1
|
Le TT, Hoang VC, Ahn YY, Kim K, Chae KH, Kim SH, Moon GH. Sustainable mineralization of bisphenol A via iron-oxide-fortified manganese catalysts: Integrating radical and nonradical pathways for advanced wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138047. [PMID: 40157180 DOI: 10.1016/j.jhazmat.2025.138047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Nanoparticulate manganese dioxide (MnO2) was integrated into a ferric oxide (Fe2O3) framework via a coprecipitation technique followed by thermal annealing, yielding a porous composite structure enriched with surface pores and microcracks. The Mn:Fe stoichiometry played a critical role in determining the crystalline architecture, catalytic performance, and stability of the composites. In dark conditions, the degradation of Bisphenol A (BPA) through peroxydisulfate (PDS)-mediated electron transfer did not achieve complete mineralization. Under UV irradiation, however, the composite facilitated near-complete BPA mineralization due to a synergistic interaction between radical generation and electron transfer processes. Notably, nonradical mechanisms predominantly governed BPA degradation, with the PDS-MnO2 interaction being central to its efficiency. The Fe2O3 matrix improved structural stability, significantly reducing manganese ion leaching. Specifically, MnFe-12 (Mn:Fe 1:2) exhibited a 2200-fold reduction in Mn dissolution compared to bare MnO2. In situ X-ray absorption spectroscopy revealed that radical-mediated processes elevated the oxidation state of Mn ions, while Fe ions remained unchanged. The study highlights the importance of integrating radical and nonradical pathways to achieve efficient and sustainable degradation of persistent pollutants, offering insights for the rational design of advanced oxidation systems with enhanced structural integrity and catalytic efficiency.
Collapse
Affiliation(s)
- Thao Thi Le
- Extreme Materials Research Center & Climate Change Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Van Chinh Hoang
- Extreme Materials Research Center & Climate Change Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yong-Yoon Ahn
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Sang Hoon Kim
- Extreme Materials Research Center & Climate Change Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Nano & Information Technology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 2447, Republic of Korea.
| | - Gun-Hee Moon
- Extreme Materials Research Center & Climate Change Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Nano & Information Technology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Chao W, Skog R, Frandsen BN, Jones GH, Pham KT, Okumura M, Sulbaek Andersen MP, Percival CJ, Winiberg FAF. The UV-Vis spectrum of the ClCO radical in the catalytic cycle of Cl-initiated CO oxidation. Commun Chem 2025; 8:163. [PMID: 40413352 PMCID: PMC12103620 DOI: 10.1038/s42004-025-01520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/07/2025] [Indexed: 05/27/2025] Open
Abstract
In Venus's mesosphere, the observation/model discrepancy of molecular oxygen, O2, abundance has been a long-standing puzzle. Chlorine atoms have been proposed as a catalyst to oxidize carbon monoxide through the formation of chloroformyl radicals (ClCO), removing O2 and ultimately generating CO2. However, relevant kinetic studies of this catalytic cycle are scarce and highly uncertain. In this work, we report the spectrum of the ClCO radical between 210-520 nm using a multipass UV-Vis spectrometer coupled to a pulsed-laser photolysis flow reactor at 236-294 K temperature and 50-491 Torr pressure ranges. High-level ab initio calculations were performed to simulate the observed spectrum and to investigate the electronic structure. In addition, we observed the formation of molecular chlorine, Cl2, and phosgene, Cl2CO, suggesting that both the terminal chlorine and the central carbon in the ClCO radical are reactive towards chlorine atoms. Most importantly, the reported spectrum will enable future measurements of essential kinetic parameters related to ClCO radicals, which are important in regulating the O2 abundance in Venus's mesosphere.
Collapse
Affiliation(s)
- Wen Chao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert Skog
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Benjamin N Frandsen
- Department of Chemistry, University of Helsinki, Helsinki, Finland
- Aerosol Physics Laboratory, Tampere University, Tampere, Finland
| | - Gregory H Jones
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kayla T Pham
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Mitchio Okumura
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mads P Sulbaek Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, USA
- Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Carl J Percival
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Frank A F Winiberg
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Zhao Z, Fu H, Ling L, Westerhoff P. Advancing Light-Driven Reactions with Surface-Modified Optical Fibers. Acc Chem Res 2025; 58:1596-1606. [PMID: 40311088 DOI: 10.1021/acs.accounts.5c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
ConspectusThe challenge of optimizing decentralized water, wastewater, and reuse treatment systems calls for innovative, efficient technologies. One advancement involves surface-modified side-emitting optical fibers (SEOFs), which enhance biochemical and chemical light-driven reactions. SEOFs are thin glass or polymeric optical fibers with functionalized surfaces that can be used individually or bundled together. They can be attached to various light sources, such as light-emitting diodes (LEDs) or lasers, which launch ultraviolet (UV) or visible light into the fibers. This light is then emitted along the fiber's surface, creating irradiance similar to a glow stick. The resulting SEOFs uniquely deliver light energy to complex environments while maximizing photon utilization and minimizing energy loss, addressing long-standing inefficiencies in photolysis and photocatalysis systems. SEOFs generate and leverage refracted light and evanescent waves to achieve continuous irradiation of their cladding, wherein photocatalysts are embedded. This method contrasts with traditional slurry-based systems, where light energy is often scattered or absorbed before reaching the reaction sites. Such scattering typically reduces quantum yields and reaction kinetics. In contrast, SEOFs create a controlled light delivery system that enhances reaction efficiency and adaptability to diverse applications.Important chemical and physical concepts are explored when scaling up SEOFs for three potential engineered applications. The selection of polymer materials and nanoparticle compositions is crucial for optimizing SEOFs as waveguides for visible to UV-C wavelengths and for embedding surface-accessible photocatalysts within porous polymer coatings on SEOF surfaces. Additionally, understanding how light propagates within SEOFs and emits along their exterior surface and length is essential for influencing the quantum yields of chemical products and enhancing biochemical sensitivity to low UV-C exposure. UV-C SEOFs are employed for germicidal disinfection, inactivating biofilms and pathogens in water systems. By overcoming UV light attenuation issues in traditional methods, SEOFs facilitate uniform distribution of UV-C energy, disrupting biofilm formation at early stages. SEOFs enhance UV-A and visible-light photocatalytic degradation of pollutants. Embedding photocatalysts in porous polymer cladding enables simultaneous improvements in reaction kinetics and quantum yields. SEOFs enable decentralized light-driven production of clean energy resources such as hydrogen, hydrogen peroxide, and formic acid, offering sustainable alternatives for off-grid systems.The design principles of SEOFs emphasize scalability, flexibility, and efficiency. Recent innovations in polymer chemistry, nanoparticle coatings, and surface roughness engineering have further optimized light delivery and side-emission. Tailoring the refractive index and nanoparticle distribution on fiber surfaces ensures precise evanescent wave propagation, enhancing photocatalytic performance. These advancements, coupled with scalable fabrication techniques, have positioned SEOFs as promising platforms for broad photochemical applications.By summarizing recent advances and identifying future needs, this Account positions SEOFs as a transformative approach to light-driven reactions, merging cutting-edge materials science with sustainable water treatment and energy production goals. This emerging technology offers immense potential to reshape photochemical processes for decentralized applications. Despite significant progress, challenges remain. Future research should focus on optimizing catalyst loading, improving uniformity in side emissions, and enhancing polymer durability for long-term operational stability. Additionally, scaling SEOF configurations to multifiber bundles and integrating them into decentralized water systems will be critical for broader adoption.
Collapse
Affiliation(s)
- Zhe Zhao
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Han Fu
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Li Ling
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Paul Westerhoff
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
4
|
Chen H, Li J, Chen C, Zhao X, Yao Z, Wang Y, Li Z, Xian Q. Dissolved black carbon in full-scale drinking water treatment plants: Occurrence and contribution to disinfection byproducts formation and cytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138638. [PMID: 40381348 DOI: 10.1016/j.jhazmat.2025.138638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/20/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Dissolved black carbon (DBC) is a crucial precursor to disinfection byproducts (DBPs) in the drinking water disinfection process. However, the understanding of the presence and transformation of DBC within drinking water treatment plants (DWTPs) is still limited. This article systematically examined the presence and transport of DBC, in combination with the contribution to disinfection byproducts formation and cytotoxicity along the full-scale DWTPs. The results indicated that DBC concentrations varied from 70.0-199.4 μg/L in source water, 28.7-122.7 μg/L in sedimentation, 22.5-68.5 μg/L in carbon filter, 27.8-116.7 μg/L in sand filter and 7.2-23.0 μg/L in finished water. Sedimentation and disinfection processes resulted in higher DBC removal rates of 57 % and 71 % on average, respectively. DBC components with high aromaticity were predominantly removed during sedimentation, while DBC with low aromaticity was more likely to be removed during chlorination. DBC concentration had a significantly positive correlation with UV254 absorbance throughout the entire treatment process. Additionally, although DBC in the source water constituted only 1-10 % of the dissolved organic matter, DBC was estimated to contribute to 1-25 % of the DBP formation and 1-20 % of the cytotoxicity in the finished water. Hence, it is crucial to consider the possible risk of DBPs generated in the disinfection of DBC along the full-scale DWTPs.
Collapse
Affiliation(s)
- Haoran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jianwei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chuze Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiating Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zongcheng Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Ge M, Xiong W, Zeng H, Su H, Wang X, Zhao D, Du X, Wen L. Oriented Channel Functionalization in Covalent Organic Framework Fibers for Boosting the Antibiotics Removal from Environmental Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500711. [PMID: 40183985 DOI: 10.1002/smll.202500711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/06/2025] [Indexed: 04/05/2025]
Abstract
The excessive presence of antibiotics in water is a significant social concern, as it poses serious health risks to humans, necessitating the urgent development of effective removal methods. Herein, an interfacial polymerization method is presented to fabricate a caterpillar-like covalent organic frameworks (COF) platform with branch buds (Tp-Bpy) and utilize a post-modified method to modulate the environment of channels. The Tp-Bpy channels grafted with Cu ions and ether-oxygen chains (Mae) afforded more recognition sites and inner hindrance, thereby enhancing antibiotic removal capacity and efficiency through synergistic interactions and controlled analyte diffusion. The Cu@Tp-Bpy-Mae exhibited significantly higher removal capacities (412.79-435.49 mg g-1) for four antibiotics, far surpassing those of Tp-Bpy, Cu@Tp-Bpy, and other documented material, due to synergistic interactions of electrostatic forces, π-π interactions, coordination bonding, and hydrogen bonding. More importantly, Cu@Tp-Bpy-Mae is capable of treating real wastewater to antibiotic concentrations below 0.02 mg L-1 under continuous flow conditions, effectively mitigating drinking water risks caused by high antibiotic levels. This study offers a facile method for tailoring material properties to optimize antibiotic removal performance and exhibits great potential in environmental pollutant removal.
Collapse
Affiliation(s)
- Miaoxiu Ge
- The Research Institute of Advanced Technology, College of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Wei Xiong
- The Research Institute of Advanced Technology, College of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
- China Innovation Instrument Co., Ningbo, 315100, P. R. China
| | - Hongping Zeng
- The Research Institute of Advanced Technology, College of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Hang Su
- The Research Institute of Advanced Technology, College of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Xiangyu Wang
- The Research Institute of Advanced Technology, College of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Dan Zhao
- China Innovation Instrument Co., Ningbo, 315100, P. R. China
| | - Xiaoming Du
- College of Pharmaceutical Engineering and Biotechnology, College of Cosmetics, Zhejiang Pharmaceutical University, Ningbo, 315100, P. R. China
| | - Luhong Wen
- The Research Institute of Advanced Technology, College of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
- China Innovation Instrument Co., Ningbo, 315100, P. R. China
| |
Collapse
|
6
|
Chen L, Cheng X, Chen G, Wang Y, Chen X, Yang C, Liu W, Kalonji G, Ma J, Liu B. Binding interaction between chlorine and powder activated carbon driving nonradical oxidation toward diclofenac abatement: Surface-bound complexes generating on diverse sites performing diverse duties. WATER RESEARCH 2025; 282:123620. [PMID: 40250316 DOI: 10.1016/j.watres.2025.123620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/21/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
Photolysis of chlorine by UV irradiation is commonly used as an advanced oxidation process for the abatement of micropollutants, but suffers from the energy-extensive consumption and potential risk, e.g., formation of disinfection byproduct and use of fragile mercury-containing lamps. This study demonstrates powder activated carbon (PAC) catalysis-mediated chlorine activation to significantly promote the degradation of diclofenac (DCF), a representative emerging contaminant, via nonradical oxidation pathways, thus reconsidering the interaction between PAC and chlorine in depth which are widely applied in actual water treatment. The chlorine/PAC process produces reactive metastable surface-bound complexes, i.e., PAC-HOCl*, via the cleavage of O-Cl bond in chlorine and formation of C-Cl by interfacial binding interaction, to regulate the charge distribution and electron density configuration. Carbonyl groups and structural defects of PAC are determined as the active sites via functional group derivatization and defect engineering for PAC modification, and performed diverse duties in the chlorine activation, producing PAC-C=O-HOCl* and PAC-D-HOCl*, responsible for the oxidation ability improvement and electron transfer acceleration, respectively. Of particular significance is that the chlorine/PAC process performs high efficiencies in the degradation of diverse micropollutants and is scarcely affected by water matrices, exhibiting a high potential of practical application for the decontamination of emerging micropollutants without the requirement of external energy input.
