1
|
Jarmusch SA, Schostag MD, Yang Z, Wang J, Andersen AJC, Weber T, Ding L. Lydicamycins induce morphological differentiation in actinobacterial interactions. Appl Environ Microbiol 2025:e0029525. [PMID: 40358240 DOI: 10.1128/aem.00295-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Streptomyces are major players in soil microbiomes; however, their interactions with other actinobacteria remain largely unexplored. Given the complex developmental cycle of actinobacteria, a multi-omics approach is essential to unravel the interactions. This study originated from the observation of induced morphogenesis between two environmental isolates from the same site, Kitasatospora sp. P9-2B1 and Streptomyces sp. P9-2B2. When co-cultivated on potato dextrose agar, P9-2B2 triggered a wave-like sporulation pattern in strain P9-2B1. Mass spectrometry imaging revealed that a suite of lydicamycins accumulated in the induced sporulation zone. Using CRISPR base editing, lydicamycin-deficient mutants were generated, and the inducible sporulation was ceased, confirming the role of lydicamycin in triggering morphological differentiation. In agar diffusion assays, pure lydicamycin was inhibitory when added concurrently with bacterial inoculation but induced sporulation when added later. The same inducible sporulation wave phenomenon was also observed in additional environmental isolates and Streptomyces coelicolor M145 and M1146. Transcriptomics analysis revealed differential gene expression linked to early aerial mycelium development at 4 days into co-culture, the transitional genes responsible for the development of spores at day 9, together with numerous genes for overall stress responses, particularly cell envelope stress responses. These findings highlight previously unrecognized actinobacteria interactions mediated by lydicamycins, suggesting a broader ecological role of bioactive metabolites in microbiomes. IMPORTANCE Moving beyond an antibiotic discovery mindset, exploring the chemical ecology of secondary metabolites is key to maximizing their biotechnological potential. Dual cultures offer reduced complexity, enabling an in-depth analysis of these interactions via multi-omics, which provides complementary data for more robust conclusions. This study sheds light on the role of lydicamycins in dual cultures with other actinobacteria and establishes an integral roadmap for future chemical ecology work between microorganisms, particularly through mass spectrometry imaging.
Collapse
Affiliation(s)
- Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten D Schostag
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jinglin Wang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aaron J C Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Sohn AL, Witherspoon JG, Smart RC, Muddiman DC. Three-dimensional mass spectrometry imaging (3D MSI): incorporating top-hat IR-MALDESI and automatic z-axis correction. Anal Bioanal Chem 2025; 417:1649-1661. [PMID: 39900867 DOI: 10.1007/s00216-025-05755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/05/2025]
Abstract
Leveraging a depth profiling approach expands the chemical elucidation of mass spectrometry imaging techniques to another dimension. Three-dimensional MSI (3D MSI) reveals the distribution of analytes with greater anatomical detail to add another level of information in a biological study. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) has demonstrated utility for an ablation-based approach, enabling simplified sample preparation workflows and streamlined data processing pipelines compared to a serial-sectioning strategy. To improve 3D MSI on the IR-MALDESI platform, two technologies have been characterized in tandem for the intention of minimizing sampling bias: (1) a top-hat optical train and (2) a chromatic confocal probe (CA probe). While the modified optical train creates a square spot size to avoid a Gaussian ablation crater after the analysis of subsequent layers, the CA probe enables automatic z-axis correction (AzC) to maintain the laser's focus on the surface of the sample. The work herein demonstrates the integration and optimization of these technologies on mouse skin, motivated by the clear biological skin layers that result in differential lipid expression and subsequent detection. Results support that a laser energy of 1.3 mJ/burst with the top-hat optical train and a 120 µm step size in the X and Y dimensions presented a comparable depth resolution to previous studies at under 7 µm. Further, the optimized parameters were utilized on two biological replicates to evaluate method reproducibility where lipid annotations and their abundance were considered.
Collapse
Affiliation(s)
- Alexandria L Sohn
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - John G Witherspoon
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Robert C Smart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Weaver AA, Shrout JD. Use of analytical strategies to understand spatial chemical variation in bacterial surface communities. J Bacteriol 2025; 207:e0040224. [PMID: 39873490 PMCID: PMC11841061 DOI: 10.1128/jb.00402-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes. We highlight the use of confocal Raman Microscopy, surface-enhanced Raman spectroscopy, matrix-assisted laser desorption/ionization, secondary ion mass spectrometry, desorption electrospray ionization, and electrochemical imaging that have been applied to assess two-dimensional chemical profiles of bacteria. We specifically discuss the use of these tools to study rhamnolipids, alkylquinolones, and phenazines of the bacterium Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abigail A. Weaver
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
4
|
Slimani F, Hotel L, Deveau A, Aigle B, Chaimbault P, Carré V. Membrane-based preparation for mass spectrometry imaging of cultures of bacteria. Anal Bioanal Chem 2024; 416:7161-7172. [PMID: 39496785 DOI: 10.1007/s00216-024-05622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024]
Abstract
The study of the dialogue between microorganisms at the molecular level is becoming essential to understand their relationship (antagonist, neutral, or beneficial interactions) and its impact on the organization of the microbial community. Mass spectrometry imaging (MSI) with matrix-assisted laser desorption/ionization (MALDI) is a technique that reveals the spatial distribution of molecules on a sample surface that may be involved in interactions between organisms. An experimental limitation to perform MALDI MSI is a flat sample surface, which in many cases could not be achieved for bacterial colonies such as filamentous bacteria (e.g., Streptomyces). In addition, sample heterogeneity affects sample dryness and MALDI matrix deposition prior to MSI. To avoid such problems, we introduce an additional step in the sample preparation. A polymeric membrane is interposed between the microorganisms and the agar-based culture medium, allowing the removal of bacterial colonies prior to MSI of the homogeneous culture medium. A proof of concept was evaluated on Streptomyces ambofaciens (a soil bacterium) cultures on solid media. As the mycelium was removed at the same time as the polymeric membrane, the metabolites released into the medium were spatially resolved by MALDI MSI. In addition, extraction of the recovered mycelium from the membrane confirmed the identification of the metabolites by ESI MS/MS analysis. This approach allows both the spatial distribution of metabolites produced by microorganisms in an agar medium to be studied under well-controlled sample preparation and their structure to be elucidated. This capability is illustrated using desferrioxamine E, a siderophore produced by S. ambofaciens.
Collapse
Affiliation(s)
- Farès Slimani
- Université de Lorraine, LCP-A2MC, F-57000, Metz, France
| | - Laurence Hotel
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | - Aurélie Deveau
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Bertrand Aigle
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | | | - Vincent Carré
- Université de Lorraine, LCP-A2MC, F-57000, Metz, France.
| |
Collapse
|
5
|
Huang W, Jiao X, Hua L, Kang Q, Zhang L, Luo X, Bai L. Harnessing the microbial interactions from Apocynum venetum phyllosphere for natural product discovery. Synth Syst Biotechnol 2024; 10:262-270. [PMID: 39640290 PMCID: PMC11617933 DOI: 10.1016/j.synbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Natural products (NPs) afforded by living-beings, especially by microscopic species, represent invaluable and indispensable reservoirs for drug leads in clinical practice. With the rapid advancement in sequencing technology and bioinformatics, the ever-increasing number of microbial biosynthetic gene clusters (BGCs) were decrypted, while a great deal of BGCs remain cryptic or inactive under standard laboratory culture conditions. Addressing this dilemma requires innovative tactics to awaken quiescence of BGCs by releasing the potential of microbial secondary metabolism for mining novel NPs. In this study, a universal strategy was proposed to induce the expression of silent BGCs by leveraging the dynamic interactions among coexisting microbial neighbors within a microbiota. This approach involves the deconstruction/reconstruction of binary interactions among the coexisting neighbors to create a pipeline for BGCs arousing. Coupled with the acquisition of 2760 microbial individuals from the Apocynum venetum (Luobuma, LBM) phyllosphere in a successive dilution procedure, 44 culturable isolates were screened using binary interaction, in which 12.6 % pairs demonstrated potent mutual interacting effects. Furthermore, after selecting the four most promising isolates, a full-scale metabolic inspection was conducted, in which 25.3 % of the interacting pairs showcased significant metabolomic variations with de-cryptic activities. Notably, with the aid of visualization of IMS technology, one of the physiologically functional entities, the bactericidal agent resistomycin, was elucidated from the core interacting pair between the co-culture of the Streptomyces sp. LBM_605 and the Rhodococcus sp. LBM_791. This study highlights the intrinsic interactions among coexisting microorganisms within a phyllosphere microbiota as novel avenues for exploring and harnessing NPs.
