1
|
Alzate-Vargas L, Falling LJ, Laha S, Lotsch B, Chiou JW, Chan TS, Pong WF, Chuang CH, Velasco Vélez JJ, Jones TE. Electron deficient oxygen species in highly OER active iridium anodes characterized by X-ray absorption and emission spectroscopy. Phys Chem Chem Phys 2025; 27:9252-9261. [PMID: 40237166 DOI: 10.1039/d4cp03415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Water splitting is a promising technology for storing energy, yet it is challenged by the lack of stable anode materials that can overcome the sluggishness of the oxygen evolution reaction (OER). Iridium oxides are among the most active and stable OER catalysts, however how these materials achieve their performance remains under discussion. The activity of iridium based materials has been attributed to both high metal oxidation states and the appearance of O 2p holes. Herein we employ a combination of techniques-X-ray absorption at the Ir LII,III-edge, X-ray absorption and emission at the O K-edge, along with ab initio methods-to identify and characterize ligand holes present in highly OER-active X-ray amorphous oxides. We find, in agreement with the original proposition based on X-ray absorption measurement at the O K-edge, that O 2p holes are present in these materials and can be associated with the increased activity during OER.
Collapse
Affiliation(s)
| | - Lorenz J Falling
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
- School of Natural Sciences, Technical University Munich, 85748, Munich, Germany
| | - Sourav Laha
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, West Bengal-713209, India
| | - Bettina Lotsch
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Jau-Wern Chiou
- Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 300 Hsinchu, Taiwan
| | - Way-Faung Pong
- Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan
| | - Cheng-Hao Chuang
- Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan
| | - J J Velasco Vélez
- Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallés, Barcelona 08290, Spain
| | - T E Jones
- Theoretical Division, Los Alamos National Laboratory, New Mexico, 87545, USA.
| |
Collapse
|
2
|
Xu Z, Zhong M, Li S, Chen Y, Li P, Fan Z, Liu P, Wang D, Zhang Z. One-Step Hydrothermal Method Realizing Oxygen Vacancy Construction and P Doping of MnO 2 to Optimize Its Oxygen Evolution Performance. Inorg Chem 2025; 64:5029-5037. [PMID: 40019396 DOI: 10.1021/acs.inorgchem.4c05112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
MnO2 is considered one of the most potential catalysts for the oxygen evolution reaction, but its activity, which is determined by its electronic structure, crystal phase, and morphology, needs to be improved further. However, it is difficult to realize these multiscale structural regulations of MnO2 simultaneously during the preparation. In this study, α-MnO2 nanomaterial with a lot of oxygen vacancies (OVs) and Mn3+ is prepared by a one-step hydrothermal method, during which the protons of HCl can take the oxygen atom away from MnO2 to form a lot of OVs. The introduction of NH4H2PO4 can realize P doping in MnO2 to stabilize the product in the α-phase. In addition, the OV and P can increase the content of Mn3+ and regulate the Mn-O bond length synergistically to optimize the reaction kinetics. As a result, the product shows obviously enhanced catalytic activity. This study provides a one-step method for multiscale structural regulation of MnO2, which can easily create oxygen vacancies and achieve nonmetallic doping to optimize the oxygen evolution reaction (OER) performance of MnO2.
Collapse
Affiliation(s)
- Zhicheng Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Mingfeng Zhong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shuwei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yi Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Pengping Li
- Key Laboratory of Harbor and Marine Structure Durability Technology Ministry of Communications, Guangzhou 510230, P. R. China
| | - Zhihong Fan
- Key Laboratory of Harbor and Marine Structure Durability Technology Ministry of Communications, Guangzhou 510230, P. R. China
| | - Pingan Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Da Wang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhijie Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
3
|
Janssen M, Drnec J, Martens I, Quinson J, Pittkowski R, Park D, Weber P, Arenz M, Oezaslan M. Monitoring the Morphological Changes of Skeleton-PtCo Electrocatalyst during PEMFC Start-Up/Shut-Down probed by in situ WAXS and SAXS. CHEMSUSCHEM 2024; 17:e202400303. [PMID: 38507245 DOI: 10.1002/cssc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Advanced in situ analyses are indispensable for comprehending the catalyst aging mechanisms of Pt-based PEM fuel cell cathode materials, particularly during accelerated stress tests (ASTs). In this study, a combination of in situ small-angle and wide-angle X-ray scattering (SAXS & WAXS) techniques were employed to establish correlations between structural parameters (crystal phase, quantity, and size) of a highly active skeleton-PtCo (sk-PtCo) catalyst and their degradation cycles within the potential range of the start-up/shut-down (SUSD) conditions. Despite the complex case of the sk-PtCo catalyst comprising two distinct fcc alloy phases, our complementary techniques enabled in situ monitoring of structural changes in each crystal phase in detail. Remarkably, the in situ WAXS measurements uncover two primary catalyst aging processes, namely the cobalt depletion (regime I) followed by the crystallite growth via Ostwald ripening and/or particle coalescence (regime II). Additionally, in situ SAXS data reveal a continuous size growth over the AST. The Pt-enriched shell thickening based on the Co depletion within the first 100 SUSD cycles and particle growth induced by additional potential cycles were also collaborated by ex situ STEM-EELS. Overall, our work shows a comprehensive aging model for the sk-PtCo catalyst probed by complementary in situ WAXS and SAXS techniques.
Collapse
Affiliation(s)
- Marek Janssen
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Jakub Drnec
- European Synchrotron Radiation Facility (ESRF), 38000, Grenoble, France
| | - Isaac Martens
- European Synchrotron Radiation Facility (ESRF), 38000, Grenoble, France
| | - Jonathan Quinson
- Biological and Chemical Engineering Department, Aarhus University, 40 Åbogade, 8200, Aarhus, Denmark
| | - Rebecca Pittkowski
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Daesung Park
- Physikalisch-Technische Bundesanstalt (PTB), 38116, Braunschweig, Germany
- Laboratory of Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Philipp Weber
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Matthias Arenz
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Mehtap Oezaslan
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Gajapathy H, Bandaranayake S, Hruska E, Vadakkayil A, Bloom BP, Londo S, McClellan J, Guo J, Russell D, de Groot FMF, Yang F, Waldeck DH, Schultze M, Baker LR. Spin polarized electron dynamics enhance water splitting efficiency by yttrium iron garnet photoanodes: a new platform for spin selective photocatalysis. Chem Sci 2024; 15:3300-3310. [PMID: 38425509 PMCID: PMC10901523 DOI: 10.1039/d3sc03016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
This work presents a spectroscopic and photocatalytic comparison of water splitting using yttrium iron garnet (Y3Fe5O12, YIG) and hematite (α-Fe2O3) photoanodes. Despite similar electronic structures, YIG significantly outperforms widely studied hematite, displaying more than an order of magnitude increase in photocurrent density. Probing the charge and spin dynamics by ultrafast, surface-sensitive XUV spectroscopy reveals that the enhanced performance arises from (1) reduced polaron formation in YIG compared to hematite and (2) an intrinsic spin polarization of catalytic photocurrents in YIG. Ultrafast XUV measurements show a reduction in the formation of surface electron polarons compared to hematite due to site-dependent electron-phonon coupling. This leads to spin polarized photocurrents in YIG where efficient charge separation occurs on the Td sub-lattice compared to fast trapping and electron/hole pair recombination on the Oh sub-lattice. These lattice-dependent dynamics result in a long-lived spin aligned hole population at the YIG surface, which is directly observed using XUV magnetic circular dichroism. Comparison of the Fe M2,3 and O L1-edges show that spin aligned holes are hybridized between O 2p and Fe 3d valence band states, and these holes are responsible for highly efficient, spin selective water oxidation by YIG. Together, these results point to YIG as a new platform for highly efficient, spin selective photocatalysis.
