1
|
Peng H, Zhao M, Liu X, Tong T, Zhang W, Gong C, Chowdhury R, Wang Q. Biomimetic Materials to Fabricate Artificial Cells. Chem Rev 2024; 124:13178-13215. [PMID: 39591535 PMCID: PMC11671219 DOI: 10.1021/acs.chemrev.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
As the foundation of life, a cell is generally considered an advanced microreactor with a complicated structure and function. Undeniably, this fascinating complexity motivates scientists to try to extricate themselves from natural living matter and work toward rebuilding artificial cells in vitro. Driven by synthetic biology and bionic technology, the research of artificial cells has gradually become a subclass. It is not only held import in many disciplines but also of great interest in its synthesis. Therefore, in this review, we have reviewed the development of cell and bionic strategies and focused on the efforts of bottom-up strategies in artificial cell construction. Different from starting with existing living organisms, we have also discussed the construction of artificial cells based on biomimetic materials, from simple cell scaffolds to multiple compartment systems, from the construction of functional modules to the simulation of crucial metabolism behaviors, or even to the biomimetic of communication networks. All of them could represent an exciting advance in the field. In addition, we will make a rough analysis of the bottlenecks in this field. Meanwhile, the future development of this field has been prospecting. This review may bridge the gap between materials engineering and life sciences, forming a theoretical basis for developing various life-inspired assembly materials.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College of Shaoxing University, 508 Huancheng Western Road, Shaoxing 312099, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyuan Zhang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Chen Gong
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Wang J, Huang D, Fang Y, Ren H, Zhao Y. Biomimetic cell encapsulations by microfluidics. SCIENCE CHINA MATERIALS 2024; 67:2414-2426. [DOI: 10.1007/s40843-024-2903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/26/2024] [Indexed: 01/12/2025]
|
3
|
Sun D, Katare R, Sethu P, Cheng P, Fan Y. Editorial: Constructing the vascular or cardiac tissue and organoids: the combination of biomedicine and engineering. Front Cardiovasc Med 2024; 11:1371074. [PMID: 38433752 PMCID: PMC10904631 DOI: 10.3389/fcvm.2024.1371074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Affiliation(s)
- Dayu Sun
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Rajesh Katare
- Department of Physiology, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Department of Medicine and Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghong Fan
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
4
|
Mao C, Wang S, Li J, Feng Z, Zhang T, Wang R, Fan C, Jiang X. Metal-Organic Frameworks in Microfluidics Enable Fast Encapsulation/Extraction of DNA for Automated and Integrated Data Storage. ACS NANO 2023; 17:2840-2850. [PMID: 36728704 DOI: 10.1021/acsnano.2c11241] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
DNA as an exceptional data storage medium offers high information density. However, DNA storage requires specialized equipment and tightly controlled environments for storage. Fast encapsulation within minutes for enhanced DNA stability to do away with specialized equipment and fast DNA extraction remain a challenge. Here, we report a DNA microlibrary that can be encapsulated by metal-organic frameworks (MOFs) within 10 min and extracted (5 min) in a single microfluidic chip for automated and integrated DNA-based data storage. The DNA microlibrary@MOFs enhances the stability of data-encoded DNA against harsh environments. The encoded information can be read out perfectly after accelerated aging, equivalent to being readable after 10 years of storage at 25 °C, 50% relative humidity, and 10 000 lx sunlight radiation. Moreover, the library enables fast retrieval of target data via flow cytometry and can be reproduced after each access.
