1
|
Zhang M, Gan J, Peng P, Li T. Stereoselective Synthesis of 1,2-Cis O-Linked Glycosyl Amino Acids via Additive-Modulation for Glycopeptide Synthesis. Chemistry 2025; 31:e202404786. [PMID: 39956856 DOI: 10.1002/chem.202404786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
A highly stereoselective strategy to facilitate the synthesis of 1,2-cis-O-linked glycosyl amino acids was established via a additive-modulated trichloroacetimidate glycosylation approach. This mild and practical protocol demonstrates broad applicability with diverse glycosyl donors, including D-gluco-, D-galacto-, 2-deoxy-2-azido-D-gluco-, 2-deoxy-2-azido-D-galacto-, D-xylo-, L-fuco-pyranosyl and L-arabinofuranosyl trichloroacetimidates, and orthogonally protected amino acids such as Ser, Thr, Tyr, and 4-hydroxyproline (Hyp) as acceptors. These 1,2-cis linked glycosyl amino acids serve as valuable building blocks for glycopeptide synthesis via solid-phase peptide synthesis (SPPS), offering significant potential for advancing glycoprotein research.
Collapse
Affiliation(s)
- Miaomiao Zhang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong, 518057, China
| | - Jinjuan Gan
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong, 518057, China
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong, 518057, China
| | - Tianlu Li
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
2
|
Atito A, Dumalaog JS, Tseng KY, Ting YJ, Zulueta MML, Hung SC. Molecular Iodine-Mediated β-Glycosylation of Thiomannosides with 1,6-Anhydrosugars. Org Lett 2025; 27:2450-2455. [PMID: 40029009 DOI: 10.1021/acs.orglett.5c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
β-Mannosides play a crucial role in cellular processes and immune responses, and their synthesis remains one of the most challenging tasks in carbohydrate chemistry. Glycosyl donors, such as thiomannosides, are stable and compatible with a range of protection and deprotection conditions. In this study, we demonstrate that molecular iodine efficiently induces the activation and coupling of thiomannosides with various 1,6-anhydrosugars as acceptors. This method provides mild activation conditions and high β-stereoselectivity for the synthesis of multiple β-mannosides.
Collapse
Affiliation(s)
- Ahmed Atito
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP-CBMB), Academia Sinica, Taipei 11529, Taiwan
| | - Jasper S Dumalaog
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP-CBMB), Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Kuei-Yao Tseng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Ju Ting
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Medel Manuel L Zulueta
- Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP-CBMB), Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan
| |
Collapse
|
3
|
Ding W, Chen X, Sun Z, Luo J, Wang S, Lu Q, Ma J, Zhao C, Chen FE, Xu C. A Radical Activation Strategy for Versatile and Stereoselective N-Glycosylation. Angew Chem Int Ed Engl 2024; 63:e202409004. [PMID: 38837495 DOI: 10.1002/anie.202409004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Previous N-glycosylation approaches have predominately involved acidic conditions, facing challenges of low stereoselectivity and limited scope. Herein, we introduce a radical activation strategy that enables versatile and stereoselective N-glycosylation using readily accessible glycosyl sulfinate donors under basic conditions and exhibits exceptional tolerance towards various N-aglycones containing alkyl, aryl, heteroaryl and nucleobase functionalities. Preliminary mechanistic studies indicate a pivotal role of iodide, which orchestrates the formation of a glycosyl radical from the glycosyl sulfinate and subsequent generation of the key intermediate, a configurationally well-defined glycosyl iodide, which is subsequently attacked by an N-aglycone in a stereospecific SN2 manner to give the desired N-glycosides. An alternative route involving the coupling of a glycosyl radical and a nitrogen-centered radical is also proposed, affording the exclusive 1,2-trans product. This novel approach promises to broaden the synthetic landscape of N-glycosides, offering a powerful tool for the construction of complex glycosidic structures under mild conditions.
Collapse
Affiliation(s)
- Wenyan Ding
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Xinyu Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zuyao Sun
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jiaxin Luo
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shiping Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingqing Lu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jialu Ma
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Chongxin Zhao
- Jiangsu Jiyi New Material CO., LTD, Xuzhou, 221700, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai, 200433, China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
4
|
Cimafonte M, Esposito A, De Fenza M, Zaccaria F, D’Alonzo D, Guaragna A. Synthesis of Natural and Sugar-Modified Nucleosides Using the Iodine/Triethylsilane System as N-Glycosidation Promoter. Int J Mol Sci 2024; 25:9030. [PMID: 39201716 PMCID: PMC11354600 DOI: 10.3390/ijms25169030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
The reagent system based on the combined use of Et3SiH/I2 acts as an efficient N-glycosidation promoter for the synthesis of natural and sugar-modified nucleosides. An analysis of reaction stereoselectivity in the absence of C2-positioned stereodirecting groups revealed high selectivity with six-membered substrates, depending on the nucleophilic character of the nucleobase or based on anomerization reactions. The synthetic utility of the Et3SiH/I2-mediated N-glycosidation reaction was highlighted by its use in the synthesis of the investigational drug apricitabine.