Collapse
Affiliation(s)
- Harshad Gajapathy
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Savini Bandaranayake
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Emily Hruska
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Aravind Vadakkayil
- Department of Chemistry, University of Pittsburgh 15260 Pittsburgh Pennsylvania USA
| | - Brian P Bloom
- Department of Chemistry, University of Pittsburgh 15260 Pittsburgh Pennsylvania USA
| | - Stephen Londo
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Jackson McClellan
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Jason Guo
- Department of Physics, The Ohio State University Columbus Ohio 43210 USA
| | - Daniel Russell
- Department of Physics, The Ohio State University Columbus Ohio 43210 USA
| | - Frank M F de Groot
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584CG Utrecht The Netherlands
| | - Fengyuan Yang
- Department of Physics, The Ohio State University Columbus Ohio 43210 USA
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh 15260 Pittsburgh Pennsylvania USA
| | - Martin Schultze
- Institute of Experimental Physics, Graz University of Technology Petersgasse 16 Graz 8010 Austria
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| |
Collapse
|
5
|
Yuan J, Zou J, Wu Z, Wang Z, Yang Z, Xu H. Bifunctional electrocatalytic reduction performance of nitrogen containing biomass based nanoreactors loaded with Ni nanoparticles for oxygen and carbon dioxide. NANOTECHNOLOGY 2024; 35:175402. [PMID: 37832530 DOI: 10.1088/1361-6528/ad0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
In the face of increasing energy demand, the approach of transformation that combines energy restructuring and environmental governance has become a popular research direction. As an important part of electrocatalytic reactions for gas molecules, reduction reactions of oxygen (ORR) and carbon dioxide (CO2RR) are very indispensable in the field of energy conversion and storage. However, the non-interchangeability and irreversibility of electrode materials have always been a challenge in electrocatalysis. Hereon, nickel and nitrogen decorated biomass carbon-based materials (Ni/N-BC) has been prepared by high temperature pyrolysis using agricultural waste straw as raw material. Surprisingly, it possesses abundant active sites and specific surface area as a bifunctional electrocatalyst for ORR and CO2RR. The three-dimensional porous cavity structure for the framework of biomass could not only provide a strong anchoring foundation for the active site, but also facilitate the transport and enrichment of reactants around the site. In addition, temperature modulation during the preparation process also optimizes the composition and structure of biomass carbon and nitrogen. Benefit from above structure and morphology advantages, Ni/N-BC-800 exhibits the superior electrocatalytic activity for both ORR and CO2RR simultaneously. More specifically, Ni/N-BC-800 exhibits satisfactory ORR activity in terms of initial potential and half wave potential, while also enables the production of CO under high selective. The research results provide ideas for the development and design of electrode materials and green electrocatalysts, and also expand new applications of agricultural waste in fields such as energy conversion, environmental protection, and resource utilization.
Collapse
Affiliation(s)
- Junjie Yuan
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Jiayi Zou
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zhongqiu Wu
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zhaolong Wang
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zongli Yang
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Hui Xu
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| |
Collapse
|
6
|
Li Z, Chaemchuen S. Recent Progress on the Synthesis and Modified Strategies of Zeolitic-Imidazole Framework-67 Towards Electrocatalytic Oxygen Evolution Reaction. CHEM REC 2023; 23:e202300142. [PMID: 37565697 DOI: 10.1002/tcr.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Indexed: 08/12/2023]
Abstract
As a class of metal-organic framework, the zeolitic-imidazole framework-67 is constructed from bridging cobalt ions and 2-methylimidazole. The high content of abundant active cobalt species, uniform structure, ultrahigh porosity, and large surface area show the potential for multiple catalytic applications, especially electrocatalytic oxygen evolution reaction (OER). The design and synthetic strategies of catalyst-based ZIF-67 that approach the maximized catalytic performance are still challenging in further development. Herein, the current progress strategy on the structural design, synthetic route, and functionalization of electrocatalysts based on ZIF-67 to boost the catalytic performance of OER is reviewed. Besides, the structurally designed catalyst from various fabricated strategies corresponding to enhancing catalytic activity is discussed. The emphasized review for understanding design and synthetic structure with catalytic performance could guide researchers in further developing catalyst-based ZIF-67 for improving the efficient electrocatalytic OER.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
7
|
Zhao YX, Wen JH, Li P, Zhang PF, Wang SN, Li DC, Dou JM, Li YW, Ma HY, Xu L. A "Pre-Division Metal Clusters" Strategy to Mediate Efficient Dual-Active Sites ORR Catalyst for Ultralong Rechargeable Zn-Air Battery. Angew Chem Int Ed Engl 2023; 62:e202216950. [PMID: 36625196 DOI: 10.1002/anie.202216950] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
To conquer the bottleneck of sluggish kinetics in cathodic oxygen reduction reaction (ORR) of metal-air batteries, catalysts with dual-active centers have stood out. Here, a "pre-division metal clusters" strategy is firstly conceived to fabricate a N,S-dual doped honeycomb-like carbon matrix inlaid with CoN4 sites and wrapped Co2 P nanoclusters as dual-active centers (Co2 P/CoN4 @NSC-500). A crystalline {CoII 2 } coordination cluster divided by periphery second organic layers is well-designed to realize delocalized dispersion before calcination. The optimal Co2 P/CoN4 @NSC-500 executes excellent 4e- ORR activity surpassing the benchmark Pt/C. Theoretical calculation results reveal that the CoN4 sites and Co2 P nanoclusters can synergistically quicken the formation of *OOH on Co sites. The rechargeable Zn-air battery (ZAB) assembled by Co2 P/CoN4 @NSC-500 delivers ultralong cycling stability over 1742 hours (3484 cycles) under 5 mA cm-2 and can light up a 2.4 V LED bulb for ≈264 hours, evidencing the promising practical application potentials in portable devices.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Jing-Hong Wen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Ping Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Peng-Fang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Hui-Yan Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Liqiang Xu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.,Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P.R. China
| |
Collapse
|
8
|
Lv N, Li Q, Zhu H, Mu S, Luo X, Ren X, Liu X, Li S, Cheng C, Ma T. Electrocatalytic Porphyrin/Phthalocyanine-Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structure-Performance Relationships. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206239. [PMID: 36599650 PMCID: PMC9982586 DOI: 10.1002/advs.202206239] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Indexed: 05/05/2023]
Abstract
Metal-porphyrins or metal-phthalocyanines-based organic frameworks (POFs), an emerging family of metal-N-C materials, have attracted widespread interest for application in electrocatalysis due to their unique metal-N4 coordination structure, high conjugated π-electron system, tunable components, and chemical stability. The key challenges of POFs as high-performance electrocatalysts are the need for rational design for porphyrins/phthalocyanines building blocks and an in-depth understanding of structure-activity relationships. Herein, the synthesis methods, the catalytic activity modulation principles, and the electrocatalytic behaviors of 2D/3D POFs are summarized. Notably, detailed pathways are given for modulating the intrinsic activity of the M-N4 site by the microenvironments, including central metal ions, substituent groups, and heteroatom dopants. Meanwhile, the topology tuning and hybrid system, which affect the conjugation network or conductivity of POFs, are also considered. Furthermore, the representative electrocatalytic applications of structured POFs in efficient and environmental-friendly energy conversion areas, such as carbon dioxide reduction reaction, oxygen reduction reaction, and water splitting are briefly discussed. Overall, this comprehensive review focusing on the frontier will provide multidisciplinary and multi-perspective guidance for the subsequent experimental and theoretical progress of POFs and reveal their key challenges and application prospects in future electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Ning Lv
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Huang Zhu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Med‐X Center for MaterialsSichuan UniversityChengdu610041P. R. China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Department of UltrasoundWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
9
|
Mehek R, Iqbal N, Noor T, Ghazi ZA, Umair M. Metal-organic framework derived vanadium oxide supported nanoporous carbon structure as a bifunctional electrocatalyst for potential application in metal air batteries. RSC Adv 2022; 13:652-664. [PMID: 36605659 PMCID: PMC9780743 DOI: 10.1039/d2ra06688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
High-efficiency, sustainable, non-precious metal-based electrocatalysts with bifunctional catalytic activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are essential for metal-air batteries. In this research, a bifunctional electrocatalyst is developed by synthesizing a novel nanoporous vanadium oxide/carbon composite (NVC-900) through pyrolysis of a highly efficient vanadium metal-organic framework, MIL-101 (V). The fabrication process was conveniently carried out by pyrolyzing the synthesized MIL-101 (V) at 900 °C, producing vanadium oxide nanoparticles embedded in the extensively distributed pores of the carbon network. The evenly distributed nanopores substantially improve the performance of the efficient electrocatalyst for both the oxygen reduction reaction and oxygen evolution reactions (ORR/OER) by increasing surface area and facilitating access to stable catalytic active sites. The unique structure was characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). For oxygen reduction reaction (ORR), the electrocatalyst established a promising limiting current density (J L) of 5.2 mA cm-2 at 1600 rpm at an onset potential of 1.18 V and a half-wave potential of 0.82 V, and for OER, a current density of 10 mA cm-2 was delivered at a potential of 1.48 V. In comparison to 10% Pt/C, the synthesized bifunctional electrocatalyst being almost equally active towards bifunctional activity, showed much better long-term cyclic stability. The one-step thermal pyrolysis strategy to synthesize the nanoporous functional material and the proposed electrocatalytic material's long-term bifunctional activity and durability make it an ideal fit for next-generation portable green metal-air batteries.