Collapse
Affiliation(s)
- Cuiping Mao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Shuchen Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jiankai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Zhuowei Feng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Tong Zhang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Rui Wang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No 800, DongChuan Road, Minhang District, Shanghai 200240, People's Republic of China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
5
|
Richter F, Bindschedler S, Calonne-Salmon M, Declerck S, Junier P, Stanley CE. Fungi-on-a-Chip: microfluidic platforms for single-cell studies on fungi. FEMS Microbiol Rev 2022; 46:6674677. [PMID: 36001464 PMCID: PMC9779915 DOI: 10.1093/femsre/fuac039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
This review highlights new advances in the emerging field of 'Fungi-on-a-Chip' microfluidics for single-cell studies on fungi and discusses several future frontiers, where we envisage microfluidic technology development to be instrumental in aiding our understanding of fungal biology. Fungi, with their enormous diversity, bear essential roles both in nature and our everyday lives. They inhabit a range of ecosystems, such as soil, where they are involved in organic matter degradation and bioremediation processes. More recently, fungi have been recognized as key components of the microbiome in other eukaryotes, such as humans, where they play a fundamental role not only in human pathogenesis, but also likely as commensals. In the food sector, fungi are used either directly or as fermenting agents and are often key players in the biotechnological industry, where they are responsible for the production of both bulk chemicals and antibiotics. Although the macroscopic fruiting bodies are immediately recognizable by most observers, the structure, function, and interactions of fungi with other microbes at the microscopic scale still remain largely hidden. Herein, we shed light on new advances in the emerging field of Fungi-on-a-Chip microfluidic technologies for single-cell studies on fungi. We discuss the development and application of microfluidic tools in the fields of medicine and biotechnology, as well as in-depth biological studies having significance for ecology and general natural processes. Finally, a future perspective is provided, highlighting new frontiers in which microfluidic technology can benefit this field.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Claire E Stanley
- Corresponding author: Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, United Kingdom. E-mail:
| |
Collapse
|
6
|
Vona D, Cicco SR, Ragni R, Vicente-Garcia C, Leone G, Giangregorio MM, Palumbo F, Altamura E, Farinola GM. Polydopamine coating of living diatom microalgae. Photochem Photobiol Sci 2022; 21:949-958. [DOI: 10.1007/s43630-022-00185-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
AbstractMany microorganisms produce specific structures, known as spores or cysts, to increase their resistance to adverse environmental conditions. Scientists have started to produce biomimetic materials inspired by these natural membranes, especially for industrial and biomedical applications. Here, we present biological data on the biocompatibility of a polydopamine-based artificial coating for diatom cells. In this work, living Thalassiosira weissflogii diatom cells are coated on their surface with a polydopamine layer mimicking mussel adhesive protein. Polydopamine does not affect diatoms growth kinetics, it enhances their resistance to degradation by treatment with detergents and acids, and it decreases the uptake of model staining emitters. These outcomes pave the way for the use of living diatom cells bearing polymer coatings for sensors based on living cells, resistant to artificial microenvironments, or acting as living devices for cells interface study.
Graphical abstract
Collapse
|
7
|
Aditya T, Allain JP, Jaramillo C, Restrepo AM. Surface Modification of Bacterial Cellulose for Biomedical Applications. Int J Mol Sci 2022; 23:610. [PMID: 35054792 PMCID: PMC8776065 DOI: 10.3390/ijms23020610] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Bacterial cellulose is a naturally occurring polysaccharide with numerous biomedical applications that range from drug delivery platforms to tissue engineering strategies. BC possesses remarkable biocompatibility, microstructure, and mechanical properties that resemble native human tissues, making it suitable for the replacement of damaged or injured tissues. In this review, we will discuss the structure and mechanical properties of the BC and summarize the techniques used to characterize these properties. We will also discuss the functionalization of BC to yield nanocomposites and the surface modification of BC by plasma and irradiation-based methods to fabricate materials with improved functionalities such as bactericidal capabilities.
Collapse
Affiliation(s)
- Teresa Aditya
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA; (J.P.A.); (C.J.)
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
| | - Jean Paul Allain
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA; (J.P.A.); (C.J.)
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Camilo Jaramillo
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA; (J.P.A.); (C.J.)
| | - Andrea Mesa Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
8
|
Liang M, Lei F, Liu Y, Lan D, Huang H, Zhang G, Feng Q, Cao X, Dong H. In Situ Formation of Microgel Array Via Patterned Electrospun Nanofibers Promotes 3D Cell Culture and Drug Testing in a Microphysiological System. ACS APPLIED BIO MATERIALS 2021; 4:6209-6218. [PMID: 35006864 DOI: 10.1021/acsabm.1c00534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A microphysiological system (MPS) is recently emerging as a promising alternative to the classical preclinical models, especially animal testing. A key factor for the construction of MPS is to provide a biomimetic three-dimensional (3D) cellular microenvironment. However, it still remains a challenge to introduce extracellular matrix (ECM)-like biomaterials such as hydrogels and nanofibers in a precise and spatiotemporal manner. Herein, we report a strategy to fabricate a MPS combining both electrospun nanofibers and hydrogels. The in situ formation of microsized hydrogel (microgel) array in MPS is realized by patterning electrospun poly(l-lactic acid) (PLLA)/Ca2+ nanofibers via a solvent-loaded agarose stamp and injecting an alginate solution to trigger the quick ionic cross-linking between alginate and Ca2+ released from patterned nanofibers. The one-on-one integration of electrospun nanofibers and microgels not only provides a 3D cellular microenvironment in designated regions in MPS but also improves the stability of these microenvironments under dynamic culture. In addition, due to the biocompatible properties of an ionic cross-linking reaction, patterned cell array can be achieved simultaneously during the microgel formation process. A breast cancer model is then built in MPS by coculturing human breast cancer cells and human fibroblasts in microgel array, and its application in drug (cisplatin) testing is evaluated. Our data prove that MPS-MA offers a more precise platform for drug testing to evaluate the drug concentration, duration time, cancer microenvironment, etc, mainly due to its successful construction of the biomimetic 3D cellular microenvironment.
