1
|
Brady DC. Making Every Penny Count: Kinase Signaling Transduction, Copper Homeostasis, & Nutrient Sensing. J Mol Biol 2025; 437:169089. [PMID: 40089146 DOI: 10.1016/j.jmb.2025.169089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
I am the Harrison McCrea Dickson, MD, and Clifford C. Baker, MD Presidential Associate Professor of Cancer Biology at the University of Pennsylvania Perelman School of Medicine. I earned a BS in Chemistry from Radford University and a PhD in Pharmacology from UNC-Chapel Hill before completing postdoctoral training at Duke University with Dr. Christopher Counter. At Penn, I lead a research program pioneering metalloallostery, where redox-active metals regulate kinase activity. We investigate the intersection of kinase signaling and copper (Cu) homeostasis, identifying Cu-dependent kinases and developing targeted therapies through drug repurposing and novel drug design. Our work has advanced our understanding of metals in nutrient signaling, energy homeostasis, and cancer metabolism. I am a Pew Biomedical Scholar, a V Foundation Scholar, and the recipient of the Perelman School of Medicine's Michael S. Brown New Investigator Research Award. I am also a dedicated advocate for diversity, equity, inclusion, and accessibility (DEIA), having spent the past decade addressing barriers to representation in STEM. In 2021, I was appointed the inaugural Assistant Dean for Inclusion, Diversity, and Equity (IDE) in Research Training at Penn, leading efforts to foster an inclusive research environment. For these contributions, I was recognized with the 2022 Vanderbilt Basic Science Juneteenth Icon Award and the Penn Biomedical Graduate Studies Cell and Molecular Biology Graduate Group Community Service Award.
Collapse
Affiliation(s)
- Donita C Brady
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Ma X, Zeng X, Huang Y, Liu SH, Yin J, Yang GF. Visualizing plant salt stress with a NaCl-responsive fluorescent probe. Nat Protoc 2025; 20:902-933. [PMID: 39438696 DOI: 10.1038/s41596-024-01068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Salt stress is an adverse environmental condition that harms plant growth and development. The development of salt stress probes is critical for tracking the growth dynamics of plants, molecular breeding or screening of growth regulators. The sodium chloride (NaCl)-responsive fluorescent probe Aza-CyBz is designed based on the tenet that NaCl induces formation of ordered aggregates, and the sensitive fluorescence response can enable the visualization of plant salt stress in root tip tissues and live plants. Herein, we describe a detailed three-step route for synthesis of Aza-CyBz and applications to monitoring salt stress in Arabidopsis thaliana. The procedures for operating fluorescence imaging under various stresses are also listed to eliminate interference from the oxidative mechanism of salt stress. Compared with conventional invasive approaches such as inductively coupled plasma emission spectrometry and flame photometer, our protocol can real-time monitor salt stress experienced by plants, which demands simple pretreatment procedure and staining technique. Due to near infrared fluorescence, this method provides direct visual observation of salt stress at both tissue and live plant levels, which is superior to conventional noninvasive approaches. The preparation of probe Aza-CyBz takes ~2 d, and the imaging experiments for assessing salt stress experienced by plants, including the preparation of stressed plant samples takes ~9-11 d for root tip tissues and ~23 d for live plants. Notably, acquisition and analysis visual images of salt stress in plants can be completed within 2 h and they require only a basic knowledge of spectroscopy and chemistry.
Collapse
Affiliation(s)
- Xiaoxie Ma
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, P. R. China
| | - Xiaoyan Zeng
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, P. R. China
| | - Yurou Huang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, P. R. China
| | - Sheng Hua Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, P. R. China
| | - Jun Yin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, P. R. China.
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, P. R. China.
| |
Collapse
|
3
|
Messina MS, Torrente L, Pezacki AT, Humpel HI, Li EL, Miller SG, Verdejo-Torres O, Padilla-Benavides T, Brady DC, Killilea DW, Killilea AN, Ralle M, Ward NP, Ohata J, DeNicola GM, Chang CJ. A histochemical approach to activity-based copper sensing reveals cuproplasia-dependent vulnerabilities in cancer. Proc Natl Acad Sci U S A 2025; 122:e2412816122. [PMID: 39813247 PMCID: PMC11761388 DOI: 10.1073/pnas.2412816122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Copper is an essential nutrient for sustaining vital cellular processes spanning respiration, metabolism, and proliferation. However, loss of copper homeostasis, particularly misregulation of loosely bound copper ions which are defined as the labile copper pool, occurs in major diseases such as cancer, where tumor growth and metastasis have a heightened requirement for this metal. To help decipher the role of copper in the etiology of cancer, we report a histochemical activity-based sensing approach that enables systematic, high-throughput profiling of labile copper status across many cell lines in parallel. Coppermycin-1 reacts selectively with Cu(I) to release puromycin, which is then incorporated into nascent peptides during protein translation, thus leaving a permanent and dose-dependent marker for labile copper that can be visualized with standard immunofluorescence assays. We showcase the utility of this platform for screening labile Cu(I) pools across the National Cancer Institute's 60 (NCI-60) human tumor cell line panel, identifying cell types with elevated basal levels of labile copper. Moreover, we use Coppermycin-1 to show that lung cancer cells with heightened activation of nuclear factor-erythroid 2-related factor 2 (NRF2) possess lower resting labile Cu(I) levels and, as a result, have reduced viability when treated with a copper chelator. This work establishes that methods for labile copper detection can be used to assess cuproplasia, an emerging form of copper-dependent cell growth and proliferation, providing a starting point for broader investigations into the roles of transition metal signaling in biology and medicine.
Collapse
Affiliation(s)
- Marco S. Messina
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Hanna I. Humpel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Erin L. Li
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Sophia G. Miller
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR97239
| | - Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT06459
| | | | - Donita C. Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David W. Killilea
- Office of Research, University of California, San Francisco, Oakland, CA94609
| | - Alison N. Killilea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR97239
| | - Nathan P. Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, NC27695
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
4
|
Ashwathi AV, Basheer SM. Selective fluoride ion sensing using novel quinoline chemosensor insights into kinetics and molecular logic gate functions. Sci Rep 2025; 15:1859. [PMID: 39806002 PMCID: PMC11730337 DOI: 10.1038/s41598-024-84414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
CQHC, a novel colorimetric fluorescent sensor, developed for the selective sensing of ions and well characterised, including SC-XRD. It demonstrated selective sensing for Co2+, Zn2+, Hg2+ and F- using absorbance titration at 420 nm, 446 nm and the binding constants estimated follows the order F- > Co2+ > Hg2+ > Zn2+. On light of this, molecular logic gate was built for CQHC's selective multi-ion detection. However, fluorescence titration analysis revealed that CQHC is solely selective for F- ions. This conclusion was validated by 1H-NMR titration, clearly showed deprotonation occurs from N3-H. Fluorescent decay titration, kinetic investigations and computational studies all contributed to the selective sensing of F-. According to TD-DFT calculations, added fluoride ion interacts with N3-H proton and deprotonates to generate F-H in the excited state.
Collapse
Affiliation(s)
- A V Ashwathi
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, 522237, India
| | - Sabeel M Basheer
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, 522237, India.
| |
Collapse
|
5
|
Imam M, Ji J, Zhang Z, Yan S. Targeting the initiator to activate both ferroptosis and cuproptosis for breast cancer treatment: progress and possibility for clinical application. Front Pharmacol 2025; 15:1493188. [PMID: 39867656 PMCID: PMC11757020 DOI: 10.3389/fphar.2024.1493188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function. The accumulation of iron and copper ions triggers distinct cell death pathways, known as ferroptosis and cuproptosis, respectively. Ferroptosis is characterized by iron-dependent lipid peroxidation, while cuproptosis involves copper-induced oxidative stress. They are increasingly recognized as promising targets for the development of anticancer drugs. Recently, compelling evidence demonstrated that the interplay between ferroptosis and cuproptosis plays a crucial role in regulating breast cancer progression. This review elucidates the converging pathways of ferroptosis and cuproptosis in breast cancer. Moreover, we examined the value of genes associated with ferroptosis and cuproptosis in the clinical diagnosis and treatment of breast cancer, mainly outlining the potential for a co-targeting approach. Lastly, we delve into the current challenges and limitations of this strategy. In general, this review offers an overview of the interaction between ferroptosis and cuproptosis in breast cancer, offering valuable perspectives for further research and clinical treatment.