Collapse
Affiliation(s)
- Rimsha Mehek
- US-Pakistan Center for Advanced Studies (USPCAS-E), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan+92 51 9085 5281
| | - Naseem Iqbal
- US-Pakistan Center for Advanced Studies (USPCAS-E), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan+92 51 9085 5281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan
| | - Zahid Ali Ghazi
- National Centre of Excellence in Physical Chemistry, University of Peshawar25120Pakistan
| | - Muhammad Umair
- US-Pakistan Center for Advanced Studies (USPCAS-E), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan+92 51 9085 5281
| |
Collapse
|
10
|
Abstract
Adsorption energy (AE) of reactive intermediate is currently the most important descriptor for electrochemical reactions (e.g., water electrolysis, hydrogen fuel cell, electrochemical nitrogen fixation, electrochemical carbon dioxide reduction, etc.), which can bridge the gap between catalyst's structure and activity. Tracing the history and evolution of AE can help to understand electrocatalysis and design optimal electrocatalysts. Focusing on oxygen electrocatalysis, this review aims to provide a comprehensive introduction on how AE is selected as the activity descriptor, the intrinsic and empirical relationships related to AE, how AE links the structure and electrocatalytic performance, the approaches to obtain AE, the strategies to improve catalytic activity by modulating AE, the extrinsic influences on AE from the environment, and the methods in circumventing linear scaling relations of AE. An outlook is provided at the end with emphasis on possible future investigation related to the obstacles existing between adsorption energy and electrocatalytic performance.
Collapse
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hong Bin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
11
|
Luo F, Li M, Yang Z. Ultrafine CoFe 2O 4 quantum dots as an oxygen electrocatalyst for rechargeable zinc air batteries. Chem Commun (Camb) 2022; 58:13739-13742. [PMID: 36416016 DOI: 10.1039/d2cc04560e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CoFe2O4 quantum dots (QDs) showed a battery performance 1.79 times higher than that displayed by the benchmark Pt/C-IrO2. Furthermore, a power density of 87 mW cm-2 was achieved for all-solid-state zinc air batteries (ZABs) of CoFe2O4 QDs, implying good prospects of using these QDs in practical applications.
Collapse
Affiliation(s)
- Fang Luo
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, 430200 Wuhan, P. R. China
| | - Min Li
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China.
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China. .,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| |
Collapse
|
12
|
Vijayarangan M, Mathi S, Gayathri A, Jayabarathi J, Thanikachalam V. Cobalt Doped Sulfonated Polyaniline with High Electrocatalytic Activity and Stability for Oxygen Evolution Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202203206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Murugan Vijayarangan
- Department of Chemistry Material Science Lab Annamalai University Annamalai Nagar Tamil Nadu-608 002 India
| | - Selvam Mathi
- Department of Chemistry Material Science Lab Annamalai University Annamalai Nagar Tamil Nadu-608 002 India
| | - Arunagiri Gayathri
- Department of Chemistry Material Science Lab Annamalai University Annamalai Nagar Tamil Nadu-608 002 India
| | - Jayaraman Jayabarathi
- Department of Chemistry Material Science Lab Annamalai University Annamalai Nagar Tamil Nadu-608 002 India
| | - Venugopal Thanikachalam
- Department of Chemistry Material Science Lab Annamalai University Annamalai Nagar Tamil Nadu-608 002 India
| |
Collapse
|
13
|
Architecture Evolution of Different Nanoparticles Types: Relationship between the Structure and Functional Properties of Catalysts for PEMFC. Catalysts 2022. [DOI: 10.3390/catal12060638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review considers the features of the catalysts with different nanoparticle structures architecture transformation under the various pre-treatment types. Based on the results of the publications analysis, it can be concluded that the chemical or electrochemical activation of bimetallic catalysts has a significant effect on their composition, microstructure, and catalytic activity in the oxygen reduction reaction. The stage of electrochemical activation is recommended for use as a mandatory catalyst pre-treatment to obtain highly active de-alloyed materials. The literature is studied, which covers possible variants of the structural modification under the influence of thermal treatment under different processing conditions. Additionally, based on the literature data analysis, recommendations are given for the thermal treatment of catalysts alloyed with various d-metals.
Collapse
|
14
|
Weber P, Weber DJ, Dosche C, Oezaslan M. Highly Durable Pt-Based Core–Shell Catalysts with Metallic and Oxidized Co Species for Boosting the Oxygen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philipp Weber
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Daniel J. Weber
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Carsten Dosche
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Mehtap Oezaslan
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
15
|
Li C, Yan S, Fang J. Construction of Lattice Strain in Bimetallic Nanostructures and Its Effectiveness in Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102244. [PMID: 34363320 DOI: 10.1002/smll.202102244] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Bimetallic nanocrystals (NCs), associated with various surface functions such as ligand effect, ensemble effect, and strain effect, exhibit superior electrocatalytic properties. The stress-induced surface strain effect can alter binding strength between the surface active sites and reactants as well as their intermediates, and the electrochemical performance of bimetallic NCs can be significantly facilitated by the lattice-strain modification via their morphologies, sizes, shell-thickness, surface defectiveness as well as compositions. In this review, an overview of fundamental principles, characterization techniques, and quantitative determination of the surface lattice strain is provided. Various strategies and synthesis efforts on creating lattice-strain-engineered bimetallic NCs, including the de-alloying process, atomic layer-by-layer deposition, thermal treatment evolution, one-pot synthesis, and other efforts are also discussed. It is further outlined how the lattice strain effect promotes electrochemical catalysis through the selected case studies. The reactions on oxygen reduction reaction, small molecular oxidation, water splitting reaction, and electrochemical carbon dioxide reduction reactions are focused. In particular, studies of lattice strain arisen from core-shell nanostructure and defectiveness are highlighted. Lastly, the potential challenges are summarized and the prospects of lattice-strain-based engineering on bimetallic nanocatalysts with suggestion and guidance of the future electrocatalyst design are envisioned.
Collapse
Affiliation(s)
- Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Shaohui Yan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
16
|
Mu Y, Wang T, Zhang J, Meng C, Zhang Y, Kou Z. Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00124-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Li X, Su Z, Zhao Z, Cai Q, Li Y, Zhao J. Single Ir atom anchored in pyrrolic-N 4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: a computational study. J Colloid Interface Sci 2021; 607:1005-1013. [PMID: 34583028 DOI: 10.1016/j.jcis.2021.09.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
The development of highly-efficient electrocatalysts with bifunctional catalytic activity for oxygen reduction reaction (ORR) and oxygen evolution reaction. (OER) still remains a great challenge for the large-scale application of renewable energy conversion and storage technologies. Herein, by means of comprehensive density functional theory (DFT) computations, we systematically explored the potential of pyrrolic-N doped graphene (pyrrolic-N4-G) supported various transition metal atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, Os, Ir, and Pt) as electrocatalysts for the ORR and OER. Our results revealed that these TM/pyrrolic-N4-G candidates exhibit high electrochemical stability due to their positive dissolution potentials. Especially, the Ir/pyrrolic-N4-G can perform as a promising bifunctional electrocatalyst for both ORR and OER with the low overpotentials (ηORR = 0.34 V and ηOER = 0.32 V). Interestingly, multiple-level descriptors, including energy descriptor (ΔGOH* - ΔGO*), (ΔGOH*), structure descriptor (φ), and d-band center (ε) can well rationalize the origin of the high catalytic activity of Ir/pyrrolic-N4-G for the ORR/OER. Our findings not only further enrich the SACs, but also open a new avenue to develop novel 2D materials-based SACs for highly efficient oxygen electrocatalysts.