Collapse
Affiliation(s)
- Liang Chen
- Sichuan University - The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xin Cheng
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Guijing Chen
- Sichuan University - The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Ying Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xin Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Chunyan Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Gretchen Kalonji
- Sichuan University - The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water and Environment, Harbin Institute of Technology, No73 Huanghe Road, Nangang Dist. Harbin 150090, China
| | - Baicang Liu
- Sichuan University - The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
7
|
Xu J, Yu J, Guo L, Li F, Hadjichristidis N. In Situ Growth of Robust 2D ZIF-67 MOF in Block Copolymer Membranes for Ultrafast Molecular Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416169. [PMID: 39965133 PMCID: PMC11984913 DOI: 10.1002/advs.202416169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Membrane-based advanced oxidation processes (AOPs) rely heavily on the configuration of membrane structures and catalysts. However, designing state-of-the-art membrane structures integrated with tailored catalysts for efficient AOPs remains a significant challenge. In this study, for the first time, hybrid membranes are constructed by the in situ growth of 2D ZIF-67 onto the nanopore walls of 3D block copolymer (BCP) membranes. These membranes feature highly tunable pore structures, leading to exceptional catalytic performance that surpasses previously reported membranes. The remarkable catalytic efficiency stems from the predominant role of the non-radical species, 1O2, in catalytic degradation, combined with the integration of the high-surface-area 2D ZIF-67 and the tortuous pore structures of the BCP membranes. The resulting catalytic membranes demonstrate robust performance, achieving stable permeance of over 1800 L (m2·bar·h)-1 while completely degrading dyes during long-term filtration. Notably, the degradation efficiency is maintained at 90% even when the permeance is adjusted to 3070 L (m2·bar·h)-1. Additionally, the membranes exhibit excellent resistance to both alkali and acidic environments and are unaffected by various background anions or the types of degraded molecules. This work presents a novel approach to designing advanced catalytic membranes for high-efficiency, space-confined AOPs.
Collapse
Affiliation(s)
- Jingjing Xu
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Jianyong Yu
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Leiming Guo
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Faxue Li
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Nikos Hadjichristidis
- Polymer Synthesis LaboratoryKAUST Catalysis CenterPhysical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| |
Collapse
|
8
|
Murata Y, Sakai H. Abating a micropollutant epinastine by UV-based advanced oxidation processes: Comparison for UV/hydrogen peroxide, UV/persulfate, and UV/chlorine, impacts of bromide contents, and formation of DBPs during post-chlorination. CHEMOSPHERE 2025; 374:144206. [PMID: 39946939 DOI: 10.1016/j.chemosphere.2025.144206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Anthropogenic organic compounds, such as pharmaceuticals and personal care products, contaminate water, posing toxicological risks caused by either their parent compounds or transformation products. This study compares ultraviolet (UV)-based advanced oxidation processes (UV/hydrogen peroxide, UV/persulfate, and UV/chlorine) for the abatement of an antihistamine drug epinastine. UV light at 254 nm was irradiated upon solutions containing 10 μM epinastine and 100 μM oxidant. UV/chlorine degraded epinastine most effectively at pH 6.0-8.0; considerable contributions by reactive chlorine species and hydroxyl radicals were quantified using probe compounds. Furthermore, the degradation efficiency of the UV/chlorine treatment persisted with a halved chlorine dosage. Additionally, the types and concentrations of disinfection byproducts (DBPs) produced during UV/chlorine treatment with or without post-chlorination varied depending on the concentrations of chlorine or bromide. By comparing estimated DBP formations at a constant degradation rate of epinastine, UV/chlorine formed smaller concentrations of DBPs. Consequently, this study experimentally revealed that UV/chlorine is superior to UV/hydrogen peroxide and UV/persulfate for degrading epinastine at the possible pH and bromide content in the environment and controlling toxicological risks caused by disinfection DBPs formation by optimising chlorine dosage and UV fluence.
Collapse
Affiliation(s)
- Yuichiro Murata
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan.
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan.
| |
Collapse
|
9
|
Ye S, Ban T, Zhang Z, Liu B, Xie R, Ye X, Zhong Y, Cao J, Huang L, Huang H. Exceptional Resistance to Chlorine-Induced Photocatalytic Poisoning via Vacuum UV Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5796-5807. [PMID: 40072937 DOI: 10.1021/acs.est.4c12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Catalyst deactivation poses a significant challenge in environmental remediation, especially for the photocatalytic oxidation of chlorinated volatile organic compounds (Cl-VOCs). In this study, a functional flower-like TiO2@Mn/rGO (FTMG) catalyst coupled with a vacuum ultraviolet (VUV) lamp was used as a novel photocatalytic oxidation (VUV-PCO) system for chlorobenzene (CB) oxidation. In this system, more than 80% of CB was efficiently oxidized at a high w8 hly space velocity of 600,000 gcat-1 h-1, which was a 6.5-fold increase compared to conventional UV-PCO, and no catalytic deactivation over 1300 min of reaction. Notably, the COx selectivity consistently reached 100%. These outstanding performances were attributed to the synergy of direct VUV photolysis and gas-solid interface photocatalysis. Importantly, the C-Cl bond of CB was efficiently cleaved by VUV photolysis, generating •Cl as the oxidant. Ozone (O3) generated from VUV photolysis was efficiently adsorbed on oxygen vacancies and Mn (Ov + Mn) adjacent sites on FTMG. These adsorbed O3 rapidly captured the photogenerated electrons, thereby effectively preventing Cl reduction and avoiding catalyst deactivation. This study sheds light on the unique dechlorination reaction and Cl-poisoning-resistance mechanism in the VUV-PCO system, offering a novel strategy to boost the catalytic oxidation of Cl-VOCs.
Collapse
Affiliation(s)
- Shengjun Ye
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Ban
- College of Ecology and Environment, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Zhenpan Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruijie Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinguo Ye
- . Shenzhen Kelai Environmental Protection Technology Co., Ltd., Shenzhen 518033, China
| | - Ying Zhong
- Shenzhen Liyuan Water Design and Consultation Co., Ltd., Shenzhen 518030, China
| | - Jianping Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Huang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- College of Ecology and Environment, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830017, China
| |
Collapse
|
10
|
Lai W, Yang X, Hua Z, Wang A, He D, Wei Z, Yang M, Fang J. Differentiating reactive chlorine species for micropollutant abatement in chloride containing water by electrochemical oxidation process. WATER RESEARCH 2025; 271:122984. [PMID: 39718170 DOI: 10.1016/j.watres.2024.122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 12/25/2024]
Abstract
Electrochemical oxidation process (EOP) is promising for micropollutant degradation in water treatment, where chloride ions (Cl-) are inevitable in aqueous systems, leading to the EOP/Cl- system. The oxidation of Cl- at anodes generates reactive chlorine species (RCS), including heterogeneous chlorine species (Clhetero), homogeneous free available chlorine (FAC), chlorine dioxide (ClO2), and chlorine radicals (CRs). This study developed a method to differentiate various RCS responsible for the removal of carbamazepine in EOP/Cl- using the RuO2/IrO2-Ti anode. Compared to EOP, the formation of RCS significantly enhanced the degradation of carbamazepine in EOP/Cl-, primarily through heterogeneous Clhetero, homogeneous molecular chlorine (Cl2), and CRs. The relative contribution of specific RCS to carbamazepine degradation significantly varied at different pHs, Cl- concentrations, and current densities. As pH increased from 5.3 to 10.0 with 10 mM Cl-, the relative contributions of Clhetero and CRs decreased, while Clhetero dominated carbamazepine degradation at pH 7.0 and 10.0. Cl2 was the dominant species for carbamazepine degradation at pH 5.3, while its role significantly decreased at higher pHs. The increase of Cl- concentrations enhanced the relative contributions of Clhetero, Cl2, and CRs at pH 5.3 and 18 mA/cm2. The rise of current density from 18 to 39 mA/cm2 significantly promoted the relative contributions of Clhetero and CRs at pH 7.0 and 10 mM Cl-. This study elucidated the specific roles of reactive species for micropollutant degradation in EOP/Cl-, highlighting the significance of heterogeneous Clhetero and homogeneous CRs and Cl2.
Collapse
Affiliation(s)
- Weikang Lai
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xin Yang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Anna Wang
- Guangdong Environmental Protection Research Institute Co., Ltd., Guangzhou 510080, PR China
| | - Dequan He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhipeng Wei
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ming Yang
- HFI Huafu International, Guangzhou 510641, PR China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China; Institute of Sun Yat-Sen University in Shenzhen, PR China.
| |
Collapse
|
11
|
Jarin M, Ly J, Goldman J, Xie X. Water Disinfection Systems for Pools and Spas: Advantages, Disadvantages, and Consumer Views in the US. ACS ES&T WATER 2025; 5:525-538. [PMID: 39974564 PMCID: PMC11833866 DOI: 10.1021/acsestwater.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
Disinfection of swimming pools and hot tubs (pools/spas) are necessary to prevent outbreaks and exposure to waterborne pathogens from water recreation. However, harmful disinfection byproducts (DBPs) from heavy chlorine usage continue to be a growing concern. Chlorine-based disinfectants also react with human inputs like sweat, urine, cosmetics, sunscreen, etc., that are introduced in a pool/spa, further increasing the severity of the DBP problem. We reviewed the current status of water disinfection technologies in the pool/spa industry and summarize the methods, trends, advantages, and disadvantages from a health and consumer viewpoint. Market research and face-to-face interviews were also accomplished with 100 industry experts and end-users in the US. We then integrate the literature findings in parallel with these market insights. Overall, we conclude the future of water recreation is trending away from high dosage chlorine-based solutions to disinfect swimming water and turning to alternatives with better sustainability and safety in mind. Lastly, we discuss the future directions of these technologies with current and past trends, offering insights to where research and development should be focused for both the user's health and overall experience.
Collapse
Affiliation(s)
- Mourin Jarin
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jackie Ly
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jonathan Goldman
- Office
of Commercialization, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Xing Xie
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
12
|
Hu C, Wu Y, Dong Z, Dong Z, Ji S, Hu L, Yang X, Liu H. Degradation of carbamazepine by the UVA-LED 365/ClO 2/NaClO process: Kinetics, mechanisms and DBPs yield. J Environ Sci (China) 2025; 148:399-408. [PMID: 39095175 DOI: 10.1016/j.jes.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 08/04/2024]
Abstract
A mixed oxidant of chlorine dioxide (ClO2) and NaClO was often used in water treatment. A novel UVA-LED (365 nm)-activated mixed ClO2/NaClO process was proposed for the degradation of micropollutants in this study. Carbamazepine (CBZ) was selected as the target pollutant. Compared with the UVA365/ClO2 process, the UVA365/ClO2/NaClO process can improve the degradation of CBZ, with the rate constant increasing from 2.11×10-4 sec-1 to 2.74×10-4 sec-1. In addition, the consumption of oxidants in the UVA365/ClO2/NaClO process (73.67%) can also be lower than that of UVA365/NaClO (86.42%). When the NaClO ratio increased, both the degradation efficiency of CBZ and the consumption of oxidants can increase in the UVA365/ClO2/NaClO process. The solution pH can affect the contribution of NaClO in the total oxidant ratio. When the pH range of 6.0-8.0, the combination process can generate more active species to promote the degradation of CBZ. The change of active species with oxidant molar ratio was investigated in the UVA365/ClO2/NaClO process. When ClO2 acted as the main oxidant, HO• and Cl• were the main active species, while when NaClO was the main oxidant, ClO• played a role in the system. Both chloride ion (Cl-), bicarbonate ion (HCO3-), and nitrate ion (NO3-) can promote the reaction system. As the concentration of NaClO in the reaction solution increased, the generation of chlorates will decrease. The UVA365/ClO2/NaClO process can effectively control the formation of volatile disinfection by-products (DBPs), and with the increase of ClO2 dosage, the formation of DBPs can also decrease.