Collapse
Affiliation(s)
- Wei Huang
- College of Life Science and Technology & Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Xingzhi Jiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Lingqi Hua
- College of Life Science and Technology & Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Lili Zhang
- College of Life Science and Technology & Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Xiaoxia Luo
- College of Life Science and Technology & Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Linquan Bai
- College of Life Science and Technology & Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Pan S, Yin L, Liu J, Tong J, Wang Z, Zhao J, Liu X, Chen Y, Miao J, Zhou Y, Zeng S, Xu T. Metabolomics-driven approaches for identifying therapeutic targets in drug discovery. MedComm (Beijing) 2024; 5:e792. [PMID: 39534557 PMCID: PMC11555024 DOI: 10.1002/mco2.792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Identification of therapeutic targets can directly elucidate the mechanism and effect of drug therapy, which is a central step in drug development. The disconnect between protein targets and phenotypes under complex mechanisms hampers comprehensive target understanding. Metabolomics, as a systems biology tool that captures phenotypic changes induced by exogenous compounds, has emerged as a valuable approach for target identification. A comprehensive overview was provided in this review to illustrate the principles and advantages of metabolomics, delving into the application of metabolomics in target identification. This review outlines various metabolomics-based methods, such as dose-response metabolomics, stable isotope-resolved metabolomics, and multiomics, which identify key enzymes and metabolic pathways affected by exogenous substances through dose-dependent metabolite-drug interactions. Emerging techniques, including single-cell metabolomics, artificial intelligence, and mass spectrometry imaging, are also explored for their potential to enhance target discovery. The review emphasizes metabolomics' critical role in advancing our understanding of disease mechanisms and accelerating targeted drug development, while acknowledging current challenges in the field.
Collapse
Affiliation(s)
- Shanshan Pan
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Luan Yin
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jie Liu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jie Tong
- Department of Radiology and Biomedical ImagingPET CenterYale School of MedicineNew HavenConnecticutUSA
| | - Zichuan Wang
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Xuesong Liu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouZhejiangChina
| | - Yong Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouZhejiangChina
| | - Jing Miao
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Su Zeng
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Tengfei Xu
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
7
|
Hernly E, Hu H, Laskin J. MSIGen: An Open-Source Python Package for Processing and Visualizing Mass Spectrometry Imaging Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2315-2323. [PMID: 39221961 DOI: 10.1021/jasms.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mass spectrometry imaging (MSI) provides information about the spatial localization of molecules in complex samples with high sensitivity and molecular selectivity. Although point-wise data acquisition, in which mass spectra are acquired at predefined points in a grid pattern, is common in MSI, several MSI techniques use line-wise data acquisition. In line-wise mode, the imaged surface is continuously sampled along consecutive parallel lines and MSI data are acquired as a collection of line scans across the sample. Furthermore, aside from the standard imaging mode in which full mass spectra are acquired, other acquisition modes have been developed to enhance molecular specificity, enable separation of isobaric and isomeric species, and improve sensitivity to facilitate the imaging of low abundance species. These methods, including MS/MS-MSI in both MS2 and MS3 modes, multiple-reaction monitoring (MRM)-MSI, and ion mobility spectrometry (IMS)-MSI have all demonstrated their capabilities, but their broader implementation is limited by the existing MSI analysis software. Here, we present MSIGen, an open-source Python package for the visualization of MSI experiments performed in line-wise acquisition mode containing MS1, MS2, MRM, and IMS data, which is available at https://github.com/LabLaskin/MSIGen. The package supports multiple vendor-specific and open-source data formats and contains tools for targeted extraction of ion images, normalization, and exportation as images, arrays, or publication-style images. MSIGen offers multiple interfaces, allowing for accessibility and easy integration with other workflows. Considering its support for a wide variety of MSI imaging modes and vendor formats, MSIGen is a valuable tool for the visualization and analysis of MSI data.
Collapse
Affiliation(s)
- Emerson Hernly
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hang Hu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Shen Y, Wang Y, Wang J, Xie P, Xie C, Chen Y, Banaei N, Ren K, Cai Z. High-resolution 3D spatial distribution of complex microbial colonies revealed by mass spectrometry imaging. J Adv Res 2024:S2090-1232(24)00375-8. [PMID: 39214416 DOI: 10.1016/j.jare.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Bacterial living states and the distribution of microbial colony signaling molecules are widely studied using mass spectrometry imaging (MSI). However, current approaches often treat 3D colonies as flat 2D disks, inadvertently omitting valuable details. The challenge of achieving 3D MSI in biofilms persists due to the unique properties of microbial samples. OBJECTIVES The study aimed to develop a new biofilm sample preparation method that can realize high-resolution 3D MSI of bacterial colonies to reveal the spatial organization of bacterial colonies. METHODS This article introduces the moisture-assisted cryo-section (MACS) method, enabling embedding-free sectioning parallel to the growth plane. The MACS method secures intact sections by controlling ambient humidity and slice thickness, preventing molecular delocalization. RESULTS Combined with matrix-assisted laser desorption ionization mass spectrometry (MALDI)-MSI, the MACS method provides high-resolution insights into endogenic and exogenous molecule distributions in Pseudomonas aeruginosa (P. aeruginosa) biofilms, including isomeric pairs. Moreover, analyzed colonies are revived into 3D models, vividly depicting molecular distribution from inner to outer layers. Additionally, we investigated metabolite spatiotemporal dynamics in multiple colonies, observing changes over time and distinct patterns in single versus merged colonies. These findings shed light on the repel-merge process for multi-colony formation. Furthermore, our study monitored chemical responses inside biofilms after antibiotic treatment, showing increased antibiotic levels in the outer biofilm layer over time while maintaining low levels in the inner region. Moreover, the MACS method demonstrated its universality and applicability to other bacterial strains. CONCLUSION These results unveil complex cell activities within biofilm colonies, offering insights into microbe communities. The MACS method is universally applicable to loosely packed microorganism colonies, overcoming the limitations of previously reported MSI methods. It has great potential for studying bacterial-infected cancer tissues and artificial organs, making it a valuable tool in microbiological research.
Collapse
Affiliation(s)
- Yuting Shen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Yisu Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Jianing Wang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Chengyi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; Clinical Microbiology Laboratory, Stanford Health Care, Stanford, CA 94304, USA
| | - Kangning Ren
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China; Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China.
| |
Collapse
|
9
|
Ruman T, Krupa Z, Nizioł J. Direct Three-Dimensional Mass Spectrometry Imaging with Laser Ablation Remote Atmospheric Pressure Photoionization/Chemical Ionization. Anal Chem 2024; 96:13326-13334. [PMID: 39077860 PMCID: PMC11325297 DOI: 10.1021/acs.analchem.4c03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The laser ablation remote atmospheric pressure photoionization/chemical ionization (LARAPPI/CI) platform coupled to an ultrahigh resolution quadrupole-time-of-flight (QToF) mass spectrometer was developed and employed for the first direct three-dimensional (3D) mass spectrometry imaging (MSI) of metabolites in human and plant tissues. Our solution for 3D MSI does not require sample modification or cutting into thin slices. Ablation characteristics of an optical system based on a diffraction optical element are studied and used for voxel stacking to directly remove layers of tissues. Agar gel, red radish, kiwi, human kidney cancer, and normal tissue samples were used for the tests of this new system. The 2D and 3D ion images vividly illustrate differences in the abundances of selected metabolites between cancerous and noncancerous regions of the kidney tissue and also between different parts of plant tissues. The LARAPPI/CI MSI setup is also the first example of the successful use of combined dopant-assisted atmospheric pressure photoionization (DA-APPI) and atmospheric pressure chemical ionization (APCI) ion source for mass spectrometry imaging.
Collapse
Affiliation(s)
- Tomasz Ruman
- Department
of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstan ´ców Warszawy
Ave., Rzeszów 35-959. Poland
| | - Zuzanna Krupa
- Doctoral
School of Engineering and Technical Sciences at the Rzeszów
University of Technology, 8 Powstan ´ców Warszawy Ave., Rzeszów 35-959, Poland
| | - Joanna Nizioł
- Department
of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstan ´ców Warszawy
Ave., Rzeszów 35-959. Poland
| |
Collapse
|
10
|
Burguet P, La Rocca R, Kune C, Tellatin D, Stulanovic N, Rigolet A, Far J, Ongena M, Rigali S, Quinton L. Exploiting Differential Signal Filtering (DSF) and Image Structure Filtering (ISF) Methods for Untargeted Mass Spectrometry Imaging of Bacterial Metabolites. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1743-1755. [PMID: 39007645 DOI: 10.1021/jasms.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a label-free technique, producing images where pixels contain mass spectra. The technique allows the visualization of the spatial distribution of (bio)molecules from metabolites to proteins, on surfaces such as tissues sections or bacteria culture media. One particularly exciting example of MALDI-MSI use rests on its potential to localize ionized compounds produced during microbial interactions and chemical communication, offering a molecular snapshot of metabolomes at a given time. The huge size and the complexity of generated MSI data make the processing of the data challenging, which requires the use of computational methods. Despite recent advances, currently available commercial software relies mainly on statistical tools to identify patterns, similarities, and differences within data sets. However, grouping m/z values unique to a given data set according to microbiological contexts, such as coculture experiments, still requires tedious manual analysis. Here we propose a nontargeted method exploiting the differential signals between negative controls and tested experimental conditions, i.e., differential signal filtering (DSF), and a scoring of the ion images using image structure filtering (ISF) coupled with a fold change score between the controls and the conditions of interest. These methods were first applied to coculture experiments involving Escherichia coli and Streptomyces coelicolor, revealing specific MS signals during bacterial interaction. Two case studies were also investigated: (i) cellobiose-mediated induction for the pathogenicity of Streptomyces scabiei, the causative agent of common scab on root and tuber crops, and (ii) iron-repressed production of siderophores of S. scabiei. This report proposes guidelines for MALDI-MSI data treatment applied in the case of microbiology contexts, with enhanced ion peak annotation in specific culture conditions. The strengths and weaknesses of the methods are discussed.
