1
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 PMCID: PMC11801294 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
Ghasemiyeh P, Mohammadi-Samani S. siRNA-based delivery systems: Technologies, carriers, applications, and approved products. Eur J Pharmacol 2025; 996:177441. [PMID: 40023357 DOI: 10.1016/j.ejphar.2025.177441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Ribonucleic acid (RNA) therapeutics are a novel category of therapeutic agents that use different types of RNAs to regulate genes and modulate protein synthesis to treat a wide range of diseases. The main advantages of RNA therapeutics over conventional small molecule drugs would be the potential to target undruggable sites, ease of production and faster development process, and longer duration of action. Various types of RNA therapeutics including antisense oligonucleotides (ASO), RNA interference (RNAi), small interfering RNA (siRNA), microRNA (miRNA), and messenger RNA (mRNA), have been developed and used for various clinical applications, especially for gene and vaccine delivery purposes. This review is focused on various therapeutic applications of RNA-based delivery systems and then siRNA technologies are discussed in more detail. Next, the FDA-approved siRNA therapeutics and those are in clinical trials are listed and summarized. Then, various viral and non-viral vectors used for RNA delivery purposes are discussed. Finally, clinical applications of siRNA therapeutics are reviewed in detail.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Liang X, Yin S, Hu C, Tang D, Luo G, Liu Z. METTL14 Promotes Ischemic Stroke-induced Brain Injury by Stabilizing HDAC3 Expression in an m6A-IGF2BP3 Mechanism. Cell Biochem Biophys 2025; 83:1897-1907. [PMID: 39448421 DOI: 10.1007/s12013-024-01596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
N6-methyladenosine (m6A) modification is the most abundant post-transcriptional modification of mRNAs and has been identified to play critical roles in ischemic stroke (IS). Herein, this study aimed to investigate the function and mechanism of Methyltransferase-like 14 (METTL14) methylase in cerebral IS. Murine BV-2 microglial cell OGD/R models and rat middle cerebral artery occlusion (MCAO) models were established to mimic IS-induced neuronal damage in vitro and brain injury in vivo. Levels of METTL14, Histone Deacetylase 3 (HDAC3) and cGAS-STING axis-related proteins were detected using qRT-PCR or western blotting. Cell proliferation and inflammation were assessed by CCK-8 assay, EdU assay and ELISA. Flow cytometry detected microglia polarization. Cell pyroptosis was analyzed by detecting related-protein markers by western blotting. The m6A modification was determined by methylated RNA immunoprecipitation assay. Brain injury was analyzed by evaluating infarct volume and neurologic score. METTL14 levels were higher in OGD/R-induced microglial cells, primary microglia and infarct brain tissues of rat MCAO models. Functionally, METTL14 silencing reversed OGD/R-induced proliferation inhibition, inflammation and pyroptosis in microglial cells and primary microglia in vitro, and ameliorated cerebral ischemic injury in rat MCAO models. Mechanistically, METTL14 induced HDAC3 m6A modification in an IGF2BP3-dependent manner, and could activate cGAS-STING pathway through HDAC3. Moreover, HDAC3 overexpression reversed the neuroprotective effects of METTL14 silencing. METTL14 silencing reversed ischemic stroke-induced brain injury by inducing HDAC3 m6A modification in an IGF2BP3-dependent mechanism, recommending a novel insight for ameliorating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Xuelin Liang
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Songhe Yin
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Canfang Hu
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Dingzhong Tang
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Guojun Luo
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Zhen Liu
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
4
|
Ning H, Jiang Y, Li B, Ren J, Ran A, Li W, Xiao B. Targeted delivery of circPDHK1 siRNA via aptamer functionalized lipid nanoparticles inhibits ccRCC growth and migration. Int J Pharm 2025; 677:125666. [PMID: 40316188 DOI: 10.1016/j.ijpharm.2025.125666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/07/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Clear Cell Renal Cell Carcinoma (ccRCC) is a common malignancy with high mortality in China, requiring innovative treatments. Recent advances in nucleic acid drugs, notably small interfering RNAs (siRNAs), show promise for therapeutic applications. Circular RNAs (circRNAs) play vital roles in cancer progression, and our previous work has identified that upregulated circPDHK1 can promote ccRCC growth and migration. However, the delivery strategies of si circPDHK1 targeting the circPDHK1 against ccRCC are not thoroughly investigated. Here, we developed a novel nucleic acid drug delivery system, AS1411/LNP-si circPDHK1, utilizing lipid nanoparticles (LNPs) encapsulated with siRNA targeting circPDHK1 and modified with the AS1411 aptamer for precise tumor targeting. In vitro and in vivo studies demonstrated that AS1411/LNP-si circPDHK1 efficiently delivered si circPDHK1 to ccRCC cells, resulting in a significant reduction in circPDHK1 expression. This delivery system exhibited superior tumor-targeting capabilities and prolonged circulation time compared with non-targeted formulations. Notably, AS1411/LNP-si circPDHK1 successfully inhibited the phosphorylation of the mTOR-AKT pathway, suppressed the proliferation and migration of ccRCC cells, and exhibited minimal side effects in vital organs. Taken together, the aptamer-guided LNP loaded siRNA targeting circPDHK1 (AS1411/LNP-si circPDHK1) displays great potential for ccRCC therapy.
Collapse
MESH Headings
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/therapy
- Nanoparticles/chemistry
- Nanoparticles/administration & dosage
- RNA, Small Interfering/administration & dosage
- Humans
- Cell Movement/drug effects
- Aptamers, Nucleotide/administration & dosage
- Aptamers, Nucleotide/chemistry
- Animals
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/therapy
- Cell Proliferation/drug effects
- Cell Line, Tumor
- RNA, Circular/genetics
- Mice, Inbred BALB C
- Lipids/chemistry
- Mice, Nude
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/chemistry
- Mice
- Xenograft Model Antitumor Assays
- Drug Delivery Systems
- Female
- Liposomes
Collapse
Affiliation(s)
- Hao Ning
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Binbin Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Junwu Ren
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Ai Ran
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Wei Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, PR China.
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
5
|
Zhu P, Li Y, Zhang D. One-Component Ionizable Amphiphilic Janus Dendrimers for Targeted mRNA Delivery. Angew Chem Int Ed Engl 2025; 64:e202505304. [PMID: 40192525 DOI: 10.1002/anie.202505304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
mRNA nanomedicine represents a new generation of therapeutics. However, how to deliver mRNA to the desired organs and cells effectively remains challenging. Common mRNA delivery vectors include viral and nonviral types such as four-component lipid nanoparticles (LNPs), polymer-based nanoparticles, lipid-polymer hybrid nanoparticles, and so on. One-component ionizable amphiphilic Janus dendrimers (IAJDs), are an emerging type of mRNA delivery vehicle displaying good stability and high delivery efficiency. In this review, we comprehensively present the design, synthesis, and mRNA delivery properties of IAJDs, with particular focus on the relationship between their molecular structures and organ targeted delivery properties. Other representative types of dendrimers for RNA delivery are also reviewed. Overall, this review summarizes the recent research progress on IAJDs systematically, aiming to guide the development of more efficient mRNA delivery platforms and next-generation mRNA nanomedicines.
Collapse
Affiliation(s)
- Pengyu Zhu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Dapeng Zhang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Zheng S, Zhou Z, Ji J, Liu Y, Jiao X, Li X, Shen Y, Hong H, Han X. M2 macrophage-targeted metal-polyphenol networks (MPNs) for OPN siRNA delivery and idiopathic pulmonary fibrosis therapy. J Control Release 2025; 383:113862. [PMID: 40383161 DOI: 10.1016/j.jconrel.2025.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/11/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) exhibits extremely high mortality rates. Targeted therapy, which utilizes specific drugs or other substances to identify and attack specific molecular targets in the lesion, holds promise as a potent means of treating IPF. M2 macrophages have been shown to express high levels of osteopontin (OPN) early in the onset of IPF and sustain this high expression to promote the progression of IPF. Intervention in OPN expression can effectively impede the development of fibrosis. While the technology for targeting proteins with siRNA has become increasingly mature, the targeted delivery of siRNA to resident M2 macrophages in the lungs remains challenging. In this study, we developed an engineered self-assembling OPN siRNA carrier complex based on a metal-polyphenol network (luteolin-Zr) and PEG conjugated with an M2 macrophage-targeting peptide (Pery-PEG-M2), termed siOPN@LuZ-M2, for the treatment of pulmonary fibrosis. Consequently, significant therapeutic effects were observed in both bleomycin-induced pulmonary fibrosis mouse models and human precision-cut lung slices (hPCLS) models. Importantly, luteolin, which is slowly released from siOPN@LuZ-M2 within cells, can gradually accumulate in fibrotic lung tissue, exerting an anti-inflammatory effect and further enhancing the treatment of IPF. It is worth mentioning that siOPN@LuZ-M2 can be labeled with 89Zr, allowing for the detection of its in vivo distribution and metabolic behavior via PET-CT. This study presents a promising new image-guided molecular targeting strategy for the treatment of fibrosis.
Collapse
Affiliation(s)
- Shudan Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhenghao Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Ji
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuxin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodan Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaoyang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Hao Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
7
|
Wu J, Zhang Y, Wu Z, Townsend J, Crooks I, Watt B, Baik A, Cygnar K, Qiu H, Li N. Characterization of lipid nanoparticles using macro mass photometry: Insights into size and mass. Anal Chim Acta 2025; 1351:343944. [PMID: 40187867 DOI: 10.1016/j.aca.2025.343944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Lipid nanoparticles (LNPs) have become an important delivery system for nucleic acids, as applied in the first RNAi drug and two COVID-19 mRNA vaccines approved by the FDA. Despite advantages of their high cargo capacity, low immunogenicity allowing for redosing, scalability and low-cost manufacturing, challenges such as liver accumulation and difficulties in quality control persist for LNPs development. Conjugation of antibodies or antibody fragments onto LNPs holds promise in achieving precise targeting and higher stability of the targeting moieties on LNP surfaces. However, quality control of such multiple-component products poses additional challenges compared to LNP alone. LNP size and mass are critical quality attributes which play important roles in determining LNPs' nucleic acid cargo loading, antibody conjugation level, biodistribution, targeting capability, and overall efficacy. RESULTS Macro mass photometry (MMP), a single-molecule technique, enabled orthogonal characterization of LNPs by incorporating contrast analysis as a proxy for particle mass and combining it with size measurement. This approach thus improves the definition of LNP species within heterogeneous systems. Using MMP, this study revealed the effects of PEG-lipid concentration, mRNA encapsulation, and antibody conjugation on LNP size and mass. Additionally, the study demonstrated the MMP's utility in monitoring LNPs under various stress conditions, including high pH, low pH, oxidation, freeze-thaw cycles, and agitation. SIGNIFICANCE This study represents the first use of mass photometry for LNP analysis, simultaneously characterizing the mass and size of LNPs. It highlights the potential of MMP as a valuable orthogonal tool for LNP characterization and supports LNP formulation development.