Collapse
Affiliation(s)
| | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Chang Z, Li S, Ye JH, Lin F, Chen Y, Guo Z, Gong X. A rhodamine based near-infrared fluorescent probe for selective detection of Cu 2+ ions and its applications in bioimaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 17:178-183. [PMID: 39584498 DOI: 10.1039/d4ay01922a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
A novel near-infrared fluorescent probe TM2 based on a rhodamine-bearing framework was disclosed with a large Stokes shift (100 nm). TM2 exhibits highly selective recognition for Cu2+ in EtOH/H2O (1 : 1, v/v) solution with a low detection limit (2.3 μM) and a wide detection range (0-50 μM). Detection of Cu2+ is undisturbed at physiological pH levels of 5-9. This recognition mechanism is attributed to the formation of a 1 : 1 complex between TM2 and Cu2+, validated by Job's plot, 1H NMR titration, and LC-MS experiments. Moreover, the successful fluorescence imaging of Cu2+ both in vitro and in vivo was also accomplished.
Collapse
Affiliation(s)
- Zhijian Chang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Shumeng Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Jia-Hai Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Fuyan Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Xuedong Gong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| |
Collapse
|
7
|
Jiang Y, Khoury EE, Pezacki AT, Qian N, Oi M, Torrente L, Miller S, Ralle M, DeNicola GM, Min W, Chang CJ. An Activity-Based Sensing Approach to Multiplex Mapping of Labile Copper Pools by Stimulated Raman Scattering. J Am Chem Soc 2024; 146:33324-33337. [PMID: 39586074 PMCID: PMC11844218 DOI: 10.1021/jacs.4c06296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Molecular imaging with analyte-responsive probes offers a powerful chemical approach to studying biological processes. Many reagents for bioimaging employ a fluorescence readout, but the relatively broad emission bands of this modality and the need to alter the chemical structure of the fluorophore for different signal colors can potentially limit multiplex imaging. Here, we report a generalizable approach to multiplex analyte imaging by leveraging the comparably narrow spectral signatures of stimulated Raman scattering (SRS) in activity-based sensing (ABS) mode. We illustrate this concept with two copper Raman probes (CRPs), CRP2181 and CRP2153.2, that react selectively with loosely bound Cu(I/II) and Cu(II) ions, respectively, termed the labile copper pool, through copper-directed acyl imidazole (CDAI) chemistry. These reagents label proximal proteins in a copper-dependent manner using a dye scaffold bearing a 13C≡N or 13C≡15N isotopic SRS tag with nearly identical physiochemical properties in terms of shape and size. SRS imaging with the CRP reagents enables duplex monitoring of changes in intracellular labile Cu(I) and Cu(II) pools upon exogenous copper supplementation or copper depletion or genetic perturbations to copper transport proteins. Moreover, CRP imaging reveals reciprocal increases in labile Cu(II) pools upon decreases in activity of the antioxidant response nuclear factor-erythroid 2-related factor 2 (NRF2) in cellular models of lung adenocarcinoma. By showcasing the use of narrow-bandwidth ABS probes for multiplex imaging of copper pools in different oxidation states and identifying alterations in labile metal nutrient pools in cancer, this work establishes a foundation for broader SRS applications in analyte-responsive imaging in biological systems.
Collapse
Affiliation(s)
- Yishu Jiang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - Elsy El Khoury
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Aidan T. Pezacki
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Miku Oi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Sophia Miller
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Christopher J. Chang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Pezacki AT, Gao J, Chang CJ. Designing small-molecule and macromolecule sensors for imaging redox-active transition metal signaling. Curr Opin Chem Biol 2024; 83:102541. [PMID: 39500078 PMCID: PMC11588540 DOI: 10.1016/j.cbpa.2024.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/27/2024]
Abstract
Transition metals play essential roles in biology, where these nutrients regulate protein activity as active site cofactors or via metalloallostery. In contrast, dysregulation of transition metal homeostasis can lead to unique metal-dependent signaling pathways connected to aging and disease, such as cuproptosis and ferroptosis for copper- and iron-dependent cell death or cuproplasia and ferroplasia for copper- and iron-dependent cell growth and proliferation, respectively. New methods that enable detection of bioavailable transition metal pools with both metal and oxidation state specificity can help decipher their contributions to health and disease. Here we summarize recent advances in designing sensors for imaging transition metals and their applications to uncover new metal biology.
Collapse
Affiliation(s)
- Aidan T Pezacki
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiaying Gao
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Shi L, Gao W, Jia Y, Cui S, Ma T, Xu X, Wang H, Lu Y. Fluorescence and colorimetric rapid dual-signal "on-off-on" switching detection of ascorbic acid based on TSPP/DCIP. Mikrochim Acta 2024; 191:643. [PMID: 39361226 DOI: 10.1007/s00604-024-06716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/17/2024] [Indexed: 11/10/2024]
Abstract
A fluorescence and colorimetric dual-signal sensing system for the determination of ascorbic acid (AA) in complex media was developed by using 5,10,15, 20-tetrakis(4-sulfonyl) porphyrin (TSPP) as a sensing probe and sodium 2,6-dichloroindophenol (DCIP) as a bridge. A fluorescence resonance energy transfer (FRET) effect occurred when DCIP was added to the TSPP solution, resulting in the quenching of the fluorescence signal of TSPP and a change in the color of the solution from pink to blue. The DCIP in the system reacted with AA in a redox reaction to produce colorless phenol imine, the color of the solution changed from blue to green causing an obvious colorimetric response, and the TSPP/DCIP sensing system's fluorescence signal restored owing to AA introduced. The fluorescence method for AA showed good linearity in the ranges 0.08 mM ~ 1 mM and 1 mM ~ 43.6 mM with a detection limit of 6.4 μM. And the colorimetric method for AA showed excellent linearity in the range 0.46 mM ~ 40.2 mM with a detection limit of 76.0 μM. The constructed "dual-signal" probe in the study has been successfully applied to the detection of AA in practical samples. The method proposed has great potential for practical applications and provides new ideas for the visual inspection of portable measurements.
Collapse
Affiliation(s)
- Lin Shi
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, Xining, China
- College of Pharmacy, Qinghai Minzu University, Xining, China
| | - Wuyang Gao
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, Xining, China
- College of Pharmacy, Qinghai Minzu University, Xining, China
| | - Yanyan Jia
- Qinghai Higher Vocational and Technical Institute, Xining, China
| | - Shenzheng Cui
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, Xining, China
- College of Pharmacy, Qinghai Minzu University, Xining, China
| | - Tianfeng Ma
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, Xining, China
- College of Pharmacy, Qinghai Minzu University, Xining, China
| | - Xiaohua Xu
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, Xining, China
- College of Pharmacy, Qinghai Minzu University, Xining, China
| | - Huan Wang
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, China.
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, Xining, China.
- College of Pharmacy, Qinghai Minzu University, Xining, China.
- No. 3, Bayi Middle Road, Xining, 810007, Qinghai, China.
| | - Yongchang Lu
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, China.
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, Xining, China.
- College of Pharmacy, Qinghai Minzu University, Xining, China.
