1
|
Chittum JE, Thompson A, Desai UR. Glycosaminoglycan microarrays for studying glycosaminoglycan-protein systems. Carbohydr Polym 2024; 335:122106. [PMID: 38616080 PMCID: PMC11032185 DOI: 10.1016/j.carbpol.2024.122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
More than 3000 proteins are now known to bind to glycosaminoglycans (GAGs). Yet, GAG-protein systems are rather poorly understood in terms of selectivity of recognition, molecular mechanism of action, and translational promise. High-throughput screening (HTS) technologies are critically needed for studying GAG biology and developing GAG-based therapeutics. Microarrays, developed within the past two decades, have now improved to the point of being the preferred tool in the HTS of biomolecules. GAG microarrays, in which GAG sequences are immobilized on slides, while similar to other microarrays, have their own sets of challenges and considerations. GAG microarrays are rapidly becoming the first choice in studying GAG-protein systems. Here, we review different modalities and applications of GAG microarrays presented to date. We discuss advantages and disadvantages of this technology, explain covalent and non-covalent immobilization strategies using different chemically reactive groups, and present various assay formats for qualitative and quantitative interpretations, including selectivity screening, binding affinity studies, competitive binding studies etc. We also highlight recent advances in implementing this technology, cataloging of data, and project its future promise. Overall, the technology of GAG microarray exhibits enormous potential of evolving into more than a mere screening tool for studying GAG - protein systems.
Collapse
Affiliation(s)
- John E Chittum
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Ally Thompson
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America.
| |
Collapse
|
2
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
3
|
Kim Y, Li H, Choi J, Boo J, Jo H, Hyun JY, Shin I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem Soc Rev 2023; 52:7036-7070. [PMID: 37671645 DOI: 10.1039/d3cs00032j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Glycosidases are ubiquitous enzymes that catalyze the hydrolysis of glycosidic linkages in oligosaccharides and glycoconjugates. These enzymes play a vital role in a wide variety of biological events, such as digestion of nutritional carbohydrates, lysosomal catabolism of glycoconjugates, and posttranslational modifications of glycoproteins. Abnormal glycosidase activities are associated with a variety of diseases, particularly cancer and lysosomal storage disorders. Owing to the physiological and pathological significance of glycosidases, the development of small molecules that target these enzymes is an active area in glycoscience and medicinal chemistry. Research efforts carried out thus far have led to the discovery of numerous glycosidase-targeting small molecules that have been utilized to elucidate biological processes as well as to develop effective chemotherapeutic agents. In this review, we describe the results of research studies reported since 2018, giving particular emphasis to the use of fluorescent probes for detection and imaging of glycosidases, activity-based probes for covalent labelling of these enzymes, glycosidase inhibitors, and glycosidase-activatable prodrugs.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Joohee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Jihyeon Boo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hyemi Jo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
4
|
Aparna GM, Tetala KKR. Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays. Biomolecules 2023; 13:602. [PMID: 37189350 PMCID: PMC10135839 DOI: 10.3390/biom13040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Microarrays are one of the trailblazing technologies of the last two decades and have displayed their importance in all the associated fields of biology. They are widely explored to screen, identify, and gain insights on the characteristics traits of biomolecules (individually or in complex solutions). A wide variety of biomolecule-based microarrays (DNA microarrays, protein microarrays, glycan microarrays, antibody microarrays, peptide microarrays, and aptamer microarrays) are either commercially available or fabricated in-house by researchers to explore diverse substrates, surface coating, immobilization techniques, and detection strategies. The aim of this review is to explore the development of biomolecule-based microarray applications since 2018 onwards. Here, we have covered a different array of printing strategies, substrate surface modification, biomolecule immobilization strategies, detection techniques, and biomolecule-based microarray applications. The period of 2018-2022 focused on using biomolecule-based microarrays for the identification of biomarkers, detection of viruses, differentiation of multiple pathogens, etc. A few potential future applications of microarrays could be for personalized medicine, vaccine candidate screening, toxin screening, pathogen identification, and posttranslational modifications.
Collapse
Affiliation(s)
| | - Kishore K. R. Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India;
| |
Collapse
|
5
|
Gerling-Driessen UIM, Hoffmann M, Schmidt S, Snyder NL, Hartmann L. Glycopolymers against pathogen infection. Chem Soc Rev 2023; 52:2617-2642. [PMID: 36820794 DOI: 10.1039/d2cs00912a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.
Collapse
Affiliation(s)
- Ulla I M Gerling-Driessen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Miriam Hoffmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. .,Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, USA
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
6
|
Singh A, Arango JC, Shi A, d’Aliberti JB, Claridge SA. Surface-Templated Glycopolymer Nanopatterns Transferred to Hydrogels for Designed Multivalent Carbohydrate-Lectin Interactions across Length Scales. J Am Chem Soc 2023; 145:1668-1677. [PMID: 36640106 PMCID: PMC9881003 DOI: 10.1021/jacs.2c09937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multivalent interactions between carbohydrates and proteins enable a broad range of selective chemical processes of critical biological importance. Such interactions can extend from the macromolecular scale (1-10 nm) up to much larger scales across a cell or tissue, placing substantial demands on chemically patterned materials aiming to leverage similar interactions in vitro. Here, we show that diyne amphiphiles with carbohydrate headgroups can be assembled on highly oriented pyrolytic graphite (HOPG) to generate nanometer-resolution carbohydrate patterns, with individual linear carbohydrate assemblies up to nearly 1 μm, and microscale geometric patterns. These are then photopolymerized and covalently transferred to the surfaces of hydrogels. This strategy suspends carbohydrate patterns on a relatively rigid polydiacetylene (persistence length ∼ 16 nm), exposed at the top surface of the hydrogel above the bulk pore structure. Transferred patterns of appropriate carbohydrates (e.g., N-acetyl-d-glucosamine, GlcNAc) enable selective, multivalent interactions (KD ∼ 40 nM) with wheat germ agglutinin (WGA), a model lectin that exhibits multivalent binding with appropriately spaced GlcNAc moieties. WGA binding affinity can be further improved (KD ∼ 10 nM) using diacetylenes that shift the polymer backbone closer to the displayed carbohydrate, suggesting that this strategy can be used to modulate carbohydrate presentation at interfaces. Conversely, GlcNAc-patterned surfaces do not induce specific binding of concanavalin A, and surfaces patterned with glucuronic acid, or with simple carboxylic acid or hydroxyl groups, do not induce WGA binding. More broadly, this approach may have utility in designing synthetic glycan-mimetic interfaces with features from molecular to mesoscopic scales, including soft scaffolds for cells.