Collapse
Affiliation(s)
- Jikang Wu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Yu Zhang
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Zhijie Wu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Julia Townsend
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Ivor Crooks
- Refeyn Ltd, Unit 9, Trade City Oxford, Sandy Lane West, Oxford, OX4 6FF, UK
| | - Brenda Watt
- Refeyn Inc, 21 Hickory Drive, Suite 2a, Waltham, MA, 02451, USA
| | - Andrew Baik
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Katherine Cygnar
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
8
|
Li Y, Du K, Peng D, Zhang X, Piao Y, Peng M, He W, Wang Y, Wu H, Liu Y, Xiao J, Shi L, Li D. Local delivery of siRNA using lipid-based nanocarriers with ROS-scavenging ability for accelerated chronic wound healing in diabetes. Biomaterials 2025; 322:123411. [PMID: 40381523 DOI: 10.1016/j.biomaterials.2025.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/21/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Diabetic wound healing poses a significant clinical challenge with limited therapeutic efficacy due to uncontrolled reactive oxygen species (ROS), inflammatory responses, and extracellular matrix (ECM) degradation caused by abnormal macrophage activity in the wound microenvironment. To address these concerns, we propose a novel formulation that combines Tempo-conjugated lipid with the commercially cationic lipid DOTAP to expedite diabetic wound healing through targeted siRNA delivery (cLpT@siRNA) and restoration of the wound microenvironment. The developed cLpT@siRNA nanocomplexes effectively scavenge excessive ROS levels, facilitate polarization of proinflammatory M1 macrophages towards an anti-inflammatory M2 phenotype, and suppress MMP9 gene expression in macrophages. In the ICR mouse model of diabetic wounds, cLpT@siRNA nanocomplexes significantly accelerate wound healing, promoting neovascularization and collagen deposition. Overall, the cLpT@siRNA nanocomplexes based on antioxidant and cationic lipids provide a promising strategy for delivering siRNA in diabetic wound treatment and hold great potential for clinical translation.
Collapse
Affiliation(s)
- Yuanfeng Li
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiyi Du
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Danfeng Peng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xuanlong Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yinzi Piao
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Mengna Peng
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Wei He
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yumeng Wang
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Haoyue Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Jian Xiao
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dongdong Li
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Moosavi SG, Rahiman N, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in neurodegenerative diseases. J Control Release 2025; 381:113641. [PMID: 40120689 DOI: 10.1016/j.jconrel.2025.113641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Neurodegenerative diseases (NDD) are characterized by the progressive loss of neurons and the impairment of cellular functions. Messenger RNA (mRNA) has emerged as a promising therapy for treating NDD, as it can encode missing or dysfunctional proteins and anti-inflammatory cytokines or neuroprotective proteins to halt the progression of these diseases. However, effective mRNA delivery to the central nervous system (CNS) remains a significant challenge due to the limited penetration of the blood-brain barrier (BBB). Lipid nanoparticles (LNPs) offer an efficient solution by encapsulating and protecting mRNA, facilitating transfection and intracellular delivery. This review discusses the pathophysiological mechanisms of neurological disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), Huntington's disease (HD), ischemic stroke, spinal cord injury, and Friedreich's ataxia. Additionally, it explores the potential of LNP-mediated mRNA delivery as a therapeutic strategy for these diseases. Various approaches to overcoming BBB-related challenges and enhancing the delivery and efficacy of mRNA-LNPs are discussed, including non-invasive methods with strong potential for clinical translation. With advancements in artificial intelligence (AI)-guided mRNA and LNP design, targeted delivery, gene editing, and CAR-T cell therapy, mRNA-LNPs could significantly transform the treatment landscape for NDD, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Seyedeh Ghazal Moosavi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Song Y, Xu T, Li H, Liu J, Cao S, Yang Y, Li N, Lv P, Han M, Sun H, Dang G, Li J, Sun H, Xin T, Xia H, Zhang C. Delivery of Itgb1-siRNA by triptolide-modified and anti-Flt1 peptide-guided ionizable cationic LNPs for targeted therapy of corneal neovascularization. J Control Release 2025; 383:113811. [PMID: 40324532 DOI: 10.1016/j.jconrel.2025.113811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/10/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Corneal neovascularization (CoNV) is a leading cause of visual impairment worldwide. However, CoNV remains challenging to cure clinically because of the limitations of current drugs. New and more effective therapeutic formulations for CoNV treatment are therefore urgently needed. Antisense oligonucleotide drugs hold great promise for the treatment of neovascular diseases, and ionizable cationic lipid nanoparticles (icLNPs) have shown excellent performance for nucleic acid delivery, with high encapsulation, good cellular uptake, and effective endosomal escape. In the present study, we identified integrin β1 (Itgb1) as a key gene involved in angiogenesis and revealed the significant upregulation of Flt1 in vascular endothelial cells and pericytes in CoNV using single-cell sequencing. Itgb1 knockdown significantly inhibited the proliferation and migration of vascular endothelial cells and CoNV in mice. Based on these findings, we developed Itgb1-small interfering RNA (siRNA)-loaded icLNPs, and conjugated anti-Flt1 peptide to their surface to improve CoNV targeting. Furthermore, because lipid nanoparticles reportedly trigger immune responses by upregulating pro-inflammatory cytokine expression, which may promote neovascularization, we modified triptolide (a compound with anti-inflammatory properties) into the icLNPs. The triptolide-modified, anti-Flt1 peptide-conjugated, and Itgb1-siRNA-loaded icLNPs (Itgb1-siRNA@TPL) effectively inhibited the proliferation and migration of vascular endothelial cells in vitro and CoNV in mice after eye drop administration. These effects occurred via downregulation of the PI3K/AKT and NF-κB signaling pathways. Finally, the biosafety of Itgb1-siRNA@TPL was tested, and the results revealed that it was not toxic to the cornea or major organs and had no impact on corneal epithelial healing. In conclusion, Itgb1-siRNA@TPL represent a novel, noninvasive, and effective approach for the treatment of CoNV.
Collapse
Affiliation(s)
- Yuwen Song
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Hao Li
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China
| | - Jing Liu
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Shumin Cao
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Yichen Yang
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Nianlu Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China
| | - Peiwen Lv
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China
| | - Haohan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China
| | - Guangfu Dang
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China
| | - Jianxin Li
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China
| | - Hao Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China.
| | - Huitang Xia
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China.
| | - Canwei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China; Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
11
|
Chen Z, Yang J, Zhang Q, Zeng W, Liu Y, Hu W, Chen L, Shen J, Miao Y, Xiao Z, Wu Z, Wang H, Shen H, Ding C, Chen Q, Zhao J, Yang Y. Inhalable myofibroblast targeting nanoparticles for synergistic treatment of pulmonary fibrosis. SCIENCE ADVANCES 2025; 11:eadv9571. [PMID: 40305619 PMCID: PMC12042884 DOI: 10.1126/sciadv.adv9571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Pulmonary fibrosis (PF) is a life-threatening interstitial lung disease, characterized by excessive fibroblast activation and collagen deposition, leading to progressive pulmonary function decline and limited therapeutic efficacy. Here, the inhalable, myofibroblast-targeted, and pH-responsive liposomes (FL-NI) were developed for effective codelivery of nintedanib, a mainstream antifibrotic drug in clinic, and siIL11, a small interfering RNA that silences the key profibrosis cytokine IL-11. Notably, FL-NI achieved a 117.8% increase in pulmonary drug delivery by noninvasive inhalation and a 71.5% increase in delivery specifically to fibroblast activation protein-positive myofibroblasts while reducing nonspecific immune cell and epithelial uptake by 29.8 and 55.8%, respectively. The accurate inhalation codelivery of nintedanib and siIL11 into myofibroblasts achieved synergistic effects, effectively enhanced myofibroblast deactivation, reduced pathological collagen deposition by 50.8%, and promoted epithelial tissue repair. FL-NI remodeled the aberrant immune microenvironment without inducing systemic toxicities. Therefore, this work demonstrated the notable potential for this pluripotent strategy for improving PF outcomes and its promising clinical translation.
Collapse
Affiliation(s)
- Zhike Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University, Suzhou 215123, China
| | - Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiang Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University, Suzhou 215123, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Weibiao Zeng
- Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yi Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University, Suzhou 215123, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wenxuan Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linfu Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University, Suzhou 215123, China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University, Suzhou 215123, China
| | - Yu Miao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University, Suzhou 215123, China
| | - Zhisheng Xiao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University, Suzhou 215123, China
| | - Zhiqiang Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University, Suzhou 215123, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - He Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Shen
- Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University, Suzhou 215123, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
12
|
Saeki R, Koide H, Song F, Yonezawa S, Hashimoto M, Toyota H, Oku N, Asai T. Prediction and control of the particle size of polyethylene glycol-free lipid nanoparticles using a design of experiment. Biochem Biophys Res Commun 2025; 761:151718. [PMID: 40184793 DOI: 10.1016/j.bbrc.2025.151718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Rigorous control of the properties of lipid nanoparticles (LNPs) such as the particle size, polydispersity index (PdI), ζ-potential, and encapsulation efficiency of small interfering RNA (siRNA) with good reproducibility is important for LNP-based siRNA delivery. In this study, polyethylene glycol (PEG)-free LNPs containing a dioleoylglycerophosphate-diethylenediamine conjugate (DOP-DEDA), which is a pH-responsive lipid derivative, were prepared by using a microfluidic technology to construct a predictive model for particle size control using the design of experiment (DoE). PEG-free DOP-DEDA-based LNPs (DEDA LNPs) encapsulating siRNA, which were prepared by using a microfluidic technology, formed uniform particles and triggered effective gene silencing. The effects of the preparation conditions such as the total flow rate, lipid concentration, and lipid solution ratio on the LNP properties were investigated, and results indicated that the lipid solution ratio is the most important parameter to control the particle size and PdI of DEDA LNPs. Conversely, the ζ-potential and siRNA encapsulation efficiency of DEDA LNPs were not affected by the preparation conditions. The predictive model constructed using the DoE data showed that the particle size of the prepared DEDA LNPs was consistent with that predicted. Therefore, our approach using the DoE will contribute to the rigorous prediction and control of the particle size of PEG-free LNPs for nucleic acid delivery.