- No. 3, Bayi Middle Road, Xining, 810007, Qinghai, China.
| |
Collapse
|
10
|
Pezacki AT, Gonciarz RL, Okamura T, Matier CD, Torrente L, Cheng K, Miller SG, Ralle M, Ward NP, DeNicola GM, Renslo AR, Chang CJ. A tandem activity-based sensing and labeling strategy reveals antioxidant response element regulation of labile iron pools. Proc Natl Acad Sci U S A 2024; 121:e2401579121. [PMID: 38968123 PMCID: PMC11252945 DOI: 10.1073/pnas.2401579121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024] Open
Abstract
Iron is an essential element for life owing to its ability to participate in a diverse array of oxidation-reduction reactions. However, misregulation of iron-dependent redox cycling can also produce oxidative stress, contributing to cell growth, proliferation, and death pathways underlying aging, cancer, neurodegeneration, and metabolic diseases. Fluorescent probes that selectively monitor loosely bound Fe(II) ions, termed the labile iron pool, are potentially powerful tools for studies of this metal nutrient; however, the dynamic spatiotemporal nature and potent fluorescence quenching capacity of these bioavailable metal stores pose challenges for their detection. Here, we report a tandem activity-based sensing and labeling strategy that enables imaging of labile iron pools in live cells through enhancement in cellular retention. Iron green-1 fluoromethyl (IG1-FM) reacts selectively with Fe(II) using an endoperoxide trigger to release a quinone methide dye for subsequent attachment to proximal biological nucleophiles, providing a permanent fluorescent stain at sites of elevated labile iron. IG1-FM imaging reveals that degradation of the major iron storage protein ferritin through ferritinophagy expands the labile iron pool, while activation of nuclear factor-erythroid 2-related factor 2 (NRF2) antioxidant response elements (AREs) depletes it. We further show that lung cancer cells with heightened NRF2 activation, and thus lower basal labile iron, have reduced viability when treated with an iron chelator. By connecting labile iron pools and NRF2-ARE activity to a druggable metal-dependent vulnerability in cancer, this work provides a starting point for broader investigations into the roles of transition metal and antioxidant signaling pathways in health and disease.
Collapse
Affiliation(s)
- Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
| | - Toshitaka Okamura
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Carson D. Matier
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Ke Cheng
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
| | - Sophia G. Miller
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR97239
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR97239
| | - Nathan P. Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
11
|
Bonet-Aleta J, Encinas-Gimenez M, Oi M, Pezacki AT, Sebastian V, de Martino A, Martín-Pardillos A, Martin-Duque P, Hueso JL, Chang CJ, Santamaria J. Nanomedicine Targeting Cuproplasia in Cancer: Labile Copper Sequestration Using Polydopamine Particles Blocks Tumor Growth In Vivo through Altering Metabolism and Redox Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29844-29855. [PMID: 38829261 PMCID: PMC11181271 DOI: 10.1021/acsami.4c04336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Copper plays critical roles as a metal active site cofactor and metalloallosteric signal for enzymes involved in cell proliferation and metabolism, making it an attractive target for cancer therapy. In this study, we investigated the efficacy of polydopamine nanoparticles (PDA NPs), classically applied for metal removal from water, as a therapeutic strategy for depleting intracellular labile copper pools in triple-negative breast cancer models through the metal-chelating groups present on the PDA surface. By using the activity-based sensing probe FCP-1, we could track the PDA-induced labile copper depletion while leaving total copper levels unchanged and link it to the selective MDA-MB-231 cell death. Further mechanistic investigations revealed that PDA NPs increased reactive oxygen species (ROS) levels, potentially through the inactivation of superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Additionally, PDA NPs were found to interact with the mitochondrial membrane, resulting in an increase in the mitochondrial membrane potential, which may contribute to enhanced ROS production. We employed an in vivo tumor model to validate the therapeutic efficacy of PDA NPs. Remarkably, in the absence of any additional treatment, the presence of PDA NPs alone led to a significant reduction in tumor volume by a factor of 1.66 after 22 days of tumor growth. Our findings highlight the potential of PDA NPs as a promising therapeutic approach for selectively targeting cancer by modulating copper levels and inducing oxidative stress, leading to tumor growth inhibition as shown in these triple-negative breast cancer models.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Miguel Encinas-Gimenez
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Miku Oi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Aidan T. Pezacki
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Victor Sebastian
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Alba de Martino
- Instituto
Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria Aragón (IIS-Aragón), Edificio CIBA. Avenida San Juan
Bosco 13, planta 1, 50009 Zaragoza, Spain
| | - Ana Martín-Pardillos
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Pilar Martin-Duque
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
- Departamento
de Desarrollo de Medicamentos y Terapias Avanzadas, Instituto de Salud Carlos III, Ctra. de Pozuelo, 28, 28222, Majadahonda Madrid, Spain
| | - Jose L. Hueso
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Christopher J. Chang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Helen
Willis Neuroscience Institute, University
of California, Berkeley, California 94720, United States
| | - Jesus Santamaria
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Zeng X, Wei T, Wang X, Liu Y, Tan Z, Zhang Y, Feng T, Cheng Y, Wang F, Ma B, Qin W, Gao C, Xiao J, Wang C. Discovery of metal-binding proteins by thermal proteome profiling. Nat Chem Biol 2024; 20:770-778. [PMID: 38409364 DOI: 10.1038/s41589-024-01563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Metal-binding proteins (MBPs) have various and important biological roles in all living species and many human diseases are intricately linked to dysfunctional MBPs. Here, we report a chemoproteomic method named 'metal extraction-triggered agitation logged by thermal proteome profiling' (METAL-TPP) to globally profile MBPs in proteomes. The method involves the extraction of metals from MBPs using chelators and monitoring the resulting protein stability changes through thermal proteome profiling. Applying METAL-TPP to the human proteome with a broad-spectrum chelator, EDTA, revealed a group of proteins with reduced thermal stability that contained both previously known MBPs and currently unannotated MBP candidates. Biochemical characterization of one potential target, glutamine-fructose-6-phosphate transaminase 2 (GFPT2), showed that zinc bound the protein, inhibited its enzymatic activity and modulated the hexosamine biosynthesis pathway. METAL-TPP profiling with another chelator, TPEN, uncovered additional MBPs in proteomes. Collectively, this study developed a robust tool for proteomic discovery of MBPs and provides a rich resource for functional studies of metals in cell biology.
Collapse
Affiliation(s)
- Xin Zeng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tiantian Wei
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xianghe Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhenshu Tan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yihai Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Tianyu Feng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yao Cheng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Fengzhang Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bin Ma
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chuanping Gao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Junyu Xiao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
13
|
Yang Y, Fan H, Guo Z. Modulation of Metal Homeostasis for Cancer Therapy. Chempluschem 2024; 89:e202300624. [PMID: 38315756 DOI: 10.1002/cplu.202300624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Metal ions such as iron, zinc, copper, manganese, and calcium are essential for normal cellular processes, including DNA synthesis, enzyme activity, cellular signaling, and oxidative stress regulation. When the balance of metal homeostasis is disrupted, it can lead to various pathological conditions, including cancer. Thus, understanding the role of metal homeostasis in cancer has led to the development of anti-tumor strategies that specifically target the metal imbalance. Up to now, diverse small molecule-based chelators, ionophores, metal complexes, and metal-based nanomaterials have been developed to restore the normal balance of metals or exploit the dysregulation for therapeutic purposes. They hold great promise in inhibiting tumor growth, preventing metastasis, and enhancing the effectiveness of existing cancer therapies. In this review, we aim to provide a comprehensive summary of the strategies employed to modulate the homeostasis of iron, zinc, copper, manganese, and calcium for cancer therapy. Their modulation mechanisms for metal homeostasis are succinctly described, and their recent applications in the field of cancer therapy are discussed. At the end, the limitations of these approaches are addressed, and potential avenues for future developments are explored.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, P. R. China
| | - Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
14
|
Wei D, Dai Y, Cao J, Fu N. A novel fluorescent probe for visualizing viscosity changes in lipid droplets during chemotherapy-induced ferroptosis. Anal Chim Acta 2024; 1299:342422. [PMID: 38499425 DOI: 10.1016/j.aca.2024.342422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Ferroptosis, as a novel form of cell death, is becoming one of the hot topics in cancer treatment research. It differs from necrosis and autophagy in that it involves the accumulation of lipid peroxides and is triggered by iron dependency. Recent studies have suggested that this mechanism may alter the viscosity or structure of lipid droplets (LDs). The relationship between LDs viscosity and ferroptosis remains an active area of research with limited reports at present. Additionally, there is a lack of effective anticancer drugs targeting the ferroptosis pathway to promote ferroptosis in tumour cells. Therefore, the development of tools to detect viscosity changes during ferroptosis and targeted therapeutic strategies is of great significance. RESULTS By coupling 1,3-indandione with naphthalimide, including decamethylamine as a LDs recognition group, we designed and synthesized an environmental fluorescent probe that induces intramolecular charge transfer (TICT) effects. Notably, the diffusion and transport of intracellular substances may be affected in highly viscous environments. Under such conditions, intracellular iron ions may accumulate, leading to peroxide production and cellular damage, which can trigger ferroptosis. Therefore, WD-1 achieved excellent in situ bioimaging of LDs targeting and its viscosity during ferroptosis in HeLa cells and zebrafish. Furthermore, it was observed that WD-1 effectively differentiated between malignant and normal cells during this process, highlighting its potential significance in distinguishing cellular states. In addition, we used the antitumour drug paclitaxel to study ferroptosis in cancer cells. These findings not only provide an excellent tool for the development of the ferroptosis response, but also are crucial for understanding the biological properties of LDs during the ferroptosis response. SIGNIFICANCE AND NOVELTY Based on a powerful tool of fluorescent probe with in vivo bioimaging, we developed WD-1 to track the impact of paclitaxel on the process of ferroptosis in living cells. Therefore, we preliminarily believe that paclitaxel may affect the occurrence of ferroptosis and control apoptosis in cancer cells. These findings not only serve as an exceptional tool for advancing our understanding of the ferroptosis response, but furthermore play a vital role in comprehending the biological characteristics of LDs in relation to ferroptosis.