Collapse
Affiliation(s)
- Martina Cimafonte
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Anna Esposito
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, I-80125 Naples, Italy;
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Francesco Zaccaria
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| |
Collapse
|
5
|
Imperio D, Brentazzoli M, Valloni F, Minassi A, Panza L. Iodine-triphenylphosphine triggers an easy one-pot alpha stereoselective dehydrative glycosylation on hemiacetalic benzylated glycosyl donors. Carbohydr Res 2023; 533:108944. [PMID: 37729855 DOI: 10.1016/j.carres.2023.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
The discovery of new glycosylation reactions is still a major challenge in carbohydrate chemistry. Traditional glycosylation reactions require the preparation of sugar donors with anomeric active or latent leaving groups. Dehydrative glycosylation is a fascinating alternative that enables the direct formation of the glycosidic bond from the hemiacetal, eliminating the need for (sometimes unstable) leaving groups, and allowing to reduce reaction, work-up, and purification times. Although some interesting methods of dehydrative glycosylation have been reported, in order to compete with conventional chemical glycosylation, a greater number of efficient and stereoselective methods need to be developed. Herein, a dehydrative procedure that uses a combination of iodine, triphenylphosphine, and a base (DMAP or imidazole) is described. This methodology allows for the preparation of sugar derivatives from commercially available 1-hydroxy glycosyl donors. The reaction takes place under mild conditions through the in situ-formation of an anomeric iodide intermediate, which, upon reaction with an alcohol, gives the corresponding glycosides up to quantitative yields and with high α-stereoselectivity.
Collapse
Affiliation(s)
- Daniela Imperio
- Department of Pharmaceutical Sciences, Universita del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Marco Brentazzoli
- Department of Pharmaceutical Sciences, Universita del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Filippo Valloni
- Department of Pharmaceutical Sciences, Universita del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Alberto Minassi
- Department of Pharmaceutical Sciences, Universita del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Luigi Panza
- Department of Pharmaceutical Sciences, Universita del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy.
| |
Collapse
|
6
|
Chang CW, Lin MH, Chiang TY, Wu CH, Lin TC, Wang CC. Unraveling the promoter effect and the roles of counterion exchange in glycosylation reaction. SCIENCE ADVANCES 2023; 9:eadk0531. [PMID: 37851803 PMCID: PMC10584349 DOI: 10.1126/sciadv.adk0531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
The stereoselectivity of glycosidic bond formation continues to pose a noteworthy hurdle in synthesizing carbohydrates, primarily due to the simultaneous occurrence of SN1 and SN2 processes during the glycosylation reaction. Here, we applied an in-depth analysis of the glycosylation mechanism by using low-temperature nuclear magnetic resonance and statistical approaches. A pathway driven by counterion exchanges and reaction byproducts was first discovered to outline the stereocontributions of intermediates. Moreover, the relative reactivity values, acceptor nucleophilic constants, and Hammett substituent constants (σ values) provided a general index to indicate the mechanistic pathways. These results could allow building block tailoring and reaction condition optimization in carbohydrate synthesis to be greatly facilitated and simplified.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tsun-Yi Chiang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Chun Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
7
|
Zuo H, Zhang C, Zhang Y, Niu D. Base-Promoted Glycosylation Allows Protecting Group-Free and Stereoselective O-Glycosylation of Carboxylic Acids. Angew Chem Int Ed Engl 2023; 62:e202309887. [PMID: 37590127 DOI: 10.1002/anie.202309887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Here we report a simple and general method to achieve fully unprotected, stereoselective glycosylation of carboxylic acids, employing bench-stable allyl glycosyl sulfones as donors. Running the glycosylation reaction under basic conditions was crucial for the efficiencies and selectivities. Both the donor activation stage and the glycosidic bond forming stage of the process are compatible with free hydroxyl groups, thereby allowing for the use of fully unprotected glycosyl donors. This transformation is stereoconvergent, occurs under mild and metal-free conditions at ambient temperature with visible light (455 nm) irradiation, and displays remarkable scope with respect to both reaction partners. Many natural products and commercial drugs, including an acid derived from the complex anticancer agent taxol, were efficiently glycosylated. Experimental studies provide insights into the origin of the stereochemical outcome.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Chen Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
8
|
Affiliation(s)
- Weidong Shang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Department of Chemical Engineering, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
9
|
Boulogeorgou MA, Toskas A, Gallos JK, Stathakis CI. Stereoselective oxidative O-glycosylation of disarmed glycosyl iodides with alcohols using PIDA as the promoter. Org Biomol Chem 2023; 21:6479-6483. [PMID: 37523208 DOI: 10.1039/d3ob00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The direct and practical oxidative anomeric O-glycosylation of glycosyl iodides with an array of alcohols as glycosyl acceptors is presented. Using phenyliodine(III) diacetate (PIDA) as the promoter of the reaction, at ambient temperature, an enviromentally benign and operationally simple protocol has been developed providing access stereoselectively to 1,2-trans-O-glycosides.