Collapse
Affiliation(s)
- Ryoko Saeki
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Koide
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Furan Song
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sei Yonezawa
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Masahiro Hashimoto
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyasu Toyota
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Naoto Oku
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
13
|
Pan M, Cao W, Zhai J, Zheng C, Xu Y, Zhang P. mRNA-based vaccines and therapies - a revolutionary approach for conquering fast-spreading infections and other clinical applications: a review. Int J Biol Macromol 2025; 309:143134. [PMID: 40233916 DOI: 10.1016/j.ijbiomac.2025.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Since the beginning of the COVID-19 pandemic, the development of messenger RNA (mRNA) vaccines has made significant progress in the pharmaceutical industry. The two COVID-19 mRNA vaccines from Moderna and Pfizer/BioNTech have been approved for marketing and have made significant contributions to preventing the spread of SARS-CoV-2. In addition, mRNA therapy has brought hope to some diseases that do not have specific treatment methods or are difficult to treat, such as the Zika virus and influenza virus infections, as well as the prevention and treatment of tumors. With the rapid development of in vitro transcription (IVT) technology, delivery systems, and adjuvants, mRNA therapy has also been applied to hereditary diseases such as Fabry's disease. This article reviews the recent development of mRNA vaccines for structural modification, treatment and prevention of different diseases; delivery carriers and adjuvants; and routes of administration to promote the clinical application of mRNA therapies.
Collapse
Affiliation(s)
- Mingyue Pan
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Yingying Xu
- Department of Pharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China.
| |
Collapse
|
14
|
Pu Y, Wang Q, Pan Y, Wang X, Guan Z, Zhu Y, Yang Z. Cytidinyl/Cationic Lipid Encapsulating Insulin-Like Growth Factor 1 Receptor siRNA for Hepatocellular Carcinoma Therapy. Mol Pharm 2025. [PMID: 40289542 DOI: 10.1021/acs.molpharmaceut.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of invasive liver cancer, representing over 90% of all liver cancer cases. Currently, there is a lack of targeted therapy for HCC. Insulin-like growth factor 1 receptor (IGF1R) is abnormally expressed in HCC, leading to the malignant proliferation and contributing to the antiapoptosis mechanisms in tumor cells. In this study, small interfering RNAs targeting IGF1R mRNA (siIGF1Rs) have been designed. Additionally, a full 2'-F/2'-OMe modification with partial phosphorothioation was applied to improve the biological properties of these siIGF1Rs. Based on previous research, stable lipid complexes with uniform particle sizes were constructed using cytidinyl lipid DNCA/cationic lipid CLD (Mix) supplemented with DSPE-PEG (siIGF1R/Mix/PEG). The complexes were formed through hydrogen-bonding, π-π stacking, and electrostatic interactions. The siIGF1R/Mix/PEG complex entered the cytoplasm and nucleus of HCC cells, reduced IGF1R mRNA and pre-mRNA levels by over 95% and 50% respectively, further arrested the cell cycle in the S phase, and promoted cell apoptosis. Importantly, siIGF1R/Mix/PEG (0.8 mg/kg, i.v.) selectively accumulated in the tumor, significantly inhibiting tumor growth by 91.31% compared to the naked siRNA group, with slower release and a more prolonged effect.
Collapse
Affiliation(s)
- Yang Pu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Quanxin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xixian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Genable (Beijing) Biotechnology Co. Ltd, #38 Yongda Road, Beijing 102609, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Genable (Beijing) Biotechnology Co. Ltd, #38 Yongda Road, Beijing 102609, China
| |
Collapse
|
15
|
Yazdi M, Burghardt T, Seidl J, Lächelt U, Wagner E. Evolution of Lipo-Xenopeptide Carriers for siRNA Delivery: Interplay of Stabilizing Subunits. Bioconjug Chem 2025; 36:846-858. [PMID: 40134240 DOI: 10.1021/acs.bioconjchem.5c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Although small interfering RNA (siRNA) holds immense promise for treating genetic diseases and cancers, its clinical application is constrained by instability, cellular uptake barriers, and inefficient cytosolic delivery, underscoring the need for effective delivery systems. Therefore, this study focuses on screening novel T-shaped lipo-xenopeptide (XP) nanocarriers for siRNA polyplex formulation, integrating two single succinoyl-tetraethylene pentamine (Stp) units for electrostatic interaction and tyrosine tripeptides (Y3) for aromatic stabilization, along with structural modifications such as the addition of histidine (H) with or without terminal cysteines (C), and the incorporation of various fatty acids (FAs). A systematic evaluation of siRNA binding, nanoparticle stability, and gene silencing efficiency in multiple cell lines illustrated that the novel Stp1-HC lipo-XPs carriers outperform their Stp2-HC analogs, despite having fewer cationizable Stp units. This advantage stems from increased fatty acid, Y3, and C density, which compensates for reduced electrostatic interactions. The presence of H in combination with unsaturated FAs significantly improved the functional siRNA delivery. Our findings highlight the complex interplay of electrostatic, hydrophobic, covalent, hydrogen-bonded, and aromatic interactions to achieve efficient siRNA delivery, which is best-balanced in the oleic acid-containing Stp1-HC/OleA lipo-XP, exceeding the previously best standard carrier Stp2-HC/OleA in efficiency.
Collapse
Affiliation(s)
- Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany
- CNATM - Cluster for Nucleic Acid Therapeutics, 81377 Munich, Germany
| | - Tobias Burghardt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany
| | - Johanna Seidl
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany
| | - Ulrich Lächelt
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), 80539 Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany
- CNATM - Cluster for Nucleic Acid Therapeutics, 81377 Munich, Germany
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), 80539 Munich, Germany
| |
Collapse
|
16
|
Zhao G, Zeng Y, Cheng W, Karkampouna S, Papadopoulou P, Hu B, Zang S, Wezenberg E, Forn-Cuní G, Lopes-Bastos B, Julio MKD, Kros A, Snaar-Jagalska BE. Peptide-Modified Lipid Nanoparticles Boost the Antitumor Efficacy of RNA Therapeutics. ACS NANO 2025; 19:13685-13704. [PMID: 40176316 PMCID: PMC12004924 DOI: 10.1021/acsnano.4c14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
RNA therapeutics offer a promising approach to cancer treatment by precisely regulating cancer-related genes. While lipid nanoparticles (LNPs) are currently the most advanced nonviral clinically approved vectors for RNA therapeutics, their antitumor efficacy is limited by their unspecific hepatic accumulation after systemic administration. Thus, there is an urgent need to enhance the delivery efficiency of LNPs to target tumor-residing tissues. Here, we conjugated the cluster of differentiation 44 (CD44)-specific targeting peptide A6 (KPSSPPEE) to the cholesterol of LNPs via PEG, named AKPC-LNP, enabling specific tumor delivery. This modification significantly improved delivery to breast cancer cells both in vitro and in vivo, as shown by flow cytometry and confocal microscopy. We further used AKPC-siYT to codeliver siRNAs targeting the transcriptional coactivators YAP and TAZ, achieving potent gene silencing and increased cell death in both 2D cultures and 3D tumor spheroids, outperforming unmodified LNPs. In a breast tumor cell xenografted zebrafish model, systemically administered AKPC-siYT induced robust silencing of YAP/TAZ and downstream genes and significantly enhanced tumor suppression compared to unmodified LNPs. Additionally, AKPC-siYT effectively reduced proliferation in prostate cancer organoids and tumor growth in a patient-derived xenograft (PDX) model. Overall, we developed highly efficient AKPC-LNPs carrying RNA therapeutics for targeted cancer therapy.
Collapse
Affiliation(s)
- Gangyin Zhao
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
- Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 51800, China
| | - Ye Zeng
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Wanli Cheng
- Urology
Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
| | - Sofia Karkampouna
- Urology
Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
- Department
of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Panagiota Papadopoulou
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bochuan Hu
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Shuya Zang
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Emma Wezenberg
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Gabriel Forn-Cuní
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bruno Lopes-Bastos
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Marianna Kruithof-de Julio
- Department
of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Alexander Kros
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - B. Ewa Snaar-Jagalska
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| |
Collapse
|
17
|
Wang L, Mu Q, Zhang W, Zheng W, Zhu X, Yu Y, Wang Y, Xu W, Lu Z, Han X. Placental targeted drug delivery: a review of recent progress. NANOSCALE 2025; 17:8316-8335. [PMID: 40070242 DOI: 10.1039/d4nr05338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The placenta plays a crucial role in mediating nutrient and gas exchange between the mother and fetus during pregnancy. Targeting therapeutic agents to the placenta presents significant opportunities for treating placental disorders and enhancing fetal outcomes. However, the unique structural complexity and selective permeability of the placenta pose substantial challenges for effective drug delivery. This review provides a comprehensive overview of current strategies for placental targeting, including lipid nanoparticle (LNP) delivery systems, targeted peptide modifications, specific antibody targeting of placental receptors, and the use of viral vectors. We critically analyze the advantages and limitations of each approach, emphasizing recent advancements in enhancing targeting specificity and delivery efficiency. By consolidating the latest research developments, this review aims to foster further innovation in placental drug delivery methods and contribute significantly to the advancement of therapeutic strategies for placental disorders, ultimately improving outcomes for both mother and fetus.