Collapse
Affiliation(s)
- Di Wei
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology & Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety & International (Hong Kong, Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yingshu Dai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology & Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety & International (Hong Kong, Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Jing Cao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology & Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety & International (Hong Kong, Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, PR China; State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Nanyan Fu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology & Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety & International (Hong Kong, Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, PR China.
| |
Collapse
|
15
|
Liyanage SH, Yan M. Maltose-Derivatized Fluorescence Turn-On Imaging Probe for Bacteria Detection. ACS Infect Dis 2023; 9:2560-2571. [PMID: 37936289 DOI: 10.1021/acsinfecdis.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We report a maltose-derivatized fluorescence turn-on imaging probe, Mal-Cz, to detect E. coli and Staphylococci. The fluorescence turn-on is achieved through an intramolecular C-H insertion reaction of the perfluoroaryl azide-functionalized carbazole to give a fluorescent product. Confocal fluorescence microscopy confirmed the successful uptake of Mal-Cz by E. coli and Staphylococci upon photoactivation. The Mal-Cz probe could selectively detect E. coli and S. epidermidis in the presence of P. aeruginosa and M. smegmatis without interference from these bacteria. Both the photoactivation and bacteria detection can be accomplished using a hand-held UV lamp at 365 nm, with the limit of detection of 103 CFU/mL by the naked eye. Mal-Cz could also be used to detect E. coli and S. epidermidis spiked in milk by the naked eye under a hand-held UV lamp. The uptake of Mal-Cz requires metabolically active bacteria: the uptake was reduced in stationary phase bacteria and was diminished in bacteria that were killed by heating or treating with antibiotics or sodium azide. The uptake decreased with increasing concentration of added free maltose, indicating that Mal-Cz hijacked the maltose uptake pathways. In E. coli, the maltose transport systems, including maltoporin LamB, maltose binding protein MBP, and the maltose ATP binding cassette (ABC) transporter MalFGK2, are all critical for the transport of Mal-Cz. The uptake was diminished in the deletion mutants ΔLamB, ΔMalE, ΔMalF, and ΔMalK.
Collapse
Affiliation(s)
- Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
16
|
Li Q, Liu Y, Liang L, Zhang X, Huang K, Qin D. A terpyridyl-rhodamine hybrid fluorescent probe for discriminative sensing of Hg (II) and Cu (II) in water and applications for molecular logic gate and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123124. [PMID: 37451213 DOI: 10.1016/j.saa.2023.123124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Sensitive and discriminative sensing of more than one analyte with a single fluorescent probe is significant and challenging. Herein a new terpyridyl-rhodamine hybrid, namely TRH, has been rationally designed and prepared with two responsive groups in the molecular structure, which facilitate the discriminative detection of Hg2+ and Cu2+ ions in water with detection limits of 4.9 and 53.3 nM by ratiometric fluorescence change (F595/F485) and fluorescence quenching, respectively. Investigations show that the selectivity to Hg2+ ions can be attributed to Hg2+-promoted spirolactam ring opening and further hydrolysis, followed by a through-bond energy transfer (TBET) process. The selective fluorescence quenching to Cu2+ ions probably can be ascribed to the binding Cu2+ to terpyridyl that triggers a ligand-to-metal charge transfer (LMCT) process, which can also efficiently inhibit the TBET process induced by Hg2+ ions and promotes the discriminative sensing of Cu (II) and Hg (II). In addition, the fluorescent responses to Hg2+ and Cu2+ ions cover a wide pH range. Moreover, a combinatorial logic gate with the functions of NOR and INHIBIT has been fabricated by using Hg2+ and Cu2+ ions as chemical input signals, and fluorescence at 485 and 595 nm as output signals. Besides, TRH also exhibits sensitive and discriminative sensing ability to Hg2+ and Cu2+ ions by the fluorescence of rhodamine fluorophore. Significantly, based on the fluorescence signal output of rhodamine moiety, TRH can be used as a tracer for the discriminative sensing of Hg2+ and Cu2+ ions by using living cells.
Collapse
Affiliation(s)
- Qi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yuting Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Lijuan Liang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiangyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China.
| | - Dabin Qin
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
17
|
Peng T, Qiu F, Qu Y, Yu C, Cheng X, Li L. Current and Future of "Turn-On" Based Small-Molecule Copper Probes for Cuproptosis. ChemistryOpen 2023; 12:e202300078. [PMID: 37705070 PMCID: PMC10499804 DOI: 10.1002/open.202300078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
Increasing evidence shows that abnormal copper (Cu) metabolism is highly related to many diseases, such as Alzheimer's disease, Wilson's disease, hematological malignancies and Menkes disease. Very recently, cuproptosis, a Cu-dependent, programmed cell death was firstly described by Tsvetkov et al. in 2022. Their findings may provide a new perspective for the treatment of related diseases. However, the concrete mechanisms of these diseases, especially cuproptosis, remain completely unclear, the reason of which may be a lack of reliable tools to conduct highly selective, sensitive and high-resolution imaging of Cu in complex life systems. So far, numerous small-molecular fluorescent probes have been designed and utilized to explore the Cu signal pathway. Among them, fluorescence turn-on probes greatly enhance the resolution and accuracy of imaging and may be a promising tool for research of investigation into cuproptosis. This review summarizes the probes developed in the past decade which have the potential to study cuproptosis, focusing on the design strategies, luminescence mechanism and biological-imaging applications. Besides, we put forward some ideas concerning the design of next-generation probes for cuproptosis, aiming to tackle the main problems in this new field. Furthermore, the prospect of cuproptosis in the treatment of corresponding diseases is also highlighted.
Collapse
Affiliation(s)
- Ting‐En Peng
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Feng Qiu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Yunwei Qu
- The Institute of Flexible Electronics (IFE, Future Technologies)Xiamen UniversityXiamen361005China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
- The Institute of Flexible Electronics (IFE, Future Technologies)Xiamen UniversityXiamen361005China
| |
Collapse
|
18
|
Yoo J, Han J, Lim MH. Transition metal ions and neurotransmitters: coordination chemistry and implications for neurodegeneration. RSC Chem Biol 2023; 4:548-563. [PMID: 37547459 PMCID: PMC10398360 DOI: 10.1039/d3cb00052d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Neurodegeneration is characterized by a disturbance in neurotransmitter-mediated signaling pathways. Recent studies have highlighted the significant role of transition metal ions, including Cu(i/ii), Zn(ii), and Fe(ii/iii), in neurotransmission, thereby making the coordination chemistry of neurotransmitters a growing field of interest in understanding signal dysfunction. This review outlines the physiological functions of transition metal ions and neurotransmitters, with the metal-binding properties of small molecule-based neurotransmitters and neuropeptides. Additionally, we discuss the structural and conformational changes of neurotransmitters induced by redox-active metal ions, such as Cu(i/ii) and Fe(ii/iii), and briefly describe the outcomes arising from their oxidation, polymerization, and aggregation. These observations have important implications for neurodegeneration and emphasize the need for further research to develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
19
|
Gupta K, Datta A. An activity-based fluorescent sensor with a penta-coordinate N-donor binding site detects Cu ions in living systems. Chem Commun (Camb) 2023; 59:8282-8285. [PMID: 37318277 DOI: 10.1039/d3cc02201c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An activity-based sensor afforded a 63 times fluorescence-enhancement with Cu2+/Cu+ ions and could image Cu2+/Cu+ in living cells and in a multicellular organism. The sensor functioned only in the presence of ambient dioxygen and glutathione, and the characterization of intermediates and products hinted toward a sensing mechanism involving a CuII hydroperoxo species.