Collapse
Affiliation(s)
- Pierre Burguet
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Raphaël La Rocca
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Déborah Tellatin
- InBioS - Center for Protein Engineering, University of Liège, 4000 Liège, Belgium
| | - Nudzejma Stulanovic
- InBioS - Center for Protein Engineering, University of Liège, 4000 Liège, Belgium
| | - Augustin Rigolet
- Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Marc Ongena
- Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Sébastien Rigali
- InBioS - Center for Protein Engineering, University of Liège, 4000 Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
11
|
Gallardo-Navarro O, Aguilar-Salinas B, Rocha J, Olmedo-Álvarez G. Higher-order interactions and emergent properties of microbial communities: The power of synthetic ecology. Heliyon 2024; 10:e33896. [PMID: 39130413 PMCID: PMC11315108 DOI: 10.1016/j.heliyon.2024.e33896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Humans have long relied on microbial communities to create products, produce energy, and treat waste. The microbiota residing within our bodies directly impacts our health, while the soil and rhizosphere microbiomes influence the productivity of our crops. However, the complexity and diversity of microbial communities make them challenging to study and difficult to develop into applications, as they often exhibit the emergence of unpredictable higher-order phenomena. Synthetic ecology aims at simplifying complexity by constituting synthetic or semi-natural microbial communities with reduced diversity that become easier to study and analyze. This strategy combines methodologies that simplify existing complex systems (top-down approach) or build the system from its constituent components (bottom-up approach). Simplified communities are studied to understand how interactions among populations shape the behavior of the community and to model and predict their response to external stimuli. By harnessing the potential of synthetic microbial communities through a multidisciplinary approach, we can advance knowledge of ecological concepts and address critical public health, agricultural, and environmental issues more effectively.
Collapse
Affiliation(s)
- Oscar Gallardo-Navarro
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Bernardo Aguilar-Salinas
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Jorge Rocha
- Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, Mexico
| | - Gabriela Olmedo-Álvarez
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| |
Collapse
|
12
|
Yu B, Zhan R, Hu Y, Lv Z. Mass Spectrometry Imaging: An Emerging Technology in Medical Parasitology. Anal Chem 2024; 96:8011-8020. [PMID: 38579105 DOI: 10.1021/acs.analchem.3c05341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Affiliation(s)
- Bingcheng Yu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 511493, China
| | - Rongjian Zhan
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 511493, China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 511493, China
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou, Haikou, Hainan 571199, China
| |
Collapse
|
13
|
Srinivasan S, Jnana A, Murali TS. Modeling Microbial Community Networks: Methods and Tools for Studying Microbial Interactions. MICROBIAL ECOLOGY 2024; 87:56. [PMID: 38587642 PMCID: PMC11001700 DOI: 10.1007/s00248-024-02370-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Microbial interactions function as a fundamental unit in complex ecosystems. By characterizing the type of interaction (positive, negative, neutral) occurring in these dynamic systems, one can begin to unravel the role played by the microbial species. Towards this, various methods have been developed to decipher the function of the microbial communities. The current review focuses on the various qualitative and quantitative methods that currently exist to study microbial interactions. Qualitative methods such as co-culturing experiments are visualized using microscopy-based techniques and are combined with data obtained from multi-omics technologies (metagenomics, metabolomics, metatranscriptomics). Quantitative methods include the construction of networks and network inference, computational models, and development of synthetic microbial consortia. These methods provide a valuable clue on various roles played by interacting partners, as well as possible solutions to overcome pathogenic microbes that can cause life-threatening infections in susceptible hosts. Studying the microbial interactions will further our understanding of complex less-studied ecosystems and enable design of effective frameworks for treatment of infectious diseases.
Collapse
Affiliation(s)
- Shanchana Srinivasan
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Apoorva Jnana
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
14
|
Parmar D, Rosado-Rosa JM, Shrout JD, Sweedler JV. Metabolic insights from mass spectrometry imaging of biofilms: A perspective from model microorganisms. Methods 2024; 224:21-34. [PMID: 38295894 PMCID: PMC11149699 DOI: 10.1016/j.ymeth.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Biofilms are dense aggregates of bacterial colonies embedded inside a self-produced polymeric matrix. Biofilms have received increasing attention in medical, industrial, and environmental settings due to their enhanced survival. Their characterization using microscopy techniques has revealed the presence of structural and cellular heterogeneity in many bacterial systems. However, these techniques provide limited chemical detail and lack information about the molecules important for bacterial communication and virulence. Mass spectrometry imaging (MSI) bridges the gap by generating spatial chemical information with unmatched chemical detail, making it an irreplaceable analytical platform in the multi-modal imaging of biofilms. In the last two decades, over 30 species of biofilm-forming bacteria have been studied using MSI in different environments. The literature conveys both analytical advancements and an improved understanding of the effects of environmental variables such as host surface characteristics, antibiotics, and other species of microorganisms on biofilms. This review summarizes the insights from frequently studied model microorganisms. We share a detailed list of organism-wide metabolites, commonly observed mass spectral adducts, culture conditions, strains of bacteria, substrate, broad problem definition, and details of the MS instrumentation, such as ionization sources and matrix, to facilitate future studies. We also compared the spatial characteristics of the secretome under different study designs to highlight changes because of various environmental influences. In addition, we highlight the current limitations of MSI in relation to biofilm characterization to enable cross-comparison between experiments. Overall, MSI has emerged to become an important approach for the spatial/chemical characterization of bacterial biofilms and its use will continue to grow as MSI becomes more accessible.
Collapse
Affiliation(s)
- Dharmeshkumar Parmar
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joenisse M Rosado-Rosa
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
15
|
Xia J, He X, Yang W, Song H, Yang J, Zhang G, Yang Z, Chen H, Liang Z, Kollie L, Abozeid A, Zhang X, Li Z, Yang D. Unveiling the distribution of chemical constituents at different body parts and maturity stages of Ganoderma lingzhi by combining metabolomics with desorption electrospray ionization mass spectrometry imaging (DESI). Food Chem 2024; 436:137737. [PMID: 37857205 DOI: 10.1016/j.foodchem.2023.137737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/24/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Ganoderma lingzhi is an important medicinal fungus, which is widely used as dietary supplement and for pharmaceutical industries. However, the spatial distribution and dynamic accumulation pattern of active components such as ganoderic acids (GAs) among different parts of G. lingzhi fruiting body are still unclear. In this study, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with untargeted metabolomics analysis was applied to investigate the metabolites distribution within G. lingzhi fruiting body at four different maturity stages (squaring, opening, maturation and harvesting stage). A total of 132 metabolites were characterized from G. lingzhi, including 115 triterpenoids, 11 fatty acids and other component. Most of the GAs content in the cap was significantly higher than that in the stipe, with six components such as ganoderic acid B being extremely significant. GAs in the cap was mainly present in the bottom edge of the mediostratum layer, such as ganoderic A-I and ganoderic GS-1, while in the stipe, they were mainly distributed in the shell layer and the context layer, such as ganoderic A-F. Most ganoderic acids content in both the stipe and the cap of G. lingzhi was gradually decreased with the development of G. lingzhi. The GAs in the stipe was gradually transferred from the shell layer to the content layer, while the distribution of GAs among different tissues of the cap was not significantly changed. In addition, linoleic acid, 9-HODE, 9-KODE and other fatty acids were mainly accumulated in the opening and maturing stage of the caps. This study further clarifies the spatial dynamic distribution of GAs in G. lingzhi fruiting body at four different maturity stages (squaring, opening, maturation and harvesting stage), which provides a basis for the rational utilization of the medicinal parts of G. lingzhi. Furthermore, mass spectrometry imaging combined with non-target metabolome analysis provides a powerful tool for the spatial distribution of active substances in the different regions of the medicinal edible fungi.