Collapse
Affiliation(s)
- Chenyan Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yihui Wu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhengyu Dong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Ziyi Dong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shengjie Ji
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lili Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xinyu Yang
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hao Liu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
13
|
Guo K, Wu S, Qin W, Xie R, Wu Y, Li X, Ouyang G, Fang J. Overlooked Generation of Reactive Oxidative Species from Water and Dioxygen by Far UV Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22431-22441. [PMID: 39639591 DOI: 10.1021/acs.est.4c06404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Far UV light at 222 nm (UV222) is gaining much attention for efficient water purification in UV222 irradiation and UV222-based advanced oxidation processes (AOPs). The direct photolysis of pollutants is regraded to be their major removal mechanism by a sole UV222 treatment. However, this paper reports the important roles of reactive oxidative species (ROS) generated from dioxygen and water under only UV222 radiation. Multiple ROSs are identified, including hydroxyl radical (HO·), singlet oxygen (1O2), superoxide radical anion (·O2-), and ozone (O3). HO· is the major ROS for the degradation of 18 organic micropollutants under UV222 radiation, with an observed quantum yield of 0.447 and the concentration of 10-13 M at pH 7. Dioxygen is the initial source of ROS, while water mainly serves as a medium to react with the photolytic intermediate of O3 (i.e., O(1D)) to form HO·. Water matrix components of HCO3- and natural organic matter can inhibit the HO· concentration, whereas NO3- significantly enhances it. In drinking water, UV222 alone removes 18 micropollutants more efficiently than the typical UV254/H2O2 AOP (150 μM), with reduced energy consumption. This study discloses a novel mechanism of ROS generation in UV222 irradiation and underscores UV222 as an emerging chemical-free AOP for water purification.
Collapse
Affiliation(s)
- Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Sining Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Wenlei Qin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ruijie Xie
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yuxin Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Institute of Sun Yat-Sen University, Shenzen 518063, China
| |
Collapse
|
14
|
Qin W, Zheng S, Guo K, Yang M, Fang J. Predicting reaction kinetics of reactive bromine species with organic compounds by machine learning: Feature combination and knowledge transfer with reactive chlorine species. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136410. [PMID: 39509874 DOI: 10.1016/j.jhazmat.2024.136410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Reactive bromine species (RBS) such as bromine atom (Br•) and dibromine radical (Br2•-) are important oxidative species accounting for the transformation of organic compounds in bromide-containing water. This study developed quantitative structure-activity relationship (QSAR) models to predict second order rate constants (k) of RBS by machine learning (ML) and conducted knowledge transfer between RBS and reactive chlorine species (RCS, e.g., Cl• and Cl2•-) to improve model performance. The ML-based models (RMSEtest = 0.476 -0.712) outperformed the multiple linear regression-based models (RMSEtest = 0.572 -3.68) for predicting k of RBS. In addition, the combination of molecular fingerprints (MFs) and quantum descriptors (QDs) as input features improved the performance of ML-based models (RMSEtest = 0.476 -0.712) compared to those developed by MFs (RMSEtest = 0.524 -0.834) or QDs (RMSEtest = 0.572 -0.806) alone. EHOMO and Egap were identified to be the most important features affecting k of RBS based on SHAP analysis. A unified model integrating the datasets of four reactive halogen species (RHS, e.g., Br•, Br2•-, Cl• and Cl2•-) was further developed (R2test = 0.802), which showed better predictive performance than the individual models (R2test = 0.521 -0.776). Meanwhile, the model performance changed differently by employing knowledge transfer among RHS, which was improved for Br•/Cl•, mixed for Br•/Br2•- and Cl•/Cl2•-, but worse for Br2•-/Cl2•-. This study provides useful tools for predicting k of RHS in aqueous environments.
Collapse
Affiliation(s)
- Wenlei Qin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shanshan Zheng
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ming Yang
- HFI Huafu International, Guangzhou 510641, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
15
|
Chuang YH, Chou CS, Chu YL. Unveiling the Critical Pathways of Hydroxyl Radical Formation in Breakpoint Chlorination: The Role of Trichloramine and Dichloramine Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21086-21096. [PMID: 39528320 PMCID: PMC11603780 DOI: 10.1021/acs.est.4c08403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Chlorination of ammonia or chloramine-containing waters induces breakpoint chlorination reactions, producing a hydroxyl radical (•OH), but enhances the formation of undesirable N-nitrosamines. The prevailing view attributes •OH formation to a nitrosyl intermediate derived from the hydrolysis of dichloramine, but this pathway is unlikely at neutral or acidic pH. This study reveals a novel mechanism where •OH is generated via interactions between trichloramine (NCl3) and dichloramine (NHCl2), which also form nitrosation agents. Our experiments demonstrated that the NCl3-NHCl2 interaction degrades micropollutants with kinetics 2-3 times faster than breakpoint chlorination. Using electron paramagnetic resonance, we detected •OH in the NCl3-NHCl2 reaction. Micropollutant removal was unimpaired under low dissolved oxygen (O2(aq)) conditions, aligning with negligible O2(aq) changes during the NCl3-NHCl2 reaction and suggesting O2(aq) does not participate in •OH formation. Using benzene as a probe in 18O-labeled H2O, we confirmed water contributes to the oxygen source of •OH in NCl3-NHCl2 interactions, through which parallel reactions occur, leading to the formation of one mole of •OH alongside 1.92 mol of N2. A kinetic model developed in this study accurately predicted •OH and N2 and demonstrated the NCl3-NHCl2 interaction as the primary pathway for •OH formation in breakpoint chlorination, providing new insights into breakpoint chemistry.
Collapse
Affiliation(s)
- Yi-Hsueh Chuang
- Institute of Environmental
Engineering, National Yang Ming Chiao Tung
University, Hsinchu city 30010, Taiwan
| | - Chia-Shun Chou
- Institute of Environmental
Engineering, National Yang Ming Chiao Tung
University, Hsinchu city 30010, Taiwan
| | - Yi-Lin Chu
- Institute of Environmental
Engineering, National Yang Ming Chiao Tung
University, Hsinchu city 30010, Taiwan
| |
Collapse
|
16
|
Zhang J, Nan R, Liang T, Zhao Y, Zhang X, Zhu M, Li R, Sun X, Chen Y, Liu B. Preparation and Antibacterial Performance Study of CeO 2/g-C 3N 4 Nanocomposite Materials. Molecules 2024; 29:5557. [PMID: 39683716 DOI: 10.3390/molecules29235557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
In response to the challenges of food spoilage and water pollution caused by pathogenic microorganisms, CeO2/g-C3N4 nanocomposites were synthesized via one-step calcination using thiourea and urea as precursors. Steady-state photoluminescence (PL) spectroscopy analysis demonstrated that 8 wt% CeO2/g-C3N4 exhibited superior electron-hole separation efficiency. Quantitative antimicrobial assays demonstrated that the nanocomposites displayed enhanced bactericidal activity against Escherichia coli, Ralstonia solanacearum, and Staphylococcus aureus. Electron paramagnetic resonance (EPR) spectroscopy analysis verified the generation of hydroxyl radicals (·OH) and superoxide radicals (·O2-) during the photo-Fenton process utilizing CeO2/g-C3N4 nanocomposites. Additionally, 8 wt% CeO2/g-C3N4 nanocomposites demonstrated enhanced photocatalytic degradation of rhodamine B (RhB) and tetracycline hydrochloride (TC) under photo-Fenton conditions.
Collapse
Affiliation(s)
- Jingtao Zhang
- Key Laboratory of Vegetable Biology of Hainan Province, School of Food and Bioengineering, College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou 450002, China
- Key Laboratory of Vegetable Biology of Hainan Province, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, 14 Xingdan Road, Haikou 571100, China
| | - Ruichun Nan
- Key Laboratory of Vegetable Biology of Hainan Province, School of Food and Bioengineering, College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou 450002, China
| | - Tianzhu Liang
- Key Laboratory of Vegetable Biology of Hainan Province, School of Food and Bioengineering, College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou 450002, China
| | - Yuheng Zhao
- Key Laboratory of Vegetable Biology of Hainan Province, School of Food and Bioengineering, College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou 450002, China
| | - Xinxin Zhang
- Key Laboratory of Vegetable Biology of Hainan Province, School of Food and Bioengineering, College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou 450002, China
| | - Mengzhen Zhu
- Key Laboratory of Vegetable Biology of Hainan Province, School of Food and Bioengineering, College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou 450002, China
| | - Ruoyu Li
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou 450002, China
| | - Xiaodong Sun
- Key Laboratory of Vegetable Biology of Hainan Province, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, 14 Xingdan Road, Haikou 571100, China
| | - Yisong Chen
- Key Laboratory of Vegetable Biology of Hainan Province, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, 14 Xingdan Road, Haikou 571100, China
| | - Bingkun Liu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou 450002, China
| |
Collapse
|
17
|
Yin R, Dao PU, Zhao J, Wang K, Lu S, Shang C, Ren H. Reactive Nitrogen Species Generated from Far-UVC Photolysis of Nitrate Contribute to Pesticide Degradation and Nitrogenous Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20676-20686. [PMID: 39504477 DOI: 10.1021/acs.est.4c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Climate change has resulted in increased use of pesticides and fertilizers in agriculture, leading to elevated pesticide and nitrate levels in aquatic ecosystems that receive agricultural runoff. In this study, we demonstrate that far-UVC (UV222) photolysis of nitrate rapidly degrades four pesticides in surface water, with a degradation rate constant 37.1-144.75 times higher than that achieved by UV254 photolysis of nitrate. The improved pesticide degradation is due not only to the enhanced direct photolysis by UV222 compared to UV254 but also to the increased generation of hydroxyl radicals (HO•) and reactive nitrogen species (e.g., NO2• and ONOO-) in the UV222/nitrate process. We determined the innate quantum yields of nitrate photolysis at 222 nm and incorporated these values into a kinetic model, allowing for the accurate prediction of nitrate photodecay and reactive species generation. While reactive nitrogen species predominantly contribute to pesticide degradation in the UV222/nitrate process, they also lead to the formation of nitration byproducts. Using stable isotope-labeled nitrate (15NO3-) combined with mass spectrometry, we confirmed that the nitration byproducts are formed from the reactive nitrogen species generated from nitrate photolysis. Additionally, we demonstrate that the UV222/nitrate process increases the formation potential of highly toxic nitrogenous chlorinated products (e.g., trichloronitromethane) during postchlorination in real surface water.
Collapse
Affiliation(s)
- Ran Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| | - Phuong Uyen Dao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Kun Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Senhao Lu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| |
Collapse
|
18
|
Ma Y, Li M, Huo Y, Zhou Y, Gu Q, Wen N, He M. Combination of oxidative and reductive effects of phenolic compounds on the degradation of aniline disinfection by-products by free radicals. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135686. [PMID: 39236530 DOI: 10.1016/j.jhazmat.2024.135686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
In this study, we selected 13 phenolic compounds containing -COOH, -CHO, -OH, and -COCH3 functional groups as model compounds for dissolved organic matter (DOM), and explored the redox reactions during the co-degradation of phenolic compounds with aniline disinfection by-products (DBPs) at the molecular level. When phenolic compounds and aniline DBPs were degraded, phenoxy radicals and aniline radicals were the most important intermediates. Phenoxy radicals can degrade aniline DBPs via hydrogen atom abstraction (HAA) reactions, and the reaction rates were related to the reduction potentials of the compounds. Compounds containing electron-withdrawing groups were more likely to oxidize aniline DBPs. Aniline DBPs were more easily degraded by phenoxy radicals when they contained electron-donating groups, and the increase in the number of chlorine atoms inhibited the reaction rates of aniline DBPs degradation by phenoxy radicals. Although phenolic compounds can reduce aniline DBPs, there was no significant correlation between the reaction rates and the reduction potentials of the compounds. Considering the redox effects of phenolic compounds on aniline DBPs, co-degradation simulations showed that phenolics inhibited the degradation efficiency of aniline DBPs. This work provided new insights into the transformation mechanisms and degradation efficiencies of DOM and aniline DBPs when they were co-degraded.