Collapse
Affiliation(s)
- Kunika Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India.
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India.
| |
Collapse
|
20
|
Qi M, Zhang Z, Li L, Mu X, Wang Y. A sensitive ratiometric fluorescent chemosensor for visual and wearable mercury (II) recognition in river prawn and water samples. Food Chem 2023; 408:135211. [PMID: 36527927 DOI: 10.1016/j.foodchem.2022.135211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
A novel ratiometric fluorescent probe p-RPT was prepared with triphenylamine and a rhodamine derivative. The probe displays high sensitivity and selectivity for Hg2+, which was applied in real water sample detection and biologic cell imaging. Hydrogel-coated paper sensors were fabricated with p-RPT, which displayed fluorescent colour change upon Hg2+ ion contact with a detection limit of 1.2 × 10-8 M (∼10 ppb). In addition, flexible fluorescent p-RPT gloves were developed for visible and wearable Hg2+ detection and applied to detect mercury (II) in river prawn samples. In summary, the p-RPT probe not only shows great potential in mercury (II) detection for food and water, but also provides a new perspective for wearable sensing apparatus.
Collapse
Affiliation(s)
- Meirong Qi
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zihao Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lu Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaoyue Mu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yue Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
21
|
Yang X, Zhang S, Lai M, Ji X, Ye Y, Tang J, Liu X, Zhao M. Fluorescent probes for lighting up ferroptotic cell death: A review. Talanta 2023; 260:124628. [PMID: 37149940 DOI: 10.1016/j.talanta.2023.124628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Ferroptosis is a newly discovered form of regulated cellular demise, characterized by the accumulation of intracellular oxidative stress that is dependent on iron. Ferroptosis plays a crucial role not only in the development and treatment of tumors but also in the pathogenesis of neurodegenerative diseases and illnesses related to ischemia-reperfusion injury. This mode of cell death possesses distinctive properties that differentiate it from other forms of cell death, including unique morphological changes at both the cellular and subcellular levels, as well as molecular features that can be detected using specific methods. The use of fluorescent probes has become an invaluable means of detecting ferroptosis, owing to their high sensitivity, real-time in situ monitoring capabilities, and minimal damage to biological samples. This review comprehensively elucidates the physiological mechanisms underlying ferroptosis, while also detailing the development of fluorescent probes capable of detecting ferroptosis-related active species across various cellular compartments, including organelles, the nucleus, and the cell membrane. Additionally, the review explores how the dynamic changes and location of active species from different cellular compartments can influence the ignition and execution of ferroptotic cell death. Finally, we discuss the future challenges and opportunities for imaging ferroptosis. We believe that this review will not only aid in the elucidation of ferroptosis's physiological mechanisms but also facilitate the identification of novel treatment targets and means of accurately diagnosing and treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Flavors and Fragrance Engineering&Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiyi Zhang
- Flavors and Fragrance Engineering&Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Miao Lai
- Flavors and Fragrance Engineering&Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering&Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jun Tang
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, 453003, China
| | - Xinyuan Liu
- Sanmenxia City Company of Henan Provincial Tobacco Company, Sanmenxia, 472000, China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering&Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
22
|
Zhu WB, Wei TB, Hu HB, Li ZJ, Zhang YQ, Li YC, Zhang L, Zhang XW. Pillar[5]arene-based supramolecular pseudorotaxane polymer material for ultra-sensitive detection of Fe 3+ and F . RSC Adv 2023; 13:12270-12275. [PMID: 37091614 PMCID: PMC10113919 DOI: 10.1039/d3ra00997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
Recent advancements in ultra-sensitive detection, particularly the Aggregation Induced Emission (AIE) materials, have demonstrated a promising detection method due to their low cost, real-time detection, and simplicity of operation. Here, coumarin functionalized pillar[5]arene (P5C) and bis-bromohexyl pillar[5]arene (DP5) were successfully combined to create a linear AIE supramolecular pseudorotaxane polymer (PCDP-G). The use of PCDP-G as a supramolecular AIE polymer material for recyclable ultra-sensitive Fe3+ and F- detection is an interesting application of the materials. According to measurements, the low detection limits of PCDP-G for Fe3+ and F- are 4.16 × 10-10 M and 6.8 × 10-10 M, respectively. The PCDP-G is also a very effective logic gate and a material for luminous displays.
Collapse
Affiliation(s)
- Wen-Bo Zhu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Hao-Bin Hu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Zhi-Jun Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Yu-Quan Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Yan-Chun Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Liang Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Xiao-Wei Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| |
Collapse
|
23
|
Ackerman-Biegasiewicz LKG, Kariofillis SK, Weix DJ. Multimetallic-Catalyzed C-C Bond-Forming Reactions: From Serendipity to Strategy. J Am Chem Soc 2023; 145:6596-6614. [PMID: 36913663 PMCID: PMC10163949 DOI: 10.1021/jacs.2c08615] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The use of two or more metal catalysts in a reaction is a powerful synthetic strategy to access complex targets efficiently and selectively from simple starting materials. While capable of uniting distinct reactivities, the principles governing multimetallic catalysis are not always intuitive, making the discovery and optimization of new reactions challenging. Here, we outline our perspective on the design elements of multimetallic catalysis using precedent from well-documented C-C bond-forming reactions. These strategies provide insight into the synergy of metal catalysts and compatibility of the individual components of a reaction. Advantages and limitations are discussed to promote further development of the field.
Collapse
Affiliation(s)
| | - Stavros K. Kariofillis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| |
Collapse
|
24
|
Sk S, Majumder A, Sow P, Samadder A, Bera M. Exploring a new family of designer copper(II) complexes of anthracene-appended polyfunctional organic assembly displaying potential anticancer activity via cytochrome c mediated mitochondrial apoptotic pathway. J Inorg Biochem 2023; 243:112182. [PMID: 36933342 DOI: 10.1016/j.jinorgbio.2023.112182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
The present article describes the systematic study on design and synthesis, physicochemical properties and spectroscopic features, and potential anticancer activities of a family of novel copper(II)-based designer metal complexes [Cu2(acdp)(μ-Cl)(H2O)2] (1), [Cu2(acdp)(μ-NO3)(H2O)2] (2) and [Cu2(acdp)(μ-O2CCF3)(H2O)2] (3) of anthracene-appended polyfunctional organic assembly, H3acdp (H3acdp = N,N'-bis[anthracene-2-ylmethyl]-N,N'-bis[carboxymethyl]-1,3-diaminopropan-2-ol). Synthesis of 1-3 was accomplished under facile experimental conditions, preserving their overall integrity in solution. The incorporation of polycyclic anthracene skeleton within the backbone of organic assembly increases lipophilicity of resulting complexes, thereby dictating the degree of cellular uptake with improved biological activity. Complexes 1-3 were characterized by elemental analysis, molar conductance, FTIR, UV-Vis absorption/fluorescence emission titration spectroscopy, PXRD and TGA/DTA studies, including DFT calculations. The cellular cytotoxicity of 1-3 when studied in HepG2 cancer cell line showed substantial cytotoxic effects, whereas no such cytotoxicity was observed when exposed to normal L6 skeletal muscle cell line. Thereafter, the signaling factors involved in the process of cytotoxicity in HepG2 cancer cells were investigated. Alteration of cytochrome c and Bcl-2 protein expression levels along with modulation of mitochondrial membrane potential (MMP) in the presence of 1-3, strongly suggested the possibility of activating mitochondria-mediated apoptotic pathway involved in halting the cancer cell propagation. However, when a comparative assessment on their bio-efficacies was made, 1 showed higher cytotoxicity, nuclear condensation, DNA binding and damage, ROS generation and lower rate of cell proliferation compared to 2 and 3 in HepG2 cell line, indicating that the anticancer activity of 1 is significantly higher than that of 2 and 3.