Collapse
Affiliation(s)
- Minhua Liang
- Department of Biomedical Engineering, School of Materials Science and Engineering South China University of Technology, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510641, China
| | - Fan Lei
- Department of Biomedical Engineering, School of Materials Science and Engineering South China University of Technology, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510641, China
| | - Yang Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering South China University of Technology, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510641, China
| | - Dongxu Lan
- Department of Biomedical Engineering, School of Materials Science and Engineering South China University of Technology, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510641, China
| | - Hanhao Huang
- Department of Biomedical Engineering, School of Materials Science and Engineering South China University of Technology, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510641, China
| | - Guoliang Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510641, China.,School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering South China University of Technology, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510641, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering South China University of Technology, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510641, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering South China University of Technology, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510641, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
9
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
10
|
Liu X, Zhang W, Zheng W, Jiang X. Micropatterned Coculture Platform for Screening Nerve-Related Anticancer Drugs. ACS NANO 2021; 15:637-649. [PMID: 33435673 DOI: 10.1021/acsnano.0c06416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accumulating evidence suggests that the neural microenvironment plays a vital role in the development and metastasis of cancers. The development of drug candidates or drug combinations targeting the neural microenvironment is thus becoming increasingly urgent. However, the low content of conventional drug screening platforms is a bottleneck that limits the drug evaluation process. In this study, we present a micropatterned coculture-based high-content (μCHC) platform by integrating a micropatterned coculture chip with the high-content analysis (HCA) system, for studying the neuron-cancer cell interactions and drug screening (simultaneously detecting 96 kinds of post-drug-treated conditions). We investigate the contribution of neurons on the migration of cancer cells from different tissues and validate the capability of the μCHC system to study the interaction between neurons and cancer cells. Moreover, we test the effects of individual or combinatory agents targeting the neuron or cancer cell on the neuron-cancer cell interactions, which proposes an optimized therapy regime for targeting both nervous and cancerous factors. Our study suggests that the μCHC system is a facile platform for screening drug candidates or drug combinations for clinical cancer therapy with high efficiency and fidelity.
Collapse
Affiliation(s)
- Xiaoyan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Wei Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Wenfu Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Xingyu Jiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Chen Y, Mei Y, Zhao X, Jiang X. Reagents-Loaded, Automated Assay that Integrates Recombinase-Aided Amplification and Cas12a Nucleic Acid Detection for a Point-of-Care Test. Anal Chem 2020; 92:14846-14852. [DOI: 10.1021/acs.analchem.0c03883] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yong Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yixin Mei
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xiaohui Zhao
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
12
|
Wang X, Hou Y, Ai X, Sun J, Xu B, Meng X, Zhang Y, Zhang S. Potential applications of microfluidics based blood brain barrier (BBB)-on-chips for in vitro drug development. Biomed Pharmacother 2020; 132:110822. [PMID: 33059264 DOI: 10.1016/j.biopha.2020.110822] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
The human blood-brain barrier (BBB) is a complex multi-dimensional reticular barrier system composed of cerebral microvascular endothelial cells, pericytes, astrocytes and a variety of neurons. The conventional in vitro cell culture model fails to truly present the dynamic hemodynamics of BBB and the interaction between neurons. And it is even more impossible to explore brain-related multi-organ diseases, which brings huge obstacles to explore diseases of the central nervous system and the interaction between brain-related multi-organs, and evaluate drug efficacy. Miniaturized microfluidics based BBB chips are being commonly used to co-culture a variety of cells on a small-sized chip to construct a three-dimensional (3D) BBB or BBB-related organ disease models. By combining with other electrophysiological, biochemical sensors or equipment and imaging systems, it can in real time and quickly screen disease-related markers and evaluate drug efficacy. This review systematically summarized the research progress of in vitro BBB and BBB-related organ chips, and analyzed the obstacles of BBB models in depth. Parallelly combined with the current research trends and hot spots, we give the further improvement measures of microfluidic BBB chips.