Collapse
Affiliation(s)
- Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mingxue Li
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qingyuan Gu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Nuan Wen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
19
|
Wang Z, Chen J, Song J, Pan Z, Cong Y, Du C, Li Q, Li X. Insight into the Efficient Selective Reduction of Cr(VI) in Sulfite/UV Process under Near-Neutral Conditions: The Critical Role of In Situ-Generated Sulfite Radical. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19893-19901. [PMID: 39437004 DOI: 10.1021/acs.est.4c07010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Efficient removal of contaminants in complex water matrices under mild conditions is highly desirable but still challenging. In this study, we unraveled the overlooked but crucial role of sulfite radical (SO3·-) in the efficient selective reduction of toxic Cr(VI) under near-neutral conditions. Fast removal of Cr(VI) at around pH 7 in sulfite/UV was found to be attributable to high reactivity of SO3·- toward HCrO4- (∼5.3 × 106 M-1 s-1). Furthermore, SO3·- was fast generated in situ via one-electron oxidation of S(IV) by transient reactive protonated Cr(V) and Cr(IV) intermediates. Therefore, the specific reactivity of SO3·- and its in situ generation together resulted in the surprisingly positive effect of nitrate and the efficient reduction of Cr(VI) in authentic surface water and industrial wastewater. A mathematical model was developed to simulate Cr(VI) removal in the process, and thus quantitatively demonstrated the roles of reactive species, i.e., SO3·- contributed to ∼93% of Cr(VI) reduction in surface water. Overall, this study provides an insight into the pivotal role of SO3·- in Cr(VI) reduction, and underscores its significance in selective reduction and detoxification of contaminants.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiangyan Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianyu Song
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zixuan Pan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Chunhui Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiangbiao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
20
|
Wu JH, Yu HQ. Confronting the Mysteries of Oxidative Reactive Species in Advanced Oxidation Processes: An Elephant in the Room. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18496-18507. [PMID: 39382033 DOI: 10.1021/acs.est.4c06725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Advanced oxidation processes (AOPs) are rapidly evolving but still lack well-established protocols for reliably identifying oxidative reactive species (ORSs). This Perspective presents both the radical and nonradical ORSs that have been identified or proposed, along with the extensive controversies surrounding oxidative mechanisms. Conventional identification tools, such as quenchers, probes, and spin trappers, might be inadequate for the analytical demands of systems in which multiple ORSs coexist, often yielding misleading results. Therefore, the challenges of identifying these complex, short-lived, and transient ORSs must be fully acknowledged. Refining analytical methods for ORSs is necessary, supported by rigorous experiments and innovative paradigms, particularly through kinetic analysis based on in situ spectroscopic techniques and multiple-probe strategies. To demystify these complex ORSs, future efforts should be made to develop advanced tools and strategies to enhance the mechanism understanding. In addition, integrating real-world conditions into experimental designs will establish a reliable framework in fundamental studies, providing more accurate insights and effectively guiding the design of AOPs.
Collapse
Affiliation(s)
- Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Khan A, Yasin S, Mahmood H, Afzal S, Iqbal T. Advanced oxidative degradation of monoethanolamine in water using ultraviolet light and hydrogen peroxide. RSC Adv 2024; 14:33223-33232. [PMID: 39507370 PMCID: PMC11539933 DOI: 10.1039/d4ra05590j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/13/2024] [Indexed: 11/08/2024] Open
Abstract
This study aims to develop a benign and commercially viable method for the degradation of monoethanolamine (MEA) in the aqueous phase via an ultraviolet/hydrogen peroxide (UV/H2O2) advanced oxidation process (AOP). The current investigation is novel in terms of detailed kinetic analysis and degradation mechanisms; the impact of pH and UV light intensity on MEA degradation was thoroughly examined. pH 9 was identified as the optimal condition, achieving a degradation efficiency of 76.28%, while the highest UV light intensity of 59.055 mJ cm-2 resulted in an 85.13% degradation efficiency. A comprehensive kinetic study highlighted the reaction rates under varying conditions, providing valuable insights and dynamics of the degradation. The mechanistic pathway of MEA breakdown, identified using Liquid Chromatography Mass Spectrometry (LCMS) analysis revealed ethylene glycol, glycolaldehyde, glycine aldehyde, glycine, carbon dioxide, and ammonium ions as the primary degradation products. These results provide both operational insights and a greater understanding of the degradation mechanism, demonstrating that UV/H2O2 AOP offers an effective and environmentally benign solution for MEA degradation. The findings make a substantial contribution to the development of MEA treatment methods that are both economically viable and sustainable.
Collapse
Affiliation(s)
- Atif Khan
- Department of Chemical Engineering, University of Engineering and Technology Lahore 54890 Pakistan
| | - Saima Yasin
- Department of Chemical Engineering, University of Engineering and Technology Lahore 54890 Pakistan
| | - Hamayoun Mahmood
- Department of Chemical Engineering, University of Engineering and Technology Lahore 54890 Pakistan
| | - Shabana Afzal
- Department of Basic Sciences and Humanities, Muhammad Nawaz Sharif University of Engineering and Technology Multan 60000 Pakistan
| | - Tanveer Iqbal
- Department of Chemical Engineering, University of Engineering and Technology Lahore 54890 Pakistan
| |
Collapse
|
22
|
Qin W, Guo K, Chen C, Fang J. Differences in the Reaction Mechanisms of Chlorine Atom and Hydroxyl Radical with Organic Compounds: From Thermodynamics to Kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17886-17897. [PMID: 39344971 DOI: 10.1021/acs.est.4c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hydroxyl radical (HO•) and chlorine atom (Cl•) are common reactive species in aqueous environments. However, the intrinsic difference in their reactions with organic compounds has not been revealed. This study compared the reaction mechanisms of HO• and Cl• with 13 aromatic and 11 aliphatic compounds by quantum chemical calculation and laser flash photolysis. Both HO• and Cl• can spontaneously react with aromatic compounds via radical adduct formation (RAF), hydrogen atom transfer (HAT), and single electron transfer (SET) pathways. The SET reactions of Cl• were more thermodynamically favorable than HO•, but contrary results were obtained for HAT reactions. According to the free energy of activation (ΔGaq‡), the dominant oxidation mechanisms of aromatic compounds were RAF and SET by HO• and SET by Cl•. The important role of SET in the HO• reactions with aromatic compounds was further verified by accurately calculating the solvation free energy of HO•/HO- and experimentally tracking the radical cations, which were generally neglected in previous studies. Meanwhile, the ΔGaq‡ value of each reaction pathway of Cl• was lower than that of HO•, resulting in higher rate constants of Cl• with aromatic compounds than HO•. For saturated aliphatic compounds, HAT was found to be the only mechanism accounting for their transformation by HO• and Cl•. This study proposed general rules for the reaction mechanisms of HO• and Cl• and unraveled their differences in the aspects of thermodynamics and kinetics, providing fundamental information for understanding contaminant transformation in processes involving HO• and Cl•.
Collapse
Affiliation(s)
- Wenlei Qin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Zheng S, Yao J, Huang Y, Ren J, Hou Y, Yang B, Lei L, Fu J, Al-Anazi A, Jiang G, Li Z. Impacts of chloride ions on the electrochemical decomplexation and degradation of Cr(III)-EDTA: Reaction mechanisms of HO • and RCS. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135636. [PMID: 39186846 DOI: 10.1016/j.jhazmat.2024.135636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
The removal of Cr(III)-organic complexes, encompassing both decomplexation and ligand degradation, presents significant challenges in industrial wastewater treatment. As one of the most common anions in wastewater, Cl- significantly improves the efficiency of electrochemically removing Cr(III)-organic complexes through generated reactive chlorine species (RCS). In the electrochemical chlorine (EC/Cl2) process, extensive experimentation revealed that ClO• plays a dominant role in the degradation of Cr(III)-EDTA, surpassing the effects of free chlorine, direct electrooxidation, HO•, and other RCS. Density functional theory calculations indicated that RCS, primarily Cl• and ClO•, preferentially oxidize the ligand in Cr(III)-EDTA via H-abstraction, whereas HO• trends to attack the Cr atom through electron transfer. The influential factors on the degradation efficiency of Cr(III)-EDTA, Cr(VI) yield, and total organic carbon removal in EC/Cl2 were also assessed, including Cl- concentration, current density, and pH. Real industrial wastewater was employed as a reaction matrix to evaluate the application of the EC/Cl2 process for treating Cr(III)-EDTA, accompanied by energy efficiency calculations. Additionally, a two-chamber reactor was established to simultaneously oxidize Cr(III)-EDTA at the anode and reduce Cr(VI) at the cathode. This study provided insight into developing RCS-dominated AOPs to effectively decomplex and decompose organic Cr(III)-complexes in Cl--containing industrial wastewater.
Collapse
Affiliation(s)
- Shujie Zheng
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jiani Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang Academy of Science & Technology for Inspection & Quarantine, Zhejiang, China
| | - Ying Huang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Jiaqi Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University - Quzhou, Quzhou 324000, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University - Quzhou, Quzhou 324000, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Abdulaziz Al-Anazi
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University - Quzhou, Quzhou 324000, China.
| |
Collapse
|
24
|
Zhou C, Sun M, Zhang P, Yuan Y, Peng J, Zhang H, He C, Yao G, Liu Y, Zhou P, Lai B. Spatial confinement Fenton oxidation realized via tunable nanopore structure of porous carbon. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134979. [PMID: 38905982 DOI: 10.1016/j.jhazmat.2024.134979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Spatially confined structure exhibits surprising physics and chemistry properties that significantly impact the thermodynamics and kinetics of oxidation reactions. Herein, porous carbons are rationally designed for tunable nanopore structures (micropores, 4.12 % ∼ 91.64 %) and diverse spatial confinement ability, as indicated by their differential enhancement performances in the Fenton oxidation. Porous carbons can alter the characteristics of the charge transport process for accelerating sustainable electron shuttle between hydrogen peroxide and iron species, and thus exhibit long-term performance (17 cycling tests). The positive spatial confinement for boosting Fenton oxidation (charge transport, mass transfer) occurs in nanochannels < 1 nm, while the diminished effect ranges of 1-1.5 nm, and the adverse effect ranges greater than 1.5 nm. The density functional theory calculation provides further support for certifying the promoted charge transport process and spatial confinement for hydroxyl radical inside the confined nanochannel structure (below 1 nm, especially) by the comparatively large electron cloud and the relatively negative adsorption energy, respectively. Coupling nanochannels with the Fenton oxidation greatly utilize hydrogen peroxide, due to spatial nanoconfinement and selective adsorption towards target contaminants. This strategy of deploying nanochannels in catalyst design can be applied for the elaborate construction of efficient nanostructured catalysts for environmental remediation.
Collapse
Affiliation(s)
- Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Minglu Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Yue Yuan
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jiali Peng
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China; Sino-German Centre for innovative Environmental Technologies, Aachen 52074, Germany
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Zhang G, Li Y, Zhao C, Gu J, Zhou G, Shi Y, Zhou Q, Xiao F, Fu WJ, Chen Q, Ji Q, Qu J, Liu H. Redox-neutral electrochemical decontamination of hypersaline wastewater with high technology readiness level. NATURE NANOTECHNOLOGY 2024; 19:1130-1140. [PMID: 38724611 DOI: 10.1038/s41565-024-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/01/2024] [Indexed: 08/18/2024]
Abstract
Industrial hypersaline wastewaters contain diverse pollutants that harm the environment. Recovering clean water, alkali and acid from these wastewaters can promote circular economy and environmental protection. However, current electrochemical and advanced oxidation processes, which rely on hydroxyl radicals to degrade organic compounds, are inefficient and energy intensive. Here we report a flow-through redox-neutral electrochemical reactor (FRER) that effectively removes organic contaminants from hypersaline wastewaters via the chlorination-dehalogenation-hydroxylation route involving radical-radical cross-coupling. Bench-scale experiments demonstrate that the FRER achieves over 75% removal of total organic carbon across various compounds, and it maintains decontamination performance for over 360 h and continuously treats real hypersaline wastewaters for two months without corrosion. Integrating the FRER with electrodialysis reduces operating costs by 63.3% and CO2 emissions by 82.6% when compared with traditional multi-effect evaporation-crystallization techniques, placing our system at technology readiness levels of 7-8. The desalinated water, high-purity NaOH (>95%) and acid produced offset industrial production activities and thus support global sustainable development objectives.