Collapse
Affiliation(s)
- Linjian Wang
- Department of Obstetrics, Haining Maternal and Child Health Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, No. 309, East Shuiyueting Road, Xiashi Street, Haining, Zhejiang, 314400, China
| | - Qiuqiu Mu
- Third Affliated Hospital of Wenzhou Medical University, WanSong Road No. 108, Ruian, Wenzhou, Zhejiang, 325200, China
| | - Wenjing Zhang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Weiqian Zheng
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Xiaojun Zhu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Ying Yu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - YuPeng Wang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Wenli Xu
- Department of Obstetrics, Haining Maternal and Child Health Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, No. 309, East Shuiyueting Road, Xiashi Street, Haining, Zhejiang, 314400, China
| | - Zhimin Lu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Xiujun Han
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
18
|
Brinton EA, Eckel RH, Gaudet D, Ballantyne CM, Baker BF, Ginsberg HN, Witztum JL. Familial chylomicronemia syndrome and treatments to target hepatic APOC3 mRNA. Atherosclerosis 2025; 403:119114. [PMID: 40068508 DOI: 10.1016/j.atherosclerosis.2025.119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 04/20/2025]
Abstract
Familial chylomicronemia syndrome (FCS) is a rare, recessive monogenic disorder characterized by severely elevated plasma triglyceride (TG) levels due to absent or markedly impaired lipoprotein lipase activity, leading to a greatly increased risk of acute pancreatitis. Naturally occurring very low levels of apoC-III are associated with low TG levels; thus, apoC-III is a target for TG lowering, and therapies have been developed to reduce apoC-III. Strategies to inhibit hepatic apoC-III synthesis include antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). In the last decade, technologies have been developed to enhance hepatic delivery of these potential therapeutic agents by conjugation of the ligand triantennary N-acetyl galactosamine to ASO and siRNA for receptor-mediated uptake by hepatocytes, where apoC-III is predominantly expressed. Enhanced delivery of these pharmacological agents to the target tissue has been found to support lower and/or less frequent dosing with consequent lower total systemic exposure. One antisense agent, the ASO olezarsen, is now approved by the US Food and Drug Administration (FDA) as an adjunct to diet to lower triglycerides in adults with FCS, and the other, the siRNA plozasiran, is in late-stage clinical development. Both agents have shown effectiveness in reducing both apoC-III and TG levels across several study populations. Reduced TG, lower rates of acute pancreatitis events, and similar proportions of adverse events in placebo and treated patients were recently demonstrated in placebo-controlled phase 3 trials of patients with FCS treated with olezarsen in Balance and with plozasiran in PALISADE. This review discusses causes and consequences of FCS and the rationale and progress made in developing APOC3 RNA-targeted therapeutics for the treatment of FCS.
Collapse
Affiliation(s)
- Eliot A Brinton
- The Utah Lipid Center, 421 S Wakara Way, Salt Lake City, UT, USA
| | - Robert H Eckel
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, USA
| | - Daniel Gaudet
- Department of Medicine, Université de Montréal, PO Box 6128, Montréal, QC, H3C 3J7, ECOGENE-21, 930 Rue Jacques-Cartier E, Chicoutimi, QC, G7H 7K9, Canada
| | - Christie M Ballantyne
- Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, 6655 Travis Street, and the Texas Heart Institute, 6770 Bertner Ave, Houston, TX, USA
| | | | - Henry N Ginsberg
- Department of Internal Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 622 West 168th St, New York, NY, USA
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, Department of Medicine, M0682, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, USA.
| |
Collapse
|
19
|
Zeng C, Chen X, Lin M, Jin Y, Guo Q, Zhou T, Wang X, Li Y, Wang X, Han Y, Du L, Tang Q, Liu P, Zhang J. Overcoming matrix barriers for enhanced immune infiltration using siRNA-coated metal-organic frameworks. Acta Biomater 2025; 196:410-422. [PMID: 40054648 DOI: 10.1016/j.actbio.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
The extracellular matrix (ECM) of solid tumor constitutes a formidable physical barrier that impedes immune cell infiltration, contributing to immunotherapy resistance. Breast cancer, particularly triple-negative breast cancer (TNBC), is characterized by a collagen-rich tumor microenvironment, which is associated with T cell exclusion and poor therapeutic outcomes. Discoidin domain receptor 2 (DDR2) and integrins, key ECM regulatory receptors on cancer cells, play pivotal role in maintaining this barrier. In this study, we developed a dual-receptor-targeted strategy using metal-organic frameworks (MOFs) to deliver DDR2-specific siRNA (siDDR2) and ITGAV-specific siRNA (siITGAV) to disrupt the ECM barrier. siDDR2 modulates immune infiltration by regulating collagen-cell interactions, while siITGAV suppresses TGF-β1 activation. The MOF@siDDR2+siITGAV complex significantly reduced collagen deposition, enhanced CD8+ T cell infiltration, and downregulated programmed cell death ligand 1 (PD-L1) expression in TNBC. Consequently, this approach markedly inhibited tumor growth. Our findings demonstrate that dual-receptor-targeted MOF-based nanocarriers (MOF@siDDR2+siITGAV) can effectively reprogram the tumor ECM to enhance immune cell access, offering a promising prospect for synergistic cancer immunotherapy. STATEMENT OF SIGNIFICANCE: A dual-receptor-targeted MOF nanocarrier is developed to improve immune accessibility in tumors. Concurrent blockade of DDR2 and ITGAV effectively decreases collagen deposition, increases CD8+ T cell infiltration, and suppresses PD-L1 expression. Modulating the mechanical properties of the extracellular matrix (ECM) to enhance immune accessibility offers an innovative strategy for cancer treatment.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaojing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China; Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xingang Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yiping Li
- Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinghui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yongming Han
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ling Du
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Qianyun Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China; Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Mo Y, Keszei AFA, Kothari S, Liu H, Pan A, Kim P, Bu J, Kamanzi A, Dai DL, Mazhab-Jafari MT, Chen J, Leslie S, Zheng G. Lipid-siRNA Organization Modulates the Intracellular Dynamics of Lipid Nanoparticles. J Am Chem Soc 2025; 147:10430-10445. [PMID: 40068204 PMCID: PMC11951082 DOI: 10.1021/jacs.4c18308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Lipid nanoparticles (LNPs) are widely used for delivering therapeutic nucleic acids, yet the relationship between their internal structure and intracellular behavior, particularly before RNA release, remains unclear. Here, we elucidate how lipid-siRNA organization within LNPs can modulate their intracellular delivery dynamics. We use cryo-electron microscopy and photochemical assays to reveal that increased siRNA loading can reduce helper lipids' distribution to the LNP surface, while siRNA consistently localizes near the surface. These alterations in lipid-siRNA organization affect LNP membrane fluidity, enhancing LNP fusion with cellular membranes and promoting cytosolic siRNA delivery, primarily via macropinocytosis. Using photosensitive lipids and live cell imaging, we demonstrate that lipid-siRNA organization regulates LNP responsiveness to external stimuli, significantly affecting siRNA endosomal escape efficiency upon light activation. We further confirm this observation using convex lens-induced confinement microscopy and single-particle imaging. Overall, our findings provide critical insights into how lipid-siRNA organization shapes LNP intracellular dynamics, offering rational design principles for optimizing LNP-based RNA therapeutics.
Collapse
Affiliation(s)
- Yulin Mo
- Institute
of Medical Science, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Alexander F. A. Keszei
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Shagun Kothari
- Michael
Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Heyi Liu
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Anni Pan
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Paige Kim
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Jiachuan Bu
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Albert Kamanzi
- Michael
Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David L. Dai
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Mohammad T. Mazhab-Jafari
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Juan Chen
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Sabrina Leslie
- Michael
Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Gang Zheng
- Institute
of Medical Science, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
21
|
Alshehry Y, Liu X, Li W, Wang Q, Cole J, Zhu G. Lipid Nanoparticles for mRNA Delivery in Cancer Immunotherapy. AAPS J 2025; 27:66. [PMID: 40102316 DOI: 10.1208/s12248-025-01051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Cancer immunotherapy is poised to be one of the major modalities for cancer treatment. Messenger RNA (mRNA) has emerged as a versatile and promising platform for the development of effective cancer immunotherapy. Delivery systems for mRNA therapeutics are pivotal for their optimal therapeutic efficacy and minimal adverse side effects. Lipid nanoparticles (LNPs) have demonstrated a great success for mRNA delivery. Numerous LNPs have been designed and optimized to enhance mRNA stability, facilitate transfection, and ensure intracellular delivery for subsequent processing. Nevertheless, challenges remain to, for example, improve the efficiency of endosomal escape and passive targeting. This review highlights key advancements in the development of mRNA LNPs for cancer immunotherapy. We delve into the design of LNPs for mRNA delivery, encompassing the chemical structures, characterization, and structure-activity relationships (SAR) of LNP compositions. We discuss the key factors influencing the transfection efficiency, passive targeting, and tropism of mRNA-loaded LNPs. We also review the preclinical and clinical applications of mRNA LNPs in cancer immunotherapy. This review can enhance our understanding in the design and application of LNPs for mRNA delivery in cancer immunotherapy.
Collapse
Affiliation(s)
- Yasir Alshehry
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Xiang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Wenhua Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Qiyan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Janét Cole
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Guizhi Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America.