Collapse
Affiliation(s)
- Maria A Boulogeorgou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Alexandros Toskas
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - John K Gallos
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Christos I Stathakis
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
10
|
Paul A, Kulkarni SS. Total Synthesis of the Repeating Units of Proteus penneri 26 and Proteus vulgaris TG155 via a Common Disaccharide. Org Lett 2023; 25:4400-4405. [PMID: 37284758 DOI: 10.1021/acs.orglett.3c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we report the first total synthesis of the trisaccharide and tetrasaccharide repeating units of P. penneri 26 and P. vulgaris TG155, respectively, having a common disaccharide unit, 3-α-l-QuipNAc-(1 → 3)-α-d-GlcpNAc-(1 →. Striking features of the targets are the presence of rare sugar units, l-quinovosamine and l-rhamnosamine, all joined through α-glycosidic linkages. Major challenges in the formation of 1,2-cis glycosidic linkages in the case of d-glucosamine, l-quinovosamine, and d-galactosamine have been addressed.
Collapse
Affiliation(s)
- Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
11
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
12
|
Romanò C, Clausen MH. Chemical Biology of αGalCer: a Chemist’s Toolbox for the Stimulation of Invariant Natural Killer T (iNKT) Cells. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cecilia Romanò
- Technical University of Denmark: Danmarks Tekniske Universitet Department of Chemisty Kemitorvet 207 2800 Kgs. Lyngby DENMARK
| | - Mads Hartvig Clausen
- Technical University of Denmark Department of Chemistry Kemitorvet, Building 201 2800 Kgs. Lyngby DENMARK
| |
Collapse
|
13
|
Zhang C, Zuo H, Lee GY, Zou Y, Dang QD, Houk KN, Niu D. Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat Chem 2022; 14:686-694. [DOI: 10.1038/s41557-022-00918-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
|
14
|
Inuki S, Tabuchi H, Matsuzaki C, Yonejima Y, Hisa K, Kimura I, Yamamoto K, Ohno H. Chemical Synthesis and Evaluation of Exopolysaccharide Fragments Produced by Leuconostoc mesenteroides Strain NTM048. Chem Pharm Bull (Tokyo) 2022; 70:155-161. [PMID: 35110436 DOI: 10.1248/cpb.c21-00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exopolysaccharides (EPSs) occur widely in natural products made by bacteria, fungi and algae. Some EPSs have intriguing biological properties such as anticancer and immunomodulatory activities. Our group has recently found that EPSs generated from Leuconostoc mesenteroides ssp. mesenteroides strain NTM048 (NTM048 EPS) enhanced a production of mucosal immunoglobulin A (IgA) of mouse. Herein, we described the synthesis and evaluation of the tetrasaccharide fragments of NTM048 EPS to obtain information about the molecular mechanism responsible for the IgA-inducing activity.
Collapse
Affiliation(s)
- Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hitomi Tabuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Chiaki Matsuzaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University
| | | | | | - Ikuo Kimura
- Graduate School of Biostudies, Kyoto University.,AMED-CREST, Japan Agency for Medical Research and Development
| | - Kenji Yamamoto
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
15
|
Bols M, Frihed TG, Pedersen MJ, Pedersen CM. Silylated Sugars – Synthesis and Properties. Synlett 2021. [DOI: 10.1055/s-0040-1719854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractSilicon has been used in carbohydrate chemistry for half a century, but mostly as a protective group for sugar alcohols. Recently, the use of silicon has expanded to functionalization via C–H activation, conformational arming of glycosyl donors, and conformational alteration of carbohydrates. Silicon has proven useful as more than a protective group and during the last one and a half decades we have demonstrated how it influences both the reactivity of glycosyl donors and stereochemical outcome of glycosylations. Silicon can also be attached directly to the sugar C-backbone, which has even more pronounced effects on the chemistry and properties of the molecules. In this Account, we will give a tour through our work involving silicon and carbohydrates.1 Introduction2 Conformational Arming of Glycosyl Donors with Silyl Groups3 Silyl Protective Groups for Tethering Glycosyl Donors4. Si–C Glycosides via C–H Activation4.1 C–H Activation and Oxidation of Methyl 6-Deoxy-l-glycosides4.2 Synthesis of All Eight 6-Deoxy-l-sugars4.3 Synthesis of All Eight l-Sugars by C–H Activation4.4 Modification of the Oxasilolane Ring5 C–Si in Glycosyl Donors – Activating or Not?6 Si–C-Substituted Pyranosides7 Perspective
Collapse
Affiliation(s)
- Mikael Bols
- University of Copenhagen, Department of Chemistry
| | | | | | | |
Collapse
|
16
|
Liu M, Qin X, Ye XS. Glycan Assembly Strategy: From Concept to Application. CHEM REC 2021; 21:3256-3277. [PMID: 34498347 DOI: 10.1002/tcr.202100183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.