Collapse
Affiliation(s)
- Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yongqi Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- School of Hydraulic and Hydropower Engineering, North China Electric Power University, Beijing, China
| | - Chenxuan Zhao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jiabao Gu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yanfeng Shi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qi Zhou
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Feng Xiao
- School of Hydraulic and Hydropower Engineering, North China Electric Power University, Beijing, China
| | - Wen-Jie Fu
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Qingbai Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
26
|
Huang T, Deng L, Wang S, Tan C, Hu J, Zhu B, Li M, Lu L, Yin Z, Fu B. Effects of Fe(III) on the formation and toxicity alteration of halonitromethanes, dichloroacetonitrile, and dichloroacetamide from polyethyleneimine during UV/chlorine disinfection. WATER RESEARCH 2024; 259:121844. [PMID: 38824795 DOI: 10.1016/j.watres.2024.121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Trace iron ions (Fe(III)) are commonly found in water and wastewater, where free chlorine is very likely to coexist with Fe(III) affecting the disinfectant's stability and N-DBPs' fate during UV/chlorine disinfection, and yet current understanding of these mechanisms is limited. This study investigates the effects of Fe(III) on the formation and toxicity alteration of halonitromethanes (HNMs), dichloroacetonitrile (DCAN), and dichloroacetamide (DCAcAm) from polyethyleneimine (PEI) during UV/chlorine disinfection. Results reveal that the maxima concentrations of HNMs, DCAN, and DCAcAm during UV/chlorine disinfection with additional Fe(III) were 1.39, 1.38, and 1.29 times higher than those without additional Fe(III), instead of being similar to those of Fe(III) inhibited the formation of HNMs, DCAN and DCAcAm during chlorination disinfection. Meanwhile, higher Fe(III) concentration, acidic pH, and higher chlorine dose were more favorable for forming HNMs, DCAN, and DCAcAm during UV/chlorine disinfection, which were highly dependent on the involvement of HO· and Cl·. Fe(III) in the aquatic environment partially hydrolyzed to the photoactive Fe(III)‑hydroxyl complexes Fe(OH)2+ and [Fe(H2O)6]3+, which undergone UV photoactivation and coupling reactions with HOCl to achieve effective Fe(III)/Fe(II) interconversion, a process that facilitated the sustainable production of HO·. Extensive product analysis and comparison verified that the HO· production enhanced by the Fe(III)/Fe(II) internal cycle played a primary role in increasing HNMs, DCAN, and DCAcAm productions during UV/chlorine disinfection. Note that the incorporation of Fe(III) increased the cytotoxicity and genotoxicity of HNMs, DCAN, and DCAcAm formed during UV/chlorine disinfection, and yet Fe(III) did not have a significant effect on the acute toxicity of water samples before, during, and after UV/chlorine disinfection. The new findings broaden the knowledge of Fe(III) affecting HNMs, DCAN, and DCAcAm formation and toxicity alteration during UV/chlorine disinfection.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Shui Wang
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Bingqing Zhu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China; School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Mengya Li
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lianghua Lu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Zhihua Yin
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Bowen Fu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| |
Collapse
|
27
|
Jiang Y, He Z, Zhang T, Yang J, Fan Y, Lu Z, Cai K, Sun Q, Wang F. Degradation and detoxification of ribavirin by UV/chlorine/Fe(II) process in water treatment system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48164-48174. [PMID: 39017866 DOI: 10.1007/s11356-024-34399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Ribavirin (RBV), which is extensively used to treat viral diseases such as COVID-19, is considered one of the major emerging contaminants due to its long-term existence and health risk in the aqueous environmental system. However, research on effective removal of RBV still remains insufficient. In this study, we investigated the RBV degradation kinetics and mechanism in UV/chlorine/Fe(II) process. The degradation rate constant kobs-RBV of RBV was 2.52 × 10-4 s-1 in UV/chlorine/Fe(II) process, which increased by 1.6 times and 1.3 times than that in chlorine alone and UV/chlorine process, respectively. Notably, trace amount Fe(II) promoted RBV degradation in UV/chlorine system through Fe2+/Fe3+ cycles, enhancing the yield of reactive species such as HO· and certain species reactive chlorine radicals (RCS). The contributions of HO· and RCS toward RBV degradation were 53.91% and 16.11%, respectively. Specifically, Cl·, ClO·, and Cl2·- were responsible for 8.59%, 2.69%, and 4.83% of RBV removal. The RBV degradation pathway indicated that the reactive species preferentially attacked the amide moiety of RBV, which cleaved the ether bond and the hydroxyl group. The toxicity evaluation of RBV degradation products elucidated that UV/chlorine/Fe(II) process was beneficial for RBV detoxification.
Collapse
Affiliation(s)
- Yayin Jiang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhenle He
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Tao Zhang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jing Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yongjie Fan
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhilei Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, China
| | - Qiyuan Sun
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China.
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350117, Fujian, China.
| | - Feifeng Wang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350117, Fujian, China
| |
Collapse
|
28
|
Zhang H, Jiang M, Su P, Lv Q, Zeng G, An L, Ma J, Yang T. Novel sunlight-induced monochloramine activation system for efficient microcontaminant abatement. WATER RESEARCH 2024; 258:121798. [PMID: 38820990 DOI: 10.1016/j.watres.2024.121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
As an eco-friendly and sustainable energy, solar energy has great application potential in water treatment. Herein, simulated sunlight was for the first time utilized to activate monochloramine for the degradation of environmental organic microcontaminants. Various microcontaminants could be efficiently degraded in the simulated sunlight/monochloramine system. The average innate quantum yield of monochloramine over the wavelength range of simulated sunlight was determined to be 0.068 mol/Einstein. With the determined quantum yield, a kinetic model was established. Based on the good agreement between the simulated and measured photolysis and radical contributions to the degradation of ibuprofen and carbamazepine, the major mechanism of monochloramine activation by simulated sunlight was proposed. Chlorine radical (Cl∙) and hydroxyl radical (HO∙) were major radicals responsible for microcontaminant degradation in the system. Moreover, the model facilitated a deep investigation into the effects of different reaction conditions (pH, monochloramine concentration, and water matrix components) on the degradation of ibuprofen and carbamazepine, as well as the roles of the involved radicals. The differences between simulated and measured degradation data of each microcontaminant under all conditions were less than 10 %, indicating the strong reliability of the model. The model could also make good prediction for microcontaminant degradation in the natural sunlight/monochloramine system. Furthermore, the formation of disinfection byproducts (DBPs) was evaluated at different oxidation time in simulated sunlight/monochloramine with and without post-chloramination treatment. In real waters, organic components showed more pronounced suppression on microcontaminant degradation efficiency than inorganic ions. This study provided a systematic investigation into the novel sunlight-induced monochloramine activation system for efficient microcontaminant degradation, and demonstrated the potential of the system in practical applications.
Collapse
Affiliation(s)
- Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Maoju Jiang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Peng Su
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Qixiao Lv
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Ge Zeng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Linqian An
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, China.
| |
Collapse
|
29
|
Minakata D. Development of an Elementary Reaction-Based Kinetic Model to Predict the Aqueous-Phase Fate of Organic Compounds Induced by Reactive Free Radicals. Acc Chem Res 2024; 57:1658-1669. [PMID: 38804206 DOI: 10.1021/acs.accounts.4c00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ConspectusAqueous-phase free radicals such as reactive oxygen, halogen, and nitrogen species play important roles in the fate of organic compounds in the aqueous-phase advanced water treatment processes and natural aquatic environments under sunlight irradiation. Predicting the fate of organic compounds in aqueous-phase advanced water treatment processes and natural aquatic environments necessitates understanding the kinetics and reaction mechanisms of initial reactions of free radicals with structurally diverse organic compounds and other reactions. Researchers developed conventional predictive models based on experimentally measured transformation products and determined reaction rate constants by fitting with the time-dependent concentration profiles of species due to difficulties in their measurements of unstable intermediates. However, the empirical treatment of lumped reaction mechanisms had a model prediction limitation with respect to the specific parent compound's fate. We use ab initio and density functional theory quantum chemical computations, numerical solutions of ordinary differential equations, and validation of the outcomes of the model with experiments. Sensitivity analysis of reaction rate constants and concentration profiles enables us to identify an important elementary reaction in formating the transformation product. Such predictive elementary reaction-based kinetics models can be used to screen organic compounds in water and predict their potentially toxic transformation products for a specific experimental investigation.Over the past decade, we determined linear free energy relationships (LFERs) that bridge the kinetic and thermochemical properties of reactive oxygen species such as hydroxyl radicals (HO•), peroxyl radicals (ROO•), and singlet oxygen (1O2); reactive halogen species such as chlorine radicals (Cl•) and bromine radicals (Br•); reactive nitrogen species (NO2•); and carbonate radicals (CO3•-). We used literature-reported experimental rate constants as kinetic information. We considered the theoretically calculated aqueous-phase free energy of activation or reaction to be a kinetic or a thermochemical property, and obtained via validated ab initio or density functional theory-based quantum chemical computations using explicit and implicit solvation models. We determined rate-determining reaction mechanisms involved in reactions by observing robust LFERs. The general accuracy of LFERs to predict aqueous-phase rate constants was within a difference of a factor of 2-5 from experimental values.We developed elementary reaction-based kinetic models and predicted the fate of acetone induced by HO• in an advanced water treatment process and methionine by photochemically produced reactive intermediates in sunlit fresh waters. We provided mechanistic insight into peroxyl radical reaction mechanisms and critical roles in the degradation of acetone and the formation of transformation products. We highlighted different roles of triplet excited states of two surrogate CDOMs, 1O2, and HO•, in methionine degradation. Predicted transformation products were compared to those obtained via benchtop experiments to validate our elementary reaction-based kinetic models. Predicting the reactivities of reactive halogen and nitrogen species implicates our understanding of the formation of potentially toxic halogen- and nitrogen-containing transformation products during water treatment processes and in natural aquatic environments.
Collapse
Affiliation(s)
- Daisuke Minakata
- Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|
30
|
Zhou H, He YL, Peng J, Duan X, Lu X, Zhang H, Liu Y, He CS, Xiong Z, Ma T, Wang S, Lai B. High-valent metal-oxo species transformation and regulation by co-existing chloride: Reaction pathways and impacts on the generation of chlorinated by-products. WATER RESEARCH 2024; 257:121715. [PMID: 38728779 DOI: 10.1016/j.watres.2024.121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
High-valent metal-oxo species (HMOS) have been extensively recognized in advanced oxidation processes (AOPs) owing to their high selectivity and high chemical utilization efficiency. However, the interactions between HMOS and halide ions in sewage wastewater are complicated, leading to ongoing debates on the intrinsic reactive species and impacts on remediation. Herein, we prepared three typical HMOS, including Fe(IV), Mn(V)-nitrilotriacetic acid complex (Mn(V)NTA) and Co(IV) through peroxymonosulfate (PMS) activation and comparatively studied their interactions with Cl- to reveal different reactive chlorine species (RCS) and the effects of HMOS types on RCS generation pathways. Our results show that the presence of Cl- alters the cleavage behavior of the peroxide OO bond in PMS and prohibits the generation of Fe(IV), spontaneously promoting SO4•- production and its subsequent transformation to secondary radicals like Cl• and Cl2•-. The generation and oxidation capacity of Mn(V)NTA was scarcely influenced by Cl-, while Cl- would substantially consume Co(IV) and promote HOCl generation through an oxygen-transfer reaction, evidenced by density functional theory (DFT) and deuterium oxide solvent exchange experiment. The two-electron-transfer standard redox potentials of Fe(IV), Mn(V)NTA and Co(IV) were calculated as 2.43, 2.55 and 2.85 V, respectively. Due to the different reactive species and pathways in the presence of Cl-, the amounts of chlorinated by-products followed the order of Co(II)/PMS > Fe(II)/PMS > Mn(II)NTA/PMS. Thus, this work renovates the knowledge of halide chemistry in HMOS-based systems and sheds light on the impact on the treatment of salinity-containing wastewater.
Collapse
Affiliation(s)
- Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yong-Li He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jiali Peng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaohui Lu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Shaobin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
31
|
Wang J, Huo L, Bian K, He H, Dodd MC, Pinto AJ, Huang CH. Efficacy and Mechanism of Antibiotic Resistance Gene Degradation and Cell Membrane Damage during Ultraviolet Advanced Oxidation Processes. ACS ES&T WATER 2024; 4:2746-2755. [PMID: 38903200 PMCID: PMC11186015 DOI: 10.1021/acsestwater.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Combinations of UV with oxidants can initiate advanced oxidation processes (AOPs) and enhance bacterial inactivation. However, the effectiveness and mechanisms of UV-AOPs in damaging nucleic acids (e.g., antibiotic resistance genes (ARGs)) and cell integrity represent a knowledge gap. This study comprehensively compared ARG degradation and cell membrane damage under three different UV-AOPs. The extracellular ARG (eARG) removal efficiency followed the order of UV/chlorine > UV/H2O2 > UV/peracetic acid (PAA). Hydroxyl radical (•OH) and reactive chlorine species (RCS) largely contributed to eARG removal, while organic radicals made a minor contribution. For intracellular ARGs (iARGs), UV/H2O2 did not remove better than UV alone due to the scavenging of •OH by cell components, whereas UV/PAA provided a modest synergism, likely due to diffusion of PAA into cells and intracellular •OH generation. Comparatively, UV/chlorine achieved significant synergistic iARG removal, suggesting the critical role of the RCS in resisting cellular scavenging and inactivating ARGs. Additionally, flow cytometry analysis demonstrated that membrane damage was mainly attributed to chlorine oxidation, while the impacts of radicals, H2O2, and PAA were negligible. These results provide mechanistic insights into bacterial inactivation and fate of ARGs during UV-AOPs, and shed light on the suitability of quantitative polymerase chain reaction (qPCR) and flow cytometry in assessing disinfection performance.