Collapse
Affiliation(s)
- Jie Xia
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyu He
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wan Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongyan Song
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jihong Yang
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd, Hangzhou, China
| | - Guoliang Zhang
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd, Hangzhou, China
| | - Zongqi Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haimin Chen
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China; Shaoxing Academy of Biomedicne Co., Ltd of Zhejiang Sci-Tech University, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Health Food, Shaoxing, China
| | - Larwubah Kollie
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ann Abozeid
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China; Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkoom, Egypt
| | - Xiaodan Zhang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Zhenhao Li
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd, Hangzhou, China.
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China; Shaoxing Academy of Biomedicne Co., Ltd of Zhejiang Sci-Tech University, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Health Food, Shaoxing, China.
| |
Collapse
|
16
|
Veličković D, Zemaitis KJ, Bhattacharjee A, Anderton CR. Mass spectrometry imaging of natural carbonyl products directly from agar-based microbial interactions using 4-APEBA derivatization. mSystems 2024; 9:e0080323. [PMID: 38064548 PMCID: PMC10804984 DOI: 10.1128/msystems.00803-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 01/24/2024] Open
Abstract
Aliphatic carboxylic acids, aldehydes, and ketones play diverse roles in microbial adaptation to their microenvironment, from excretion as toxins to adaptive metabolites for membrane fluidity. However, the spatial distribution of these molecules throughout biofilms and how microbes in these environments exchange these molecules remain elusive for many of these bioactive species due to inefficient molecular imaging strategies. Herein, we apply on-tissue chemical derivatization (OTCD) using 4-(2-((4-bromophenethyl)dimethylammonio)ethoxy)benzenaminium dibromide (4-APEBA) on a co-culture of a soil bacterium (Bacillus subtilis NCIB 3610) and fungus (Fusarium sp. DS 682) grown on agar as our model system. Using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), we spatially resolved more than 300 different metabolites containing carbonyl groups within this model system. Various spatial patterns are observable in these species, which indicate possible extracellular or intercellular processes of the metabolites and their up- or downregulation during microbial interaction. The unique chemistry of our approach allowed us to bring additional confidence in accurate carbonyl identification, especially when multiple isomeric candidates were possible, and this provided the ability to generate hypotheses about the potential role of some aliphatic carbonyls in this B. subtilis/Fusarium sp. interaction. The results shown here demonstrate the utility of 4-ABEBA-based OTCD MALDI-MSI in probing interkingdom interactions directly from microbial co-cultures, and these methods will enable future microbial interaction studies with expanded metabolic coverage.IMPORTANCEThe metabolic profiles within microbial biofilms and interkingdom interactions are extremely complex and serve a variety of functions, which include promoting colonization, growth, and survival within competitive and symbiotic environments. However, measuring and differentiating many of these molecules, especially in an in situ fashion, remains a significant analytical challenge. We demonstrate a chemical derivatization strategy that enabled highly sensitive, multiplexed mass spectrometry imaging of over 300 metabolites from a model microbial co-culture. Notably, this approach afforded us to visualize over two dozen classes of ketone-, aldehyde-, and carboxyl-containing molecules, which were previously undetectable from colonies grown on agar. We also demonstrate that this chemical derivatization strategy can enable the discrimination of isobaric and isomeric metabolites without the need for orthogonal separation (e.g., online chromatography or ion mobility). We anticipate that this approach will further enhance our knowledge of metabolic regulation within microbiomes and microbial systems used in bioengineering applications.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kevin J. Zemaitis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Arunima Bhattacharjee
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher R. Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
17
|
Lin Y, Liang X, Li Z, Gong T, Ren B, Li Y, Peng X. Omics for deciphering oral microecology. Int J Oral Sci 2024; 16:2. [PMID: 38195684 PMCID: PMC10776764 DOI: 10.1038/s41368-023-00264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyue Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
McAtamney A, Heaney C, Lizama-Chamu I, Sanchez LM. Reducing Mass Confusion over the Microbiome. Anal Chem 2023; 95:16775-16785. [PMID: 37934885 PMCID: PMC10841885 DOI: 10.1021/acs.analchem.3c02408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
As genetic tools continue to emerge and mature, more information is revealed about the identity and diversity of microbial community members. Genetic tools can also be used to make predictions about the chemistry that bacteria and fungi produce to function and communicate with one another and the host. Ongoing efforts to identify these products and link genetic information to microbiome chemistry rely on analytical tools. This tutorial highlights recent advancements in microbiome studies driven by techniques in mass spectrometry.
Collapse
Affiliation(s)
- Allyson McAtamney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Casey Heaney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Itzel Lizama-Chamu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
19
|
Weaver AA, Parmar D, Junker EA, Sweedler JV, Shrout JD. Differential Spreading of Rhamnolipid Congeners from Pseudomonas aeruginosa. ACS APPLIED BIO MATERIALS 2023; 6:4914-4921. [PMID: 37878954 PMCID: PMC11107424 DOI: 10.1021/acsabm.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Rhamnolipids are surfactants produced by many Pseudomonad bacteria, including the species Pseudomonas aeruginosa. These rhamnolipids are known to aid and enable numerous phenotypic traits that improve the survival of the bacteria that make them. These surfactants are also important for industrial products ranging from pharmaceuticals to cleaning supplies to cosmetics, to name a few. Rhamnolipids have structural diversity that leads to an array of congeners; however, little is known about the localization and distribution of these congeners in two-dimensional space. Differential distribution of congeners can reduce the uniformity of applications in industrial settings and create heterogeneity within biological communities. We examined the distribution patterns of combinations of rhamnolipids in commercially available mixtures, cell-free spent media, and colony biofilms using mass spectrometry. We found that even in the absence of cells, congeners exhibit different distribution patterns, leading to different rhamnolipid congener distributions on a surface. Congeners with shorter fatty acid chains were more centrally located, while longer chains were more heterogeneous and distally located. We found that congeners with similar structures can distribute differently. Within developing colony biofilms, we found rhamnolipid distribution patterns differed from cell-free environments, lacking simple trends noted in cell-free environments. Most strikingly, we found the distribution patterns of individual congeners in the colony biofilms to be diverse. We note that the congener distribution is far from homogeneous but composed of numerous local microenvironments of varied rhamnolipid congener composition.
Collapse
Affiliation(s)
- Abigail A Weaver
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dharmeshkumar Parmar
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ella A Junker
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan V Sweedler
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
20
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
21
|
Chung HH, Huang P, Chen CL, Lee C, Hsu CC. Next-generation pathology practices with mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2023; 42:2446-2465. [PMID: 35815718 DOI: 10.1002/mas.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique that reveals the spatial distribution of various molecules in biological samples, and it is widely used in pathology-related research. In this review, we summarize common MSI techniques, including matrix-assisted laser desorption/ionization and desorption electrospray ionization MSI, and their applications in pathological research, including disease diagnosis, microbiology, and drug discovery. We also describe the improvements of MSI, focusing on the accumulation of imaging data sets, expansion of chemical coverage, and identification of biological significant molecules, that have prompted the evolution of MSI to meet the requirements of pathology practices. Overall, this review details the applications and improvements of MSI techniques, demonstrating the potential of integrating MSI techniques into next-generation pathology practices.