Collapse
Affiliation(s)
- Mingli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
17
|
Hassan AA, Oscarson S. Facile anomer-oriented syntheses of 4-methylumbelliferyl sialic acid glycosides. Org Biomol Chem 2021; 19:6644-6649. [PMID: 34263283 DOI: 10.1039/d1ob00877c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As part of a program to find new sialidases and determine their enzymatic specificity and catalytic activity, a library of 4-methylumbelliferyl sialic acid glycosides derivatised at the C-5 position were prepared from N-acetylneuraminic acid. Both α- and β-4-methylumbelliferyl sialic acid glycosides were prepared in high yields and stereoselectivity. α-Anomers were accessed via reagent control by utilising additive CH3CN and TBAI, whereas the β-anomers were synthesised through a diastereoselective addition reaction of iodine and the aglycone to the corresponding glycal followed by reduction of the resulting 3-iodo compounds. Both anomer-oriented synthetic pathways allow for gram-scale stereoselective syntheses of the desired C-5 modified neuraminic acid derivatives for use as tools to quantify the enzymatic activity and substrate specificity of known sialidases, and potential detection and investigation of novel sialidases.
Collapse
Affiliation(s)
- Abdullah A Hassan
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland.
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
18
|
Timmer MSM, Teunissen TJ, Kodar K, Foster AJ, Yamasaki S, Stocker BL. Cholesteryl glucosides signal through the carbohydrate recognition domain of the macrophage inducible C-type lectin (mincle). Org Biomol Chem 2021; 19:2198-2202. [PMID: 33625427 DOI: 10.1039/d0ob02342f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cholesteryl α-d-glucosides (αGCs) are unique metabolic products of the cancer-causing human pathogen Helicobacter pylori. Via signalling through the Macrophage inducible C-type lectin (Mincle) and the induction of a pro-inflammatory response, they are thought to play a role in the development of gastric atrophy. Herein, we prepared the first library of steryl d-glucosides and determined that they preferentially signal through the carbohydrate recognition domain of human Mincle, rather than the amino acid consensus motif. Lipidated steryl d-glucosides exhibited enhanced Mincle agonist activity, with C18 cholesteryl 6-O-acyl-α-d-glucoside (2c) being the most potent activator of human monocytes. Despite exhibiting strong Mincle signalling, sito- (5b) and stigmasterol glycosides (6b) led to a poor inflammatory response in primary cells, suggesting that Mincle is a potential therapeutic target for preventing H. pylori-mediated inflammation and cancer.