- Bioinnovations in Brain Cancer, Biointerfaces Institute, Rogel Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, United States of America.
| |
Collapse
|
22
|
Bellavita R, Braccia S, Piccolo M, Bialecki P, Ferraro MG, Graziano SF, Esposito E, Donadio F, Bryszewska M, Irace C, Pedziwiatr-Werbicka E, Falanga A, Galdiero S. Shielding siRNA by peptide-based nanofibers: An efficient approach for turning off EGFR gene in breast cancer. Int J Biol Macromol 2025; 292:139219. [PMID: 39733890 DOI: 10.1016/j.ijbiomac.2024.139219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Peptide-based self-assembled nanosystems show great promise as non-viral gene and siRNA delivery vectors. In the current study, we designed and functionalized nanofibers for the delivery of siRNA, targeting and silencing EGFR gene overexpressed in triple-negative breast cancer. The nanofiber-mediated siRNA delivery was characterized in terms of zeta potential, morphology, and structural stability by circular dichroism spectroscopy. In cytotoxicity studies, nanofibers presented high biocompatibility showing a negligible effect on cell viability both on healthy and cancer cell lines. The binding between nanofibers and EGFR-siRNA was investigated and ascertained by performing different biophysical studies. The complex siRNA:NF was stable over time, under fetal bovine serum, temperature and ionic strength effects. Moreover, nanofibers effectiveness in stabilizing and delivering an ad hoc selected siRNA for EGFR gene expression silencing was verified in a preclinical model of triple-negative breast cancer. Specifically, a significant gene knockdown was obtained with the complex siRNA:NF, that is comparable with the effect obtained by lipofectamine/siRNA transfection. This effective gene silencing derived from the successful internalization of nanofibers by cancer cells as observed by confocal microscopy. These results suggested that this peptide-based nanofiber could be an effective and safe systemic siRNA delivery system for application in biomedical areas.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Simone Braccia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Piotr Bialecki
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 st., 90-236 Lodz, Poland
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Sossio Fabio Graziano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Emanuela Esposito
- Institute of Applied Sciences and Intelligent Systems (ISASI), Naples Cryo Electron Microscopy Laboratory - EYE LAB, National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Federica Donadio
- Institute of Applied Sciences and Intelligent Systems (ISASI), Naples Cryo Electron Microscopy Laboratory - EYE LAB, National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 st., 90-236 Lodz, Poland
| | - Carlo Irace
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Elzbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 st., 90-236 Lodz, Poland
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples Federico II, Via Università 100, Portici, 80055 Portici, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
23
|
Hussen BM, Abdullah SR, Jaafar RM, Rasul MF, Aroutiounian R, Harutyunyan T, Liehr T, Samsami M, Taheri M. Circular RNAs as key regulators in cancer hallmarks: New progress and therapeutic opportunities. Crit Rev Oncol Hematol 2025; 207:104612. [PMID: 39755160 DOI: 10.1016/j.critrevonc.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing. Advances in RNA sequencing and bioinformatics tools have enabled the identification and functional annotation of circRNAs across different cancer types. Clinically, circRNAs demonstrate high specificity and sensitivity in samples, offering potential as diagnostic and prognostic biomarkers. Additionally, therapeutic strategies involving circRNA mimics, inhibitors, and delivery systems are under investigation. However, their precise mechanisms remain unclear, and more clinical evidence is needed regarding their roles in cancer hallmarks. Understanding circRNAs will pave the way for novel diagnostic and therapeutic approaches, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Rayan Mazin Jaafar
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Jin Y, Zhang B, Li J, Guo Z, Zhang C, Chen X, Ma L, Wang Z, Yang H, Li Y, Weng Y, Huang Y, Yan X, Fan K. Bioengineered protein nanocarrier facilitating siRNA escape from lysosomes for targeted RNAi therapy in glioblastoma. SCIENCE ADVANCES 2025; 11:eadr9266. [PMID: 39970222 PMCID: PMC11838010 DOI: 10.1126/sciadv.adr9266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
RNA interference (RNAi) represents a promising gene-specific therapy against tumors. However, its clinical translation is impeded by poor performance of lysosomal escape and tumor targeting. This challenge is especially prominent in glioblastoma (GBM) therapy, necessitating the penetration of the blood-brain barrier (BBB). Leveraging the intrinsic tumor-targeting and BBB traversing capability of human H-ferritin, we designed a series of ferritin variants with positively charged cavity and truncated carboxyl terminus, termed tHFn(+). These nanocarriers respond to weak acid and disassemble in endosomal compartments, exposing the internal positive charges to facilitate the lysosomal escape of loaded small interfering RNA (siRNA). Functioning as universal siRNA nanocarriers, tHFn(+) significantly enhanced the uptake of different siRNAs and suppressed gene expressions associated with GBM progression. Furthermore, tHFn(+) traversed the BBB and targeted glioma in vivo by binding to its receptors (e.g., transferrin receptor 1). tHFn(+)-delivered siRNAs exhibited exceptional therapeutic effects against glioma in vivo, advancing RNAi therapeutics beyond GBM for the treatment of various diseases.
Collapse
Affiliation(s)
- Yiliang Jin
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoli Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianru Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenxi Guo
- Cryo-EM platform, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Chen Zhang
- Cryo-EM platform, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Xuehui Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuoran Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyin Yang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Yong Li
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhua Weng
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| |
Collapse
|
25
|
Zhong Z, Deventer MH, Chen Y, Vanhee S, Lammens I, Deswarte K, Huang Y, Ye T, Wang H, Nuhn L, Vandeputte MM, Gontsarik M, Cui X, Sanders NN, Lienenklaus S, N Lambrecht B, Baptista AP, Stove CP, G De Geest B. A Fentanyl Hapten-Displaying Lipid Nanoparticle Vaccine that Non-Covalently Encapsulates a TLR7/8 Agonist and T-Helper Epitope Induces Protective Anti-Fentanyl Immunity. Angew Chem Int Ed Engl 2025; 64:e202419031. [PMID: 39441822 DOI: 10.1002/anie.202419031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Opioid use disorder - particularly involving fentanyl - has precipitated a public health crisis characterized by a significant increase in addiction and overdose-related deaths. Fentanyl-specific immunotherapy, which aims at inducing fentanyl-specific antibodies capable of binding fentanyl molecules in the bloodstream, preventing their entry in the central nervous system, is therefore gaining momentum. Conventional opioid designs rely on the covalent conjugation of fentanyl analogues to immunogenic carrier proteins that hold the inherent capacity of mounting immunodominant responses. Here, we present an alternative fentanyl vaccine design that utilizes a non-covalent assembly of lipid nanoparticles (LNPs) to deliver fentanyl haptens in conjunction with a CD4+ T-helper peptide epitope and an imidazoquinoline TLR7/8 agonist. Our results demonstrate that a single intramuscular administration of the LNP-based nanovaccine elicits fentanyl-specific antibodies, significantly mitigating the effects of opioid overdose in preclinical mouse models. Furthermore, we analyzed the immunobiological behavior of the vaccine in vivo in mouse models, providing evidence that covalent attachment of a fentanyl hapten to a carrier proteins or peptide epitope is not necessary for inducing an effective immune response. However, co-delivery - specifically, the physical assembly of all immune cues into an LNP - remains essential for inducing hapten-specific immunity.
Collapse
Affiliation(s)
- Zifu Zhong
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Stijn Vanhee
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
- Department of Head and Skin, Ghent University, Gent, Belgium
| | - Inés Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
- Department of Head and Skin, Ghent University, Gent, Belgium
| | - Kim Deswarte
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
| | - Yi Huang
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Tingting Ye
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Haixiu Wang
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Lutz Nuhn
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Würzburg, 97070, Germany
| | - Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Mark Gontsarik
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Xiaole Cui
- Laboratory of Gene Therapy, Ghent University, Belgium, Heidestraat 19, Merelbeke, 9820, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Ghent University, Belgium, Heidestraat 19, Merelbeke, 9820, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
| | - Antonio P Baptista
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| |
Collapse
|
26
|
Laurent Q, Bona BL, Asohan J, Rosati M, Faiad S, Bombelli FB, Metrangolo P, Sleiman HF. Self-Assembly and Biological Properties of Highly Fluorinated Oligonucleotide Amphiphiles. Angew Chem Int Ed Engl 2025; 64:e202419996. [PMID: 39636686 PMCID: PMC11811686 DOI: 10.1002/anie.202419996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
Nucleic acids, used as therapeutics to silence disease-related genes, offer significant advantages over small molecule drugs: they provide high specificity, the ability to target "undruggable" molecules, and adaptability to a wide range of disease phenotypes. However, their instability in biological media, as well their rapid clearance from the organism limit their applicability, necessitating the use of nanocarriers to overcome these challenges. Among these strategies, spherical nucleic acids (SNA)-composed of a densely packed corona of oligonucleotides around a nanoparticle-have emerged as a powerful tool, in particular when self-assembled from DNA amphiphiles. This non-covalent strategy however has caveats, especially when it comes to stability in complex biological media, where these SNAs disassemble in contact to serum proteins. Here, we developed highly fluorinated DNA amphiphiles that readily self-assemble into SNAs and have tunable stability profiles in biological media. They are made of branched fluorinated moieties with potentially improved biodegradability as compared to their linear counterparts. Depending on the number of fluorophilic interactions, the self-assembled SNAs can have excellent serum stabilities-up to days-and readily deliver nucleic acid therapeutics for gene silencing applications. These systems show great potential as promising candidates for nucleic acid-based therapies.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| | - Beatrice L. Bona
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Jathavan Asohan
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| | - Marta Rosati
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Sinan Faiad
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| | - Francesca Baldelli Bombelli
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Pierangelo Metrangolo
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| |
Collapse
|
27
|
Cheng Z, Huang H, Yin M, Liu H. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects. Exp Hematol Oncol 2025; 14:11. [PMID: 39891180 PMCID: PMC11786384 DOI: 10.1186/s40164-025-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Liposomes and lipid nanoparticles are common lipid-based drug delivery systems and play important roles in cancer treatment and vaccine manufacture. Although significant progress has been made with these lipid-based nanocarriers in recent years, efficient clinical translation of active targeted liposomal nanocarriers remains extremely challenging. In this review, we focus on targeted liposomes, stimuli-responsive strategy and combined therapy in cancer treatment. We also summarize advances of liposome and lipid nanoparticle applications in nucleic acid delivery and tumor vaccination. In addition, we discuss limitations and challenges in the clinical translation of these lipid nanomaterials and make recommendations for the future research in cancer therapy.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Infectious Disease, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Meilong Yin
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huaizheng Liu
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
28
|
Han X, Petrova V, Song Y, Cheng YT, Jiang X, Zhou H, Hu C, Chen DS, Yong HJ, Kim HW, Zhang B, Barkai O, Jain A, Renthal W, Lirk P, Woolf CJ, Shi J. Lipid nanoparticle delivery of siRNA to dorsal root ganglion neurons to treat pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.633455. [PMID: 39896578 PMCID: PMC11785206 DOI: 10.1101/2025.01.23.633455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Sensory neurons within the dorsal root ganglion (DRG) are the primary trigger of pain, relaying activity about noxious stimuli from the periphery to the central nervous system; however, targeting DRG neurons for pain management has remained a clinical challenge. Here, we demonstrate the use of lipid nanoparticles (LNPs) for effective intrathecal delivery of small interfering RNA (siRNA) to DRG neurons, achieving potent silencing of the transient receptor potential vanilloid 1 (TRPV1) ion channel that is predominantly expressed in nociceptor sensory neurons. This leads to a reversible interruption of heat-, capsaicin-, and inflammation-induced nociceptive conduction, as observed by behavioral outputs. Our work provides a proof-of-concept for intrathecal siRNA therapy as a novel and selective analgesic modality.