Collapse
Affiliation(s)
- Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chuping Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
22
|
Shimma S, Saito H, Inoue T, Iwahashi F. Using Mass Spectrometry Imaging to Visualize Pesticide Accumulation and Time-Dependent Distribution in Fungicide-Coated Seeds. Mass Spectrom (Tokyo) 2023; 12:A0132. [PMID: 37841700 PMCID: PMC10571091 DOI: 10.5702/massspectrometry.a0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Pesticide seed treatment provides efficient crop protection in the early season and enables a reduction in the quantity of fungicides used later. Hence, it has been a practical application for crop protection in major crop sectors such as corn, soybean, wheat, and cotton. The chemicals on pesticide-treated seeds may show different distributions depending on the structure of the seeds and the physical properties of the chemicals, but they have not been well studied because of a lack of versatile analytical tools. Here, we used mass spectrometry imaging to visualize the distribution of a fungicide (ethaboxam) in corn and soybean seeds coated with it. Contrasting distribution patterns were noted, which are likely dependent on the seed structure. We also obtained information on fungicide distribution after the seedings, which will contribute to a better understanding of the fungicide delivery pathway within plants. Using this new analytical method, we were able to obtain hitherto unavailable time-dependent, dynamic information on the ethaboxam. We expect that this method will be a useful tool with widespread applications in pesticide development and use. Copyright © 2023 Shuichi Shimma, Hiromi Saito, Takuya Inoue, and Fukumatsu Iwahashi. This is an open-access article distributed under the terms of Creative Commons Attribution Non-Commercial 4.0 International License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565–0871, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, Suita, Osaka 565–0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Hiromi Saito
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565–0871, Japan
| | - Takuya Inoue
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Company, Ltd., 4–2–1 Takarazuka, Hyogo 665–8555, Japan
| | - Fukumatsu Iwahashi
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Company, Ltd., 4–2–1 Takarazuka, Hyogo 665–8555, Japan
| |
Collapse
|
23
|
Kertesz V, Khalid M, Retterer ST, Cahill JF. Structure-Driven Liquid Microjunction Surface-Sampling Probe Mass Spectrometry. Anal Chem 2023; 95:14521-14525. [PMID: 37738474 DOI: 10.1021/acs.analchem.3c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The rhizosphere is the narrow region of soil surrounding the roots of plants that is influenced by root exudates, root secretions, and associated microbial communities. This region is crucial to plant growth and development and plays a critical role in nutrient uptake, disease resistance, and soil transformation. Understanding the function of exogenous compounds in the rhizosphere starts with determining the spatiotemporal distribution of these molecular components. Using liquid microjunction surface-sampling probe mass spectrometry (LMJ-SSP-MS) and microfluidic devices with attached microporous membranes enables in situ, nondisruptive, and nondestructive spatiotemporal measurement of exogenous compounds from plant roots. However, long imaging times (>2 h) can negatively affect plant heath and limit temporal studies. Here, we present a novel strategy to optimize the number and location of sampling sites on these microporous membrane-covered microfluidic devices. This novel, "structure-driven" sampling workflow takes into consideration the channel structure of the microfluidic device to maximize sampling from the channels and minimize acquisition time (∼4× less time in some cases while providing similar chemical image accuracy), thus reducing stress on plants during in situ LMJ-SSP-MS analysis.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Muneeba Khalid
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Scott T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - John F Cahill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|
24
|
Bourceau P, Geier B, Suerdieck V, Bien T, Soltwisch J, Dreisewerd K, Liebeke M. Visualization of metabolites and microbes at high spatial resolution using MALDI mass spectrometry imaging and in situ fluorescence labeling. Nat Protoc 2023; 18:3050-3079. [PMID: 37674095 DOI: 10.1038/s41596-023-00864-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/31/2023] [Indexed: 09/08/2023]
Abstract
Label-free molecular imaging techniques such as matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enable the direct and simultaneous mapping of hundreds of different metabolites in thin sections of biological tissues. However, in host-microbe interactions it remains challenging to localize microbes and to assign metabolites to the host versus members of the microbiome. We therefore developed a correlative imaging approach combining MALDI-MSI with fluorescence in situ hybridization (FISH) on the same section to identify and localize microbial cells. Here, we detail metaFISH as a robust and easy method for assigning the spatial distribution of metabolites to microbiome members based on imaging of nucleic acid probes, down to single-cell resolution. We describe the steps required for tissue preparation, on-tissue hybridization, fluorescence microscopy, data integration into a correlative image dataset, matrix application and MSI data acquisition. Using metaFISH, we map hundreds of metabolites and several microbial species to the micrometer scale on a single tissue section. For example, intra- and extracellular bacteria, host cells and their associated metabolites can be localized in animal tissues, revealing their complex metabolic interactions. We explain how we identify low-abundance bacterial infection sites as regions of interest for high-resolution MSI analysis, guiding the user to a trade-off between metabolite signal intensities and fluorescence signals. MetaFISH is suitable for a broad range of users from environmental microbiologists to clinical scientists. The protocol requires ~2 work days.
Collapse
Affiliation(s)
- Patric Bourceau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tanja Bien
- Institute of Hygiene, University of Münster, Münster, Germany
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Institute of Human Nutrition and Food Sciences, University of Kiel, Kiel, Germany.
| |
Collapse
|
25
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
26
|
Parker GD, Hanley L, Yu XY. Mass Spectral Imaging to Map Plant-Microbe Interactions. Microorganisms 2023; 11:2045. [PMID: 37630605 PMCID: PMC10459445 DOI: 10.3390/microorganisms11082045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Plant-microbe interactions are of rising interest in plant sustainability, biomass production, plant biology, and systems biology. These interactions have been a challenge to detect until recent advancements in mass spectrometry imaging. Plants and microbes interact in four main regions within the plant, the rhizosphere, endosphere, phyllosphere, and spermosphere. This mini review covers the challenges within investigations of plant and microbe interactions. We highlight the importance of sample preparation and comparisons among time-of-flight secondary ion mass spectroscopy (ToF-SIMS), matrix-assisted laser desorption/ionization (MALDI), laser desorption ionization (LDI/LDPI), and desorption electrospray ionization (DESI) techniques used for the analysis of these interactions. Using mass spectral imaging (MSI) to study plants and microbes offers advantages in understanding microbe and host interactions at the molecular level with single-cell and community communication information. More research utilizing MSI has emerged in the past several years. We first introduce the principles of major MSI techniques that have been employed in the research of microorganisms. An overview of proper sample preparation methods is offered as a prerequisite for successful MSI analysis. Traditionally, dried or cryogenically prepared, frozen samples have been used; however, they do not provide a true representation of the bacterial biofilms compared to living cell analysis and chemical imaging. New developments such as microfluidic devices that can be used under a vacuum are highly desirable for the application of MSI techniques, such as ToF-SIMS, because they have a subcellular spatial resolution to map and image plant and microbe interactions, including the potential to elucidate metabolic pathways and cell-to-cell interactions. Promising results due to recent MSI advancements in the past five years are selected and highlighted. The latest developments utilizing machine learning are captured as an important outlook for maximal output using MSI to study microorganisms.
Collapse
Affiliation(s)
- Gabriel D. Parker
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
27
|
Correia GD, Marchesi JR, MacIntyre DA. Moving beyond DNA: towards functional analysis of the vaginal microbiome by non-sequencing-based methods. Curr Opin Microbiol 2023; 73:102292. [PMID: 36931094 DOI: 10.1016/j.mib.2023.102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Over the last two decades, sequencing-based methods have revolutionised our understanding of niche-specific microbial complexity. In the lower female reproductive tract, these approaches have enabled identification of bacterial compositional structures associated with health and disease. Application of metagenomics and metatranscriptomics strategies have provided insight into the putative function of these communities but it is increasingly clear that direct measures of microbial and host cell function are required to understand the contribution of microbe-host interactions to pathophysiology. Here we explore and discuss current methods and approaches, many of which rely upon mass-spectrometry, being used to capture functional insight into the vaginal mucosal interface. In addition to improving mechanistic understanding, these methods offer innovative solutions for the development of diagnostic and therapeutic strategies designed to improve women's health.
Collapse
Affiliation(s)
- Gonçalo Ds Correia
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Julian R Marchesi
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK; Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Imperial College London, London W2 1NY, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
28
|
Cremin K, Duxbury SJN, Rosko J, Soyer OS. Formation and emergent dynamics of spatially organized microbial systems. Interface Focus 2023; 13:20220062. [PMID: 36789239 PMCID: PMC9912014 DOI: 10.1098/rsfs.2022.0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
Spatial organization is the norm rather than the exception in the microbial world. While the study of microbial physiology has been dominated by studies in well-mixed cultures, there is now increasing interest in understanding the role of spatial organization in microbial physiology, coexistence and evolution. Where studied, spatial organization has been shown to influence all three of these aspects. In this mini review and perspective article, we emphasize that the dynamics within spatially organized microbial systems (SOMS) are governed by feedbacks between local physico-chemical conditions, cell physiology and movement, and evolution. These feedbacks can give rise to emergent dynamics, which need to be studied through a combination of spatio-temporal measurements and mathematical models. We highlight the initial formation of SOMS and their emergent dynamics as two open areas of investigation for future studies. These studies will benefit from the development of model systems that can mimic natural ones in terms of species composition and spatial structure.
Collapse
Affiliation(s)
- Kelsey Cremin
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Jerko Rosko
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
29
|
Endocannabinoid 2-Arachidonoylglycerol Levels in the Anterior Cingulate Cortex, Caudate Putamen, Nucleus Accumbens, and Piriform Cortex Were Upregulated by Chronic Restraint Stress. Cells 2023; 12:cells12030393. [PMID: 36766735 PMCID: PMC9913316 DOI: 10.3390/cells12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Endocannabinoid 2-arachidonoylglycerol (2-AG) has been implicated in habituation to stress, and its augmentation reduces stress-induced anxiety-like behavior. Chronic restraint stress (CRS) changes the 2-AG levels in some gross brain areas, such as the forebrain. However, the detailed spatial distribution of 2-AG and its changes by CRS in stress processing-related anatomical structures such as the anterior cingulate cortex (ACC), caudate putamen (CP), nucleus accumbens (NAc), and piriform cortex (PIR) are still unclear. In this study, mice were restrained for 30 min in a 50 mL-centrifuge tube for eight consecutive days, followed by imaging of the coronal brain sections of control and stressed mice using desorption electrospray ionization mass spectrometry imaging (DESI-MSI). The results showed that from the forebrain to the cerebellum, 2-AG levels were highest in the hypothalamus and lowest in the hippocampal region. 2-AG levels were significantly (p < 0.05) upregulated and 2-AG precursors levels were significantly (p < 0.05) downregulated in the ACC, CP, NAc, and PIR of stressed mice compared with control mice. This study provided direct evidence of 2-AG expression and changes, suggesting that 2-AG levels are increased in the ACC CP, NAc, and PIR when individuals are under chronic stress.