Collapse
Affiliation(s)
- Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - Thomas J Teunissen
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - Kristel Kodar
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - Amy J Foster
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan and Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan and Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan and Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
19
|
Pongener I, Pepe DA, Ruddy JJ, McGarrigle EM. Stereoselective β-mannosylations and β-rhamnosylations from glycosyl hemiacetals mediated by lithium iodide. Chem Sci 2021; 12:10070-10075. [PMID: 34377400 PMCID: PMC8317664 DOI: 10.1039/d1sc01300a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
Stereoselective β-mannosylation is one of the most challenging problems in the synthesis of oligosaccharides. Herein, a highly selective synthesis of β-mannosides and β-rhamnosides from glycosyl hemi-acetals is reported, following a one-pot chlorination, iodination, glycosylation sequence employing cheap oxalyl chloride, phosphine oxide and LiI. The present protocol works excellently with a wide range of glycosyl acceptors and with armed glycosyl donors. The method doesn't require conformationally restricted donors or directing groups; it is proposed that the high β-selectivities observed are achieved via an SN2-type reaction of α-glycosyl iodide promoted by lithium iodide.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Dionissia A Pepe
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Joseph J Ruddy
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
20
|
Hara RI, Sato K, Wada T. Synthesis of Glycosyl Phosphate Repeats and Their Analogues. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Takeshi Wada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
21
|
DeMent PM, Liu C, Wakpal J, Schaugaard RN, Schlegel HB, Nguyen HM. Phenanthroline-Catalyzed Stereoselective Formation of α-1,2- cis 2-Deoxy-2-Fluoro Glycosides. ACS Catal 2021; 11:2108-2120. [PMID: 34336371 DOI: 10.1021/acscatal.0c04381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phenanthroline is a heterocyclic aromatic organic compound and commonly used in coordination chemistry acting as a bidentate ligand. The C4 and C7 positions of phenanthroline can often be substituted to change the binding capabilities of the ligand. Recently, there has been a push in the field of chemistry to create environmental-friendly chemical methodologies by utilizing catalysts and minimizing solvent. Herein, we have illustrated how, at high concentrations with minimal use of solvent, the C4 and C7 positions of phenanthroline can be tuned to develop an efficient and stereoselective catalyst for the formation of α-1,2-cis-fluorinated glycosides. By activating 2-deoxy-2-fluoro glycosyl halides with phenanthroline-based catalysts, we have been able to achieve glycosylations with high levels of α-selectivities and moderate to high yields. The catalytic system has been applied to several glycosyl halide electrophiles with a range of glycosyl nucleophilic acceptors. The proposed mechanism for this catalytic glycosylation system has been investigated by density functional theory calculations, indicating that the double SN2 displacement pathways with phenanthroline catalysts have lower barriers and ensure stereoselective formation of α-1,2-cis-2-fluoro glycosides.
Collapse
Affiliation(s)
- Paul M. DeMent
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Chenlu Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Joseph Wakpal
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Richard N. Schaugaard
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M. Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
22
|
Xu L, Luo C, Chen C. Halogenation and anomerization of glycopyranoside by
TESH
/bromine and
BHQ
/bromine. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lai Xu
- Department of Chemistry Fu‐Jen Catholic University New Taipei City 24205 Taiwan (ROC)
| | - Chin‐Hung Luo
- Department of Chemistry Fu‐Jen Catholic University New Taipei City 24205 Taiwan (ROC)
| | - Chien‐Sheng Chen
- Department of Chemistry Fu‐Jen Catholic University New Taipei City 24205 Taiwan (ROC)
| |
Collapse
|
23
|
Chang CW, Lin MH, Wang CC. Statistical Analysis of Glycosylation Reactions. Chemistry 2020; 27:2556-2568. [PMID: 32939892 DOI: 10.1002/chem.202003105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Indexed: 12/27/2022]
Abstract
Chemical synthesis is one of the practical approaches to access carbohydrate-based natural products and their derivatives with high quality and in a large quantity. However, stereoselectivity during the glycosylation reaction is the main challenge because the reaction can generate both α- and β-glycosides. The main focus of the present article is the concept of recent mechanistic studies that have applied statistical analysis and quantitation for defining stereoselective changes during the reaction process. Based on experimental evidence, a detailed discussion associated with the mechanism and degree of influence affecting the stereoselective outcome of glycosylation is included.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Chemical Biology and Molecular Biophysics Program (Taiwan), International Graduate Program (TIGP), Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
24
|
Zhang Y, Guo J, Xu X, Gao Q, Liu X, Ding N. A practical and scalable synthesis of KRN7000 using glycosyl iodide as the glycosyl donor. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820961018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
KRN7000 is particularly useful because it is a powerful and specific CD1d agonist and has prompted intense interest in the context of immunology in the past 25 years. Its limited commercial availability and high price has led to the publication of many different syntheses. However, almost all of them focused on the methodology development rather than a scalable synthesis. Herein, we have described a practical and scalable procedure for the synthesis of KRN7000 basing on the glycosyl iodide method. This procedure involves total of eight steps to obtain the highly pure product KNR7000 on gram scale from the commercially available starting materials (d-galactose and the phytosphingosine) with only three column chromatographic purifications.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Jia Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Xiaoyan Xu
- China State Institute of Pharmaceutical Industry, Shanghai, P.R. China
| | - Qi Gao
- China State Institute of Pharmaceutical Industry, Shanghai, P.R. China
| | - Xianglai Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| |
Collapse
|
25
|
Pivaloyl-protected glucosyl iodide as a glucosyl donor for the preparation of β-C-glucosides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Khan A, Hollwedel F, Maus UA, Stocker BL, Timmer MSM. Synthesis of α-Glucosyl Diacylglycerides as potential adjuvants for Streptococcus pneumoniae vaccines. Carbohydr Res 2020; 489:107951. [PMID: 32086019 DOI: 10.1016/j.carres.2020.107951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/01/2022]
Abstract
α-Glucosyl diacylglycerols (αGlc-DAGs) play an important role in providing protective immunity against Streptococcus pneumoniae infection through the engagement of the Macrophage inducible C-type lectin (Mincle). Herein, we efficiently synthesised αGlc-DAGs containing C12, C14, C16 and C18 acyl chains in 7 steps and 44-47% overall yields, and demonstrated that Mincle signaling was dependent on lipid length using mMincle and hMincle NFAT-GFP reporter cells. The greatest production of GFP in both cell types was elicited by C14 αGlc-DAG. Accordingly, C14 αGlc-DAG has potential to act as an adjuvant to augment the immune response against S. pneumoniae antigens.