Collapse
Affiliation(s)
- Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Linxuan Huo
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kaiqin Bian
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huan He
- State
Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory
of Yangtze Water Environment, Ministry of Education, College of Environmental
Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Michael C. Dodd
- Department
of Civil and Environmental Engineering, University of Washington (UW), Seattle, Washington 98195-2700, United States
| | - Ameet J. Pinto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
32
|
Wang X, Zheng Z, Man JHK, Lo IMC. Regulating charge transfer for enhanced PAA activation over sulfur-doped magnetic CoFe 2O 4: A novel strategy for simultaneous micropollutants degradation and bacteria inactivation. WATER RESEARCH 2024; 256:121595. [PMID: 38640561 DOI: 10.1016/j.watres.2024.121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Micropollutants and bacteria are prevalent pollutants in wastewater, posing significant risks to ecosystems and human health. As peracetic acid (PAA) is being increasingly used as a disinfectant, activation of PAA by low-cost and high-performance activators is a promising strategy for wastewater treatment. In this study, the sulfur-doped magnetic CoFe2O4 (SCFO) is successfully developed for efficient PAA activation to simultaneously decontaminate and disinfect wastewater. PAA/SCFO-0.3 exhibits exceptional performance, degrading 100 % of 8 μM sulfamethoxazole (SMX) with a first-pseudo reaction rate of 1.275 min-1, and achieving 5.3-log inactivation of Escherichia coli (E. coli) within 3 min at a PAA dosage of 0.2 mM and catalyst dosage of 0.025 g/L (initial pH 6.5). Scavenging experiments and electron paramagnetic resonance (EPR) analysis identify CH3C(O)O• and CH3C(O)OO• as the dominant reactive species for SMX degradation. The sulfur species in SCFO-0.3 facilitate Co2+ regeneration and regulate charge transfer, promoting PAA activation for SMX degradation. Moreover, the PAA/SCFO-0.3 system demonstrates operational feasibility over a broad range of water matrices and has excellent stability and reusability (maintaining 93 % removal of SMX after 5 cycles), demonstrating its potential for industrial applications. This study provides insights into enhancing PAA activation through sulfur doping in transition metal catalysts and highlights the practical applicability of the PAA/SCFO-0.3 system as an advanced alternative to conventional disinfection for simultaneous decontamination and disinfection in wastewater.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zexiao Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Justin H K Man
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
33
|
Kumar G, Ahlawat A, Bhardwaj H, Sahu GK, Rana PS, Solanki PR. Ultrasonication-assisted synthesis of transition metal carbide of MXene: an efficient and promising material for photocatalytic organic dyes degradation of rhodamine B and methylene blue in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38232-38250. [PMID: 38801609 DOI: 10.1007/s11356-024-33505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Water pollutants of non-biodegradable toxic aromatic dye including Methylene blue (MB) and Rhodamine (RhB) are extremely carcinogenic thiazines used in various industries such as leather industry, paper industry, and the dyeing industry. The presence of dyes in wastewater causes severe threats to human health that are responsible for various harmful chronic or acute diseases and also shows an adverse impact on the environment as it reduces transparency and is harmful to water microorganisms. To overcome severe issues, many traditional techniques have been used to remove toxic pollutants, but these methods are insufficient to remove chemically stable dyes that remain in the treated wastewater. However, the photocatalytic degradation process is an efficient approach to degrade the dye up to the maximum extent with improved efficiency. Therefore, in this work, a new class of two-dimensional (2D) transition metal carbide of Titanium Carbide (Ti3C2Tx) MXene material was used for the organic dyes degradation such as MB and RhB using a photocatalytic process. A layered structure of hexagonal lattice symmetry of Ti3C2Tx MXene was successfully synthesized from the Titanium Aluminum Carbide of Ti3AlC2 bulk phase using an exfoliation process. Further, the XRD spectrum confirms the transformation of bulk MAX phase having (002) plane at 9.2° to Ti3C2Tx MXene of (002) plane at 8.88° confirms the successful removal of Al layer from MAX phase. A smooth, transparent, thin sheet-like morphology of Ti3C2Tx nanosheet size were found to be in the range of 70 to 150 nm evaluated from TEM images. Also, no holes or damages in the thin sheets were found after the treatment with strong hydrofluoric acid confirms the formation Ti3C2Tx layered sheets. The synthesized Ti3C2Tx MXene possesses excellent photocatalytic activity for the degradation of dyes MB, RhB, and mixtures of MB and RhB dyes. MB dye degraded with a degradation percentage efficiency of 99.32% in 30 min, while RhB dye was degraded upto 98.9% in 30 min. Also, experiments were conducted for degradation of mixture of MB and RhB dyes by UV light, and the degradation percentage efficiency were found to be 98.9% and 99.75% for mixture of MB and RhB dye in 45 min, respectively. Moreover, reaction rate constant (k) was determined for each dye of MB, RhB, and mixtures of MB and RhB and was found to be 0.0215 min-1 and 0.0058 min-1, and for mixtures, it was 0.0020 min-1 and 0.009 min-1, respectively.
Collapse
Affiliation(s)
- Gautam Kumar
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit Ahlawat
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- Hydrogen Energy Lab, Department of Physics, DCRUST, Murthal, Sonepat, Haryana, 131001, India
| | - Hema Bhardwaj
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gaurav Kumar Sahu
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pawan S Rana
- Hydrogen Energy Lab, Department of Physics, DCRUST, Murthal, Sonepat, Haryana, 131001, India
| | - Partima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
34
|
Hübner U, Spahr S, Lutze H, Wieland A, Rüting S, Gernjak W, Wenk J. Advanced oxidation processes for water and wastewater treatment - Guidance for systematic future research. Heliyon 2024; 10:e30402. [PMID: 38726145 PMCID: PMC11079112 DOI: 10.1016/j.heliyon.2024.e30402] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Advanced oxidation processes (AOPs) are a growing research field with a large variety of different process variants and materials being tested at laboratory scale. However, despite extensive research in recent years and decades, many variants have not been transitioned to pilot- and full-scale operation. One major concern are the inconsistent experimental approaches applied across different studies that impede identification, comparison, and upscaling of the most promising AOPs. The aim of this tutorial review is to streamline future studies on the development of new solutions and materials for advanced oxidation by providing guidance for comparable and scalable oxidation experiments. We discuss recent developments in catalytic, ozone-based, radiation-driven, and other AOPs, and outline future perspectives and research needs. Since standardized experimental procedures are not available for most AOPs, we propose basic rules and key parameters for lab-scale evaluation of new AOPs including selection of suitable probe compounds and scavengers for the measurement of (major) reactive species. A two-phase approach to assess new AOP concepts is proposed, consisting of (i) basic research and proof-of-concept (technology readiness levels (TRL) 1-3), followed by (ii) process development in the intended water matrix including a cost comparison with an established process, applying comparable and scalable parameters such as UV fluence or ozone consumption (TRL 3-5). Subsequent demonstration of the new process (TRL 6-7) is briefly discussed, too. Finally, we highlight important research tools for a thorough mechanistic process evaluation and risk assessment including screening for transformation products that should be based on chemical logic and combined with complementary tools (mass balance, chemical calculations).
Collapse
Affiliation(s)
- Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Stephanie Spahr
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Holger Lutze
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany
| | - Arne Wieland
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Steffen Rüting
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Jannis Wenk
- University of Bath, Department of Chemical Engineering and Water Innovation & Research Centre (WIRC@Bath), Bath, BA2 7AY, United Kingdom
| |
Collapse
|
35
|
Zhang H, Jiang M, Su P, Lv Q, Zeng G, An L, Cao J, Zhou Y, Snyder SA, Ma J, Yang T. Refinement of kinetic model and understanding the role of dichloride radical (Cl 2•-) in radical transformation in the UV/NH 2Cl process. WATER RESEARCH 2024; 254:121440. [PMID: 38479170 DOI: 10.1016/j.watres.2024.121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
The ultraviolet/monochloramine (UV/NH2Cl) process is an emerging advanced oxidation process with promising prospects in water treatment. Previous studies developed kinetic models of UV/NH2Cl for simulating radical concentrations and pollutant degradation. However, the reaction rate constants of Cl2•- with bicarbonate and carbonate (kCl2•-, HCO3- and kCl2•-, CO32-) were overestimated in literature. Consequently, when dosing 1 mM chloride and 1 mM bicarbonate, the current models of UV/NH2Cl severely under-predicted the experimental concentrations of three important radicals (i.e., hydroxyl radical (HO•), chlorine radical (Cl•), and dichloride radical (Cl2•-)) with great deviations (> 90 %). To investigate this issue, the transformation reactions among these three radicals in UV/NH2Cl were systematically studied. For the first time, it was found that in addition to Cl•, Cl2•- was also an important parent radical of HO• in the presence of chloride, and chloride could effectively compensate the inhibitory effect of bicarbonate on HO• generation in the system. Moreover, reactions and rate constants in current models were scrutinized from corresponding literature, and the reaction rate constants of Cl2•- with bicarbonate and carbonate (kCl2•-, HCO3- and kCl2•-, CO32-) were reevaluated to be 1.47 × 105 and 3.78 × 106 M-1s-1, respectively, by laser flash photolysis. With the newly obtained rate constants, the refined model could accurately simulate concentrations of all three radicals under different chloride and bicarbonate dosages with satisfactory deviations (< 30 %). Meanwhile, the refined model performed much better in predicting pollutant degradation and radical contribution compared with the unrefined model (with the previously estimated kCl2•-, HCO3- and kCl2•-, CO32-). The results of this study enhanced the accuracy and applicability of the kinetic model of UV/NH2Cl, and deepened the understanding of radical transformation in the process.
Collapse
Affiliation(s)
- Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 637141, Singapore
| | - Maoju Jiang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Peng Su
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Qixiao Lv
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Ge Zeng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Linqian An
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Jiachun Cao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 637141, Singapore
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen, Guangdong Province 529020, China.
| |
Collapse
|
36
|
Xiong Y, He H, Cui Y, Wu ZM, Ding S, Zhang J, Peng B, Yang L. Tuning Surface Electronics State of P-Doped In 2.77S 4/In(OH) 3 toward Efficient Photoelectrochemical Water Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8533-8541. [PMID: 38606693 DOI: 10.1021/acs.langmuir.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Indium sulfide with a two-dimensional layered structure offers a platform for catalyzing water oxidation by a photoelectrochemical process. However, the limited hole holders hinder the weak intrinsic catalytic activity. Here, the nonmetallic phosphorus atom is coordinated to In2.77S4/In(OH)3 through a bridge-bonded sulfur atom. By substituting the S position by the P dopant, the work function (surface potential) is regulated from 445 to 210 mV, and the lower surface potential is shown to be beneficial for holding the photogenerated holes. In2.77S4/In(OH)3/P introduces a built-in electric field under the difference of Fermi energy, and the direction is from the bulk to the surface. This band structure results in upward band bending at the interface of In2.77S4/In(OH)3 and P-doped sites, which is identified by density functional theory calculations (∼0.8 eV work function difference). In2.77S4/In(OH)3/P stands out with the highest oxidation efficiency (ηoxi = 70%) and charge separation efficiency (ηsep = 69%). Importantly, it delivers a remarkable water oxidation photocurrent density of 2.51 mA cm-2 under one sun of illumination.
Collapse
Affiliation(s)
- Yuli Xiong
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Huichao He
- Institute of Environmental Energy Materials and Intelligent Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology. Chongqing 401331, P. R. China
| | - Yuting Cui
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Zhi-Min Wu
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Shoubing Ding
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Jie Zhang
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Bo Peng
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Lin Yang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
37
|
Hong W, Zou J, Zhao M, Yan S, Song W. Development of a Five-Chemical-Probe Method to Determine Multiple Radicals Simultaneously in Hydroxyl and Sulfate Radical-Mediated Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5616-5626. [PMID: 38471100 DOI: 10.1021/acs.est.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Advanced oxidation processes (AOPs), such as hydroxyl radical (HO•)- and sulfate radical (SO4•-)-mediated oxidation, are attractive technologies used in water and wastewater treatments. To evaluate the treatment efficiencies of AOPs, monitoring the primary radicals (HO• and SO4•-) as well as the secondary radicals generated from the reaction of HO•/SO4•- with water matrices is necessary. Therefore, we developed a novel chemical probe method to examine five key radicals simultaneously, including HO•, SO4•-, Cl•, Cl2•-, and CO3•-. Five probes, including nitrobenzene, para-chlorobenzoic acid, benzoic acid, 2,4,6-trimethylbenzoic acid, and 2,4,6-trimethylphenol, were selected in this study. Their bimolecular reaction rate constants with diverse radicals were first calibrated under the same conditions to minimize systematic errors. Three typical AOPs (UV/H2O2, UV/S2O82-, and UV/HSO5-) were tested to obtain the radical steady-state concentrations. The effects of dissolved organic matter, Br-, and the probe concentration were inspected. Our results suggest that the five-probe method can accurately measure radicals in the HO•- and SO4•--mediated AOPs when the concentration of Br- and DOM are less than 4.0 μM and 15 mgC L-1, respectively. Overall, the five-probe method is a practical and easily accessible method to determine multiple radicals simultaneously.