Collapse
Affiliation(s)
- Sujan Sk
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Priyanka Sow
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Asmita Samadder
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| |
Collapse
|
25
|
Pham VN, Chang CJ. Metalloallostery and Transition Metal Signaling: Bioinorganic Copper Chemistry Beyond Active Sites. Angew Chem Int Ed Engl 2023; 62:e202213644. [PMID: 36653724 PMCID: PMC10754205 DOI: 10.1002/anie.202213644] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 01/20/2023]
Abstract
Transition metal chemistry is essential to life, where metal binding to DNA, RNA, and proteins underpins all facets of the central dogma of biology. In this context, metals in proteins are typically studied as static active site cofactors. However, the emergence of transition metal signaling, where mobile metal pools can transiently bind to biological targets beyond active sites, is expanding this conventional view of bioinorganic chemistry. This Minireview focuses on the concept of metalloallostery, using copper as a canonical example of how metals can regulate protein function by binding to remote allosteric sites (e.g., exosites). We summarize advances in and prospects for the field, including imaging dynamic transition metal signaling pools, allosteric inhibition or activation of protein targets by metal binding, and metal-dependent signaling pathways that underlie nutrient vulnerabilities in diseases spanning obesity, fatty liver disease, cancer, and neurodegeneration.
Collapse
Affiliation(s)
- Vanha N Pham
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
A Bifunctional Fluorescence Probe Based on AIE-ICT Strategy for Visual Detection of Cu 2+/Co 2+ in Complex Matrix. Molecules 2023; 28:molecules28052059. [PMID: 36903303 PMCID: PMC10003869 DOI: 10.3390/molecules28052059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
A novel fluorescence chemical sensor-based probe 1-{[(E)-(2-aminophenyl)azanylidene]methyl}naphthalen-2-ol (AMN) was designed and synthesized, which performed a "naked eye" detection ability toward Cu2+ and Co2+ based on aggregation-induced emission (AIE) fluorescence strategy. It has sensitive detection ability for Cu2+ and Co2+. In addition, the color changed from yellow-green to orange under the sunlight, realizing the rapid identification of Cu2+/Co2+, which has the potential of on-site visual detection under the "naked eye". Moreover, different "on" and "off" fluorescence expressions were exhibited under excessive glutathione (GSH) in AMN-Cu2+ and AMN-Co2+ systems, which could be employed to distinguish Cu2+ from Co2+. The detection limits for Cu2+ and Co2+ were measured to be 8.29 × 10-8 M and 9.13 × 10-8 M, respectively. The binding mode of AMN was calculated to be 2:1 by Jobs' plot method analysis. Ultimately, the new fluorescence sensor was applied to detect Cu2+ and Co2+ in real samples (tap water, river water, and yellow croaker), and the results were satisfying. Therefore, this high-efficiency bifunctional chemical sensor platform based on "on-off" fluorescence detection will provide significant guidance for the advance development of single-molecule sensors for multi-ion detection.
Collapse
|
27
|
Pham VN, Chang CJ. Metalloallostery and Transition Metal Signaling: Bioinorganic Copper Chemistry Beyond Active Sites. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202213644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Vanha N. Pham
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - Christopher J. Chang
- Department of Chemistry University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute University of California Berkeley CA 94720 USA
| |
Collapse
|
28
|
Messina MS, Quargnali G, Chang CJ. Activity-Based Sensing for Chemistry-Enabled Biology: Illuminating Principles, Probes, and Prospects for Boronate Reagents for Studying Hydrogen Peroxide. ACS BIO & MED CHEM AU 2022; 2:548-564. [PMID: 36573097 PMCID: PMC9782337 DOI: 10.1021/acsbiomedchemau.2c00052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Activity-based sensing (ABS) offers a general approach that exploits chemical reactivity as a method for selective detection and manipulation of biological analytes. Here, we illustrate the value of this chemical platform to enable new biological discovery through a case study in the design and application of ABS reagents for studying hydrogen peroxide (H2O2), a major type of reactive oxygen species (ROS) that regulates a diverse array of vital cellular signaling processes to sustain life. Specifically, we summarize advances in the use of activity-based boronate probes for the detection of H2O2 featuring high molecular selectivity over other ROS, with an emphasis on tailoring designs in chemical structure to promote new biological principles of redox signaling.
Collapse
Affiliation(s)
- Marco S. Messina
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Gianluca Quargnali
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Oxidation state-specific fluorescent copper sensors reveal oncogene-driven redox changes that regulate labile copper(II) pools. Proc Natl Acad Sci U S A 2022; 119:e2202736119. [PMID: 36252013 PMCID: PMC9621372 DOI: 10.1073/pnas.2202736119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Copper is an essential metal nutrient for life that often relies on redox cycling between Cu(I) and Cu(II) oxidation states to fulfill its physiological roles, but alterations in cellular redox status can lead to imbalances in copper homeostasis that contribute to cancer and other metalloplasias with metal-dependent disease vulnerabilities. Copper-responsive fluorescent probes offer powerful tools to study labile copper pools, but most of these reagents target Cu(I), with limited methods for monitoring Cu(II) owing to its potent fluorescence quenching properties. Here, we report an activity-based sensing strategy for turn-on, oxidation state-specific detection of Cu(II) through metal-directed acyl imidazole chemistry. Cu(II) binding to a metal and oxidation state-specific receptor that accommodates the harder Lewis acidity of Cu(II) relative to Cu(I) activates the pendant dye for reaction with proximal biological nucleophiles and concomitant metal ion release, thus avoiding fluorescence quenching. Copper-directed acyl imidazole 649 for Cu(II) (CD649.2) provides foundational information on the existence and regulation of labile Cu(II) pools, including identifying divalent metal transporter 1 (DMT1) as a Cu(II) importer, labile Cu(II) increases in response to oxidative stress induced by depleting total glutathione levels, and reciprocal increases in labile Cu(II) accompanied by decreases in labile Cu(I) induced by oncogenic mutations that promote oxidative stress.