Collapse
Affiliation(s)
- Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Anni Shi
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Joseph B. d’Aliberti
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States,Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana47907, United States,. Phone: 765-494-6070
| |
Collapse
|
7
|
Abstract
Through their specific interactions with proteins, cellular glycans play key roles in a wide range of physiological and pathological processes. One of the main goals of research in the areas of glycobiology and glycomedicine is to understand glycan-protein interactions at the molecular level. Over the past two decades, glycan microarrays have become powerful tools for the rapid evaluation of interactions between glycans and proteins. In this review, we briefly describe methods used for the preparation of glycan probes and the construction of glycan microarrays. Next, we highlight applications of glycan microarrays to rapid profiling of glycan-binding patterns of plant, animal and pathogenic lectins, as well as other proteins. Finally, we discuss other important uses of glycan microarrays, including the rapid analysis of substrate specificities of carbohydrate-active enzymes, the quantitative determination of glycan-protein interactions, discovering high-affinity or selective ligands for lectins, and identifying functional glycans within cells. We anticipate that this review will encourage researchers to employ glycan microarrays in diverse glycan-related studies.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
8
|
Liu D, Dong J, Zhang J, Xu X, Tian Q, Meng X, Wu L, Zheng D, Chu X, Wang W, Meng Q, Wang Y. Genome-Wide Mapping of Plasma IgG N-Glycan Quantitative Trait Loci Identifies a Potentially Causal Association between IgG N-Glycans and Rheumatoid Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2508-2514. [PMID: 35545292 DOI: 10.4049/jimmunol.2100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2022] [Indexed: 01/03/2023]
Abstract
Observational studies highlight associations of IgG N-glycosylation with rheumatoid arthritis (RA); however, the causality between these conditions remains to be determined. Standard and multivariable two-sample Mendelian randomization (MR) analyses integrating a summary genome-wide association study for RA and IgG N-glycan quantitative trait loci (IgG N-glycan-QTL) data were performed to explore the potentially causal associations of IgG N-glycosylation with RA. After correcting for multiple testing (p < 2 × 10-3), the standard MR analysis based on the inverse-variance weighted method showed a significant association of genetically instrumented IgG N-glycan (GP4) with RA (odds ratioGP4 = 0.906, 95% confidence interval = 0.857-0.958, p = 5.246 × 10-4). In addition, we identified seven significant associations of genetically instrumented IgG N-glycans with RA by multivariable MR analysis (p < 2 × 10-3). Results were broadly consistent in sensitivity analyses using MR_Lasso, MR_weighted median, MR_Egger regression, and leave-one-out analysis with different instruments (all p values <0.05). There was limited evidence of pleiotropy bias (all p values > 0.05). In conclusion, our MR analysis incorporating genome-wide association studies and IgG N-glycan-QTL data revealed that IgG N-glycans were potentially causally associated with RA. Our findings shed light on the role of IgG N-glycosylation in the development of RA. Future studies are needed to validate our findings and to explore the underlying physiological mechanisms in the etiology of RA.
Collapse
Affiliation(s)
- Di Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.,Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jing Dong
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xizhu Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China; and
| | - Qiuyue Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiaoni Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xi Chu
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.,School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China; and.,Centre for Precision Health, ECU Strategic Research Centre, Edith Cowan University, Perth, Western Australia, Australia
| | - Qun Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Youxin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China; .,Centre for Precision Health, ECU Strategic Research Centre, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Temme JS, Gildersleeve JC. General Strategies for Glycan Microarray Data Processing and Analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2460:67-87. [PMID: 34972931 DOI: 10.1007/978-1-0716-2148-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glycan microarrays provide a high-throughput technology for rapidly profiling interactions between carbohydrates and glycan-binding proteins (GBPs). Use of glycan microarrays involves several general steps, including construction of the microarray, carrying out the assay, detection of binding events, and analysis of the results. While multiple platforms have been developed to construct microarrays, most utilize fluorescence for detection of binding events. This chapter describes methods to acquire and process microarray images, including generating GAL files, imaging of the slide, aligning the grid, detecting problematic spots, and evaluating the quality of the data. The chapter focuses on processing our neoglycoprotein microarrays, but many of the lessons we have learned are applicable to other array formats.
Collapse
Affiliation(s)
- J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
10
|
DeLaitsch AT, Pridgen JR, Tytla A, Peach ML, Hu R, Farnsworth DW, McMillan AK, Flanagan N, Temme JS, Nicklaus MC, Gildersleeve JC. Selective Recognition of Carbohydrate Antigens by Germline Antibodies Isolated from AID Knockout Mice. J Am Chem Soc 2022; 144:4925-4941. [PMID: 35282679 PMCID: PMC10506689 DOI: 10.1021/jacs.1c12745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Germline antibodies, the initial set of antibodies produced by the immune system, are critical for host defense, and information about their binding properties can be useful for designing vaccines, understanding the origins of autoantibodies, and developing monoclonal antibodies. Numerous studies have found that germline antibodies are polyreactive with malleable, flexible binding pockets. While insightful, it remains unclear how broadly this model applies, as there are many families of antibodies that have not yet been studied. In addition, the methods used to obtain germline antibodies typically rely on assumptions and do not work well for many antibodies. Herein, we present a distinct approach for isolating germline antibodies that involves immunizing activation-induced cytidine deaminase (AID) knockout mice. This strategy amplifies antigen-specific B cells, but somatic hypermutation does not occur because AID is absent. Using synthetic haptens, glycoproteins, and whole cells, we obtained germline antibodies to an assortment of clinically important tumor-associated carbohydrate antigens, including Lewis Y, the Tn antigen, sialyl Lewis C, and Lewis X (CD15/SSEA-1). Through glycan microarray profiling and cell binding, we demonstrate that all but one of these germline antibodies had high selectivity for their glycan targets. Using molecular dynamics simulations, we provide insights into the structural basis of glycan recognition. The results have important implications for designing carbohydrate-based vaccines, developing anti-glycan monoclonal antibodies, and understanding antibody evolution within the immune system.