Collapse
Affiliation(s)
- Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaopeng Ai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Binjie Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
Cheng J, Liu Y, Zhao Y, Zhang L, Zhang L, Mao H, Huang C. Nanotechnology-Assisted Isolation and Analysis of Circulating Tumor Cells on Microfluidic Devices. MICROMACHINES 2020; 11:E774. [PMID: 32823926 PMCID: PMC7465711 DOI: 10.3390/mi11080774] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs), a type of cancer cell that spreads from primary tumors into human peripheral blood and are considered as a new biomarker of cancer liquid biopsy. It provides the direction for understanding the biology of cancer metastasis and progression. Isolation and analysis of CTCs offer the possibility for early cancer detection and dynamic prognosis monitoring. The extremely low quantity and high heterogeneity of CTCs are the major challenges for the application of CTCs in liquid biopsy. There have been significant research endeavors to develop efficient and reliable approaches to CTC isolation and analysis in the past few decades. With the advancement of microfabrication and nanomaterials, a variety of approaches have now emerged for CTC isolation and analysis on microfluidic platforms combined with nanotechnology. These new approaches show advantages in terms of cell capture efficiency, purity, detection sensitivity and specificity. This review focuses on recent progress in the field of nanotechnology-assisted microfluidics for CTC isolation and detection. Firstly, CTC isolation approaches using nanomaterial-based microfluidic devices are summarized and discussed. The different strategies for CTC release from the devices are specifically outlined. In addition, existing nanotechnology-assisted methods for CTC downstream analysis are summarized. Some perspectives are discussed on the challenges of current methods for CTC studies and promising research directions.
Collapse
Affiliation(s)
- Jie Cheng
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China;
| | - Lingqian Zhang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Chengjun Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
15
|
Stengelin E, Kuzmina A, Beltramo GL, Koziol MF, Besch L, Schröder R, Unger RE, Tremel W, Seiffert S. Bone Scaffolds Based on Degradable Vaterite/PEG-Composite Microgels. Adv Healthc Mater 2020; 9:e1901820. [PMID: 32378355 DOI: 10.1002/adhm.201901820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/08/2020] [Indexed: 12/20/2022]
Abstract
Vaterite, a metastable modification of calcium carbonate, embedded in a flexible microgel packaging with adjustable mechanical properties, functionality, and biocompatibility, provides a powerful scaffolding for bone tissue regeneration, as it is easily convertible to bone-like hydroxyapatite (HA). In this study, the synthesis and physical analysis of a packaging material to encapsulate vaterite particles and osteoblast cells into monodisperse, sub-millimeter-sized microgels, is described whereby a systematic approach is used to tailor the microgel properties. The size and shape of the microgels is controlled via droplet-based microfluidics. Key requirements for the polymer system, such as absence of cytotoxicity as well as biocompatibility and biodegradability, are accomplished with functionalized poly(ethylene glycol) (PEG), which reacts in a cytocompatible thiol-ene Michael addition. On a mesoscopic level, the microgel stiffness and gelation times are adjusted to obtain high cellular viabilities. The co-encapsulation of living cells provides i) an in vitro platform for the study of cellular metabolic processes which can be applied to bone formation and ii) an in vitro foundation for novel tissue-regenerative therapies. Finally, the degradability of the microgels at physiological conditions caused by hydrolysis-sensitive ester groups in the polymer network is examined.