Collapse
Affiliation(s)
- Xinyi Li
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Zhanhua Su
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhifeng Zhao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Qinghai Cai
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
18
|
Pan J, Fang Q, Xia Q, Hu A, Sun F, Zhang W, Yu Y, Zhuang G, Jiang J, Wang J. Dual effect of the coordination field and sulphuric acid on the properties of a single-atom catalyst in the electrosynthesis of H 2O 2. Phys Chem Chem Phys 2021; 23:21338-21349. [PMID: 34545864 DOI: 10.1039/d1cp03189a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Electrocatalytic synthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e- ORR) is the ideal solution for on-site H2O2 production. Herein, we propose a new strategy for creating new 2e- ORR catalysts by introducing electron-deficient B atoms and electron-rich N atoms to regulate the coordination field of metal ions on a graphene substrate. Through the first-principles density functional theory (DFT) calculations, NiN2B2-h was screened out as it had a low overpotential (0.12 V) for 2e- ORR. The Bader charge analysis revealed that B atoms increased the charge density of Ni atoms, leading to moderate binding of O2. Furthermore, the combination of ab initio molecular dynamic (AIMD) calculations and DFT calculations in an H2SO4 environment revealed a new reaction mechanism of H2O2 synthesis, involving proton-transfer between activated O2 and HSO4-. Moreover, the rate-determining step (0.63 eV) of H2O2 desorption in the presence of H2SO4 was different from that of OOH* protonation (0.45 eV) under the gas phase. This difference is attributed to the hydrogen-bond network in the acid solution.
Collapse
Affiliation(s)
- Jinkong Pan
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China.
| | - Qiaojun Fang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China.
| | - Qian Xia
- China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310032, P. R. China.
| | - Anfu Hu
- China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310032, P. R. China.
| | - Fuli Sun
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China.
| | - Wei Zhang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China.
| | - Yifan Yu
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China.
| | - Guilin Zhuang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China.
| | - Jian Jiang
- China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310032, P. R. China.
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China.
| |
Collapse
|
19
|
Mazumder MMR, Burton A, Richburg CS, Saha S, Cronin B, Duin E, Farnum BH. Controlling One-Electron vs Two-Electron Pathways in the Multi-Electron Redox Cycle of Nickel Diethyldithiocarbamate. Inorg Chem 2021; 60:13388-13399. [PMID: 34403586 DOI: 10.1021/acs.inorgchem.1c01699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unique redox cycle of NiII(dtc)2, where dtc- is N,N-diethyldithiocarbamate, in acetonitrile displays 2e- redox chemistry upon oxidation from NiII(dtc)2 → [NiIV(dtc)3]+ but 1e- redox chemistry upon reduction from [NiIV(dtc)3]+ → NiIII(dtc)3 → NiII(dtc)2. The underlying reasons for this cycle lie in the structural changes that occur between four-coordinate NiII(dtc)2 and six-coordinate [NiIV(dtc)3]+. Cyclic voltammetry (CV) experiments show that these 1e- and 2e- pathways can be controlled by the addition of pyridine-based ligands (L) to the electrolyte solution. Specifically, the addition of these ligands resulted in a 1e- ligand-coupled electron transfer (LCET) redox wave, which produced a mixture of pyridine-bound Ni(III) complexes, [NiIII(dtc)2(L)]+, and [NiIII(dtc)2(L)2]+. Although the complexes could not be isolated, electron paramagnetic resonance (EPR) measurements using a chemical oxidant in the presence of 4-methoxypyridine confirmed the formation of trans-[NiIII(dtc)2(L)2]+. Density functional theory calculations were also used to support the formation of pyridine coordinated Ni(III) complexes through structural optimization and calculation of EPR parameters. The reversibility of the LCET process was found to be dependent on both the basicity of the pyridine ligand and the scan rate of the CV experiment. For strongly basic pyridines (e.g., 4-methoxypyridine) and/or fast scan rates, high reversibility was achieved, allowing [NiIII(dtc)2(L)x]+ to be reduced directly back to NiII(dtc)2 + xL. For weakly basic pyridines (e.g., 3-bromopyridine) and/or slow scan rates, [NiIII(dtc)2(L)x]+ decayed irreversibly to form [NiIV(dtc)3]+. Detailed kinetics studies using CV reveal that [NiIII(dtc)2(L)]+ and [NiIII(dtc)2(L)2]+ decay by parallel pathways due to a small equilibrium between the two species. The rate constants for ligand dissociation ([NiIII(dtc)2(L)2]+ → [NiIII(dtc)2(L)]+ + L) along with decomposition of [NiIII(dtc)2(L)]+ and [NiIII(dtc)2(L)2]+ species were found to increase with the electron-withdrawing character of the pyridine ligand, indicating pyridine dissociation is likely the rate-limiting step for decomposition of these complexes. These studies establish a general trend for kinetically trapping 1e- intermediates along a 2e- oxidation path.
Collapse
Affiliation(s)
- Md Motiur R Mazumder
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Andricus Burton
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Chase S Richburg
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Soumen Saha
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Bryan Cronin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Evert Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Byron H Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
20
|
Wen H, Zhang S, Yu T, Yi Z, Guo R. ZIF-67-based catalysts for oxygen evolution reaction. NANOSCALE 2021; 13:12058-12087. [PMID: 34231644 DOI: 10.1039/d1nr01669e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a new type of crystalline porous material, the imidazole zeolite framework (ZIF) has attracted widespread attention due to its ultra-high surface area, large pore volume, and unique advantage of easy functionalization. Developing different methods to control the shape and composition of ZIF is very important for its practical application as catalyst. In recent years, nano-ZIF has been considered an electrode material with excellent oxygen evolution reaction (OER) performance, which provides a new way to research electrolyzed water. This review focuses on the morphological engineering of the original ZIF-67 and its derivatives (core-shell, hollow, and array structures) through doping (cation doping, anion doping, and co-doping), derivative composition engineering (metal oxide, phosphide, sulfide, selenide, and telluride), and the corresponding single-atom catalysis. Besides, combined with DFT calculations, it emphasizes the in-depth understanding of actual active sites and provides insights into the internal mechanism of enhancing the OER and proposes the challenges and prospects of ZIF-67 based electrocatalysts. We summarize the application of ZIF-67 and its derivatives in the OER for the first time, which has significantly guided research in this field.
Collapse
Affiliation(s)
- Hui Wen
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | | | | | | | | |
Collapse
|
21
|
Jin Y, Huo W, Zhang L, Li Y, Chen Q, Zhang X, Yang S, Nie H, Zhou X, Yang Z. NaBH 4-reduction induced tunable oxygen vacancies in LaNiO 2.7 to enhance the oxygen evolution reaction. Chem Commun (Camb) 2021; 57:7168-7171. [PMID: 34184690 DOI: 10.1039/d1cc02598h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tunable oxygen vacancies of LaNiO3 (LNO-Vo) are realized by theoretical prediction and the NaBH4-reduction approach. The LNO2.7 catalyst exhibits superior catalytic activity and long-term stability for water oxidation. Direct evidence of the active site center and the intermediates is observed from in situ Raman spectra and DFT calculations.
Collapse
Affiliation(s)
- Yuwei Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Wenjing Huo
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Libin Zhang
- Hangzhou Electric Connector Factory, Hangzhou, 310052, China
| | - Yong Li
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qianqian Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Xiaodong Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Shuo Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China. and College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| |
Collapse
|
22
|
Qin Z, Zhao J. 1 T-MoSe 2 monolayer supported single Pd atom as a highly-efficient bifunctional catalyst for ORR/OER. J Colloid Interface Sci 2021; 605:155-162. [PMID: 34311310 DOI: 10.1016/j.jcis.2021.07.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
The development of highly-efficient catalysts for oxygen reduction reaction (ORR) or oxygen evolution reaction (OER) is highly crucial for the commercial applications of some novel energy-related devices. Herein, using comprehensive first-principles computations, the potential of a variety of single metal-based catalysts supported by MoSe2 nanosheet to boost the ORR or OER process was evaluated. The computations revealed that these considered metal atoms can be more stably anchored on 1 T-MoSe2 than those of on 2H-MoSe2. In particular, the supported Ni and Pd catalysts on 1 T-MoSe2 exhibit high OER activity due to their quite low overpotential (0.47 and 0.49 V). Meanwhile, the anchored Pd atom on 1 T-MoSe2 also displays excellent ORR performance with an ultra-low overpotential of 0.32 V, thus implying its superior bifunctional activity for ORR/OER. Our results provide a quite promising avenue to design a new class of MoSe2-based single atom catalysts for fuel cells, which also further enriches the application fields of MoSe2 nanosheets in advanced catalysis.