Collapse
Affiliation(s)
- Andrew T DeLaitsch
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jacey R Pridgen
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Avery Tytla
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Rayleen Hu
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David W Farnsworth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Aislinn K McMillan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Natalie Flanagan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
11
|
Heine V, Dey C, Bojarová P, Křen V, Elling L. Methods of in vitro study of galectin-glycomaterial interaction. Biotechnol Adv 2022; 58:107928. [DOI: 10.1016/j.biotechadv.2022.107928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
|
12
|
Le Berre M, Gerlach JQ, Kilcoyne M. Preparation and Fluorescent Labeling of Cell-Derived Micelles and Profiling on Glycan Microarrays. Methods Mol Biol 2022; 2460:239-248. [PMID: 34972941 DOI: 10.1007/978-1-0716-2148-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mammalian cell surface lectins mediate many important biological interactions which regulate physiological processes and therefore profiling mammalian cells on glycan microarray is of interest. However, many whole mammalian cells are not compatible with glycomics microarray formats and instead cell-derived micelles are prepared and profiled instead of whole cells as they can accurately represent the parental cell glycome. In this chapter, we describe the preparation of cell-derived micelles from mammalian cells, their labeling using a membrane-incorporating dye, and their profiling on a glycan microarray platform.
Collapse
Affiliation(s)
- Marie Le Berre
- Carbohydrate Signalling Group, Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Advanced Glycoscience Research Cluster, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jared Q Gerlach
- Advanced Glycoscience Research Cluster, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Michelle Kilcoyne
- Carbohydrate Signalling Group, Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
- Advanced Glycoscience Research Cluster, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
13
|
Liu C, Yang L, Niu Q, Yu G, Li G. Carbohydrate microarrays fabricated on poly(2-methylacrylic acid)-based substrates for analysis of carbohydrate–protein interactions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05758h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate microarrays were fabricated on poly(2-methylacrylic acid) (pMAA)-based substrates. They were used for investigating the specific interactions of polysaccharides and SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Chanjuan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Luyao Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qingfeng Niu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|
14
|
Di Maio A, Cioce A, Achilli S, Thépaut M, Vivès C, Fieschi F, Rojo J, Reichardt NC. Controlled density glycodendron microarrays for studying carbohydrate-lectin interactions. Org Biomol Chem 2021; 19:7357-7362. [PMID: 34387640 DOI: 10.1039/d1ob00872b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycodendron microarrays with defined valency have been constructed by on-chip synthesis on hydrophobic indium tin oxide (ITO) coated glass slides and employed in lectin-carbohydrate binding studies with several plant and human lectins. Glycodendrons presenting sugar epitopes at different valencies were prepared by spotwise strain-promoted azide-alkyne cycloaddition (SPAAC) between immobilised cyclooctyne dendrons and azide functionalised glycans. The non-covalent immobilisation of dendrons on the ITO surface by hydrophobic interaction allowed us to study dendron surface density and SPAAC conversion rate by in situ MALDI-TOF MS analysis. By diluting the dendron surface density we could study how the carbohydrate-lectin interactions became exclusively dependant on the valency of the immobilised glycodendron.
Collapse
Affiliation(s)
- Antonio Di Maio
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, 41092 Seville, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim Y, Hyun JY, Shin I. Multivalent glycans for biological and biomedical applications. Chem Soc Rev 2021; 50:10567-10593. [PMID: 34346405 DOI: 10.1039/d0cs01606c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recognition of glycans by proteins plays a crucial role in a variety of physiological processes in cells and living organisms. In addition, interactions of glycans with proteins are involved in the development of diverse diseases, such as pathogen infection, inflammation and tumor metastasis. It is well-known that multivalent glycans bind to proteins much more strongly than do their monomeric counterparts. Owing to this property, numerous multivalent glycans have been utilized to elucidate glycan-mediated biological processes and to discover glycan-based biomedical agents. In this review, we discuss recent advances (2014-2020) made in the development and biological and biomedical applications of synthetic multivalent glycans, including neoglycopeptides, neoglycoproteins, glycodendrimers, glycopolymers, glyconanoparticles and glycoliposomes. We hope this review assists researchers in the design and development of novel multivalent glycans with predictable activities.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
16
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
17
|
Anti-glycan antibodies: roles in human disease. Biochem J 2021; 478:1485-1509. [PMID: 33881487 DOI: 10.1042/bcj20200610] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.
Collapse
|
18
|
Gening ML, Kurbatova EA, Nifantiev NE. Synthetic Analogs of Streptococcus pneumoniae Capsular Polysaccharides and Immunogenic Activities of Glycoconjugates. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:1-25. [PMID: 33776393 PMCID: PMC7980793 DOI: 10.1134/s1068162021010076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium (pneumococcus) that causes severe diseases in adults and children. It was established that some capsular polysaccharides of the clinically significant serotypes of S. pneumoniae in the composition of commercial pneumococcal polysaccharide or conjugate vaccines exhibit low immunogenicity. The review considers production methods and structural features of the synthetic oligosaccharides from the problematic pneumococcal serotypes that are characterized with low immunogenicity due to destruction or detrimental modification occurring in the process of their preparation and purification. Bacterial serotypes that cause severe pneumococcal diseases as well as serotypes not included in the composition of the pneumococcal conjugate vaccines are also discussed. It is demonstrated that the synthetic oligosaccharides corresponding to protective glycotopes of the capsular polysaccharides of various pneumococcal serotypes are capable of inducing formation of the protective opsonizing antibodies and immunological memory. Optimal constructs of oligosaccharides from the epidemiologically significant pneumococcal serotypes are presented that can be used for designing synthetic pneumococcal vaccines, as well as test systems for diagnosis of S. pneumoniae infections and monitoring of vaccination efficiency .