Collapse
Affiliation(s)
- Ayesha Khan
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, P. O. Box 600, Wellington, 6140, New Zealand
| | - Femke Hollwedel
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany; German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany; German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, P. O. Box 600, Wellington, 6140, New Zealand.
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, P. O. Box 600, Wellington, 6140, New Zealand.
| |
Collapse
|
27
|
Chang C, Wu C, Lin M, Liao P, Chang C, Chuang H, Lin S, Lam S, Verma VP, Hsu C, Wang C. Establishment of Guidelines for the Control of Glycosylation Reactions and Intermediates by Quantitative Assessment of Reactivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chun‐Wei Chang
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate ProgramAcademia Sinica Taipei 115 Taiwan
- Department of ChemistryNational Taiwan University Taipei 106 Taiwan
| | - Chia‐Hui Wu
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate ProgramAcademia Sinica Taipei 115 Taiwan
- Department of ChemistryNational Taiwan University Taipei 106 Taiwan
| | - Mei‐Huei Lin
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
| | | | | | - Hsiao‐Han Chuang
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
- Department of ChemistryNational Taiwan University Taipei 106 Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan University Taipei 115 Taiwan
| | - Su‐Ching Lin
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
| | - Sarah Lam
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
| | | | - Chao‐Ping Hsu
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
| | - Cheng‐Chung Wang
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate ProgramAcademia Sinica Taipei 115 Taiwan
| |
Collapse
|
28
|
Chang C, Wu C, Lin M, Liao P, Chang C, Chuang H, Lin S, Lam S, Verma VP, Hsu C, Wang C. Establishment of Guidelines for the Control of Glycosylation Reactions and Intermediates by Quantitative Assessment of Reactivity. Angew Chem Int Ed Engl 2019; 58:16775-16779. [DOI: 10.1002/anie.201906297] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Chun‐Wei Chang
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate ProgramAcademia Sinica Taipei 115 Taiwan
- Department of ChemistryNational Taiwan University Taipei 106 Taiwan
| | - Chia‐Hui Wu
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate ProgramAcademia Sinica Taipei 115 Taiwan
- Department of ChemistryNational Taiwan University Taipei 106 Taiwan
| | - Mei‐Huei Lin
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
| | | | | | - Hsiao‐Han Chuang
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
- Department of ChemistryNational Taiwan University Taipei 106 Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan University Taipei 115 Taiwan
| | - Su‐Ching Lin
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
| | - Sarah Lam
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
| | | | - Chao‐Ping Hsu
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
| | - Cheng‐Chung Wang
- Institute of ChemistryAcademia Sinica Taipei 115 Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate ProgramAcademia Sinica Taipei 115 Taiwan
| |
Collapse
|
29
|
Step-economy synthesis of β-steryl sialosides using a sialyl iodide donor. J Antibiot (Tokyo) 2019; 72:449-460. [PMID: 30886347 DOI: 10.1038/s41429-019-0165-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 11/08/2022]
Abstract
Steryl glycosides are prevalent in nature and have unique biological activities dictated by sterol structure, sugar composition, and the stereochemical attachment of the aglycone. A single configurational switch can have profound biological consequences meriting the systematic study of structure and function relationships. Steryl congeners of N-acetyl neuraminic acid (NANA) impact neurobiological processes and may also mediate host/microbe interactions. In order to study these processes, a platform for the synthesis of β-steryl sialosides has been established. Promoter-free glycosidations using a novel α-linked sialyl iodide donor efficiently provide unique amphiphilic sialoglycoconjugates for examining bioactivities in various systems.