Collapse
Affiliation(s)
- Zengming Qin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, No. 1, Shida Street, Harbin 150025, PR China
| | - Jingxiang Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, No. 1, Shida Street, Harbin 150025, PR China.
| |
Collapse
|
23
|
Pavlets A, Alekseenko A, Menshchikov V, Belenov S, Volochaev V, Pankov I, Safronenko O, Guterman V. Influence of Electrochemical Pretreatment Conditions of PtCu/C Alloy Electrocatalyst on Its Activity. NANOMATERIALS 2021; 11:nano11061499. [PMID: 34204068 PMCID: PMC8229528 DOI: 10.3390/nano11061499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/16/2023]
Abstract
A carbon supported PtCux/C catalyst, which demonstrates high activity in the oxygen electroreduction and methanol electrooxidation reactions in acidic media, has been obtained using a method of chemical reduction of Pt (IV) and Cu (2+) in the liquid phase. It has been found that the potential range of the preliminary voltammetric activation of the PtCux/C catalyst has a significant effect on the de-alloyed material activity in the oxygen electroreduction reaction (ORR). High-resolution transmission electron microscopy (HRTEM) demonstrates that there are differences in the structures of the as-prepared material and the materials activated in different potential ranges. In this case, there is practically no difference in the composition of the PtCux-y/C materials obtained after activation in different conditions. The main reason for the established effect, apparently, is the reorganized features of the bimetallic nanoparticles’ surface structure, which depend on the value of the limiting anodic potential in the activation process. The effect of the activation conditions on the catalyst’s activity in the methanol electrooxidation reaction is less pronounced.
Collapse
Affiliation(s)
- Angelina Pavlets
- Chemistry Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia; (A.P.); (A.A.); (V.M.); (O.S.); (V.G.)
| | - Anastasia Alekseenko
- Chemistry Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia; (A.P.); (A.A.); (V.M.); (O.S.); (V.G.)
| | - Vladislav Menshchikov
- Chemistry Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia; (A.P.); (A.A.); (V.M.); (O.S.); (V.G.)
| | - Sergey Belenov
- Chemistry Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia; (A.P.); (A.A.); (V.M.); (O.S.); (V.G.)
- Correspondence: or
| | - Vadim Volochaev
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.V.); (I.P.)
| | - Ilya Pankov
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.V.); (I.P.)
| | - Olga Safronenko
- Chemistry Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia; (A.P.); (A.A.); (V.M.); (O.S.); (V.G.)
| | - Vladimir Guterman
- Chemistry Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia; (A.P.); (A.A.); (V.M.); (O.S.); (V.G.)
| |
Collapse
|
24
|
Wang L, Ma N, Wu N, Wang X, Xin J, Wang D, Lin J, Li X, Sun J. Stable, Efficient, Copper Coordination Polymer-Derived Heterostructured Catalyst for Oxygen Evolution under pH-Universal Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25461-25471. [PMID: 34019374 PMCID: PMC8289192 DOI: 10.1021/acsami.1c01424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The constructure of a heterostructured interface is an effective way to design highly durable and efficient water oxidation electrocatalysts. Herein, Cu/CuCN with heterointerfaces is the first synthesized case through a simple epitaxial-like growth method, displaying superior activity and stability under pH-universal media. Associated with high electron transport and transfer of the epitaxial interfacial area, the Cu/CuCN pre-catalyst is applied to deliver the oxygen evolution reaction (OER) with lower overpotentials of 250 mV (forward scan) and 380 mV (backward scan) at 10 mA cm-2 and demonstrates better intrinsic activity (jECSA of 1.0 mA cm-2 at 420 mV) and impressive stability (136 h) in 1.0 M KOH, which exceeds most previous catalysts. Even using a nominal voltage of 1.5 V of a AA battery can drive the overall water-splitting setup. Experiments combined with theoretical simulations further uncover the existence of CuO species at the heterointerface during basic OER, which is evidence of better OER performance with abundant active sites that accelerate the conversion kinetics.
Collapse
Affiliation(s)
- Ligang Wang
- College
of Chemistry and Molecular Engineering, and Beijing National Laboratory
for Molecular Sciences (BNLMS), Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Ning Ma
- College
of Chemistry and Molecular Engineering, and Beijing National Laboratory
for Molecular Sciences (BNLMS), Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
- Hubei
Key Laboratory of Polymer Materials, Key Laboratory for the Green
Preparation and Application of Functional Materials (Ministry of Education),
School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Nian Wu
- Institute
for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaoge Wang
- College
of Chemistry and Molecular Engineering, and Beijing National Laboratory
for Molecular Sciences (BNLMS), Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Junjie Xin
- College
of Chemistry and Molecular Engineering, and Beijing National Laboratory
for Molecular Sciences (BNLMS), Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Dingsheng Wang
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jianhua Lin
- College
of Chemistry and Molecular Engineering, and Beijing National Laboratory
for Molecular Sciences (BNLMS), Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Xingguo Li
- College
of Chemistry and Molecular Engineering, and Beijing National Laboratory
for Molecular Sciences (BNLMS), Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Junliang Sun
- College
of Chemistry and Molecular Engineering, and Beijing National Laboratory
for Molecular Sciences (BNLMS), Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| |
Collapse
|
25
|
Zhu B, Lu J, Sakaki S. Catalysis of core-shell nanoparticle M@Pt (M Co and Ni) for oxygen reduction reaction and its electronic structure in comparison to Pt nanoparticle. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Li Z, Li M, Wang X, Fu G, Tang Y. The use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals: a minireview. NANOSCALE ADVANCES 2021; 3:1813-1829. [PMID: 36133100 PMCID: PMC9416890 DOI: 10.1039/d1na00006c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/06/2021] [Indexed: 06/14/2023]
Abstract
Controlling the morphologies and structures of noble-metal nanocrystals has always been a frontier field in electrocatalysis. Functional molecules such as capping agents, surfactants and additives are indispensable in shape-control synthesis. Amino-based functional molecules have strong coordination abilities with metal ions, and they are widely used in the morphology control of nanocrystals. In this minireview, we pay close attention to recent advances in the use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals. The effects of various amino-based molecules on differently shaped noble-metal nanocrystals, including zero-, one-, two-, and three-dimensional nanocrystals, are reviewed and summarized. The roles and mechanisms of amino-based small molecules and long-chain ammonium salts relating to the morphology-control synthesis of noble-metal nanocrystals are highlighted. Relationships between shape and electrocatalytic properties are also described. Finally, some key prospects and challenges relating to the controllable synthesis of noble-metal nanocrystals and their electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
27
|
Dou J, Luo H, Zhang C, Lu J, Luan X, Guo W, Zhang T, Bian W, Bai J, Zhang X, Zhou B. Bimetallic conjugated microporous polymer derived B,N-doped porous carbon wrapped Co 3Fe 7 alloy composite as a bifunctional oxygen electrocatalyst for a breathing Zn–air battery. NEW J CHEM 2021. [DOI: 10.1039/d1nj04063d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A B, N-codoped carbon-based bifunctional oxygen electrocatalyst was prepared. This presented outstanding catalytic activity for electrochemical oxygen reduction and evolution reactions and could be used as the catalyst for a breathing Zn–air battery.
Collapse
Affiliation(s)
- Jinli Dou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Haotian Luo
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Chunli Zhang
- Western Pharmacy, Anqiu Hospital of Traditional Chinese Medicine, Weifang, Shandong, P. R. China
| | - Jingjing Lu
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Xiujuan Luan
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Wenxue Guo
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Teng Zhang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Weiwei Bian
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, P. R. China
| | - Xueli Zhang
- Department of Histology and Embryology, Weifang Medical University, 261053, Shandong, China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| |
Collapse
|
28
|
Chen LW, Liang HW. Ir-based bifunctional electrocatalysts for overall water splitting. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00650a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent progress on Ir-based bifunctional electrocatalysts in enhancing the overall water splitting performance is reviewed mainly from the aspects of optimizing the composition and morphology.