Collapse
Affiliation(s)
- M. L. Gening
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - E A. Kurbatova
- Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia
| | - N. E. Nifantiev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
19
|
Heo HR, Joo KI, Seo JH, Kim CS, Cha HJ. Glycan chip based on structure-switchable DNA linker for on-chip biosynthesis of cancer-associated complex glycans. Nat Commun 2021; 12:1395. [PMID: 33654088 PMCID: PMC7925590 DOI: 10.1038/s41467-021-21538-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 01/29/2021] [Indexed: 12/05/2022] Open
Abstract
On-chip glycan biosynthesis is an effective strategy for preparing useful complex glycan sources and for preparing glycan-involved applications simultaneously. However, current methods have some limitations when analyzing biosynthesized glycans and optimizing enzymatic reactions, which could result in undefined glycan structures on a surface, leading to unequal and unreliable results. In this work, a glycan chip is developed by introducing a pH-responsive i-motif DNA linker to control the immobilization and isolation of glycans on chip surfaces in a pH-dependent manner. On-chip enzymatic glycosylations are optimized for uniform biosynthesis of cancer-associated Globo H hexasaccharide and its related complex glycans through stepwise quantitative analyses of isolated products from the surface. Successful interaction analyses of the anti-Globo H antibody and MCF-7 breast cancer cells with on-chip biosynthesized Globo H-related glycans demonstrate the feasibility of the structure-switchable DNA linker-based glycan chip platform for on-chip complex glycan biosynthesis and glycan-involved applications.
Collapse
Affiliation(s)
- Hye Ryoung Heo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kye Il Joo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Chang Sup Kim
- School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
20
|
Pan L, Cai C, Liu C, Liu D, Li G, Linhardt RJ, Yu G. Recent progress and advanced technology in carbohydrate-based drug development. Curr Opin Biotechnol 2021; 69:191-198. [PMID: 33530023 DOI: 10.1016/j.copbio.2020.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 11/18/2022]
Abstract
Carbohydrates, one of the most abundant and widespread biomolecules in nature, play indispensable roles in diverse biological functions, and represent a treasure trove of untapped potential for pharmaceutical applications. Here, we provide a brief overview of carbohydrate-based drug development (CBDD) over the past two decades. More importantly, advanced techniques and methodologies related to CBDD are emerging, including enzymatic synthesis, metabolic engineering, site-specific glycoconjugation, carbohydrate libraries and microarrays as well as carbohydrate-gut microbiome evaluation. These technologies have dramatically accelerated the speed of CBDD. The recently approved drugs and emerging techniques summarized herein will inspire new sights into potential opportunities to discover novel carbohydrate drugs.
Collapse
Affiliation(s)
- Lin Pan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Chanjuan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Di Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
21
|
Liou SW, Fang JL, Lin HW, Tsai TW, Huang HH, Liang CY, Yang CR, Wei GT, Yu CC. Effective Separation of Human Milk Glycosides using Carbon Dioxide Supercritical Fluid Chromatography. Chem Asian J 2021; 16:492-497. [PMID: 33417290 DOI: 10.1002/asia.202001404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Indexed: 01/13/2023]
Abstract
Carbohydrate purification remains problematic due to the intrinsic diversity of structural isomers present in nature. Although liquid chromatography-based techniques are suitable for analyzing or preparing most glycan structures acquired either from natural sources or through chemical or enzymatic synthesis, the separation of regioisomers or linkage isomers with a clear resolution remains challenging. Herein, a carbon dioxide supercritical fluid chromatography (SFC) method was devised to resolve 18 human milk glycosides: oligomers (disaccharides to hexasaccharides), fucosylated regioisomers (lacto-N-fucopentaose I, III, and V; lacto-N-neofucopentaose V; lacto-N-difucohexaose III; blood group H1 antigen; and TF-LNnT), and connectivity isomers (lacto-N-tetraose/lacto-N-neotetraose and para-lacto-N-hexaose/para-lacto-N-neohexaose/type-1 hexasaccharide). The analysis of these glycosides represents a major limitation associated with conventional carbohydrate analysis. The unprecedented resolution achieved by the SFC method indicates the suitability of this key technology for revealing complex human milk glycomes.
Collapse
Affiliation(s)
- Shih-Wei Liou
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Jia-Lin Fang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Hung-Wei Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Hsin-Hui Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Chin-Yu Liang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Cheng-Ruel Yang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Guor-Tzo Wei
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| |
Collapse
|
22
|
Valles DJ, Zholdassov YS, Braunschweig AB. Evolution and applications of polymer brush hypersurface photolithography. Polym Chem 2021. [DOI: 10.1039/d1py01073e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypersurface photolithography creates arbitrary polymer brush patterns with independent control over feature diameter, height, and spacing between features, while controlling composition along a polymer chain and between features.
Collapse
Affiliation(s)
- Daniel J. Valles
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Yerzhan S. Zholdassov
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Adam B. Braunschweig
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
23
|
Databases and Bioinformatic Tools for Glycobiology and Glycoproteomics. Int J Mol Sci 2020; 21:ijms21186727. [PMID: 32937895 PMCID: PMC7556027 DOI: 10.3390/ijms21186727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosylation plays critical roles in various biological processes and is closely related to diseases. Deciphering the glycocode in diverse cells and tissues offers opportunities to develop new disease biomarkers and more effective recombinant therapeutics. In the past few decades, with the development of glycobiology, glycomics, and glycoproteomics technologies, a large amount of glycoscience data has been generated. Subsequently, a number of glycobiology databases covering glycan structure, the glycosylation sites, the protein scaffolds, and related glycogenes have been developed to store, analyze, and integrate these data. However, these databases and tools are not well known or widely used by the public, including clinicians and other researchers who are not in the field of glycobiology, but are interested in glycoproteins. In this study, the representative databases of glycan structure, glycoprotein, glycan-protein interactions, glycogenes, and the newly developed bioinformatic tools and integrated portal for glycoproteomics are reviewed. We hope this overview could assist readers in searching for information on glycoproteins of interest, and promote further clinical application of glycobiology.