Collapse
|
29
|
Deng X, Yang Y, Gan L, Duan X, Wang X, Zhang J, Wang A, Zhang A, Yuan Z, Chen D, Zheng A. Engineering Lipid Nanoparticles to Enhance Intracellular Delivery of Transforming Growth Factor-Beta siRNA (siTGF-β1) via Inhalation for Improving Pulmonary Fibrosis Post-Bleomycin Challenge. Pharmaceutics 2025; 17:157. [PMID: 40006524 PMCID: PMC11859093 DOI: 10.3390/pharmaceutics17020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Transforming Growth Factor-beta (TGFβ1) plays a core role in the process of pulmonary fibrosis (PF). The progression of pulmonary fibrosis can be alleviated by siRNA-based inhibiting TGF-β1. However, the limitations of naked siRNA lead to the failure of achieving therapeutic effect. This study aimed to design lipid nanoparticles (LNPs) that can deliver siTGF-β1 to the lungs for therapeutic purposes. Methods: The cytotoxicity and transfection assay in vitro were used to screen ionizable lipids (ILs). Design of Experiments (DOE) was used to obtain novel LNPs that can enhance resistance to atomization shear forces. Meanwhile, the impact of LNPs encapsulating siTGF-β1 (siTGFβ1-LNPs) on PF was investigated. Results: When DLin-DMA-MC3 (MC3) was used as the ILs, the lipid phase ratio was MC3:DSPC:DMG-PEG2000:cholesterol = 50:10:3:37, and N/P = 3.25; the siTGFβ1-LNPs could be stably delivered to the lungs via converting the siTGFβ1-LNPs solution into an aerosol (atomization). In vitro experiments have confirmed that siTGFβ1-LNPs have high safety, high encapsulation, and can promote cellular uptake and endosomal escape. In addition, siTGFβ1-LNPs significantly reduced inflammatory infiltration and attenuated deposition of extracellular matrix (ECM) and protected the lung tissue from the toxicity of bleomycin (BLM) without causing systemic toxicity. Conclusions: The siTGFβ1-LNPs can be effectively delivered to the lungs, resulting in the silencing of TGF-β1 mRNA and the inhibition of the epithelial-mesenchymal transition pathway, thereby delaying the process of PF, which provides a new method for the treatment and intervention of PF.
Collapse
Affiliation(s)
- Xu Deng
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China; (X.D.)
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (A.Z.)
| | - Yingjie Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China; (X.D.)
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (A.Z.)
| | - Liming Gan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (A.Z.)
| | - Xinliu Duan
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China; (X.D.)
| | - Xiwei Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China (J.Z.)
| | - Jingyan Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China (J.Z.)
| | - Aiping Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China; (X.D.)
| | - Anan Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (A.Z.)
| | - Zhizhao Yuan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (A.Z.)
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China; (X.D.)
| | - Aiping Zheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China (J.Z.)
| |
Collapse
|
30
|
Ma C, Chow MYT, Zhang C, Goldbaum P, Hsieh JCM, Lam JKW. Robust peptide/RNA complexes prepared with microfluidic mixing for pulmonary delivery by nebulisation. Drug Deliv Transl Res 2025:10.1007/s13346-024-01773-w. [PMID: 39827227 DOI: 10.1007/s13346-024-01773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 01/22/2025]
Abstract
Small interfering RNA (siRNA) and messenger RNA (mRNA) have drawn considerable attention in recent years due to their ability to modulate the expression of specific disease-related proteins. However, it is difficult to find safe, robust, and effective RNA delivery systems suitable for pulmonary delivery to treat lung diseases. In this study, two cationic peptides, namely LAH4-L1 and PEG12KL4, were employed as non-viral vectors for siRNA and mRNA delivery. Four formulations (i.e. LAH4-L1/siRNA; PEG12KL4/siRNA; LAH4-L1/mRNA and PEG12KL4/mRNA) were investigated. Microfluidic mixing method was utilised to fabricate RNA complexes in a controllable and reproducible manner. Upon optimisation of the microfluidic mixing protocol, a vibrating mesh nebuliser was employed to aerosolise the RNA complexes, and their transfection efficiency was evaluated on A549 and BEAS-2B cells. Following nebulisation, inhalable mist was generated for all RNA formulations with mass median aerodynamic diameter below 5 μm. Although the hydrodynamic particle sizes of the RNA complexes were significantly reduced to around 100 nm after nebulisation regardless of the original size of the complexes prior to nebulisation, the RNA binding efficiency and the in vitro RNA transfection ability of all the peptide formulations were successfully preserved with no significant differences compared to the same system before nebulisation. The current result indicates that both LAH4-L1 and PEG12KL4 hold significant potential for future clinical application for pulmonary siRNA and mRNA delivery through nebulisation.
Collapse
Affiliation(s)
- Cheng Ma
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, SAR, Hong Kong
| | - Michael Y T Chow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Chengyang Zhang
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Paulina Goldbaum
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jamie Chien-Ming Hsieh
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Medway School of Pharmacy, Central Avenue, University of Kent, Chatham Maritime, Canterbury, ME4 4TB, UK
| | - Jenny K W Lam
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, SAR, Hong Kong.
| |
Collapse
|
31
|
Wang Q, Feng K, Wan G, Liao W, Jin J, Wang P, Sun X, Wang W, Jiang Q. A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression. J Nanobiotechnology 2025; 23:18. [PMID: 39815302 PMCID: PMC11737235 DOI: 10.1186/s12951-024-03046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/29/2024] [Indexed: 01/30/2025] Open
Abstract
RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified Fe3O4 nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs. Subsequently, a poly(vinyl alcohol) (PVA) crosslinked phenylboronic acid (PBA)-modified hyaluronic acid (HA) hydrogel (HPP) was used to encapsulate the si-Fe NPs, resulting in a bifunctional hydrogel (si-Fe-HPP) with reactive oxygen species (ROS)-responsive and RNAi therapeutic properties. Studies in vitro demonstrated that si-Fe-HPP exhibited excellent biocompatibility, anti-inflammatory effects and prolonged stable retention time in knee joint. Intra-articular injection of si-Fe-HPP significantly attenuated cartilage degradation in mice with destabilization of the medial meniscus (DMM)-induced OA. The si-Fe-HPP treatment not only notably alleviated synovitis, osteophyte formation and subchondral bone sclerosis, but also markedly improved physical activity and reduced pain in DMM-induced OA mice. This study reveals that si-Fe-HPP, with its ROS-responsive and RNAi abilities, can significantly protect chondrocytes and attenuate OA progression, providing novel insights and directions for the development of therapeutic materials for OA treatment.
Collapse
Affiliation(s)
- Qiuyang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, 210008, People's Republic of China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, People's Republic of China
| | - Kai Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Guangsheng Wan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wei Liao
- Children's Hospital of Nanjing Medical University, Nanjing, 210008, People's Republic of China
| | - Jing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, 210008, People's Republic of China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, People's Republic of China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Weijun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, 210008, People's Republic of China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, People's Republic of China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, 210008, People's Republic of China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, People's Republic of China.
| |
Collapse
|
32
|
Fu J, Zhang N, Xu C, Zhao M, Wu S, Xu S, Hong X, Wang M, Fu G. Thrombospondin-1 Small Interfering RNA-Loaded Lipid Nanoparticles Inhibiting Intimal Hyperplasia of Electrospun Polycaprolactone Vascular Grafts. ACS NANO 2025; 19:451-469. [PMID: 39723585 DOI: 10.1021/acsnano.4c09419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Synthetic vascular grafts are promising conduits for small caliber arteries. However, due to restenosis caused by intimal hyperplasia, they cannot keep long patency in vivo. In this work, through single cell RNA sequencing, we found that thrombospondin-1 (THBS1) was highly expressed in the regenerated smooth muscle cells (SMCs) in electrospun polycaprolactone (PCL) vascular grafts. The expression of THBS1 by injured SMCs was confirmed in a balloon-induced vascular injury model. Downregulation of Thbs1 expression maintained contractile phenotypes of SMCs and reduced neointimal hyperplasia after vascular injury via inhibition of FGFR1/EGR1 signaling by decreasing THBS1 expression. THBS1 small interfering RNA (THBS1-siRNA) was then loaded into macrophage membrane (MM) hybrid lipid nanoparticles (Lipid NP@MM), which were used to modify PCL vascular grafts via polydopamine (PDA) coatings. Lipid NP@MM not only protected THBS1-siRNA from degradation but also improved its internalization by SMCs to decrease the level of THBS1 expression. PCL vascular grafts modified with PDA coatings and Thbs1-siRNA-loaded Lipid NP@MM showed significantly reduced intimal hyperplasia. Thus, the downregulation of THBS1 expression in regenerated SMCs in vascular grafts is a promising strategy to inhibit intimal hyperplasia during vascular graft regeneration in vivo.