Collapse
|
30
|
Singh D, Ibrahim A, Kumar P, Gupta R. Methylene Spacer Mediated Detection Switch Between Copper and Zinc Ions by Two Coumarin‐Pyrene Based Chemosensors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Devender Singh
- Department of Chemistry University of Delhi New Delhi 110007 India
| | - Annan Ibrahim
- Department of Chemistry University of Delhi New Delhi 110007 India
| | - Pramod Kumar
- Department of Chemistry Mahamana Malviya College Khekra (Baghpat) C.C.S. University Meerut India
| | - Rajeev Gupta
- Department of Chemistry University of Delhi New Delhi 110007 India
| |
Collapse
|
31
|
Tsang T, Gu X, Davis CI, Posimo JM, Miller ZA, Brady DC. BRAFV600E-Driven Lung Adenocarcinoma Requires Copper to Sustain Autophagic Signaling and Processing. Mol Cancer Res 2022; 20:1096-1107. [PMID: 35320362 PMCID: PMC9262833 DOI: 10.1158/1541-7786.mcr-21-0250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 01/07/2023]
Abstract
The transition metal copper (Cu) is an essential micronutrient required for development and proliferation, but the molecular mechanisms by which Cu contributes to these processes is not fully understood. Although traditionally studied as a static cofactor critical for the function of Cu-dependent enzymes, an expanding role for Cu is emerging to include its novel function as a dynamic mediator of signaling processes through the direct control of protein kinase activity. We now appreciate that Cu directly binds to and influences MEK1/2 and ULK1/2 kinase activity, and show here that reductions in MAPK and autophagic signaling are associated with dampened growth and survival of oncogenic BRAF-driven lung adenocarcinoma cells upon loss of Ctr1. Efficient autophagy, clonogenic survival, and tumorigenesis of BRAF-mutant cells required ULK1 Cu-binding. Although treatment with canonical MAPK inhibitors resulted in the upregulation of protective autophagy, mechanistically, the Cu chelator tetrathiomolybdate (TTM) was sufficient to target both autophagic and MAPK signaling as a means to blunt BRAF-driven tumorigenic properties. These findings support leveraging Cu chelation with TTM as an alternative therapeutic strategy to impair autophagy and MAPK signaling. As traditional MAPK monotherapies initiate autophagy signaling and promote cancer cell survival. IMPLICATIONS We establish that copper chelation therapy inhibits both autophagy and MAPK signaling in BRAFV600E-driven lung adenocarcinoma, thus overcoming the upregulation of protective autophagy elicited by canonical MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Tiffany Tsang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xingxing Gu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caroline I. Davis
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica M. Posimo
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zoey A. Miller
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Donita C. Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Corresponding Author: Donita C. Brady, Perelman School of Medicine, 421 Curie Boulevard, 612 BRBII/II, Philadelphia, PA 19104. Phone: 215-573-9705; E-mail:
| |
Collapse
|
32
|
Near-Infrared-Emissive AIE Bioconjugates: Recent Advances and Perspectives. Molecules 2022; 27:molecules27123914. [PMID: 35745035 PMCID: PMC9229065 DOI: 10.3390/molecules27123914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Near-infrared (NIR) fluorescence materials have exhibited formidable power in the field of biomedicine, benefiting from their merits of low autofluorescence background, reduced photon scattering, and deeper penetration depth. Fluorophores possessing planar conformation may confront the shortcomings of aggregation-caused quenching effects at the aggregate level. Fortunately, the concept of aggregation-induced emission (AIE) thoroughly reverses this dilemma. AIE bioconjugates referring to the combination of luminogens showing an AIE nature with biomolecules possessing specific functionalities are generated via the covalent conjugation between AIEgens and functional biological species, covering carbohydrates, peptides, proteins, DNA, and so on. This perfect integration breeds unique superiorities containing high brightness, good water solubility, versatile functionalities, and prominent biosafety. In this review, we summarize the recent progresses of NIR-emissive AIE bioconjugates focusing on their design principles and biomedical applications. Furthermore, a brief prospect of the challenges and opportunities of AIE bioconjugates for a wide range of biomedical applications is presented.
Collapse
|
33
|
Zhang Q, Liang Y, Xing H. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Koman VB, Bakh NA, Jin X, Nguyen FT, Son M, Kozawa D, Lee MA, Bisker G, Dong J, Strano MS. A wavelength-induced frequency filtering method for fluorescent nanosensors in vivo. NATURE NANOTECHNOLOGY 2022; 17:643-652. [PMID: 35637357 DOI: 10.1038/s41565-022-01136-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Fluorescent nanosensors hold the potential to revolutionize life sciences and medicine. However, their adaptation and translation into the in vivo environment is fundamentally hampered by unfavourable tissue scattering and intrinsic autofluorescence. Here we develop wavelength-induced frequency filtering (WIFF) whereby the fluorescence excitation wavelength is modulated across the absorption peak of a nanosensor, allowing the emission signal to be separated from the autofluorescence background, increasing the desired signal relative to noise, and internally referencing it to protect against artefacts. Using highly scattering phantom tissues, an SKH1-E mouse model and other complex tissue types, we show that WIFF improves the nanosensor signal-to-noise ratio across the visible and near-infrared spectra up to 52-fold. This improvement enables the ability to track fluorescent carbon nanotube sensor responses to riboflavin, ascorbic acid, hydrogen peroxide and a chemotherapeutic drug metabolite for depths up to 5.5 ± 0.1 cm when excited at 730 nm and emitting between 1,100 and 1,300 nm, even allowing the monitoring of riboflavin diffusion in thick tissue. As an application, nanosensors aided by WIFF detect the chemotherapeutic activity of temozolomide transcranially at 2.4 ± 0.1 cm through the porcine brain without the use of fibre optic or cranial window insertion. The ability of nanosensors to monitor previously inaccessible in vivo environments will be important for life-sciences research, therapeutics and medical diagnostics.
Collapse
Affiliation(s)
- Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Naveed A Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manki Son
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daichi Kozawa
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Center for Physics and Chemistry of Living Systems, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Juyao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
35
|
A Quinoxaline-Naphthaldehyde Conjugate for Colorimetric Determination of Copper Ion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092908. [PMID: 35566259 PMCID: PMC9105850 DOI: 10.3390/molecules27092908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
This work facilitates detection of bivalent copper ion by a simple Schiff base probe QNH based on a quinoxaline−naphthaldehyde framework. The detailed study in absorption spectroscopy and theoretical aspects and crystal study of the probe and probe−copper complex has been discussed. The detection limit of the probe in the presence of Cu2+ is 0.45 µM in HEPES−buffer/acetonitrile (3/7, v/v) medium for absorption study. The reversibility of the probe−copper complex has been investigated by EDTA. The selective visual detection of copper has been established also in gel form.
Collapse
|
36
|
AbhijnaKrishna R, Velmathi S. A review on fluorimetric and colorimetric detection of metal ions by chemodosimetric approach 2013–2021. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
38
|
Theoretical investigation and reconsideration of intramolecular proton-transfer-induced the twisted charge-transfer for the fluorescent sensor to detect the aluminum ion. Struct Chem 2022. [DOI: 10.1007/s11224-022-01941-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Review of recent advancements in fluorescent chemosensor for ion detection via coumarin derivatives. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02092-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Yang X, Zhang D, Ye Y, Zhao Y. Recent advances in multifunctional fluorescent probes for viscosity and analytes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214336] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, Kaler SG, Lutsenko S, Mittal V, Petris MJ, Polishchuk R, Ralle M, Schilsky ML, Tonks NK, Vahdat LT, Van Aelst L, Xi D, Yuan P, Brady DC, Chang CJ. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 2022; 22:102-113. [PMID: 34764459 PMCID: PMC8810673 DOI: 10.1038/s41568-021-00417-2] [Citation(s) in RCA: 694] [Impact Index Per Article: 231.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.
Collapse
Affiliation(s)
- Eva J Ge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, New York, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen G Kaler
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Michael L Schilsky
- Section of Transplantation and Immunology, Division of Digestive Diseases, Department of Medicine and Surgery, Yale University Medical Center, New Haven, CT, USA
| | | | - Linda T Vahdat
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Dan Xi
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, MI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MI, USA
| | - Donita C Brady
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
42
|
Starck M, Fradgley JD, De Rosa DF, Batsanov AS, Papa M, Taylor MJ, Lovett JE, Lutter JC, Allen MJ, Parker D. Versatile Para-Substituted Pyridine Lanthanide Coordination Complexes Allow Late Stage Tailoring of Complex Function. Chemistry 2021; 27:17921-17927. [PMID: 34705302 PMCID: PMC8688332 DOI: 10.1002/chem.202103243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 12/28/2022]
Abstract
A series of cationic and neutral p-Br and p-NO2 pyridine substituted Eu(III) and Gd(III) coordination complexes serve as versatile synthetic intermediates. Nucleophilic aromatic substitution occurs readily at the para position under mild conditions, allowing C-N and C-C bond forming reactions to take place, permitting the introduction of azide, amino and alkynyl substituents. For Eu(III) complexes, this approach allows late stage tuning of absorption and emission spectral properties, exemplified by the lowering of the energy of an LMCT transition accompanied by a reduction in the Eu-Npy bond length. Additionally, these complexes provide direct access to the corresponding Eu(II) analogues. With the Gd(III) series, the nature of the p-substituent does not significantly change the EPR properties (linewidth, relaxation times), as required for their development as EPR spin probes that can be readily conjugated to biomolecules under mild conditions.