Collapse
Affiliation(s)
- Lin-Wei Chen
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
29
|
Wu ZP, Shan S, Zang SQ, Zhong CJ. Dynamic Core-Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies. Acc Chem Res 2020; 53:2913-2924. [PMID: 33170638 DOI: 10.1021/acs.accounts.0c00564] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ConspectusMultimetallic nanomaterials containing noble metals (NM) and non-noble 3d-transition metals (3d-TMs) exhibit unique catalytic properties as a result of the synergistic combination of NMs and 3d-TMs in the nanostructure. The exploration of such a synergy depends heavily on the understanding of the atomic-scale structural details of NMs and 3d-TMs in the nanomaterials. This has attracted a great deal of recent interest in the field of catalysis science, especially concerning the core-shell and alloy nanostructures. A rarely asked question of fundamental significance is how the core-shell and alloy structural arrangements of atoms in the multimetallic nanomaterials dynamically change under reaction conditions, including reaction temperature, surface adsorbate, chemical environment, applied electrochemical potential, etc. The dynamic evolution of the core-shell/alloy structures under the reaction conditions plays a crucial role in the catalytic performance of the multimetallic nanocatalysts.This Account focuses on the dynamic structure characteristics for several different types of composition-tunable alloy and core-shell nanomaterials, including phase-segregated, elemental-enriched, dynamically evolved, and structurally different core-shell structures. In addition to outlining core-shell/alloy structure formation via processes such as seed-mediated growth, thermochemical calcination, adsorbate-induced evolution, chemical dealloying, underpotential deposition/galvanic displacement, etc., this Account will highlight the progress in understanding the dynamic core-shell/alloy structures under chemical or catalytic reaction conditions, which has become an important focal point of the research fronts in catalysis and electrocatalysis. The employment of advanced techniques, especially in situ/operando synchrotron high-energy X-ray diffraction and pair distribution function analyses, has provided significant insights into the dynamic evolution processes of NM/3d-TM nanocatalysts under electrocatalytic or fuel cell operating conditions. Examples will highlight Pt- or Pd-based nanoparticles and nanowires alloyed with various 3d-TMs with a focus on their structural evolution under reaction conditions. While the dynamic process is complex, the ability to gain an insight into the evolution of core-shell and alloy structures under the catalytic reaction condition is essential for advancing the design of multimetallic nanocatalysts. This Account serves as a springboard from fundamental understanding of the core-shell and alloy structural dynamics to the various applications of nanostructured catalysts/electrocatalysts, especially in the fronts of energy and environmental sustainability.
Collapse
Affiliation(s)
- Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shiyao Shan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shuang-Quan Zang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
30
|
Xu Z, Zhang Q, Li M, Luo F, Liu Y, Wang R, Ma X, Yang Z, Zhang D. One‐pot synthesis of multifunctional electrocatalyst for hydrogen evolution, oxygen evolution and oxygen reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zejun Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications School of Chemistry and Materials Science South-Central University for Nationalities 182 Minzu RD Wuhan 430074 P. R. China
| | - Quan Zhang
- Sustainable Energy Laboratory Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 88 Lumo RD Wuhan 430074 P. R. China
| | - Min Li
- Sustainable Energy Laboratory Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 88 Lumo RD Wuhan 430074 P. R. China
| | - Fang Luo
- Sustainable Energy Laboratory Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 88 Lumo RD Wuhan 430074 P. R. China
| | - Yanan Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications School of Chemistry and Materials Science South-Central University for Nationalities 182 Minzu RD Wuhan 430074 P. R. China
| | - Ruitong Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications School of Chemistry and Materials Science South-Central University for Nationalities 182 Minzu RD Wuhan 430074 P. R. China
| | - Xu Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications School of Chemistry and Materials Science South-Central University for Nationalities 182 Minzu RD Wuhan 430074 P. R. China
| | - Zehui Yang
- Sustainable Energy Laboratory Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 88 Lumo RD Wuhan 430074 P. R. China
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications School of Chemistry and Materials Science South-Central University for Nationalities 182 Minzu RD Wuhan 430074 P. R. China
| |
Collapse
|
31
|
Fu Z, Liu S, Mai Z, Tang Z, Qin DD, Tian Y, Wang X. Heterostructure and Oxygen Vacancies Promote NiFe 2 O 4 /Ni 3 S 4 toward Oxygen Evolution Reaction and Zn-Air Batteries. Chem Asian J 2020; 15:3568-3574. [PMID: 32929867 DOI: 10.1002/asia.202001033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/13/2020] [Indexed: 01/02/2023]
Abstract
Developing high-performance catalysts for oxygen evolution reaction (OER) is critical for the widespread applications of clean and sustainable energy through electrochemical devices such as zinc-air batteries and (photo)electrochemical water splitting. Constructing heterostructure and oxygen vacancies have demonstrated great promises to boost the OER performance. Herein, we report a facile strategy to fabricate hetero-structured NiFe2 O4 /Ni3 S4 nanorods, where NiFe2 O4 can be derived from Fe-based metal-organic frameworks (MOFs). The NiFe2 O4 /Ni3 S4 catalyst exhibited excellent OER performance, evidenced by an overpotential value of 357 mV at the current density of 20 mA cm-2 , and a small Tafel slope of 87.46 mV dec-1 in 1 M KOH, superior to the benchmark IrO2 catalyst. Moreover, NiFe2 O4 /Ni3 S4 outperformed with regard to long-term durability for OER than IrO2 . Such outstanding OER performance is mainly accounted by the interface between NiFe2 O4 and Ni3 S4 , and the presence of rich oxygen vacancies. When employed as air-cathode in zinc-air batteries, the NiFe2 O4 /Ni3 S4 decorated battery had a high round-trip efficiency of 62.1% at 10 h, and possessed long-term stability of >50 h. This study may pave the way for fabricating non-noble-metal-based cost-effective, efficient and durable electrocatalysts for OER, zinc-air batteries, and beyond.
Collapse
Affiliation(s)
- Zhaoqin Fu
- Guangdong Provincial Engineering Center of School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shilong Liu
- Guangdong Provincial Engineering Center of School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Zequn Mai
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P. R. China.,Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P. R. China
| | - Dong-Dong Qin
- College of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Yong Tian
- Guangdong Provincial Engineering Center of School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Xiufang Wang
- Guangdong Provincial Engineering Center of School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
32
|
Li YW, Zhang WJ, Li J, Ma HY, Du HM, Li DC, Wang SN, Zhao JS, Dou JM, Xu L. Fe-MOF-Derived Efficient ORR/OER Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44710-44719. [PMID: 32902956 DOI: 10.1021/acsami.0c11945] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The construction of an efficient oxygen reduction reaction and oxygen evolution reaction (ORR/OER) bifunctional electrocatalyst is of great significance but still remains a giant challenge for high-performance metal-air batteries. In this study, uniform FeS/Fe3C nanoparticles embedded in a porous N,S-dual doped carbon honeycomb-like composite (abbr. FeS/Fe3C@NS-C-900) have been conveniently fabricated by pyrolysis of a single-crystal Fe-MOF, which has a low potential gap ΔE of ca. 0.72 V, a competitive power density of 90.9 mW/cm2, a specific capacity as high as 750 mAh/gZn, and excellent cycling stabilities over 865 h (1730 cycles) at 2 mA/cm2 when applied as a cathode material for rechargeable zinc-air batteries. In addition, the two series-linked Zn-air batteries successfully powered a 2.4 V LED light as a real power source. The efficient ORR/OER bifunctional electrocatalytic activity and long-term durability of the obtained composite might be attributed to the characteristic honeycomb-like porous structure with sufficient accessible active sites, the synergistic effect of FeS and Fe3C, and the N,S codoped porous carbon, which provides a promising application potential for portable electronic Zn-air battery related devices.
Collapse
Affiliation(s)
- Yun-Wu Li
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Wen-Jie Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jing Li
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Hui-Yan Ma
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Hong-Mei Du
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jin-Sheng Zhao
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Liqiang Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
33
|
Wang W, Xu Y, Yao J, Liu X, Yin Z, Li Z. Enhanced oxygen and hydrogen evolution performance by carbon-coated CoS 2-FeS 2 nanosheets. Dalton Trans 2020; 49:13352-13358. [PMID: 32945828 DOI: 10.1039/d0dt02671a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is vital to tailor the surface structure and composition of nanocatalysts, which greatly affect the catalytic activity through the exposure of specific atom coordination environment. To date, less progress has been made in tuning the interface structures of pyrite for promoting the catalytic activity towards overall water splitting. Herein, we developed a facile one-spot strategy to make carbon-layer-coated CoS2-FeS2 heterojunction nanosheets. The carbon layer and interface structures between Co-S and Fe-S were characterized via high resolution transmission electron microscopy. It exhibited a high OER activity with 1.47 V at 10 mA cm-2, which was superior to that of the commercial RuO2. Meanwhile, the carbon-layer-coated CoS2-FeS2 heterojunction nanosheets with the overpotential of 210 mV at 10 mA cm-2 was more active than FeS2 nanosheets with 240 mV in the hydrogen evolution reaction. Notably, it enhanced the catalytic activity towards the overall water splitting with the voltage of 1.66 V at 10 mA cm-2 using a two-electrode system. The remarkable long-term stability was verified by a slight change in the current density of 6 mA cm-2 for 26 h. The prominent catalytic activity could be related to the exposure of the carbon layer and interface structures. This work demonstrates that engineering the interface structure is essential for boosting the overall water splitting activity.