Collapse
|
30
|
Lima NM, Dos Santos GF, da Silva Lima G, Vaz BG. Advances in Mass Spectrometry-Metabolomics Based Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:101-122. [PMID: 37843807 DOI: 10.1007/978-3-031-41741-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Highly selective and sensitive analytical techniques are necessary for microbial metabolomics due to the complexity of the microbial sample matrix. Hence, mass spectrometry (MS) has been successfully applied in microbial metabolomics due to its high precision, versatility, sensitivity, and wide dynamic range. The different analytical tools using MS have been employed in microbial metabolomics investigations and can contribute to the discovery or accelerate the search for bioactive substances. The coupling with chromatographic and electrophoretic separation techniques has resulted in more efficient technologies for the analysis of microbial compounds occurring in trace levels. This book chapter describes the current advances in the application of mass spectrometry-based metabolomics in the search for new biologically active agents from microbial sources; the development of new approaches for in silico annotation of natural products; the different technologies employing mass spectrometry imaging to deliver more comprehensive analysis and elucidate the metabolome involved in ecological interactions as they enable visualization of the spatial dispersion of small molecules. We also describe other ambient ionization techniques applied to the fingerprint of microbial natural products and modern techniques such as ion mobility mass spectrometry used to microbial metabolomic analyses and the dereplication of natural microbial products through MS.
Collapse
|
31
|
Quantitative Mass Spectrometry Imaging of Bleomycin in Skin Using a Mimetic Tissue Model for Calibration. Pharmaceuticals (Basel) 2022; 15:ph15121583. [PMID: 36559034 PMCID: PMC9786816 DOI: 10.3390/ph15121583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of Quantitative mass spectrometry imaging (Q-MSI) is to provide distribution analysis and quantitation from one single mass-spectrometry-based experiment, and several quantitation methods have been devised for Q-MSI. Mimetic tissue models based on spiked tissue homogenates are considered one of the most accurate ways to perform Q-MSI, since the analyte is present in a well-defined concentration in a sample matrix highly similar to the one of the unknown sample to be analyzed. The delivery of drugs in skin is among the most frequent types of pharmaceutical MSI studies. Here, a mimetic tissue model is extended for use on the skin, which, due to its high collagen content, is different from most other tissue as the homogenates become extremely viscous. A protocol is presented which overcomes this by the addition of water and the handling of the homogenate at an elevated temperature where the viscosity is lower. Using a mimetic tissue model, a method was developed for the quantitative imaging of bleomycin in skin. To compensate for the signal drift and the inhomogeneities in the skin, an internal standard was included in the method. The method was tested on skin from a pig which had had an electropneumatic injection of bleomycin into the skin. Quantification was made at several regions in a cross section of the skin at the injection site, and the results were compared to the results of a quantitative LC-MS on a neighboring tissue biopsy from the same animal experiment. The overall tissue concentration determined by the LC-MS was within the range of the different regions quantified by the Q-MSI. As the model provides the results of the same order of magnitude as a LC-MS, it can either be used to replace LC-MS in skin studies where MSI and LC-MS are today carried out in combination, or it can add quantitative information to skin studies which are otherwise carried out by MSI alone.
Collapse
|
32
|
Feucherolles M, Frache G. MALDI Mass Spectrometry Imaging: A Potential Game-Changer in a Modern Microbiology. Cells 2022; 11:cells11233900. [PMID: 36497158 PMCID: PMC9738593 DOI: 10.3390/cells11233900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is routinely implemented as the reference method for the swift and straightforward identification of microorganisms. However, this method is not flawless and there is a need to upgrade the current methodology in order to free the routine lab from incubation time and shift from a culture-dependent to an even faster independent culture system. Over the last two decades, mass spectrometry imaging (MSI) gained tremendous popularity in life sciences, including microbiology, due to its ability to simultaneously detect biomolecules, as well as their spatial distribution, in complex samples. Through this literature review, we summarize the latest applications of MALDI-MSI in microbiology. In addition, we discuss the challenges and avenues of exploration for applying MSI to solve current MALDI-TOF MS limits in routine and research laboratories.
Collapse
|
33
|
Wang X, Blumenfeld R, Feng XQ, Weitz DA. 'Phase transitions' in bacteria - From structural transitions in free living bacteria to phenotypic transitions in bacteria within biofilms. Phys Life Rev 2022; 43:98-138. [PMID: 36252408 DOI: 10.1016/j.plrev.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022]
Abstract
Phase transitions are common in inanimate systems and have been studied extensively in natural sciences. Less explored are the rich transitions that take place at the micro- and nano-scales in biological systems. In conventional phase transitions, large-scale properties of the media change discontinuously in response to continuous changes in external conditions. Such changes play a significant role in the dynamic behaviours of organisms. In this review, we focus on some transitions in both free-living and biofilms of bacteria. Particular attention is paid to the transitions in the flagellar motors and filaments of free-living bacteria, in cellular gene expression during the biofilm growth, in the biofilm morphology transitions during biofilm expansion, and in the cell motion pattern transitions during the biofilm formation. We analyse the dynamic characteristics and biophysical mechanisms of these phase transition phenomena and point out the parallels between these transitions and conventional phase transitions. We also discuss the applications of some theoretical and numerical methods, established for conventional phase transitions in inanimate systems, in bacterial biofilms.
Collapse
Affiliation(s)
- Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA.
| | - Raphael Blumenfeld
- Gonville & Caius College, University of Cambridge, Trinity St., Cambridge CB2 1TA, UK
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA; Department of Physics, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA
| |
Collapse
|
34
|
Hu H, Laskin J. Emerging Computational Methods in Mass Spectrometry Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203339. [PMID: 36253139 PMCID: PMC9731724 DOI: 10.1002/advs.202203339] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/17/2022] [Indexed: 05/10/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful analytical technique that generates maps of hundreds of molecules in biological samples with high sensitivity and molecular specificity. Advanced MSI platforms with capability of high-spatial resolution and high-throughput acquisition generate vast amount of data, which necessitates the development of computational tools for MSI data analysis. In addition, computation-driven MSI experiments have recently emerged as enabling technologies for further improving the MSI capabilities with little or no hardware modification. This review provides a critical summary of computational methods and resources developed for MSI data analysis and interpretation along with computational approaches for improving throughput and molecular coverage in MSI experiments. This review is focused on the recently developed artificial intelligence methods and provides an outlook for a future paradigm shift in MSI with transformative computational methods.
Collapse
Affiliation(s)
- Hang Hu
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN47907USA
| | - Julia Laskin
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN47907USA
| |
Collapse
|
35
|
Pitchapa R, Dissook S, Putri SP, Fukusaki E, Shimma S. MALDI Mass Spectrometry Imaging Reveals the Existence of an N-Acyl-homoserine Lactone Quorum Sensing System in Pseudomonas putida Biofilms. Metabolites 2022; 12:1148. [PMID: 36422288 PMCID: PMC9697013 DOI: 10.3390/metabo12111148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 02/28/2024] Open
Abstract
Quorum sensing (QS) is generally used to describe the process involving the release and recognition of signaling molecules, such as N-acyl-homoserine lactones, by bacteria to coordinate their response to population density and biofilm development. However, detailed information on the heterogeneity of QS metabolites in biofilms remains largely unknown. Here, we describe the utilization of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to follow the production of specific metabolites, including QS metabolites, during Pseudomonas putida biofilm development. To do so, a method to grow an agar-based biofilm was first established, and MALDI-MSI was used to detect and visualize the distribution of QS metabolites in biofilms at different cultivation times. This study demonstrated that N-acyl-homoserine lactones are homogeneously produced in the early stages of P. putida biofilm formation. In contrast, the spatial distribution of quinolones and pyochelin correlated with the swarming motility of P. putida in mature biofilms. These two metabolites are involved in the production of extracellular polymeric substances and iron chelators. Our study thus contributes to establishing the specific temporal regulation and spatial distribution of N-acyl-homoserine lactone-related metabolites and quinolone and pyochelin in P. putida biofilms.