Collapse
Affiliation(s)
- Jiayin Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou 310016, China
| | - Ning Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou 310016, China
| | - Changfu Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou 310016, China
| | - Meng Zhao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou 310016, China
| | - Shaofei Wu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou 310016, China
| | - Shihui Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou 310016, China
| | - Xulin Hong
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou 310016, China
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou 310016, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou 310016, China
| |
Collapse
|
33
|
Sahoo D, Atochina-Vasserman EN, Lu J, Maurya DS, Ona N, Vasserman JA, Ni H, Berkihiser S, Park WJ, Weissman D, Percec V. Toward a Complete Elucidation of the Primary Structure-Activity in Pentaerythritol-Based One-Component Ionizable Amphiphilic Janus Dendrimers for In Vivo Delivery of Luc-mRNA. Biomacromolecules 2025; 26:726-737. [PMID: 39688403 DOI: 10.1021/acs.biomac.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Four-component lipid nanoparticles (LNPs) and viral vectors are key for mRNA vaccine and therapeutics delivery. LNPs contain ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG)-conjugated lipids and deliver mRNA for COVID-19 vaccines to liver when injected intravenously or intramuscularly. In 2021, we elaborated one-component ionizable amphiphilic Janus dendrimers (IAJDs) accessing targeted delivery of mRNA. Simplified synthesis and assembly processes allow for rapid IAJD screening for discovery. The role of the primary structure of IAJDs in activity indicated, with preliminary investigations, that ionizable amine (IA), sequence, and architecture of hydrophilic and hydrophobic domains are important for in vivo targeted delivery. Here, we study the role of the interconnecting linker length between the IA and the hydrophobic domain of pentaerythritol-based IAJDs. The linker length determines, through inductive effects, the position of the IA and the pKa of the IAJDs and through flexibility, the stability of the DNPs, highlighting their extraordinarily important role in effective targeted delivery.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica A Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sydni Berkihiser
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wook-Jin Park
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
34
|
Ye T, Chen Y, Zhong Z, Huang Y, De Baere J, Gontsarik M, Deswarte K, Golba B, Risseeuw M, Van Calenbergh S, Lambrecht BN, De Geest BG. Galloyl Dialkyl Lipids Drive Encapsulation of Peptides into Lipid Nanoparticles by Hydrogen Bonding. J Am Chem Soc 2025; 147:1307-1318. [PMID: 39780390 DOI: 10.1021/jacs.4c15688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The intracellular delivery of peptides and proteins is crucial for various biomedical applications. Lipid nanoparticles (LNPs) have emerged as a promising strategy for delivering peptides to phagocytic cells. However, the diverse physicochemical properties of peptides necessitate tailored formulations. This study introduces a generic approach using galloyl (GA)-functionalized lipids for the encapsulation of peptides in LNPs via hydrogen bonding between the ubiquitously present amides in peptides and the multivalently displayed galloyl phenol groups in GA-LNPs. In vitro studies showed that GA-LNPs significantly improved the cellular uptake of peptides and activated immune responses when combined with Toll-like receptor (TLR) agonists MPLA and IMDQ. In vivo, GA-LNPs accumulated in the spleen and enhanced peptide delivery to antigen-presenting cells. GA-LNPs coencapsulating peptide antigens and TLR agonists elicited robust antigen-specific CD8+ T-cell responses in mice.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Yi Huang
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Jamie De Baere
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Mark Gontsarik
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Bianka Golba
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Martijn Risseeuw
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | | | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, 3015 GD Rotterdam, The Netherlands
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
35
|
Xue L, Zhao G, Gong N, Han X, Shepherd SJ, Xiong X, Xiao Z, Palanki R, Xu J, Swingle KL, Warzecha CC, El-Mayta R, Chowdhary V, Yoon IC, Xu J, Cui J, Shi Y, Alameh MG, Wang K, Wang L, Pochan DJ, Weissman D, Vaughan AE, Wilson JM, Mitchell MJ. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. NATURE NANOTECHNOLOGY 2025; 20:132-143. [PMID: 39354147 DOI: 10.1038/s41565-024-01747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/08/2024] [Indexed: 10/03/2024]
Abstract
Systemic delivery of messenger RNA (mRNA) for tissue-specific targeting using lipid nanoparticles (LNPs) holds great therapeutic potential. Nevertheless, how the structural characteristics of ionizable lipids (lipidoids) impact their capability to target cells and organs remains unclear. Here we engineered a class of siloxane-based ionizable lipids with varying structures and formulated siloxane-incorporated LNPs (SiLNPs) to control in vivo mRNA delivery to the liver, lung and spleen in mice. The siloxane moieties enhance cellular internalization of mRNA-LNPs and improve their endosomal escape capacity, augmenting their mRNA delivery efficacy. Using organ-specific SiLNPs to deliver gene editing machinery, we achieve robust gene knockout in the liver of wild-type mice and in the lungs of both transgenic GFP and Lewis lung carcinoma (LLC) tumour-bearing mice. Moreover, we showed effective recovery from viral infection-induced lung damage by delivering angiogenic factors with lung-targeted Si5-N14 LNPs. We envision that our SiLNPs will aid in the clinical translation of mRNA therapeutics for next-generation tissue-specific protein replacement therapies, regenerative medicine and gene editing.
Collapse
Affiliation(s)
- Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Zebin Xiao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claude C Warzecha
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rakan El-Mayta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vivek Chowdhary
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Il-Chul Yoon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jingcheng Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiaxi Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Shi
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Lili Wang
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
36
|
Rivero-Barbarroja G, López-Fernández J, Juárez-Gonzálvez I, Fernández-Clavero C, Di Giorgio C, Vélaz I, Garrido MJ, Benito JM, Ortiz Mellet C, Mendicuti F, Tros de Ilarduya C, García Fernández JM. β-Cyclodextrin-based geometrically frustrated amphiphiles as one-component, cell-specific and organ-specific nucleic acid delivery systems. Carbohydr Polym 2025; 347:122776. [PMID: 39487000 DOI: 10.1016/j.carbpol.2024.122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/04/2024]
Abstract
We introduce an innovative β-cyclodextrin (βCD)-prototype for delivering nucleic acids: "geometrically frustrated amphiphiles (GFAs)." GFAs are designed with cationic centers evenly distributed across the primary O6 and secondary O2 positions of the βCD scaffold, while hydrophobic tails are anchored at the seven O3 positions. Such distribution of functional elements differs from Janus-type architectures and enlarges the capacity for accessing strictly monodisperse variants. Changes at the molecular level can then be correlated with preferred self-assembly and plasmid DNA (pDNA) co-assembly behaviors. Specifically, GFAs undergo pH-dependent transition between bilayered to monolayered vesicles or individual molecules. GFA-pDNA nanocomplexes exhibit topological and internal order characteristics that are also a function of the GFA molecular architecture. Notably, adjusting the pKa of the cationic heads and the hydrophilic-hydrophobic balance, pupa-like arrangements implying axial alignments of GFA units flanked by quasi-parallel pDNA segments are preferred. In vitro cell transfection studies revealed remarkable differences in relative performances, which corresponded to distinct organ targeting outcomes in vivo. This allowed for preferential delivery to the liver and lung, kidney or spleen. The results collectively highlight cyclodextrin-based GFAs as a promising class of molecular vectors capable of finely tuning cell and organ transfection selectivity.
Collapse
Affiliation(s)
| | - José López-Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Inmaculada Juárez-Gonzálvez
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Carlos Fernández-Clavero
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain
| | | | - Itziar Vélaz
- Department of Chemistry, School of Sciences, University of Navarra, 31080 Pamplona, Spain
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Sevilla, Spain.
| | - Francisco Mendicuti
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain.
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain.
| |
Collapse
|
37
|
Zhang G, Ma Z, Ma Z, Liu P, Zhang L, Lian Z, Guo C. SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis. Cardiovasc Toxicol 2025; 25:97-109. [PMID: 39729180 DOI: 10.1007/s12012-024-09950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury. qRT-PCR and western blot assays were used to detect the levels of mRNAs and proteins. Cardiomyocyte injury was determined by detecting the levels of lactate dehydrogenase and creatine Kinase MB (CK-MB). Cell apoptosis was investigated by flow cytometry and related markers. Levels of IL-6, IL-10, and TNF-α were measured by ELISA. Cell ferroptosis was assessed by detecting the production of reactive oxygen species (ROS), malonaldehyde (MDA), reduced glutathione/oxidized glutathione disulfide (GSH/GSSG) ratio, Fe + content, and related regulators. The interaction between NRF2 and the suppressor of zest 12 (SUZ12) was analyzed by using dual-luciferase reporter and RNA immunoprecipitation assays. AMI rat models were established for in vivo analysis. NRF2 was lowly expressed in AMI patients and H/R-induced cardiomyocytes. Forced expression of NRF2 reduced H/R-induced cardiomyocyte injury, apoptosis, inflammation, and ferroptosis. Moreover, NRF2 overexpression improved cardiac function and injury in vivo. Mechanistically, SUZ12 bound to the promoter of NRF2 and promoted its expression. Further functional analyses showed that SUZ12 overexpression reduced H/R-induced cardiomyocyte injury, apoptosis, inflammation, and ferroptosis, which were reversed by NRF2 silencing. SUZ12-increased NRF2 suppressed H/R-induced cardiomyocyte injury, apoptosis, inflammation, and ferroptosis in vitro and improved cardiac functions in rats with I/R injury, suggesting the potential cardioprotective effect of NRF2 in cardiac injury during AMI.