Collapse
|
30
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
31
|
Oka N, Mori A, Ando K. Stereoselective Synthesis of 1-Thio-α-d
-Ribofuranosides Using Ribofuranosyl Iodides as Glycosyl Donors. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Natsuhisa Oka
- Department of Chemistry and Biomolecular Science; Faculty of Engineering; Gifu University; 1-1 Yanagido 501-1193 Gifu Japan
- Center for Highly Advanced Integration of Nano and Life Sciences; Gifu University (G-CHAIN); 1-1 Yanagido 501-1193 Gifu Japan
| | - Ayumi Mori
- Department of Chemistry and Biomolecular Science; Faculty of Engineering; Gifu University; 1-1 Yanagido 501-1193 Gifu Japan
| | - Kaori Ando
- Department of Chemistry and Biomolecular Science; Faculty of Engineering; Gifu University; 1-1 Yanagido 501-1193 Gifu Japan
| |
Collapse
|
32
|
Anomeric O-Functionalization of Carbohydrates for Chemical Conjugation to Vaccine Constructs. Molecules 2018; 23:molecules23071742. [PMID: 30018207 PMCID: PMC6099650 DOI: 10.3390/molecules23071742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022] Open
Abstract
Carbohydrates mediate a wide range of biological interactions, and understanding these processes benefits the development of new therapeutics. Isolating sufficient quantities of glycoconjugates from biological samples remains a significant challenge. With advances in chemical and enzymatic carbohydrate synthesis, the availability of complex carbohydrates is increasing and developing methods for stereoselective conjugation these polar head groups to proteins and lipids is critically important for pharmaceutical applications. The aim of this review is to provide an overview of commonly employed strategies for installing a functionalized linker at the anomeric position as well as examples of further transformations that have successfully led to glycoconjugation to vaccine constructs for biological evaluation as carbohydrate-based therapeutics.
Collapse
|
33
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
34
|
Podilapu AR, Emmadi M, Kulkarni SS. Expeditious Synthesis of Ieodoglucomides A and B from the Marine-Derived Bacterium Bacillus licheniformis. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ananda Rao Podilapu
- Department of Chemistry; Indian Institute of Technology Bombay; Mumbai India
| | - Madhu Emmadi
- Department of Chemistry; Indian Institute of Technology Bombay; Mumbai India
| | - Suvarn S. Kulkarni
- Department of Chemistry; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|
35
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
36
|
The tertiary-butyl group: Selective protection of the anomeric centre and evaluation of its orthogonal cleavage. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Calce E, Digilio G, Menchise V, Saviano M, De Luca S. Chemoselective Glycosylation of Peptides through S-Alkylation Reaction. Chemistry 2018; 24:6231-6238. [DOI: 10.1002/chem.201800265] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Enrica Calce
- Institute of Biostructures and Bioimaging; National Research Council; 80134 Naples Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation; Università del Piemonte Orientale “A. Avogadro”; 15121 Alessandria Italy
| | - Valeria Menchise
- Institute of Biostructures and Bioimaging, National Research Council; c/o Molecular Biotechnology Center; 10126 Turin Italy
| | - Michele Saviano
- Institute of Crystallography; National Research Council; 70126 Bari Italy
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging; National Research Council; 80134 Naples Italy
| |
Collapse
|
38
|
Wang L, Overkleeft HS, van der Marel GA, Codée JDC. Reagent Controlled Stereoselective Synthesis of α-Glucans. J Am Chem Soc 2018; 140:4632-4638. [PMID: 29553729 PMCID: PMC5890317 DOI: 10.1021/jacs.8b00669] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 11/29/2022]
Abstract
The development of a general glycosylation method that allows for the stereoselective construction of glycosidic linkages is a tremendous challenge. Because of the differences in steric and electronic properties of the building blocks used, the outcome of a glycosylation reaction can vary greatly when switching form one glycosyl donor-acceptor pair to another. We here report a strategy to install cis-glucosidic linkages in a fully stereoselective fashion that is under direct control of the reagents used to activate a single type of donor building block. The activating reagents are tuned to the intrinsic reactivity of the acceptor alcohol to match the reactivity of the glycosylating agent with the reactivity of the incoming nucleophile. A protecting group strategy is introduced that is based on the sole use of benzyl-ether type protecting groups to circumvent changes in reactivity as a result of the protecting groups. For the stereoselective construction of the α-glucosyl linkages to a secondary alcohol, a per-benzylated glusosyl imidate donor is activated with a combination of trimethylsilyltriflate and DMF, while activation of the same imidate donor with trimethylsilyl iodide in the presence of triphenylphosphine oxide allows for the stereoselective cis-glucosylation of primary alcohols. The effectiveness of the strategy is illustrated in the modular synthesis of a Mycobacterium tuberculosis nonasaccharide, composed of an α-(1-4)-oligoglucose backbone bearing different α-glucosyl branches.