Collapse
Affiliation(s)
- Wenpin Wang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | | | | | | | | | | |
Collapse
|
34
|
Li Z, Yu C, Kang Y, Zhang X, Wen Y, Wang ZK, Ma C, Wang C, Wang K, Qu X, He M, Zhang YW, Song W. Ultra-small hollow ternary alloy nanoparticles for efficient hydrogen evolution reaction. Natl Sci Rev 2020; 8:nwaa204. [PMID: 34691685 PMCID: PMC8310760 DOI: 10.1093/nsr/nwaa204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/17/2020] [Accepted: 08/18/2020] [Indexed: 11/12/2022] Open
Abstract
Hollow nanoparticles with large specific surface area and high atom utilization are promising catalysts for the hydrogen evolution reaction (HER). We describe herein the design and synthesis of a series of ultra-small hollow ternary alloy nanostructures using a simple one-pot strategy. The same technique was demonstrated for hollow PtNiCu nanoparticles, hollow PtCoCu nanoparticles and hollow CuNiCo nanoparticles. During synthesis, the displacement reaction and oxidative etching played important roles in the formation of hollow structures. Moreover, our hollow PtNiCu and PtCoCu nanoparticles were single crystalline, with an average diameter of 5 nm. Impressively, ultra-small hollow PtNiCu nanoparticles, containing only 10% Pt, exhibited greater electrocatalytic HER activity and stability than a commercial Pt/C catalyst. The overpotential of hollow PtNiCu nanoparticles at 10 mA cm-2 was 28 mV versus reversible hydrogen electrode (RHE). The mass activity was 4.54 A mgPt -1 at -70 mV versus RHE, which is 5.62-fold greater than that of a commercial Pt/C system (0.81 A mgPt -1). Through analyses of bonding and antibonding orbital filling, density functional theory calculations demonstrated that the bonding strength of different metals to the hydrogen intermediate (H*) was in the order of Pt > Co > Ni > Cu. The excellent HER performance of our hollow PtNiCu nanoparticles derives from moderately synergistic interactions between the three metals and H*. This work demonstrates a new strategy for the design of low-cost and high-activity HER catalysts.
Collapse
Affiliation(s)
- Zhenxing Li
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chengcheng Yu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yikun Kang
- College of Science, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yangyang Wen
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhao-Kui Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Chang Ma
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Cong Wang
- Beijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Kaiwen Wang
- Beijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Xianlin Qu
- Beijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Miao He
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weiyu Song
- College of Science, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
35
|
Yin X, Yang L, Gao Q. Core-shell nanostructured electrocatalysts for water splitting. NANOSCALE 2020; 12:15944-15969. [PMID: 32761000 DOI: 10.1039/d0nr03719b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As the cornerstone of the hydrogen economy, water electrolysis consisting of the hydrogen and oxygen evolution reactions (HER and OER) greatly needs cost-efficient electrocatalysts that can decrease the dynamic overpotential and save on energy consumption. Over past years, observable progress has been made by constructing core-shell structures free from or with few noble-metals. They afford particular merits, e.g., a highly-exposed active surface, modulated electronic configurations, strain effects, interfacial synergy, or reinforced stability, to promote the kinetics and electrocatalytic performance of the HER, OER and overall water splitting. So far, a large variety of inorganics (carbon and transition-metal related components) have been introduced into core-shell electrocatalysts. Herein, representative efforts and progress are summarized with a clear classification of core and shell components, to access comprehensive insights into electrochemical processes that proceed on surfaces or interfaces. Finally, a perspective on the future development of core-shell electrocatalysts is offered. The overall aim is to shed some light on the exploration of emerging materials for energy conversion and storage.
Collapse
Affiliation(s)
- Xing Yin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | | | | |
Collapse
|
36
|
Zhu B, Ehara M, Sakaki S. Propene oxidation catalysis and electronic structure of M 55 particles (M = Pd or Rh): differences and similarities between Pd 55 and Rh 55. Phys Chem Chem Phys 2020; 22:11783-11796. [PMID: 32215421 DOI: 10.1039/d0cp00169d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propene oxidation is one of the important reactions that occurs in the presence of a three-way catalyst but its reaction mechanism is unclear. The reaction mechanisms and differences in catalysis between Pd and Rh particles were investigated by DFT calculations employing Pd55 and Rh55 as the model catalysts. The O-attack mechanism, in which the O atom adsorbed on the Pd55 and Rh55 surfaces attacks the C[double bond, length as m-dash]C double bond of propene, needs to overcome a large activation barrier (Ea). On the other hand, C-H bond cleavage of the methyl group of propene easily occurs with moderate Ea; the mechanism initiated by this C-H activation is named H-transfer mechanism. In this mechanism, the next step is allyl alcohol formation, followed by the second C-H bond activation of the CH2OH species of allyl alcohol, and the final step is proton transfer from OH-substituted π-allyl species to the OH group on the metal surface to yield acrolein and water molecules with the regeneration of M55. The rate-determining step is the second C-H bond activation. Its Ea is 17.4 kcal mol-1 for the reaction on Pd55 and 34.4 kcal mol-1 for the reaction on Rh55. These results indicate that Pd particles are more active than Rh particles in propene oxidation, which agrees with the experimental findings. The larger Ea for Rh55 than that for Pd55 arises from the stronger Rh-OH bond than the Pd-OH bond. The higher energy d-valence band-top of Rh55 than that of Pd55 is the origin of the stronger Rh-OH bond than the Pd-OH bond. Thus, the d-valence band-top energy is an important property for understanding and designing catalysts for alkene oxidation.
Collapse
Affiliation(s)
- Bo Zhu
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan.
| | | | | |
Collapse
|
37
|
Luo F, Hu H, Zhao X, Yang Z, Zhang Q, Xu J, Kaneko T, Yoshida Y, Zhu C, Cai W. Robust and Stable Acidic Overall Water Splitting on Ir Single Atoms. NANO LETTERS 2020; 20:2120-2128. [PMID: 32019309 DOI: 10.1021/acs.nanolett.0c00127] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-atom electrocatalysts (SAEs) can realize the target of low-cost by maximum atomic efficiency. However, they usually suffer performance decay due to high energy states, especially in a harsh acidic water splitting environment. Here, we conceive and realize a double protecting strategy that ensures robust acidic water splitting on Ir SAEs by dispersing Ir atoms in/onto Fe nanoparticles and embedding IrFe nanoparticles into nitrogen-doped carbon nanotubes (Ir-SA@Fe@NCNT). When Ir-SA@Fe@NCNT acts as a bifunctional electrocatalyst at ultralow Ir loading of 1.14 μg cm-2, the required overpotentials to deliver 10 mA cm-2 are 250 and 26 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in 0.5 M H2SO4 electrolyte corresponding to 1370- and 61-fold better mass activities than benchmark IrO2 and Pt/C at an overpotential of 270 mV, respectively, resulting in only 1.51 V to drive overall water splitting. Moreover, remarkable stability is also observed compared to Pt/C-IrO2.
Collapse
Affiliation(s)
- Fang Luo
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hao Hu
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiao Zhao
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Zhang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jingxiang Xu
- College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Yusuke Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Chengzhou Zhu
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Weiwei Cai
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
38
|
Tian L, Zhai X, Wang X, Pang X, Li J, Li Z. Morphology and phase transformation of α-MnO2/MnOOH modulated by N-CDs for efficient electrocatalytic oxygen evolution reaction in alkaline medium. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135823] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Kirakosyan SA, Alekseenko AA, Guterman VE, Novomlinskii IN, Men’shchikov VS, Gerasimova EV, Nikulin AY. De-Alloyed PtCu/C Catalysts of Oxygen Electroreduction. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193519120085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Wang X, Song S, Zhang H. A redox interaction-engaged strategy for multicomponent nanomaterials. Chem Soc Rev 2020; 49:736-764. [DOI: 10.1039/c9cs00379g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The review article focuses on the redox interaction-engaged strategy that offers a powerful way to construct multicomponent nanomaterials with precisely-controlled size, shape, composition and hybridization of nanostructures.