Collapse
|
24
|
Purification of natural neutral N-glycans by using two-dimensional hydrophilic interaction liquid chromatography × porous graphitized carbon chromatography for glycan-microarray assay. Talanta 2020; 221:121382. [PMID: 33076051 DOI: 10.1016/j.talanta.2020.121382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/06/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022]
Abstract
Glycan microarray for studying carbohydrate-protein interactions requires diverse classes of well-defined glycan standards. In this study, a purification strategy was established based on two-dimensional hydrophilic interaction liquid chromatography and porous graphitized carbon chromatography (HILIC × PGC) for the acquisition of neutral N-glycan standards from natural source. A total of thirty-one N-glycan compounds including seven pairs of isomers with the amounts from 0.7 to 230.0 nmol were isolated from ovalbumin as the model glycoconjugate. The purified N-glycans covered high-mannose, hybrid as well as multi-antenna asymmetric complex types. The purity of majority of these N-glycans was higher than 90%. Detailed structures of the N-glycan compounds were verified via negative ion tandem MS analysis, in which specific diagnostic ions including D- and E-ions were used to identify isomeric and terminal fine structures. The tag-free glycan compounds with well-defined structures, purity and amounts were finally assembled on the glass slide through neoglycolipid technology. Microarray binding assay of purified glycans with WGA lectin indicated the potential of the established strategy in glycan library expansion and functional glycomics.
Collapse
|
25
|
Horton M, Su G, Yi L, Wang Z, Xu Y, Pagadala V, Zhang F, Zaharoff DA, Pearce K, Linhardt RJ, Liu J. Construction of heparan sulfate microarray for investigating the binding of specific saccharide sequences to proteins. Glycobiology 2020; 31:188-199. [PMID: 32681173 DOI: 10.1093/glycob/cwaa068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate (HS) is a heterogeneous, extracellular glycan that interacts with proteins and other molecules affecting many biological processes. The specific binding motifs of HS interactions are of interest, but have not been extensively characterized. Glycan microarrays are valuable tools that can be used to probe the interactions between glycans and their ligands while relying on relatively small amounts of samples. Recently, chemoenzymatic synthesis of HS has been employed to produce specific HS structures that can otherwise be difficult to produce. In this study, a microarray of diverse chemoenzymatically synthesized HS structures was developed and HS interactions were characterized. Fluorescently labeled antithrombin III (AT) and fibroblast growth factor-2 (FGF2) were screened against 95 different HS structures under three different printing concentrations to confirm the utility of this microarray. Specific sulfation patterns were found to be important for binding to these proteins and results are consistent with previous specificity studies. Furthermore, the binding affinities (KD,surf) of AT and FGF2 to multiple HS structures were determined using a microarray technique and is consistent with previous reports. Lastly, the 95-compound HS microarray was used to determine the distinct binding profiles for interleukin 12 and platelet factor 4. This technique is ideal for rapid expansion and will be pivotal to the high-throughput characterization of biologically important structure/function relationships.
Collapse
Affiliation(s)
- Maurice Horton
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Lin Yi
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill & North Carolina State University, Raleigh, NC, USA
| | - Ken Pearce
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Chao Q, Ding Y, Chen ZH, Xiang MH, Wang N, Gao XD. Recent Progress in Chemo-Enzymatic Methods for the Synthesis of N-Glycans. Front Chem 2020; 8:513. [PMID: 32612979 PMCID: PMC7309569 DOI: 10.3389/fchem.2020.00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Asparagine (N)-linked glycosylation is one of the most common co- and post-translational modifications of both intra- and extracellularly distributing proteins, which directly affects their biological functions, such as protein folding, stability and intercellular traffic. Production of the structural well-defined homogeneous N-glycans contributes to comprehensive investigation of their biological roles and molecular basis. Among the various methods, chemo-enzymatic approach serves as an alternative to chemical synthesis, providing high stereoselectivity and economic efficiency. This review summarizes some recent advances in the chemo-enzymatic methods for the production of N-glycans, including the preparation of substrates and sugar donors, and the progress in the glycosyltransferases characterization which leads to the diversity of N-glycan synthesis. We discuss the bottle-neck and new opportunities in exploiting the chemo-enzymatic synthesis of N-glycans based on our research experiences. In addition, downstream applications of the constructed N-glycans, such as automation devices and homogeneous glycoproteins synthesis are also described.
Collapse
Affiliation(s)
| | | | | | | | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Haab BB, Klamer Z. Advances in Tools to Determine the Glycan-Binding Specificities of Lectins and Antibodies. Mol Cell Proteomics 2020; 19:224-232. [PMID: 31848260 PMCID: PMC7000120 DOI: 10.1074/mcp.r119.001836] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/13/2019] [Indexed: 01/17/2023] Open
Abstract
Proteins that bind carbohydrate structures can serve as tools to quantify or localize specific glycans in biological specimens. Such proteins, including lectins and glycan-binding antibodies, are particularly valuable if accurate information is available about the glycans that a protein binds. Glycan arrays have been transformational for uncovering rich information about the nuances and complexities of glycan-binding specificity. A challenge, however, has been the analysis of the data. Because protein-glycan interactions are so complex, simplistic modes of analyzing the data and describing glycan-binding specificities have proven inadequate in many cases. This review surveys the methods for handling high-content data on protein-glycan interactions. We contrast the approaches that have been demonstrated and provide an overview of the resources that are available. We also give an outlook on the promising experimental technologies for generating new insights into protein-glycan interactions, as well as a perspective on the limitations that currently face the field.
Collapse
|
28
|
García‐Oliva C, Cabanillas AH, Perona A, Hoyos P, Rumbero Á, Hernáiz MJ. Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists. Chemistry 2020; 26:1588-1596. [DOI: 10.1002/chem.201903788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Cecilia García‐Oliva
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | | | - Almudena Perona
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Pilar Hoyos
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Ángel Rumbero
- Departamento de Química OrgánicaUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - María J. Hernáiz
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
29
|
Lv Y, Zhou Y, Dong H, Liu L, Mao G, Zhang Y, Xu M. Amplified Electrochemical Aptasensor for Sialic Acid Based on Carbon‐Cloth‐Supported Gold Nanodendrites and Functionalized Gold Nanoparticles. ChemElectroChem 2020. [DOI: 10.1002/celc.201902049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yubing Lv
- Chemistry and Chemical Engineering SchoolNortheast Petroleum University Daqing 163318 P. R. China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing College of Chemistry and Chemical EngineeringShangqiu Normal University Shangqiu 476000 P. R. China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing College of Chemistry and Chemical EngineeringShangqiu Normal University Shangqiu 476000 P. R. China
| | - Lantao Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing College of Chemistry and Chemical EngineeringShangqiu Normal University Shangqiu 476000 P. R. China
- College of ChemistryZhengzhou University Zhengzhou 450001 P. R. China
| | - Guoliang Mao
- Chemistry and Chemical Engineering SchoolNortheast Petroleum University Daqing 163318 P. R. China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing College of Chemistry and Chemical EngineeringShangqiu Normal University Shangqiu 476000 P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing College of Chemistry and Chemical EngineeringShangqiu Normal University Shangqiu 476000 P. R. China
- College of ChemistryZhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
30
|
Meng X, Li D, Zhang A, Zhang Q. Probing the glycopolymer–ion interaction via specific ion effects. Polym Chem 2020. [DOI: 10.1039/d0py01221a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Specific ion effects were used to probe the interactions between thermoresponsive glycopolymers and different ions.