Collapse
Affiliation(s)
- Elena Stengelin
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Alena Kuzmina
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Guillermo L. Beltramo
- Institute of Biological Information Processing 2 (IBI‐2)Jülich Forschungszentrum GmbH Jülich D‐52428 Germany
| | - Martha F. Koziol
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Laura Besch
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Romina Schröder
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Ronald E. Unger
- Johannes Gutenberg University MainzInstitute of Pathology Mainz D‐55128 Germany
| | - Wolfgang Tremel
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Sebastian Seiffert
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| |
Collapse
|
16
|
Zhao Q, Cui H, Wang Y, Du X. Microfluidic Platforms toward Rational Material Fabrication for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903798. [PMID: 31650698 DOI: 10.1002/smll.201903798] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Indexed: 05/16/2023]
Abstract
The emergence of micro/nanomaterials in recent decades has brought promising alternative approaches in various biomedicine-related fields such as pharmaceutics, diagnostics, and therapeutics. These micro/nanomaterials for specific biomedical applications shall possess tailored properties and functionalities that are closely correlated to their geometries, structures, and compositions, therefore placing extremely high demands for manufacturing techniques. Owing to the superior capabilities in manipulating fluids and droplets at microscale, microfluidics has offered robust and versatile platform technologies enabling rational design and fabrication of micro/nanomaterials with precisely controlled geometries, structures and compositions in high throughput manners, making them excellent candidates for a variety of biomedical applications. This review briefly summarizes the progress of microfluidics in the fabrication of various micro/nanomaterials ranging from 0D (particles), 1D (fibers) to 2D/3D (film and bulk materials) materials with controllable geometries, structures, and compositions. The applications of these microfluidic-based materials in the fields of diagnostics, drug delivery, organs-on-chips, tissue engineering, and stimuli-responsive biodevices are introduced. Finally, an outlook is discussed on the future direction of microfluidic platforms for generating materials with superior properties and on-demand functionalities. The integration of new materials and techniques with microfluidics will pave new avenues for preparing advanced micro/nanomaterials with enhanced performance for biomedical applications.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Huanqing Cui
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| |
Collapse
|
17
|
Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903940. [PMID: 31603270 DOI: 10.1002/smll.201903940] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
18
|
Gao H, Zhong Z, Xia H, Hu Q, Ye Q, Wang Y, Chen L, Du Y, Shi X, Zhang L. Construction of cellulose nanofibers/quaternized chitin/organic rectorite composites and their application as wound dressing materials. Biomater Sci 2019; 7:2571-2581. [PMID: 30977470 DOI: 10.1039/c9bm00288j] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Traumatic injury is a major cause of mortality, and poor wound healing affects millions of people. Thus, the development of effective wound dressings is essential for speeding up wound healing and decreasing mortality. In this study, a suspension of carboxylated brown algae cellulose nanofibers (BACNFs) with a high aspect ratio was freeze dried to prepare a sponge. The sponge showed high porosity and water absorption capacity; thus, it can absorb wound exudates when used as a wound dressing. In addition, quaternized β-chitin (QC) with antibacterial properties was intercalated into the interlayer space of the organic rectorite (OREC) via electrostatic interactions to obtain composite suspensions (QCRs) with improved antimicrobial activity compared to that of QC alone. Subsequently, the BACNF sponge was soaked in the QCR suspension to absorb QCRs via electrostatic interactions and hydrogen bonding from which cellulose nanofiber/quaternized chitin/organic rectorite composite (BACNF/QCR) sponges were constructed via freeze-drying. The in vivo animal tests demonstrated that the BACNF/QCR sponges rapidly induced hemostasis in a rat tail amputation test, making them superior to the traditional hemostatic materials. Furthermore, BACNFs/QCRs could substantially promote collagen synthesis and neovascularization, thereby accelerating wound healing 3 days earlier than gauze. This multi-functional biomedical material, fabricated using natural substances, shows great potential to be used for wound healing.
Collapse
Affiliation(s)
- Huimin Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cai Y, Zhong Z, He C, Xia H, Hu Q, Wang Y, Ye Q, Zhou J. Homogeneously Synthesized Hydroxybutyl Chitosans in Alkali/Urea Aqueous Solutions as Potential Wound Dressings. ACS APPLIED BIO MATERIALS 2019; 2:4291-4302. [DOI: 10.1021/acsabm.9b00553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yan Cai
- Department of Chemistry, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Chen He
- Department of Chemistry, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Haoyang Xia
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Qianchao Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Jinping Zhou
- Department of Chemistry, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
20
|
|
21
|
Ai Y, Zhang F, Wang C, Xie R, Liang Q. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Abstract
Microfluidics is an appealing platform for drug screening and discovery. Compared with the conventional drug screening methods based on Petri dishes and experimental animals, microfluidic devices have many advantages including miniaturized size, ease-to-use, high sensitivity, and high throughput. More importantly, bioassays on microfluidics can avoid ethical issues which can be a big obstacle hindering the performance of the experiments on animals or human being. Furthermore, three-dimensional (3D) microchips can recapitulate various biochemical and biophysical conditions in vivo and mimic the natural microenvironment of the tissues/organs, providing versatile in vitro models for biomedical applications. In this Perspective, we will focus on the cell-based microfluidic assays for drug screening. Meanwhile, we also propose potential solutions for the difficulties in this field and discuss the prospects of microfluidics-based technologies for drug screening.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|