Collapse
Affiliation(s)
- Xiao Wang
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
41
|
Li YW, Zhang WJ, Li CX, Gu L, Du HM, Ma HY, Wang SN, Zhao JS. A dinuclear cobalt cluster as electrocatalyst for oxygen reduction reaction. RSC Adv 2019; 9:42554-42560. [PMID: 35542840 PMCID: PMC9076674 DOI: 10.1039/c9ra08068f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/13/2019] [Indexed: 11/21/2022] Open
Abstract
Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII 2} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {CoII 2} possesses defined structure and potential catalytic active centers of {CoN4O2} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {CoII 2} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process.
Collapse
Affiliation(s)
- Yun-Wu Li
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Wen-Jie Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Chun-Xia Li
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Lin Gu
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Hong-Mei Du
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Hui-Yan Ma
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Jin-Sheng Zhao
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| |
Collapse
|
42
|
Sun Y, Silvioli L, Sahraie NR, Ju W, Li J, Zitolo A, Li S, Bagger A, Arnarson L, Wang X, Moeller T, Bernsmeier D, Rossmeisl J, Jaouen F, Strasser P. Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts. J Am Chem Soc 2019; 141:12372-12381. [PMID: 31306016 DOI: 10.1021/jacs.9b05576] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitrogen-doped carbon materials featuring atomically dispersed metal cations (M-N-C) are an emerging family of materials with potential applications for electrocatalysis. The electrocatalytic activity of M-N-C materials toward four-electron oxygen reduction reaction (ORR) to H2O is a mainstream line of research for replacing platinum-group-metal-based catalysts at the cathode of fuel cells. However, fundamental and practical aspects of their electrocatalytic activity toward two-electron ORR to H2O2, a future green "dream" process for chemical industry, remain poorly understood. Here we combined computational and experimental efforts to uncover the trends in electrochemical H2O2 production over a series of M-N-C materials (M = Mn, Fe, Co, Ni, and Cu) exclusively comprising atomically dispersed M-Nx sites from molecular first-principles to bench-scale electrolyzers operating at industrial current density. We investigated the effect of the nature of a 3d metal within a series of M-N-C catalysts on the electrocatalytic activity/selectivity for ORR (H2O2 and H2O products) and H2O2 reduction reaction (H2O2RR). Co-N-C catalyst was uncovered with outstanding H2O2 productivity considering its high ORR activity, highest H2O2 selectivity, and lowest H2O2RR activity. The activity-selectivity trend over M-N-C materials was further analyzed by density functional theory, providing molecular-scale understandings of experimental volcano trends for four- and two-electron ORR. The predicted binding energy of HO* intermediate over Co-N-C catalyst is located near the top of the volcano accounting for favorable two-electron ORR. The industrial H2O2 productivity over Co-N-C catalyst was demonstrated in a microflow cell, exhibiting an unprecedented production rate of more than 4 mol peroxide gcatalyst-1 h-1 at a current density of 50 mA cm-2.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Chemistry , Technical University of Berlin , 10623 Berlin , Germany
| | - Luca Silvioli
- Nano-Science Center, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Nastaran Ranjbar Sahraie
- CNRS, Université de Montpellier, ENSCM, UMR 5253 , Institut Charles Gerhardt de Montpellier , 34090 Montpellier , France
| | - Wen Ju
- Department of Chemistry , Technical University of Berlin , 10623 Berlin , Germany
| | - Jingkun Li
- CNRS, Université de Montpellier, ENSCM, UMR 5253 , Institut Charles Gerhardt de Montpellier , 34090 Montpellier , France
| | - Andrea Zitolo
- Synchrotron SOLEIL , L'Orme des Merisiers , BP 48 Saint Aubin , 91192 Gif-sur-Yvette , France
| | - Shuang Li
- Department of Chemistry , Technical University of Berlin , 10623 Berlin , Germany
| | - Alexander Bagger
- Nano-Science Center, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Logi Arnarson
- Nano-Science Center, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Xingli Wang
- Department of Chemistry , Technical University of Berlin , 10623 Berlin , Germany
| | - Tim Moeller
- Department of Chemistry , Technical University of Berlin , 10623 Berlin , Germany
| | - Denis Bernsmeier
- Department of Chemistry , Technical University of Berlin , 10623 Berlin , Germany
| | - Jan Rossmeisl
- Nano-Science Center, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Frédéric Jaouen
- CNRS, Université de Montpellier, ENSCM, UMR 5253 , Institut Charles Gerhardt de Montpellier , 34090 Montpellier , France
| | - Peter Strasser
- Department of Chemistry , Technical University of Berlin , 10623 Berlin , Germany
| |
Collapse
|
43
|
Affiliation(s)
- Kai S. Exner
- Sofia University Faculty of Chemistry and PharmacyDepartment of Physical Chemistry 1 James Bourchier Avenue 1164 Sofia Bulgaria
| |
Collapse
|
44
|
Zhu J, Chen Z, Xie M, Lyu Z, Chi M, Mavrikakis M, Jin W, Xia Y. Iridium‐Based Cubic Nanocages with 1.1‐nm‐Thick Walls: A Highly Efficient and Durable Electrocatalyst for Water Oxidation in an Acidic Medium. Angew Chem Int Ed Engl 2019; 58:7244-7248. [DOI: 10.1002/anie.201901732] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Jiawei Zhu
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech University Nanjing Jiangsu 211816 China
| | - Zitao Chen
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
- Center for Nanophase Materials SciencesOak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Minghao Xie
- School of Chemistry and BiochemistryGeorgia Institute of Technology Atlanta GA 30332 USA
| | - Zhiheng Lyu
- School of Chemistry and BiochemistryGeorgia Institute of Technology Atlanta GA 30332 USA
| | - Miaofang Chi
- Center for Nanophase Materials SciencesOak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Manos Mavrikakis
- Department of Chemical and Biological EngineeringUniversity of Wisconsin-Madison Madison WI 53706 USA
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech University Nanjing Jiangsu 211816 China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
45
|
Exner KS. Is Thermodynamics a Good Descriptor for the Activity? Re-Investigation of Sabatier’s Principle by the Free Energy Diagram in Electrocatalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00732] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kai S. Exner
- Sofia University, Faculty of Chemistry and Pharmacy, Department of Physical Chemistry, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| |
Collapse
|
46
|
Han X, Wang K, Zhang G, Gao W, Chen J. Application of the Electrochemical Oxygen Reduction Reaction (ORR) in Organic Synthesis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xiaoxin Han
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Kui Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Guofeng Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| |
Collapse
|
47
|
Zhu J, Chen Z, Xie M, Lyu Z, Chi M, Mavrikakis M, Jin W, Xia Y. Iridium‐Based Cubic Nanocages with 1.1‐nm‐Thick Walls: A Highly Efficient and Durable Electrocatalyst for Water Oxidation in an Acidic Medium. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiawei Zhu
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech University Nanjing Jiangsu 211816 China
| | - Zitao Chen
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
- Center for Nanophase Materials SciencesOak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Minghao Xie
- School of Chemistry and BiochemistryGeorgia Institute of Technology Atlanta GA 30332 USA
| | - Zhiheng Lyu
- School of Chemistry and BiochemistryGeorgia Institute of Technology Atlanta GA 30332 USA
| | - Miaofang Chi
- Center for Nanophase Materials SciencesOak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Manos Mavrikakis
- Department of Chemical and Biological EngineeringUniversity of Wisconsin-Madison Madison WI 53706 USA
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech University Nanjing Jiangsu 211816 China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
48
|
Yao Y, Hu S, Chen W, Huang ZQ, Wei W, Yao T, Liu R, Zang K, Wang X, Wu G, Yuan W, Yuan T, Zhu B, Liu W, Li Z, He D, Xue Z, Wang Y, Zheng X, Dong J, Chang CR, Chen Y, Hong X, Luo J, Wei S, Li WX, Strasser P, Wu Y, Li Y. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat Catal 2019. [DOI: 10.1038/s41929-019-0246-2] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Shan J, Guo C, Zhu Y, Chen S, Song L, Jaroniec M, Zheng Y, Qiao SZ. Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media. Chem 2019. [DOI: 10.1016/j.chempr.2018.11.010] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Ren JT, Chen L, Yuan GG, Weng CC, Yuan ZY. Monolithic NixMy (M = OH, P, S, Se) nanosheets as efficient and stable electrocatalysts for overall water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|