Collapse
Affiliation(s)
- Xiancheng Meng
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Die Li
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Aotian Zhang
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| |
Collapse
|
31
|
Temme JS, Campbell CT, Gildersleeve JC. Factors contributing to variability of glycan microarray binding profiles. Faraday Discuss 2019; 219:90-111. [PMID: 31338503 PMCID: PMC9335900 DOI: 10.1039/c9fd00021f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Protein-carbohydrate interactions play significant roles in a wide variety of biological systems. Glycan microarrays are commonly utilized to interrogate the selectivity, sensitivity, and breadth of these complex protein-carbohydrate interactions. During the past two decades, numerous distinct glycan microarray platforms have been developed, each assembled from a variety of slide-surface chemistries, glycan-attachment chemistries, glycan presentations, linkers, and glycan densities. Comparative analyses of glycan microarray data have shown that while many protein-carbohydrate interactions behave predictably across microarrays, there are instances when various array formats produce different results. For optimal construction and use of this technology, it is important to understand sources of variances across array platforms. In this study, we performed a systematic comparison of microarray data from 8 lectins across a range of concentrations on the CFG and neoglycoprotein array platforms. While there was good general agreement on the binding specificity of the lectins on the two arrays, there were some cases of large discrepancies. Differences in glycan density and linker composition contributed significantly to variability. The results provide insights for interpreting microarray data and designing future glycan microarrays.
Collapse
Affiliation(s)
- J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
32
|
Yeung SY, Sergeeva Y, Dam T, Jönsson P, Pan G, Chaturvedi V, Sellergren B. Lipid Bilayer-like Mixed Self-Assembled Monolayers with Strong Mobility and Clustering-Dependent Lectin Affinity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8174-8181. [PMID: 31117738 DOI: 10.1021/acs.langmuir.9b01452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glycans at the surface of cellular membranes modulate biological activity via multivalent association with extracellular messengers. The lack of tuneable simplified models mimicking this dynamic environment complicates basic studies of these phenomena. We here present a series of mixed reversible self-assembled monolayers (rSAMs) that addresses this deficiency. Mixed rSAMs were prepared in water by simple immersion of a negatively charged surface in a mixture of sialic acid- and hydroxy-terminated benzamidine amphiphiles. Surface compositions derived from infrared reflection-absorption spectroscopy (IRAS) and film thickness information (atomic force microscopy, ellipsometry) suggest the latter to be statistically incorporated in the monolayer. These surfaces' affinity for the lectin hemagglutinin revealed a strong dependence of the affinity on the presentation, density, and mobility of the sialic acid ligands. Hence, a spacer length of 4 ethylene glycol and a surface density of 15% resulted in a dissociation constant Kd,multi of 1.3 × 10-13 M, on par with the best di- or tri-saccharide-based binders reported to date, whereas a density of 20% demonstrated complete resistance to hemagglutinin binding. These results correlated with ligand mobility measured by fluorescence recovery after photobleaching which showed a dramatic drop in the same interval. The results have a direct bearing on biological cell surface multivalent recognition involving lipid bilayers and may guide the design of model surfaces and sensors for both fundamental and applied studies.
Collapse
Affiliation(s)
- Sing Yee Yeung
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Yulia Sergeeva
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Tommy Dam
- Division of Physical Chemistry , Lund University , Box 124, 22100 Lund , Sweden
| | - Peter Jönsson
- Division of Physical Chemistry , Lund University , Box 124, 22100 Lund , Sweden
| | - Guoqing Pan
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Vivek Chaturvedi
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| |
Collapse
|
33
|
Valles DJ, Naeem Y, Carbonell C, Wong AM, Mootoo DR, Braunschweig AB. Maskless Photochemical Printing of Multiplexed Glycan Microarrays for High-Throughput Binding Studies. ACS Biomater Sci Eng 2019; 5:3131-3138. [DOI: 10.1021/acsbiomaterials.9b00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel J. Valles
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Yasir Naeem
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Carlos Carbonell
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Alexa M. Wong
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - David R. Mootoo
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Adam B. Braunschweig
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
34
|
Liu C, Li C, Niu Q, Cai C, Li G, Yu G. Fabrication of carbohydrate microarrays on poly(2-hydroxyethyl methacrylate)-cyanuric chloride-modified substrates for the analysis of carbohydrate–lectin interactions. NEW J CHEM 2019. [DOI: 10.1039/c9nj01369e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pHEMA polymer provides an anti-fouling surface and the CC linker allows the covalent immobilization of intact carbohydrates.
