 Columbus UNITED STATES
| | | | | | | | | |
Collapse
|
47
|
Liu C, Jin Y, Qi D, Ding X, Ren H, Wang H, Jiang J. Enantioselective assembly and recognition of heterochiral porous organic cages deduced from binary chiral components. Chem Sci 2022; 13:7014-7020. [PMID: 35774155 PMCID: PMC9200113 DOI: 10.1039/d2sc01876d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Chiral recognition and discrimination is not only of significance in biological processes but also a powerful method to fabricate functional supramolecular materials. Herein, a pair of heterochiral porous organic cages (HPOC-1), out of four possible enantiomeric products, with mirror stereoisomeric crystal structures were cleanly prepared by condensation occurring in the exclusive combination of cyclohexanediamine and binaphthol-based tetraaldehyde enantiomers. Nuclear magnetic resonance and luminescence spectroscopy have been employed to monitor the assembly process of HPOC-1, revealing the clean formation of heterochiral organic cages due to the enantioselective recognition of (S,S)-binaphthol towards (R,R)-cyclohexanediamine derivatives and vice versa. Interestingly, HPOC-1 exhibits circularly polarized luminescence and enantioselective recognition of chiral substrates according to the circular dichroism spectral change. Theoretical simulations have been carried out, rationalizing both the enantioselective assembly and recognition of HPOC-1.
Collapse
Affiliation(s)
- Chao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Huimin Ren
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
48
|
Sun Q, Ding N, Zhao C, Zhang Q, Zhang S, Li S, Pang S. Full-nitro-nitroamino cooperative action: Climbing the energy peak of benzenes with enhanced chemical stability. SCIENCE ADVANCES 2022; 8:eabn3176. [PMID: 35319977 PMCID: PMC8942363 DOI: 10.1126/sciadv.abn3176] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 05/28/2023]
Abstract
More nitro groups accord benzenes with higher energy but lower chemical stability. Hexanitrobenzene (HNB) with a fully nitrated structure has stood as the energy peak of organic explosives since 1966, but it is very unstable and even decomposes in moist air. To increase the energy limit and strike a balance between energy and chemical stability, we propose an interval full-nitro-nitroamino cooperative strategy to present a new fully nitrated benzene, 1,3,5-trinitro-2,4,6-trinitroaminobenzene (TNTNB), which was synthesized using an acylation-activation-nitration method. TNTNB exhibits a high density (d: 1.995 g cm-3 at 173 K, 1.964 g cm-3 at 298 K) and excellent heat of detonation (Q: 7179 kJ kg-1), which significantly exceed those of HNB (Q: 6993 kJ kg-1) and the state-of-the-art explosive CL-20 (Q: 6534 kJ kg-1); thus, TNTNB represents the new energy peak for organic explosives. Compared to HNB, TNTNB also exhibits enhanced chemical stability in water, acids, and bases.
Collapse
Affiliation(s)
- Qi Sun
- School of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Ning Ding
- School of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Chaofeng Zhao
- School of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Qi Zhang
- Institute of Chemical Materials, China Academy of
Engineering Physics (CAEP), Mianyang 621050, China
| | - Shaowen Zhang
- School of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Shenghua Li
- School of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Siping Pang
- School of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| |
Collapse
|
49
|
Liu S, Li W, Chen C, Chen J, Wu X, Wang J. Ultrathin cyclodextrin nanofilm composite membranes for efficient separation of xylene isomers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Xu Y, Yu H, Jiang X, Shi J, Li B, Li L, Wu L, Wang M. Porous assembly of metallo‐supramolecule and polyoxometalate via ionic complexation with vapor sorption properties. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 Jilin China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 Jilin China
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 Jilin China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 Jilin China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 Jilin China
| | - Lu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 Jilin China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 Jilin China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 Jilin China
| |
Collapse
|