Collapse
Affiliation(s)
- Wenjie Hong
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Jianmin Zou
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Mengzhe Zhao
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
38
|
Yang X, Ye L, Zhou Y, Peng J, Kong Q. Effects of pH on the triplet state dissolved organic matter induced free available chlorine decay and radical formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133268. [PMID: 38113730 DOI: 10.1016/j.jhazmat.2023.133268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Triplet state dissolved organic matter (3DOM*) plays a significant role in inducing oxidant decay and radical generation in light-based advanced oxidation processes. However, the effects of pH still need investigation. This work quantitatively analyzed the pH-dependent free available chlorine (FAC) decay and radical formation (i.e., HO• and Cl•) induced by 3DOM* or triplet state photosensitizer (3PS*). Upon UV irradiation at 254 nm, the decay rate of FAC by 3DOM* or 3PS* was the highest at neutral pH, while those by dark reaction of DOM and the direct photolysis of FAC were the highest at acidic conditions. This is attributed to the variation of FAC species, 3DOM* or 3PS* formation, and the reaction rate constants of FAC with 3DOM* or 3PS* at pH 5.0-10.0. 3DOM* and 3PS* formed increasingly with pH varying from 5.0 to 10.0, while their reactivity with FAC decreased due to the speciation from HOCl to OCl-. Radical formation (i.e., HO• and Cl•) from FAC reaction with 3DOM* or 3PS* occurred at all the testing pH range (5.0-10.0). This work highlighted the pH-dependent role of 3DOM* in oxidant decay and radical formation in treating DOM containing waters through oxidant photolysis. ENVIRONMENTAL IMPLICATIONS: Triplet state dissolved organic matter (3DOM*) plays a significant role in inducing oxidant decay and radical generation in light-based AOPs. This study revealed the effects of pH in 3DOM* induced free available chlorine (FAC) decay and radical formation (i.e., HO• and Cl•). With DOM at 3 mgC L-1, FAC decayed fastest under neutral conditions and radical formation (i.e., HO• and Cl•) was enhanced at 5.0-10.0 due to 3DOM* reaction with FAC. These results highlighted the pH-dependent role of 3DOM* in oxidant transformation and radical formation in treating DOM containing waters by AOPs based on oxidant photolysis.
Collapse
Affiliation(s)
- Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Ye
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianglin Peng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
39
|
Mohapatra S, Xian JLL, Galvez-Rodriguez A, Ekande OS, Drewes JE, Gin KYH. Photochemical fate of quaternary ammonium compounds (QACs) and degradation pathways predication through computational analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133483. [PMID: 38232547 DOI: 10.1016/j.jhazmat.2024.133483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Quaternary ammonium compounds (QACs) are commonly used in many products, such as disinfectants, detergents and personal care products. However, their widespread use has led to their ubiquitous presence in the environment, posing a potential risk to human and environmental health. Several methods, including direct and indirect photodegradation, have been explored to remove QACs such as benzylalkyldimethyl ammonium compounds (BACs) and alkyltrimethyl ammonium compounds (ATMACs) from the environment. Hence, in this research, a systematic review of the literature was conducted using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) method to understand the fate of these QACs during direct and indirect photodegradation in UV/H2O2, UV/PS, UV/PS/Cu2+, UV/chlorine, VUV/UV/chlorine, O3/UV and UV/O3/TiO2 systems which produce highly reactive radicals that rapidly react with the QACs, leading to their degradation. As a result of photodegradation, several transformation products (TPs) of QACs are formed, which can pose a greater risk to the environment and human health than the parent QACs. Only limited research in this area has been conducted with fewer QACs. Hence, quantum mechanical calculations such as density functional theory (DFT)-based computational calculations using Gaussian09 software package were used here to explain better the photo-resistant nature of a specific type of QACs, such as BACs C12-18 and ATMACs C12, C14, C18, and their transformation pathways, providing insights into active sites participating in the phototransformation. Recognizing that different advanced oxidation processes (AOPs) come with pros and cons in the elimination of QACs, this review also highlighted the importance of implementing each AOP concerning the formation of toxic transformation products and electrical energy per order (EEO), especially when QACs coexist with other emerging contaminants (ECs).
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O Box 5048, 2600 GA Delft, the Netherlands
| | - Jovina Lew Li Xian
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | | | - Onkar Sudhir Ekande
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
40
|
Yin R, Heuzard A, Li T, Ruan X, Lu S, Shang C. Advanced oxidation of recalcitrant chromophores in full-scale MBR effluent for non-potable reuse of leachate co-treated municipal wastewater. CHEMOSPHERE 2024; 351:141228. [PMID: 38237782 DOI: 10.1016/j.chemosphere.2024.141228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Wastewater non-potable reuse involves further processing of secondary effluent to a quality level acceptable for reuse and is a promising solution to combating water scarcity. Recalcitrant chromophores in landfill leachate challenge the water quality for non-potable reuse when leachate is co-treated with municipal wastewater. In this study, we first use multivariate statistical analysis to reveal that leachate is an important source (with a Pearson's coefficient of 0.82) of recalcitrant chromophores in the full-scale membrane bioreactor (MBR) effluent. We then evaluate the removal efficacies of chromophores by chlorination, breakpoint chlorination, and the chlorination-UV/chlorine advanced oxidation treatment. Conventional chlorination and breakpoint chlorination only partially remove chromophores, leaving a colour level exceeding the standards for non-potable reuse (>20 Hazen units). We demonstrate that pre-chlorination (with an initial chlorine dosing of 20 mg/L as Cl2) followed by UV radiation (with a UV fluence of 500 mJ/cm2) effectively degraded recalcitrant chromophores (>90%). By quantifying the electron donating capacity (EDC) and radical scavenging capacity (RSC) of the reclaimed water, we demonstrate that pre-chlorination reduces EDC and RSC by up to 64%, increases UV transmittance by 32%, and increases radical yields from UV photolysis of chlorine by 1.7-2.2 times. The findings advance fundamental understanding of the alteration of dissolved coloured substances by (photo)chlorination treatment and provide implications for applying advanced oxidation processes in treating wastewater effluents towards sustainable non-potable reuse.
Collapse
Affiliation(s)
- Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Arnaud Heuzard
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tao Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China State Construction Engineering (Hong Kong) Limited, Wan Chai, Hong Kong
| | - Xinyi Ruan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Senhao Lu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
41
|
Zheng D, Wang Y, Jia X, Yao W, Wang S, Li Z, Sun C, Tan H, Zhang Y. Developing Prussian blue/wood-derived biochar catalyst for persistent organic pollutant degradation: Preparation, characterization, and mechanism. CHEMOSPHERE 2024; 351:141150. [PMID: 38211784 DOI: 10.1016/j.chemosphere.2024.141150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/06/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Biomass-derived biochar shows broad promise for persistent organic pollutants (POPs) degradation and thus establishes a more sustainable homestead. However, effective catalytic performance is still challenging. Herein, an efficient catalyst (Prussian blue decorated wood-derived biochar, PBB) was constructed by introducing Prussian blue (PB) into wood-based biochar to activate peroxymonosulfate (PMS) for removing POPs. After anchoring of PB, the degradation performance of biochar was enhanced (degradation efficiency of methylene blue (MB, 20 mg/L) increased from 52% of biochar to 95% of PBB within 60 min). The PBB presents effective MB degradation performance with a wide pH value (3.0 < pH < 11.0) or co-existing diverse anions (Cl-, NO3-, H2PO4-, and HCO3-). Electron paramagnetic resonance (EPR) analysis as well as electrochemical tests confirmed that the non-radical pathway (1O2) is the key to biochar activation of PMS, but by restricting PB into the biochar, the radical pathway (SO4•- and •OH), the non-radical pathway (1O2), and direct electron transfer can work together to activate PMS. In addition, the degradation efficiency could remain about 80% after five-time cyclic tests. This work elucidates the role of PB nanoparticles in enhancing biochar catalysts, which can inspire the development of a carbon-neutralized, cost-effective, and effective strategy for POPs removal.
Collapse
Affiliation(s)
- Dingyuan Zheng
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Yuning Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Xiaoke Jia
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Wenrui Yao
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Shuo Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Zehuai Li
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Ce Sun
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Haiyan Tan
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
42
|
Xue Q, Deng L, Tang Q, Wang T, Luo W. Formation of halonitromethanes from benzylamine during UV/chlorination: Impact factors, toxicity alteration, and pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16437-16452. [PMID: 38319423 DOI: 10.1007/s11356-024-32132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Halonitromethanes (HNMs), a representative nitrogen-containing disinfection byproduct, have gained significant concerns due to their higher cytotoxicity and genotoxicity. UV/chlorination is considered a promising alternative disinfection technology for chlorination. This study aimed to investigate the HNMs formation from benzylamine (BZA) during UV/chlorination. The experimental results revealed that the yields of HNMs initially raised to a peak then dropped over time. Higher chlorine dosage and BZA concentration promoted the formation of HNMs, whereas alkaline pH inhibited their formation. The presence of bromine ion (Br-) not only converted chlorinated-HNMs (Cl-HNMs) to brominated (chlorinated)-HNMs Br (Cl)-HNMs) and brominated-HNMs (Br-HNMs) but also enhanced the total concentration of HNMs. Besides, the calculated cytotoxicity index (CTI) and genotoxicity index (GTI) of HNMs were elevated by 68.97% and 60.66% as Br- concentration raised from 2 to 6 µM. The possible formation pathways of HNMs from BZA were proposed based on the intermediates identified by a gas chromatography/mass spectrometry (GC/MS). In addition, the formation rules of HNMs in actual water verified the results in deionized water during UV/chlorination. The results of this study provide basic data and a theoretical basis for the formation and control of HNMs, which is conducive to applying UV/chlorination.
Collapse
Affiliation(s)
- Qi Xue
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China.
| | - Qian Tang
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Tao Wang
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Wei Luo
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| |
Collapse
|
43
|
Wang L, Zheng H, Hu C, Zeng H, Ma X, Li Q, Li X, Zhou S, Deng J. Novel UV-LED-driven photocatalysis-chlorine activation for carbamazepine degradation by sulfur-doped NH 2-MIL 53 (Fe) composites: Electronic modulation effect and the dual role of chlorine. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133037. [PMID: 37995635 DOI: 10.1016/j.jhazmat.2023.133037] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Chlorine activation-inefficient and the generation of disinfection by-products (DBPs) has indeed limited the application of UV/chlorine process. In this study, the typical metal-organic frameworks (MOFs) NH2-MIL53(Fe) were successfully modified with organic ligands containing sulfur functional groups and applied to construct a novel UV-LED-driven heterogeneous chlorine activation system. The generation of intermediate energy levels and the charge redistribution effect on Fe-S bond facilitated the excitation of electrons and realized the effective separation of photohole (hvb+) and photoelectron (ecb-). The involvement of S-NH2-MIL53(Fe) improved the efficiency of UV-LED/chlorine process by 6 times. The effective activation of HOCl/OCl- by hvb+ and ecb- significantly enhanced the yield of HO· and Cl·. More importantly, HOCl/OCl- played a dual role in UV-LED/chlorine/S-NH2-MIL53(Fe) process as a precursor for the generation of free radicals and a catalyst for the enhancement of HO· yield, which could achieve efficient removal of the target pollutants at lower chlorine doses. In addition, the presence of low-valent sulfur species and ecb- accelerated the cycle of Fe(II)/Fe(III) and in-situ generation of HO· and Cl·. The known generation of DBPs in UV-LED/chlorine/S-NH2-MIL53(Fe) process decreased by 37.9% compared to UV-LED/chlorine process. Developing novel UV-LED/chlorine/S-NH2-MIL53(Fe) processes provided a reliable strategy to efficiently purify actual micro-polluted water bodies.
Collapse
Affiliation(s)
- Lei Wang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Huiming Zheng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chenkai Hu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hanxuan Zeng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China.
| |
Collapse
|
44
|
Liang X, Lei Y, Yang X. Quantitative structure-activity relationships for the reaction kinetics of trace organic contaminants with one-electron oxidants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:192-208. [PMID: 38050900 DOI: 10.1039/d3em00329a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Understanding the reactivity between trace organic contaminants (TrOCs) and radicals involved in advanced oxidation processes (AOPs) is necessary for a good process design, but the experimentally determined rate constants (k values) are not sufficient for numerous artificial TrOCs. Thus, the development of quantitative structure-activity relationships (QSARs) for predicting k values may be an effective way to address this limitation. In this work, we developed QSARs for the reactions of TrOCs with AOP-related one-electron oxidants. Specifically, 15 QSARs using Hammett constants and 8 cross-correlations were developed based on the k values of over 400 reactions between TrOCs (most contain electron-rich moieties, such as phenol, aniline, and alkoxy benzene) and 5 one-electron oxidants (SO4˙-, Br˙, Br2˙-, Cl2˙-, and CO3˙-). Overall, the developed QSARs show a good predictive performance with 94% (237/251, for Hammett constant-based QSARs) and 80% (218/274, for cross-correlations) of the k values predicted within a factor of 3. All the Hammett constant-based QSARs show negative slope values and all cross-correlations show positive relationships, suggesting all 5 one-electron oxidants mainly share similar electrophilic mechanisms with the TrOCs highlighted in this work. Previous QSAR studies on the k values of one-electron oxidants were compared and integrated into their model analysis. Furthermore, k values predicted herein from the QSARs were used to evaluate the degradation of TrOCs during UV/persulfate and UV/chlorine treatment in multiple wastewater matrices, which were demonstrated to be useful. Finally, remarks on the use of the developed QSARs were presented.