Collapse
Affiliation(s)
- Chanjuan Liu
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology
- Ocean University of China
| | - Chao Li
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology
- Ocean University of China
| | - Qingfeng Niu
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology
- Ocean University of China
| | - Chao Cai
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology
- Ocean University of China
| | - Guoyun Li
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology
- Ocean University of China
| | - Guangli Yu
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology
- Ocean University of China
| |
Collapse
|
35
|
Neal TA, Wang W, Zhiquan L, Peng R, Soni P, Xie H, Badjić JD. A Hexavalent Basket for Bottom‐Up Construction of Functional Soft Materials and Polyvalent Drugs through a “Click” Reaction. Chemistry 2018; 25:1242-1248. [PMID: 30466183 DOI: 10.1002/chem.201805246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/19/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Taylor A. Neal
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Weikun Wang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Lei Zhiquan
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Ruojing Peng
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Priti Soni
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Han Xie
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| |
Collapse
|
36
|
Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy. Nat Chem 2018; 11:161-169. [PMID: 30532014 PMCID: PMC6347513 DOI: 10.1038/s41557-018-0188-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/07/2018] [Indexed: 11/13/2022]
Abstract
Contemporary chemoenzymatic approaches can provide highly complex multi-antennary N-linked glycans. These procedures are, however, very demanding and typically involve as many as 100 chemical steps to prepare advanced intermediates that can be diversified by glycosyltransferases in a branch selective manner to give asymmetrical structures commonly found in Nature. Only highly specialized laboratories can perform such syntheses, which greatly hampers progress in glycoscience. Here we describe a biomimetic approach in which a readily available bi-antennary glycopeptide can be converted in 10 or fewer chemical and enzymatic steps into multi-antennary N-glycans that at each arm can be uniquely extended by glycosyltransferases to give access to highly complex asymmetrically branched N-glycans. A key feature of our approach is the installation of additional branching points using recombinant MGAT4 and MGAT5 in combination with unnatural sugar donors. At an appropriate point in the enzymatic synthesis, the unnatural monosaccharides can be converted into their natural counterpart allowing each arm to be elaborated into a unique appendage.
Collapse
|
37
|
Affiliation(s)
- Chi‐Huey Wong
- The Scripps Research Institute 10550 N. Torrey Pines Rd. La Jolla CA 92037
- The Genomics Research Center Academia Sinica No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
| | - Larissa Krasnova
- The Scripps Research Institute 10550 N. Torrey Pines Rd. La Jolla CA 92037
| |
Collapse
|
38
|
Biophysical Analyses for Probing Glycan-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:119-147. [PMID: 30484247 PMCID: PMC7153041 DOI: 10.1007/978-981-13-2158-0_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycan-protein interactions occur at many physiological events, and the analyses are of considerable importance for understanding glycan-dependent mechanisms. Biophysical approaches including 3D structural analysis are essential for revealing glycan-protein interactions at the atomic level. The inherent diversity of glycans suits them to function as identification tags, e.g., distinguish self from the nonself components of pathogens. However, the complexity of glycans and poor affinities for interaction partners limit the usefulness of conventional analyses. To cope with such troublesome glycans, a logical sequence of biophysical analyses need to be developed. In this chapter, we introduce a workflow of glycan-protein interaction analysis consisting of six steps: preparation of lectin and glycan, screening of glycan ligand, determination of binding epitope, quantitative interaction analysis, 3D structural analysis, and molecular dynamics simulation. Our increasing knowledge and understanding of lectin-glycan interactions will hopefully lead to the design of glyco-based medicines and vaccines.
Collapse
|
39
|
Laigre E, Tiertant C, Goyard D, Renaudet O. Identification of Nanomolar Lectin Ligands by a Glycodendrimer Microarray. ACS OMEGA 2018; 3:14013-14020. [PMID: 30411056 PMCID: PMC6210076 DOI: 10.1021/acsomega.8b01526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/07/2018] [Indexed: 05/20/2023]
Abstract
Carbohydrate-protein interactions play key roles in a wide variety of biological processes. These interactions are usually weak, with dissociation constants in the low millimolar to high micromolar range. Nature uses multivalency to reach high avidities via the glycoside cluster effect. Capitalizing on this effect, numerous synthetic multivalent glycoconjugates have been described and used as ligands for carbohydrate-binding proteins. However, valency is only one of the several parameters governing the binding mechanisms that are different for every biological receptor, making it almost impossible to predict. In this context, ligand optimization requires the screening of a large number of structures with different valencies, rigidities/flexibilities, and architectures. In this article, we describe a screening platform based on a glycodendrimer array and its use to determine the key parameters for high-affinity ligands of lectin. Several glycoclusters and glycodendrimers displaying varying numbers of α-N-acetylgalactosamine residues were covalently attached on glass slides, and their bindings were studied with the fluorophore-functionalized Helix pomatia agglutinin (HPA) used as a lectin model. This technique requires minimal quantities of glycoconjugate compared to those for other techniques and affords useful information on the binding strength. Building of the glycodendrimer array and quantification of the interactions with HPA are described.
Collapse
Affiliation(s)
- Eugénie Laigre
- Univ. Grenoble Alpes, CNRS,
DCM UMR 5250, F-38000 Grenoble, France
| | - Claire Tiertant
- Univ. Grenoble Alpes, CNRS,
DCM UMR 5250, F-38000 Grenoble, France
| | - David Goyard
- Univ. Grenoble Alpes, CNRS,
DCM UMR 5250, F-38000 Grenoble, France
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS,
DCM UMR 5250, F-38000 Grenoble, France
| |
Collapse
|
40
|
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem Rev 2018; 118:8151-8187. [DOI: 10.1021/acs.chemrev.8b00066] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Junqiang Fang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xianwei Liu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yun Kong
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
41
|
Meningococcal Vaccines: Current Status and Emerging Strategies. Vaccines (Basel) 2018; 6:vaccines6010012. [PMID: 29495347 PMCID: PMC5874653 DOI: 10.3390/vaccines6010012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis causes most cases of bacterial meningitis. Meningococcal meningitis is a public health burden to both developed and developing countries throughout the world. There are a number of vaccines (polysaccharide-based, glycoconjugate, protein-based and combined conjugate vaccines) that are approved to target five of the six disease-causing serogroups of the pathogen. Immunization strategies have been effective at helping to decrease the global incidence of meningococcal meningitis. Researchers continue to enhance these efforts through discovery of new antigen targets that may lead to a broadly protective vaccine and development of new methods of homogenous vaccine production. This review describes current meningococcal vaccines and discusses some recent research discoveries that may transform vaccine development against N. meningitidis in the future.