Collapse
Affiliation(s)
- Liming Wang
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
39
|
Traboni S, Bedini E, Iadonisi A. Solvent-Free Conversion of Alcohols to Alkyl Iodides and One-Pot Elaborations Thereof. ChemistrySelect 2018. [DOI: 10.1002/slct.201800130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4, I - 80126 Naples Italy
| | - Emiliano Bedini
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4, I - 80126 Naples Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4, I - 80126 Naples Italy
| |
Collapse
|
40
|
Poulsen LT, Heuckendorff M, Jensen HH. On the generality of the superarmament of glycosyl donors. Org Biomol Chem 2018. [DOI: 10.1039/c7ob02966g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We establish that the electronic superarmament of 2-OBz thioglucoside glycosyl donors under NIS/TfOH activation is not a general phenomenon.
Collapse
|
41
|
Affiliation(s)
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
42
|
Mébarki K, Gavel M, Heis F, Joosten AYP, Lecourt T. Carbene-Mediated Quaternarization of the Anomeric Position of Carbohydrates: Synthesis of Allylic Ketopyranosides, Access to the Missing α-Gluco and β-Manno Stereoisomers, and Preparation of Quaternary 2-Deoxy 2-Acetamido Sugars. J Org Chem 2017; 82:9030-9037. [DOI: 10.1021/acs.joc.7b01493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Kévin Mébarki
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
| | - Marine Gavel
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
| | - Floriane Heis
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
| | | | - Thomas Lecourt
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
| |
Collapse
|
43
|
Joosten A, Boultadakis-Arapinis M, Gandon V, Micouin L, Lecourt T. Substitution of the Participating Group of Glycosyl Donors by a Halogen Atom: Influence on the Rearrangement of Transient Orthoesters Formed during Glycosylation Reactions. J Org Chem 2017; 82:3291-3297. [DOI: 10.1021/acs.joc.6b03088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine Joosten
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
| | | | - Vincent Gandon
- Institut de Chimie
Moléculaire et des Matériaux d’Orsay, CNRS UMR
8182, Univ. Paris-Sud, Université Paris-Saclay, Bâtiment 420, 91405 Orsay, France
| | - Laurent Micouin
- Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR
8601), 75006 Paris, France
| | - Thomas Lecourt
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
| |
Collapse
|
44
|
Zhou J, Lv S, Zhang D, Xia F, Hu W. Deactivating Influence of 3-O-Glycosyl Substituent on Anomeric Reactivity of Thiomannoside Observed in Oligomannoside Synthesis. J Org Chem 2017; 82:2599-2621. [DOI: 10.1021/acs.joc.6b03017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Zhou
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Siying Lv
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dan Zhang
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Fei Xia
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
45
|
Bols M, Pedersen CM. Silyl-protective groups influencing the reactivity and selectivity in glycosylations. Beilstein J Org Chem 2017; 13:93-105. [PMID: 28228850 PMCID: PMC5301963 DOI: 10.3762/bjoc.13.12] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022] Open
Abstract
Silyl groups such as TBDPS, TBDMS, TIPS or TMS are well-known and widely used alcohol protective groups in organic chemistry. Cyclic silylene protective groups are also becoming increasingly popular. In carbohydrate chemistry silyl protective groups have frequently been used primarily as an orthogonal protective group to the more commonly used acyl and benzyl protective groups. However, silyl protective groups have significantly different electronic and steric requirements than acyl and alkyl protective groups, which particularly becomes important when two or more neighboring alcohols are silyl protected. Within the last decade polysilylated glycosyl donors have been found to have unusual properties such as high (or low) reactivity or high stereoselectivity. This mini review will summarize these findings.
Collapse
Affiliation(s)
- Mikael Bols
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
46
|
Hashimoto Y, Tanikawa S, Saito R, Sasaki K. β-Stereoselective Mannosylation Using 2,6-Lactones. J Am Chem Soc 2016; 138:14840-14843. [DOI: 10.1021/jacs.6b08874] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yusuke Hashimoto
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510 Japan
| | - Saki Tanikawa
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510 Japan
| | - Ryota Saito
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510 Japan
| | - Kaname Sasaki
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510 Japan
| |
Collapse
|
47
|
An efficient method for the preparation of 1,5-anhydroalditol from unprotected carbohydrates via glycopyranosyl iodide. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Heuckendorff M, Jensen HH. On the Gluco/Manno Paradox: Practical α-Glucosylations by NIS/TfOH Activation of 4,6-O
-Tethered Thioglucoside Donors. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mads Heuckendorff
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Henrik H. Jensen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
49
|
Lai YC, Luo CH, Chou HC, Yang CJ, Lu L, Chen CS. Conversion of β-glycopyranoside to α-glycopyranoside by photo-activated radical reaction. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|