Collapse
Affiliation(s)
- Xi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China.
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
45
|
Zhang S, Wei J, Wu N, Allam AA, Ajarem JS, Maodaa S, Huo Z, Zhu F, Qu R. Assessment of the UV/DCCNa and UV/NaClO oxidation process for the removal of diethyl phthalate (DEP) in the aqueous system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122915. [PMID: 37952917 DOI: 10.1016/j.envpol.2023.122915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
In this work, the removal and transformation process of diethyl phthalate (DEP) in UV/dichloroisocyanurate (UV/DCCNa) and UV/sodium hypochlorite (UV/NaClO) systems were compared to evaluate the application potential of UV/DCCNa technology. Compared with UV/NaClO, UV/DCCNa process has the advantage of DEP removal and caused a higher degradation efficiency (93.8%) within 45 min of oxidation in ultrapure water due to the sustained release of hypochloric acid (HOCl). Fourteen intermediate products were found by high-resolution mass spectrometry, and the transformation patterns including hydroxylation, hydrolysis, chlorination, cross-coupling, and nitrosation were proposed. The oxidation processes were also performed under quasi-realistic environmental conditions, and it was found that DEP could be effectively removed in both systems, with yields of disinfection byproduct meeting the drinking water disinfection standard (<60.0 μg/L). Comparing the single system, the removal of DEP decreased in the mixed system containing five kinds of PAEs, which could be attributed to the regeneration of DEP and the competitive effect of •OH occurred among the Dimethyl phthalate (DMP), DEP, Dipropyl phthalate (DPrP), Diallyl phthalate (DAP) and Diisobutyl phthalate (DiBP). However, a greater removal performance presented in UV/DCCNa system compared with UV/NaClO system (69.4% > 62.1%). Further, assessment of mutagenicity and developmental toxicity by Toxicity Estimation Software Tool (T.E.S.T) software indicated that UV/DCCNa process has fewer adverse effects on the environment and is a more environmentally friendly chlorination method. This study may provide some guidance for selecting the suitable disinfection technology for drinking water treatment.
Collapse
Affiliation(s)
- Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Maodaa
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
46
|
Xu J, Zou J, Wu J, Zeng H, Huang Y, Yang J, Gong C, Chen S, Ma J. Enhanced chlorination of diclofenac using ABTS as electron shuttle: Performance, mechanism and applicability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168117. [PMID: 37890637 DOI: 10.1016/j.scitotenv.2023.168117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chlorination, one of the most common oxidation strategies, performed limited degradation capacity towards many emerging organic contaminants under neutral pH conditions. In this study, 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonate (ABTS) was discovered to possess an outstanding activation property towards free available chlorine (FAC) during the chlorination of diclofenac (DCF) among pH 6.0-9.5. ABTS radical (ABTS•+) primarily accounted for the elimination of DCF in the ABTS/FAC system, although hydroxyl radicals, reactive chlorine species, and singlet oxygen were also generated via the self-decomposition of FAC. ABTS acted as the electron shuttle to degrade DCF in the ABTS/FAC system, where ABTS was firstly oxidized by FAC to ABTS•+ via single electron transfer, and followed by the elimination of DCF with the generated ABTS•+. Eight DCF degradation intermediates were identified by LC/Q-TOF/MS, and four DCF degradation pathways were proposed. Real water bodies, humic acid, and the coexistent anions of Cl-, HCO3-, NO3-, and SO42- performed negligible influence on DCF removal in ABTS/FAC system. ABTS/FAC system was much superior to sole chlorination in terms of toxicity reduction and anti-interference capacity. Overall, this study innovatively introduced ABTS as the electron shuttle to enhance the oxidative capacity of FAC under neutral pH conditions and provided a new insight that the ABTS-like organic/synthetic components might play an important role in degrading emerging organic contaminants by chlorination in water treatment.
Collapse
Affiliation(s)
- Jiaxin Xu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Huiping Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yixin Huang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jingxin Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Chunming Gong
- Xiamen Institute of Environmental Science, Xiamen, Fujian 361005, China
| | - Siying Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
47
|
Espinosa-Barrera PA, Gómez-Gómez M, Vanegas J, Machuca-Martinez F, Torres-Palma RA, Martínez-Pachón D, Moncayo-Lasso A. Systematic analysis of the scientific-technological production on the use of the UV, H 2O 2, and/or Cl 2 systems in the elimination of bacteria and associated antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6782-6814. [PMID: 38165540 PMCID: PMC10821820 DOI: 10.1007/s11356-023-31435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
This study presents a systematic review of the scientific and technological production related to the use of systems based on UV, H2O2, and Cl2 for the elimination of antibiotic-resistant bacteria (ARB) and genes associated with antibiotic resistance (ARGs). Using the Pro Know-C (Knowledge Development Process-Constructivist) methodology, a portfolio was created and analyzed that includes 19 articles and 18 patents published between 2011 and 2022. The results show a greater scientific-technological production in UV irradiation systems (8 articles and 5 patents) and the binary combination UV/H2O2 (9 articles and 4 patents). It was emphasized that UV irradiation alone focuses mainly on the removal of ARB, while the addition of H2O2 or Cl2, either individually or in binary combinations with UV, enhances the removal of ARB and ARG. The need for further research on the UV/H2O2/Cl2 system is emphasized, as gaps in the scientific-technological production of this system (0 articles and 2 patents), especially in its electrochemically assisted implementation, have been identified. Despite the gaps identified, there are promising prospects for the use of combined electrochemically assisted UV/H2O2/Cl2 disinfection systems. This is demonstrated by the effective removal of a wide range of contaminants, including ARB, fungi, and viruses, as well as microorganisms resistant to conventional disinfectants, while reducing the formation of toxic by-products.
Collapse
Affiliation(s)
- Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
- Doctorado en Ciencia Aplicada (DCA), Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Marcela Gómez-Gómez
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Javier Vanegas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Fiderman Machuca-Martinez
- Centro de Excelencia en Nuevos Materiales, Universidad del Valle, Calle 13 No. 100-00, Cali, Colombia
| | - Ricardo Antonio Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia.
| |
Collapse
|
48
|
Seah ZQ, Leow S, Snyder SA. The role of reactive chlorine and nitrogen species in micropollutant degradation in UV/monochloramine. CHEMOSPHERE 2024; 347:140542. [PMID: 37926167 DOI: 10.1016/j.chemosphere.2023.140542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Monochloramine (NH2Cl) is applied upstream of reverse osmosis (RO) membranes for biofouling control. Residual NH2Cl can undergo UV photolysis downstream, generating reactive species for an AOP to occur. At the bench-scale, NH2Cl is typically generated from combining sodium hypochlorite and ammonium chloride or sulfate. This study investigated the degradation of four compounds of interest - acetaminophen, caffeine, sucralose and 1,4-dioxane - in UV/NH2Cl at the bench scale to study their reactivity with reactive chlorine species (RCS) and reactive nitrogen species (RNS). With methanol acting as a scavenger of •OH radicals, the performance of UV/NH2Cl was compared to UV/H2O2 and UV/HOCl. In UV/H2O2, dioxane was severely inhibited at 1-2 mg/L H2O2 and comparable at 5 mg/L to UV/NH2Cl. When ammonium sulfate ((NH4)2SO4) was used as the ammonia source over ammonium chloride (NH4Cl), the overall degradation of micropollutants was higher and caffeine was exclusively degraded. At 1-2 mg/L NH2Cl, dioxane degraded by 16.2-17.8% and 2.92-5.29% from (NH4)2SO4 and NH4Cl respectively while caffeine degraded by 7.45-9.61% with NH2Cl ((NH4)2SO4), but not degrade with NH2Cl (NH4Cl). The higher concentration of chloride ions from NH4Cl significantly influenced the speciation of generated radicals and impacted micropollutant degradation. This suggests that the reactivity of more selective RCS (Cl2•-, •ClO, ClOH•-) and RNS (•NH2, •NO, •NO2, etc.) varies with micropollutants of interest. The presence of higher chloride concentration from the ammonia source inhibited the generation of •OH radicals with •OH consumed by RNS to form NO3- (μg/L levels), showing the impact of the choice of ammonia source and the water matrix on UV/NH2Cl performance.
Collapse
Affiliation(s)
- Zi Quan Seah
- School of Civil & Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Shijie Leow
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Shane A Snyder
- School of Civil & Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
49
|
Wang Y, Ma B, Zhao J, Tang Z, Li W, He C, Xia D, Linden KG, Yin R. Rapid Inactivation of Fungal Spores in Drinking Water by Far-UVC Photolysis of Free Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21876-21887. [PMID: 37978925 DOI: 10.1021/acs.est.3c05703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Effective and affordable disinfection technology is one key to achieving Sustainable Development Goal 6. In this work, we develop a process by integrating Far-UVC irradiation at 222 nm with free chlorine (UV222/chlorine) for rapid inactivation of the chlorine-resistant and opportunistic Aspergillus niger spores in drinking water. The UV222/chlorine process achieves a 5.0-log inactivation of the A. niger spores at a chlorine dosage of 3.0 mg L-1 and a UV fluence of 30 mJ cm-2 in deionized water, tap water, and surface water. The inactivation rate constant of the spores by the UV222/chlorine process is 0.55 min-1, which is 4.6-fold, 5.5-fold, and 1.8-fold, respectively, higher than those of the UV222 alone, chlorination alone, and the conventional UV254/chlorine process under comparable conditions. The more efficient inactivation by the UV222/chlorine process is mainly attributed to the enhanced generation of reactive chlorine species (e.g., 6.7 × 10-15 M of Cl•) instead of hydroxyl radicals from UV222 photolysis of chlorine, which is verified through both experiments and a kinetic model. We further demonstrate that UV222 photolysis damages the membrane integrity and benefits the penetration of chlorine and radicals into cells for inactivation. The merits of the UV222/chlorine process over the UV254/chlorine process also include the more effective inhibition of the photoreactivation of the spores after disinfection and the lower formation of chlorinated disinfection byproducts and toxicity.
Collapse
Affiliation(s)
- Yongyi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanxin Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
50
|
Guo K, Zhang Y, Wu S, Qin W, Wang Y, Hua Z, Chen C, Fang J. Comprehensive Assessment of Reactive Bromine Species in Advanced Oxidation Processes: Differential Roles in Micropollutant Abatement in Bromide-Containing Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20339-20348. [PMID: 37946521 DOI: 10.1021/acs.est.3c04641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Reactive bromine species (RBS) are gaining increasing attention in natural and engineered aqueous systems containing bromide ions (Br-). However, their roles in the degradation of structurally diverse micropollutants by advanced oxidation processes (AOPs) were not differentiated. In this study, the second-order rate constants (k) of Br•, Br2•-, BrO•, and ClBr•- were collected and evaluated. Br• is the most reactive RBS toward 21 examined micropollutants with k values of 108-1010 M-1 s-1. Br2•-, ClBr•-, and BrO• are selective for electron-rich micropollutants with k values of 106-108 M-1 s-1. The specific roles of RBS in aqueous micropollutant degradation in AOPs were revealed by using simplified models via sensitivity analysis. Generally, RBS play minimal roles in the UV/H2O2 process but are significant in the UV/peroxydisulfate (PDS) and UV/chlorine processes in the presence of trace Br-. In UV/PDS with ≥1 μM Br-, Br• emerges as the major RBS for removing electron-rich micropollutants. In UV/chlorine, BrO• contributes to the degradation of specific electron-rich micropollutants with removal percentages of ≥20% at 1 μM Br-, while the contributions of BrO• and Br• are comparable to those of reactive chlorine species as Br- concentration increases to several μM. In all AOPs, Br2•- and ClBr•- play minor roles at 1-10 μM Br-. Water matrix components such as HCO3-, Cl-, and natural organic matter (NOM) significantly inhibit Br•, while BrO• is less affected, only slightly scavenged by NOM with a k value of 2.1 (mgC/L)-1 s-1. This study sheds light on the differential roles of multiple RBS in micropollutant abatement by AOPs in Br--containing water.
Collapse
Affiliation(s)
- Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Yifei Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Sining Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Wenlei Qin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Yuge Wang
- School of Civil Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|