Collapse
Affiliation(s)
- Rattanaburi Pitchapa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
| | - Sivamoke Dissook
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
| |
Collapse
|
36
|
Li H, Li Z. The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging. Bioengineering (Basel) 2022; 9:707. [PMID: 36421108 PMCID: PMC9687252 DOI: 10.3390/bioengineering9110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 10/17/2023] Open
Abstract
As an impressive mass spectrometry technology, mass spectrometric imaging (MSI) can provide mass spectra data and spatial distribution of analytes simultaneously. MSI has been widely used in diverse fields such as clinical diagnosis, the pharmaceutical industry and environmental study due to its accuracy, high resolution and developing reproducibility. Natural products (NPs) have been a critical source of leading drugs; almost half of marketed drugs are derived from NPs or their derivatives. The continuous search for bioactive NPs from microorganisms or microbiomes has always been attractive. MSI allows us to analyze and characterize NPs directly in monocultured microorganisms or a microbial community. In this review, we briefly introduce current mainstream ionization technologies for microbial samples and the key issue of sample preparation, and then summarize some applications of MSI in the exploration of microbial NPs and metabolic interaction, especially NPs from marine microbes. Additionally, remaining challenges and future prospects are discussed.
Collapse
Affiliation(s)
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
37
|
Toward Depth-Resolved Analysis of Plant Metabolites by Nanospray Desorption Electrospray Ionization Mass Spectrometry. Molecules 2022; 27:molecules27217582. [DOI: 10.3390/molecules27217582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Nanospray desorption electrospray ionization (nano-DESI) is one of the ambient desorption ionization methods for mass spectrometry (MS), and it utilizes a steady-state liquid junction formed between two microcapillaries to directly extract analytes from sample surfaces with minimal sample damage. In this study, we employed nano-DESI MS to perform a metabolite fingerprinting analysis directly from a Hypericum leaf surface. Moreover, we investigated whether changes in metabolite fingerprints with time can be related to metabolite distribution according to depth. From a raw Hypericum leaf, the mass spectral fingerprints of key metabolites, including flavonoids and prenylated phloroglucinols, were successfully obtained using ethanol as a nano-DESI solvent, and the changes in their intensities were observed with time via full mass scan experiments. In addition, the differential extraction patterns of the obtained mass spectral fingerprints were clearly visualized over time through selected ion monitoring and pseudo-selected reaction monitoring experiments. To examine the correlation between the time-dependent changes in the metabolite fingerprints and depth-wise metabolite distribution, we performed a nano-DESI MS analysis against leaves whose surface layers were removed multiple times by forming polymeric gum Arabic films on their surfaces, followed by detaching. The preliminary results showed that the changes in the metabolite fingerprints according to the number of peelings showed a similar pattern with those obtained from the raw leaves over time.
Collapse
|
38
|
Hu H, Helminiak D, Yang M, Unsihuay D, Hilger RT, Ye DH, Laskin J. High-Throughput Mass Spectrometry Imaging with Dynamic Sparse Sampling. ACS MEASUREMENT SCIENCE AU 2022; 2:466-474. [PMID: 36281292 PMCID: PMC9585637 DOI: 10.1021/acsmeasuresciau.2c00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 05/25/2023]
Abstract
Mass spectrometry imaging (MSI) enables label-free mapping of hundreds of molecules in biological samples with high sensitivity and unprecedented specificity. Conventional MSI experiments are relatively slow, limiting their utility for applications requiring rapid data acquisition, such as intraoperative tissue analysis or 3D imaging. Recent advances in MSI technology focus on improving the spatial resolution and molecular coverage, further increasing the acquisition time. Herein, a deep learning approach for dynamic sampling (DLADS) was employed to reduce the number of required measurements, thereby improving the throughput of MSI experiments in comparison with conventional methods. DLADS trains a deep learning model to dynamically predict molecularly informative tissue locations for active mass spectra sampling and reconstructs high-fidelity molecular images using only the sparsely sampled information. Experimental hardware and software integration of DLADS with nanospray desorption electrospray ionization (nano-DESI) MSI is reported for the first time, which demonstrates a 2.3-fold improvement in throughput for a linewise acquisition mode. Meanwhile, simulations indicate that a 5-10-fold throughput improvement may be achieved using the pointwise acquisition mode.
Collapse
Affiliation(s)
- Hang Hu
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - David Helminiak
- Electrical
and Computer Engineering, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Manxi Yang
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daisy Unsihuay
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ryan T. Hilger
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong Hye Ye
- Electrical
and Computer Engineering, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Julia Laskin
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
39
|
Walton CL, Khalid M, Bible AN, Kertesz V, Retterer ST, Morrell-Falvey J, Cahill JF. In Situ Detection of Amino Acids from Bacterial Biofilms and Plant Root Exudates by Liquid Microjunction Surface-Sampling Probe Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1615-1625. [PMID: 35904879 DOI: 10.1021/jasms.2c00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The plant rhizosphere is a complex and dynamic chemical environment where the exchange of molecular signals between plants, microbes, and fungi drives the development of the entire biological system. Exogenous compounds in the rhizosphere are known to affect plant-microbe organization, interactions between organisms, and ultimately, growth and survivability. The function of exogenous compounds in the rhizosphere is still under much investigation, specifically with respect to their roles in plant growth and development, the assembly of the associated microbial community, and the spatiotemporal distribution of molecular components. A major challenge for spatiotemporal measurements is developing a nondisruptive and nondestructive technique capable of analyzing the exogenous compounds contained within the environment. A methodology using liquid microjunction-surface sampling probe-mass spectrometry (LMJ-SSP-MS) and microfluidic devices with attached microporous membranes was developed for in situ, spatiotemporal measurement of amino acids (AAs) from bacterial biofilms and plant roots. Exuded arginine was measured from a living Pantoea YR343 biofilm, which resulted in a chemical image indicative of biofilm growth within the device. Spot sampling along the roots of Populus trichocarpa with the LMJ-SSP-MS resulted in the detection of 15 AAs. Variation in AA concentrations across the root system was observed, indicating that exudation is not homogeneous and may be linked to local rhizosphere architecture and different biological processes along the root.
Collapse
Affiliation(s)
- Courtney L Walton
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Muneeba Khalid
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Amber N Bible
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Scott T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Jennifer Morrell-Falvey
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - John F Cahill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|
40
|
Lusk HJ, Levy SE, Bergsten TM, Burdette JE, Sanchez LM. Home-Built Spinning Apparatus for Drying Agarose-Based Imaging Mass Spectrometry Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1325-1328. [PMID: 35640101 PMCID: PMC9262851 DOI: 10.1021/jasms.2c00044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a useful technique for mapping the spatial distribution of molecules across biological samples. Sample preparation is crucial for MALDI-IMS; samples must be flat, dry, and cocrystallized with a matrix prior to analysis. Agarose-based samples can be difficult to consistently prepare as they are susceptible to environmental changes, which can lead to inconsistent drying and wrinkling on the sample surface. Small height differences may cause low ionization of target analytes or introduce artifacts in imaging data depending on the instrument used for analysis. To overcome the variations, a home-built robotic spinner was constructed and applied to agarose-based samples. This robotic spinner is inexpensive and easy to assemble, and when it was applied to agarose-based samples, accelerated the drying process and reduced wrinkles, improving the overall quality of the resulting IMS data.
Collapse
Affiliation(s)
- Hannah J. Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St, Santa Cruz, CA 95064, United States
| | - Sarah E. Levy
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St, Santa Cruz, CA 95064, United States
| | - Tova M. Bergsten
- Department of Pharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, 900 S Ashland Ave, Chicago IL 60607, United States
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, 900 S Ashland Ave, Chicago IL 60607, United States
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St, Santa Cruz, CA 95064, United States
- Corresponding author:
| |
Collapse
|
41
|
Dey S, Rout AK, Behera BK, Ghosh K. Plastisphere community assemblage of aquatic environment: plastic-microbe interaction, role in degradation and characterization technologies. ENVIRONMENTAL MICROBIOME 2022; 17:32. [PMID: 35739580 PMCID: PMC9230103 DOI: 10.1186/s40793-022-00430-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/14/2022] [Indexed: 05/03/2023]
Abstract
It is undeniable that plastics are ubiquitous and a threat to global ecosystems. Plastic waste is transformed into microplastics (MPs) through physical and chemical disruption processes within the aquatic environment. MPs are detected in almost every environment due to their worldwide transportability through ocean currents or wind, which allows them to reach even the most remote regions of our planet. MPs colonized by biofilm-forming microbial communities are known as the ''plastisphere". The revelation that this unique substrate can aid microbial dispersal has piqued interest in the ground of microbial ecology. MPs have synergetic effects on the development, transportation, persistence, and ecology of microorganisms. This review summarizes the studies of plastisphere in recent years and the microbial community assemblage (viz. autotrophs, heterotrophs, predators, and pathogens). We also discussed plastic-microbe interactions and the potential sources of plastic degrading microorganisms. Finally, it also focuses on current technologies used to characterize those microbial inhabitants and recommendations for further research.
Collapse
Affiliation(s)
- Sujata Dey
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India.