Collapse
|
42
|
Hyun JY, Kang NR, Shin I. Carbohydrate Microarrays Containing Glycosylated Fluorescent Probes for Assessment of Glycosidase Activities. Org Lett 2018; 20:1240-1243. [DOI: 10.1021/acs.orglett.8b00180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ji Young Hyun
- Center for Biofunctional
Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Na Rae Kang
- Center for Biofunctional
Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Injae Shin
- Center for Biofunctional
Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
43
|
Kim HS, Hyun JY, Park SH, Shin I. Analysis of binding properties of pathogens and toxins using multivalent glycan microarrays. RSC Adv 2018; 8:14898-14905. [PMID: 35541319 PMCID: PMC9080041 DOI: 10.1039/c8ra01285g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/15/2018] [Indexed: 11/28/2022] Open
Abstract
Pathogens infect hosts often through initial binding of their cell surface lectins to glycans expressed on the exterior of host cells. Thus, methods to evaluate the glycan-binding properties of pathogens are of great importance. Because of the multivalent nature of interactions of pathogens with glycans, the ability to assess the glycan density-dependent binding of pathogens is particularly important. In this study, we developed a facile technique to construct multivalent carbohydrate microarrays through immobilization of unmodified glycans on multivalent hydrazide-derivatized glass surfaces. This immobilization strategy does not require the use of multivalent glycoconjugates, which are typically prepared by using multistep sequences. The results of analysis of microarray images, obtained after incubation of multivalent glycan microarrays with cholera toxin B and pathogens such as uropathogenic E. coli and H. pylori, show that the binding affinities of toxins and pathogens for glycans are highly glycan density-dependent. Specifically, toxins and pathogens bind to glycans more strongly as the valency of the glycans on the microarrays is increased from 1 to 4. It is anticipated that the newly developed immobilization method will be applicable to the preparation of multivalent carbohydrate microarrays that are employed to evaluate multivalent glycan binding properties of a variety of pathogens and toxins. Microarrays constructed by immobilizing free glycans on multivalent hydrazide-coated surfaces were applied to evaluate multivalent glycan binding properties of pathogens.![]()
Collapse
Affiliation(s)
- Hyoung Sub Kim
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Ji Young Hyun
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Seong-Hyun Park
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Injae Shin
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| |
Collapse
|
44
|
Vartak A, Thanna S, Meyer K, Dermanelian M, Sucheck SJ. Oligosaccharide synthesis on soluble high-molecular weight pHEMA using a photo-cleavable linker. RSC Adv 2018; 8:41612-41619. [PMID: 31263543 PMCID: PMC6602538 DOI: 10.1039/c8ra08252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Oligosaccharide synthesis on organic solvent soluble, high molecular weight poly(2-hydroxyethylmethylacrylate) (pHEMA) is described. The pHEMA-bound oligosaccharide could be recovered after each reaction in 90–95% yield using a precipitation method. The methodology was used to synthesize a model tri-galactoside in 48% overall yield and a trisaccharide from the outer core domain of Pseudomonas aeruginosa lipopolysacchride (LPS) in 39% yield. The use of a photo-cleavable linker is also demonstrated to produce reducing-end protected oligosaccharides. Oligosaccharide synthesis on organic solvent soluble, high molecular weight poly(2-hydroxyethylmethylacrylate) (pHEMA) is described.![]()
Collapse
Affiliation(s)
- Abhishek Vartak
- Department of Chemistry and Biochemistry
- University of Toledo
- Toledo
- USA
| | - Sandeep Thanna
- Department of Chemistry and Biochemistry
- University of Toledo
- Toledo
- USA
| | - Kyle Meyer
- Department of Chemistry and Biochemistry
- University of Toledo
- Toledo
- USA
| | | | - Steven J. Sucheck
- Department of Chemistry and Biochemistry
- University of Toledo
- Toledo
- USA
| |
Collapse
|
45
|
Liu X, Tian R, Liu D, Wang Z. Development of Sphere-Polymer Brush Hierarchical Nanostructure Substrates for Fabricating Microarrays with High Performance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38101-38108. [PMID: 28990756 DOI: 10.1021/acsami.7b09505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, a sphere-polymer brush hierarchical nanostructure-modified glass slide has been developed for fabricating high-performance microarrays. The substrate consists of a uniform 160 nm silica particle-self-assembled monolayer on a glass slide with a postcoated poly(glycidyl methacrylate) (PGMA) brush layer (termed PGMA@3D(160) substrate), which can provide three-dimensional (3D) polymer brushes containing abundant epoxy groups for directly immobilizing various biomolecules. As a typical example, the interactions of three monosaccharides (4-aminophenyl β-d-galactopyranoside, 4-aminophenyl β-d-glucopyranoside, and 4-aminophenyl α-d-mannopyranoside) with two lectins (biotinylated ricinus communis agglutinin 120 and biotinylated concanavalin A from Canavalia ensiformis) have been assessed by PGMA@3D(160) substrate-based carbohydrate microarrays. The carbohydrate microarrays show good selectivity, strong multivalent interaction, and low limit of detection (LOD) in the picomolar range without any signal amplification. Furthermore, the proposed sphere-polymer brush hierarchical nanostructure substrates can be easily extended to fabricate other types of microarrays for DNA and protein detection. PGMA@3D(160) substrate-based microarrays exhibit higher reaction efficiencies and lower LODs (by at least 1 order of magnitude) in comparison to those of two-dimensional microarrays, which are fabricated on planar epoxy substrates, making it a promising platform for bioanalytical and biomedical applications.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
| | - Rongrong Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
46
|
Hyun JY, Park CW, Liu Y, Kwon D, Park SH, Park S, Pai J, Shin I. Carbohydrate Analogue Microarrays for Identification of Lectin-Selective Ligands. Chembiochem 2017; 18:1077-1082. [PMID: 28422419 DOI: 10.1002/cbic.201700091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 01/15/2023]
Abstract
Fifty-five mono- and disaccharide analogues were prepared and used for the construction of microarrays to uncover lectin-selective ligands. The microarray study showed that two disaccharide analogues, 28' and 44', selectively bind to Solanum tuberosum lectin (STL) and wheat germ agglutinin (WGA), respectively. Cell studies indicated that 28' and 44' selectively block the binding of STL and WGA to mammalian cells, unlike the natural ligand LacNAc, which suppresses binding of both STL and WGA to cells.
Collapse
Affiliation(s)
- Ji Young Hyun
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Cheol Wan Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Yanna Liu
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Daeun Kwon
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Seong-Hyun Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Sungjin Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Jaeyoung Pai
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|