Collapse
Affiliation(s)
- Matthieu Starck
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Jack D. Fradgley
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| | | | | | - Maria Papa
- SUPASchool of Physics and Astronomy and BSRCUniversity of St AndrewsNorth HaughSt AndrewsKY16 9SSUK
| | - Michael J. Taylor
- SUPASchool of Physics and Astronomy and BSRCUniversity of St AndrewsNorth HaughSt AndrewsKY16 9SSUK
| | - Janet E. Lovett
- SUPASchool of Physics and Astronomy and BSRCUniversity of St AndrewsNorth HaughSt AndrewsKY16 9SSUK
| | - Jacob C. Lutter
- Department of ChemistryWayne State University5101 Cass AvenueDetroitMI 48202USA
| | - Matthew J. Allen
- Department of ChemistryWayne State University5101 Cass AvenueDetroitMI 48202USA
| | - David Parker
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
43
|
Cepeda C, Denisov SA, Boturyn D, McClenaghan ND, Sénèque O. Ratiometric Luminescence Detection of Copper(I) by a Resonant System Comprising Two Antenna/Lanthanide Pairs. Inorg Chem 2021; 60:17426-17434. [PMID: 34788035 DOI: 10.1021/acs.inorgchem.1c02985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective and sensitive detection of Cu(I) is an ongoing challenge due to its important role in biological systems, for example. Herein, we describe a photoluminescent molecular chemosensor integrating two lanthanide ions (Tb3+ and Eu3+) and respective tryptophan and naphthalene antennas onto a polypeptide backbone. The latter was structurally inspired from copper-regulating biomacromolecules in Gram-negative bacteria and was found to bind Cu+ effectively under pseudobiological conditions (log KCu+ = 9.7 ± 0.2). Ion regulated modulation of lanthanide luminescence in terms of intensity and long, millisecond lifetime offers perspectives in terms of ratiometric and time-gated detection of Cu+. The role of the bound ion in determining the photophysical properties is discussed with the aid of additional model compounds.
Collapse
Affiliation(s)
- Céline Cepeda
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| | | | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250), 38000 Grenoble, France
| | | | - Olivier Sénèque
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| |
Collapse
|
44
|
Zhang Y, Zhang Y, Pan X, Qin Y, Deng J, Wang S, Gao Q, Zhu Y, Yang Z, Lu X. Molecular insights on Ca2+/Na+ separation via graphene-based nanopores: The role of electrostatic interactions to ionic dehydration. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Shaji LK, Ashok Kumar S. Antipyrine derived Schiff's base as a colorimetric probe for the rapid and selective detection of Cu2+ions. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
McGhee C, Yang Z, Guo W, Wu Y, Lyu M, DeLong CJ, Hong S, Ma Y, McInnis MG, O’Shea KS, Lu Y. DNAzyme-Based Lithium-Selective Imaging Reveals Higher Lithium Accumulation in Bipolar Disorder Patient-Derived Neurons. ACS CENTRAL SCIENCE 2021; 7:1809-1820. [PMID: 34841055 PMCID: PMC8614110 DOI: 10.1021/acscentsci.1c00843] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 05/16/2023]
Abstract
Lithium has been a drug for bipolar disorders (BD) for over 70 years; however, its usage has been limited by its narrow therapeutic window (between 0.6 and 1.2 mM). Understanding the cellular distribution of lithium ions (Li+) in patient cells will offer deep insight into this limitation, but selective imaging of Li+ in living cells under biomedically relevant concentration ranges has not been achieved. Herein, we report in vitro selection and development of a Li+-specific DNAzyme fluorescent sensor with >100-fold selectivity over other biorelevant metal ions. This sensor allows comparative Li+ visualization in HeLa cells, human neuronal progenitor cells (NPCs), and neurons derived from BD patients and healthy controls. Strikingly, we detected enhanced accumulation of Li+ in cells derived from BD patients compared with healthy controls in differentiated neurons but not NPCs. These results establish the DNAzyme-based sensor as a novel platform for biomedical research into BD and related areas using lithium drugs.
Collapse
Affiliation(s)
- Claire
E. McGhee
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Weijie Guo
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yuting Wu
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingkuan Lyu
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Center
for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cynthia J. DeLong
- Department
of Cell and Developmental Biology, The University
of Michigan, Ann Arbor 48109, United States
| | - Shanni Hong
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yuan Ma
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Melvin G. McInnis
- Department
of Psychiatry, The University of Michigan, Ann Arbor 48109, United States
| | - K. Sue O’Shea
- Department
of Cell and Developmental Biology, The University
of Michigan, Ann Arbor 48109, United States
- Department
of Psychiatry, The University of Michigan, Ann Arbor 48109, United States
| | - Yi Lu
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center
for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
47
|
Abstract
Metalloproteins play diverse and critical functions in all living systems, and their dysfunctional forms are closely related to many human diseases. The development of methods that enable comprehensive mapping of metalloproteome is of great interest to help elucidate crucial roles of metalloproteins in both physiology and pathology, as well as to discover new metalloproteins. We herein briefly review recent progress in the field of metalloproteomics and provide future outlooks.
Collapse
Affiliation(s)
- Xin Zeng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yao Cheng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
48
|
Huang Q, Li Q, Zhang HL, Zhu W, Qu WJ, Lin Q, Yao H, Zhang YM, Wei TB. A novel fluorometric chemosensor based on imidazo[4,5-b]phenazine-2-thione for ultrasensitive detection and separation of Hg2+ in aqueous solution. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We synthesized and developed 1,3-dihydro-2H-imidazo[4,5-b]phenazine-2-thione as a ratiometric chemosensor for Hg2+ recognition in a DMSO/H2O (v/v = 9:1) binary solution. We rationally introduced the phenazine imidazole group as the fluorophore and the thione moiety as the recognition site to bind Hg2+. Interestingly, the chemosensor showed an ultrasensitive response to Hg2+, and the lowest limit of detection was 0.167 nM. In addition, it can also separate Hg2+ from aqueous solutions with excellent ingestion capacity, with an adsorption ratio of up to 96%. Furthermore, ion test strips based on chemosensors were fabricated for convenient and efficient detection of Hg2+.
Collapse
Affiliation(s)
- Qing Huang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750006, P.R. China
| | - Qiao Li
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Hai-Li Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Wei Zhu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Wen-Juan Qu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| |
Collapse
|
49
|
Brawley HN, Lindahl PA. Direct Detection of the Labile Nickel Pool in Escherichia coli: New Perspectives on Labile Metal Pools. J Am Chem Soc 2021; 143:18571-18580. [PMID: 34723500 DOI: 10.1021/jacs.1c08213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nickel serves critical roles in the metabolism of E. coli and many prokaryotes. Many details of nickel trafficking are unestablished, but a nonproteinaceous low-molecular-mass (LMM) labile nickel pool (LNiP) is thought to be involved. The portion of the cell lysate that flowed through a 3 kDa cutoff membrane, which ought to contain this pool, was analyzed by size-exclusion and hydrophilic interaction chromatographies (SEC and HILIC) with detection by inductively coupled plasma (ICP) and electrospray ionization (ESI) mass spectrometries. Flow-through-solutions (FTSs) contained 11-15 μM Ni, which represented most Ni in the cell. Chromatograms exhibited 4 major Ni-detected peaks. MS analysis of FTS and prepared nickel complex standards established that these peaks arose from Ni(II) coordinated to oxidized glutathione, histidine, aspartate, and ATP. Surprisingly, Ni complexes with reduced glutathione or citrate were not members of the LNiP under the conditions examined. Aqueous Ni(II) ions were absent in the FTS. Detected complexes were stable in chelator-free buffer but were disrupted by treatment with 1,10-phenanthroline or citrate. Titrating FTS with additional NiSO4 suggested that the total nickel-binding capacity of cytosol is approximately 20-45 μM. Members of the LNiP are probably in rapid equilibrium. Previously reported binding constants to various metalloregulators may have overestimated the relevant binding strength in the cell because aqueous metal salts were used in those determinations. The LNiP may serve as both a Ni reservoir and buffer, allowing cells to accommodate a range of Ni concentrations. The composition of the LNiP may change with cellular metabolism and nutrient status.
Collapse
Affiliation(s)
- Hayley N Brawley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
50
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|