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
42
|
Grujcic V, Taylor GT, Foster RA. One Cell at a Time: Advances in Single-Cell Methods and Instrumentation for Discovery in Aquatic Microbiology. Front Microbiol 2022; 13:881018. [PMID: 35677911 PMCID: PMC9169044 DOI: 10.3389/fmicb.2022.881018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Studying microbes from a single-cell perspective has become a major theme and interest within the field of aquatic microbiology. One emerging trend is the unfailing observation of heterogeneity in activity levels within microbial populations. Wherever researchers have looked, intra-population variability in biochemical composition, growth rates, and responses to varying environmental conditions has been evident and probably reflect coexisting genetically distinct strains of the same species. Such observations of heterogeneity require a shift away from bulk analytical approaches and development of new methods or adaptation of existing techniques, many of which were first pioneered in other, unrelated fields, e.g., material, physical, and biomedical sciences. Many co-opted approaches were initially optimized using model organisms. In a field with so few cultivable models, method development has been challenging but has also contributed tremendous insights, breakthroughs, and stimulated curiosity. In this perspective, we present a subset of methods that have been effectively applied to study aquatic microbes at the single-cell level. Opportunities and challenges for innovation are also discussed. We suggest future directions for aquatic microbiological research that will benefit from open access to sophisticated instruments and highly interdisciplinary collaborations.
Collapse
Affiliation(s)
- Vesna Grujcic
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
43
|
Müller WH, McCann A, Arias AA, Malherbe C, Quinton L, De Pauw E, Eppe G. Imaging Metabolites in Agar‐Based Bacterial Co‐Cultures with Minimal Sample Preparation using a DIUTHAME Membrane in Surface‐Assisted Laser Desorption/Ionization Mass Spectrometry**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| | - Andréa McCann
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| | - Anthony Argüelles Arias
- Microbial Processes and Interactions Laboratory Terra Teaching and Research Center Gembloux Agro-Bio Tech University of Liège Gembloux Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| |
Collapse
|
44
|
Jens JN, Breiner DJ, Phelan VV. Spray-Based Application of Matrix to Agar-Based Microbial Samples for Reproducible Sample Adherence in MALDI MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:731-734. [PMID: 35202541 PMCID: PMC9341124 DOI: 10.1021/jasms.1c00208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial mass spectrometry imaging (MSI) is a powerful tool used to generate biological hypotheses about the roles of metabolites in microbial competition based upon their two-dimensional spatial distribution. The most commonly used ionization method for microbial MSI is matrix-assisted laser desorption ionization (MALDI). However, medium components and microbial metabolites influence the adhesion of agar samples to the MALDI target, limiting the applicability of MALDI MSI to microbes grown on specific media. Here, we describe a three-step process using a robotic sprayer for a matrix application that improves the adherence of agar samples to the MALDI target, enabling the use of different media for microbial growth and an MSI analysis of larger sample surface areas.
Collapse
|
45
|
Mass spectrometry imaging and its potential in food microbiology. Int J Food Microbiol 2022; 371:109675. [DOI: 10.1016/j.ijfoodmicro.2022.109675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
|
46
|
Biosynthesis-based spatial metabolome of Salvia miltiorrhiza Bunge by combining metabolomics approaches with mass spectrometry-imaging. Talanta 2022; 238:123045. [PMID: 34801902 DOI: 10.1016/j.talanta.2021.123045] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022]
Abstract
Defining the spatial distributions of metabolites and their structures are the two key aspects for interpreting the complexities of biosynthesis pathways in plants. As a means of obtaining information on the spatial distribution of metabolites, a strategy is needed that has high sensitivity and allows visualization. Toward this goal, we carried an untargeted metabolomics to obtain detailed metabolic information on different plant parts of Salvia miltiorrhiza, the roots of which are widely used in traditional Chinese medicine. Systematic optimization of desorption electrospray ionization mass spectrometry imaging (DESI-MSI) including parameter selection and sample preparation were carried out to improve the sensitivity of the method for plant samples. Guided by the metabolomics data, the spatial distributions of diverse metabolites, including phenolic acids, flavonoids, tanshinones, carbohydrates, and lipids, were characterized and visualized for both the underground and aerial parts. To integrate the information pertaining to the spatial distribution of metabolites, the flavonoids and phenolic acids (phenylpropanoid metabolic pathway) were chosen as examples for in-depth study the biosynthesis pathways in S. miltiorrhiza. The complementary data obtained from the metabolomics study and mass spectrometry imaging enabled the identification of key reactions involved in flavonoid biosynthesis in flowers, which lead the changes in metabolite distribution. The analysis also identified the core precursor for phenolic acid biosynthesis in Salvia species. Therefore, the powerful combination of metabolomics and mass spectrometry imaging provides a basis for obtaining detailed information on spatial metabolome and constitutes a platform for deep understanding the biosynthesis of bioactive metabolites in plants.
Collapse
|
47
|
Jiang Y, Sun J, Cao X, Liu H, Xiong C, Nie Z. Laser desorption/ionization mass spectrometry imaging-A new tool to see through nanoscale particles in biological systems. Chemistry 2021; 28:e202103710. [PMID: 34897857 DOI: 10.1002/chem.202103710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Yuming Jiang
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Jie Sun
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Xiaohua Cao
- Jiujiang University, College of Chemical Engineering, CHINA
| | - Huihui Liu
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Caiqiao Xiong
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, CHINA
| | - Zongxiu Nie
- Institute of Chemistry Chinese Academy of Sciences, Chinese Academy of Sciences, Zhongguancun St., 100190, Beijing, CHINA
| |
Collapse
|
48
|
Hu J, Liu F, Chen Y, Shangguan G, Ju H. Mass Spectrometric Biosensing: A Powerful Approach for Multiplexed Analysis of Clinical Biomolecules. ACS Sens 2021; 6:3517-3535. [PMID: 34529414 DOI: 10.1021/acssensors.1c01394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid and sensitive detection of clinical biomolecules in a multiplexed fashion is of great importance for accurate diagnosis of diseases. Mass spectrometric (MS) approaches are exceptionally suitable for clinical analysis due to its high throughput, high sensitivity, and reliable qualitative and quantitative capabilities. To break through the bottleneck of MS technique for detecting high-molecular-weight substances with low ionization efficiency, the concept of mass spectrometric biosensing has been put forward by adopting mass spectrometric chips to recognize the targets and mass spectrometry to detect the signals switched by the recognition. In this review, the principle of mass spectrometric sensing, the construction of different mass tags used for biosensing, and the typical combination mode of mass spectrometric imaging (MSI) technique are summarized. Future perspectives including the design of portable matching platforms, exploitation of novel mass tags, development of effective signal amplification strategies, and standardization of MSI methodologies are proposed to promote the advancements and practical applications of mass spectrometric biosensing.
Collapse
Affiliation(s)
- Junjie Hu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guoqiang Shangguan
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
49
|
Ha NS, de Raad M, Han LZ, Golini A, Petzold CJ, Northen TR. Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology. RSC Chem Biol 2021; 2:1331-1351. [PMID: 34704041 PMCID: PMC8496484 DOI: 10.1039/d1cb00112d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
High-throughput screening technologies are widely used for elucidating biological activities. These typically require trade-offs in assay specificity and sensitivity to achieve higher throughput. Microfluidic approaches enable rapid manipulation of small volumes and have found a wide range of applications in biotechnology providing improved control of reaction conditions, faster assays, and reduced reagent consumption. The integration of mass spectrometry with microfluidics has the potential to create high-throughput, sensitivity, and specificity assays. This review introduces the widely-used mass spectrometry ionization techniques that have been successfully integrated with microfluidics approaches such as continuous-flow system, microchip electrophoresis, droplet microfluidics, digital microfluidics, centrifugal microfluidics, and paper microfluidics. In addition, we discuss recent applications of microfluidics integrated with mass spectrometry in single-cell analysis, compound screening, and the study of microorganisms. Lastly, we provide future outlooks towards online coupling, improving the sensitivity and integration of multi-omics into a single platform.
Collapse
Affiliation(s)
- Noel S Ha
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Markus de Raad
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
| | - La Zhen Han
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Amber Golini
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Trent R Northen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| |
Collapse
|
50
|
Shi H, Grodner B, De Vlaminck I. Recent advances in tools to map the microbiome. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100289. [PMID: 34151052 PMCID: PMC8208594 DOI: 10.1016/j.cobme.2021.100289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbes thrive in diverse habitats. They often form ecological niches with rich species diversity and complex spatial structure. These communities drive biogeochemical cycles in the environment and modulate host health in the human body. Much has been learned about the makeup of human and environmental microbiota via metagenomic DNA sequencing, but information on spatial interactions between microbes and between microbes and their environment remains scarce. Here, we review recent advances in tools to map the biogeography of microbiomes. We discuss methods to spatially map microbial genes, transcripts, and metabolites. We also examine future directions for microbiome mapping technologies that will allow improved understanding of both microbiome structure and function. Finally, we reflect on the impact of these methods in Biomedical Engineering.
Collapse
Affiliation(s)
- Hao Shi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Benjamin Grodner
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|