Collapse
Affiliation(s)
- Guoyong Zhang
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Zhimin Ma
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Zheng Ma
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Peilin Liu
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Lin Zhang
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Zheng Lian
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Caixia Guo
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
38
|
Han L, Dai Q, He C, Xu J, Cui L, Xie X, Zhang Z, Zhuang M, Li X, Lu M. A tetrahedral DNA nanoplatform with ultrasound-triggered biomimetic nanocarriers for targeted siMCM2 delivery and reversal of imatinib resistance in gastrointestinal stromal tumors. CHEMICAL ENGINEERING JOURNAL 2025; 504:158843. [DOI: 10.1016/j.cej.2024.158843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
39
|
Beigi A, Naghib SM, Matini A, Tajabadi M, Mozafari MR. Lipid-Based Nanocarriers for Targeted Gene Delivery in Lung Cancer Therapy: Exploring a Novel Therapeutic Paradigm. Curr Gene Ther 2025; 25:92-112. [PMID: 38778601 DOI: 10.2174/0115665232292768240503050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Lung cancer is a significant cause of cancer-related death worldwide. It can be broadly categorised into small-cell lung cancer (SCLC) and Non-small cell lung cancer (NSCLC). Surgical intervention, radiation therapy, and the administration of chemotherapeutic medications are among the current treatment modalities. However, the application of chemotherapy may be limited in more advanced stages of metastasis due to the potential for adverse effects and a lack of cell selectivity. Although small-molecule anticancer treatments have demonstrated effectiveness, they still face several challenges. The challenges at hand in this context comprise insufficient solubility in water, limited bioavailability at specific sites, adverse effects, and the requirement for epidermal growth factor receptor inhibitors that are genetically tailored. Bio-macromolecular drugs, including small interfering RNA (siRNA) and messenger RNA (mRNA), are susceptible to degradation when exposed to the bodily fluids of humans, which can reduce stability and concentration. In this context, nanoscale delivery technologies are utilised. These agents offer encouraging prospects for the preservation and regulation of pharmaceutical substances, in addition to improving the solubility and stability of medications. Nanocarrier-based systems possess the notable advantage of facilitating accurate and sustained drug release, as opposed to traditional systemic methodologies. The primary focus of scientific investigation has been to augment the therapeutic efficacy of nanoparticles composed of lipids. Numerous nanoscale drug delivery techniques have been implemented to treat various respiratory ailments, such as lung cancer. These technologies have exhibited the potential to mitigate the limitations associated with conventional therapy. As an illustration, applying nanocarriers may enhance the solubility of small-molecule anticancer drugs and prevent the degradation of bio-macromolecular drugs. Furthermore, these devices can administer medications in a controlled and extended fashion, thereby augmenting the therapeutic intervention's effectiveness and reducing adverse reactions. However, despite these promising results, challenges remain that must be addressed. Multiple factors necessitate consideration when contemplating the application of nanoparticles in medical interventions. To begin with, the advancement of more efficient delivery methods is imperative. In addition, a comprehensive investigation into the potential toxicity of nanoparticles is required. Finally, additional research is needed to comprehend these treatments' enduring ramifications. Despite these challenges, the field of nanomedicine demonstrates considerable promise in enhancing the therapy of lung cancer and other respiratory diseases.
Collapse
Affiliation(s)
- Anahita Beigi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Amir Matini
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Maryam Tajabadi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16844, Iran
| | - Mohammad Reza Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
40
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
41
|
Zhao Z, Wang P, Li Z, Wei X, Li S, Lu X, Dai S, Huang B, Man Z, Li W. Targeted lipid nanoparticles distributed in hydrogel treat osteoarthritis by modulating cholesterol metabolism and promoting endogenous cartilage regeneration. J Nanobiotechnology 2024; 22:786. [PMID: 39707367 DOI: 10.1186/s12951-024-02965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 12/23/2024] Open
Abstract
Osteoarthritis (OA) is the most common disease in aging joints and has characteristics of cartilage destruction and inflammation. It is currently considered a metabolic disease, and the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes plays a crucial catabolic regulatory role in its pathogenesis. Targeting of this axis in chondrocytes may provide a therapeutic approach for OA treatment. Here, in this study, we propose to use a combination of stem cell-recruiting hydrogels and lipid nanoparticles (LNPs) that modulate cholesterol metabolism to jointly promote a regenerative microenvironment. Specifically, we first developed an injectable, bioactive hydrogel composed of self-assembling peptide nanofibers that recruits endogenous synovial stem cells (SMSCs) and promotes their chondrogenic differentiation. At the same time, LNPs that regulate cholesterol metabolism are incorporated into the hydrogel and slowly released, thereby improving the inflammatory environment of OA. Enhancements were noted in the inflammatory conditions associated with OA, alongside the successful attraction of mesenchymal stem cells (MSCs) from the synovial membrane. These cells were then observed to differentiate into chondrocytes, contributing to effective cartilage restoration and chondrocyte regeneration, thereby offering a promising approach for OA treatment. In summary, this approach provides a feasible siRNA-based therapeutic option, offering a potential nonsurgical solution for treatment of OA.
Collapse
Affiliation(s)
- Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Ziyang Li
- Department of Sports Medicine & Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xingchen Wei
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Benzhao Huang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, People's Republic of China.
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
42
|
Manturthi S, El-Sahli S, Bo Y, Durocher E, Kirkby M, Popatia A, Mediratta K, Daniel R, Lee SH, Iqbal U, Côté M, Wang L, Gadde S. Nanoparticles Codelivering mRNA and SiRNA for Simultaneous Restoration and Silencing of Gene/Protein Expression In Vitro and In Vivo. ACS NANOSCIENCE AU 2024; 4:416-425. [PMID: 39713729 PMCID: PMC11659891 DOI: 10.1021/acsnanoscienceau.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 12/24/2024]
Abstract
RNA-based agents (siRNA, miRNA, and mRNA) can selectively manipulate gene expression/proteins and are set to revolutionize a variety of disease treatments. Nanoparticle (NP) platforms have been developed to deliver functional mRNA or siRNA inside cells to overcome their inherent limitations. Recent studies have focused on siRNA to knock down proteins causing drug resistance or mRNA technology to introduce tumor suppressors. However, cancer needs multitargeted approaches to selectively manipulate multiple gene expressions/proteins. In this proof-of-concept study, we developed NPs containing Luc-mRNA and siRNA-GFP as model agents ((M+S)-NPs) and showed that NPs can simultaneously deliver functional mRNA and siRNA and impact the expression of two genes/proteins in vitro. Additionally, after in vivo administration, (M+S)-NPs successfully knocked down GFP while introducing luciferase into a TNBC mouse model, indicating that our NPs have the potential to develop RNA-based anticancer therapeutics. These studies pave the way to develop RNA-based, multitargeted approaches for complex diseases like cancer.
Collapse
Affiliation(s)
- Shireesha Manturthi
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H
8L6, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sara El-Sahli
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yuxia Bo
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H
8L6, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
| | - Emma Durocher
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H
8L6, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Melanie Kirkby
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alyanna Popatia
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Karan Mediratta
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Redaet Daniel
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Seung-Hwan Lee
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Umar Iqbal
- Human Health
Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Marceline Côté
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Lisheng Wang
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Suresh Gadde
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H
8L6, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa-Carleton
Institute for Biomedical Engineering (OCIBME), Ottawa, ON K1S
5B6, Canada
| |
Collapse
|
43
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
44
|
Meng F, Xing H, Li J, Liu Y, Tang L, Chen Z, Jia X, Yin Z, Yi J, Lu M, Gao X, Zheng A. Fc-empowered exosomes with superior epithelial layer transmission and lung distribution ability for pulmonary vaccination. Bioact Mater 2024; 42:573-586. [PMID: 39308551 PMCID: PMC11416621 DOI: 10.1016/j.bioactmat.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Mucosal vaccines offer potential benefits over parenteral vaccines for they can trigger both systemic immune protection and immune responses at the predominant sites of pathogen infection. However, the defense function of mucosal barrier remains a challenge for vaccines to overcome. Here, we show that surface modification of exosomes with the fragment crystallizable (Fc) part from IgG can deliver the receptor-binding domain (RBD) of SARS-CoV-2 to cross mucosal epithelial layer and permeate into peripheral lung through neonatal Fc receptor (FcRn) mediated transcytosis. The exosomes F-L-R-Exo are generated by genetically engineered dendritic cells, in which a fusion protein Fc-Lamp2b-RBD is expressed and anchored on the membrane. After intratracheally administration, F-L-R-Exo is able to induce a high level of RBD-specific IgG and IgA antibodies in the animals' lungs. Furthermore, potent Th1 immune-biased T cell responses were also observed in both systemic and mucosal immune responses. F-L-R-Exo can protect the mice from SARS-CoV-2 pseudovirus infection after a challenge. These findings hold great promise for the development of a novel respiratory mucosal vaccine approach.
Collapse
Affiliation(s)
- Fan Meng
- School of Pharmaceutical Sciences & State Key Laboratory of Functions and Applications of Medicinal Plants & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Haonan Xing
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jingru Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yingqi Liu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Li Tang
- School of Pharmaceutical Sciences & State Key Laboratory of Functions and Applications of Medicinal Plants & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zehong Chen
- School of Pharmaceutical Sciences & State Key Laboratory of Functions and Applications of Medicinal Plants & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiran Jia
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Zenglin Yin
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jing Yi
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Mei Lu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing, 100081, China
| | - Xiuli Gao
- School of Pharmaceutical Sciences & State Key Laboratory of Functions and Applications of Medicinal Plants & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| |
Collapse
|
45
|
Lv K, Yu Z, Wang J, Li N, Wang A, Xue T, Wang Q, Shi Y, Han L, Qin W, Gong J, Song H, Zhang T, Chang C, Chen H, Zhong X, Ding J, Chen R, Liu M, Zhang W, Cen S, Dong Y. Discovery of Ketal-Ester Ionizable Lipid Nanoparticle with Reduced Hepatotoxicity, Enhanced Spleen Tropism for mRNA Vaccine Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404684. [PMID: 39387241 PMCID: PMC11615764 DOI: 10.1002/advs.202404684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/31/2024] [Indexed: 10/15/2024]
Abstract
The safety and efficacy of the lipid nanoparticle (LNP) delivery system are crucial for the successful development of messenger RNA vaccines. We designed and synthesized a series of ketal ester lipids (KELs), featuring a biodegradable ketal moiety in the linker and ester segments in the tail. Through iterative optimization of the head and tail groups of KELs, we tuned the pKa and molecular shapes, and identified (4S)-KEL12 as a safe and efficient ionizable lipid for mRNA delivery. (4S)-KEL12 LNP showed significantly higher delivery efficacy and lower toxicity than the DLin-MC3-DMA LNP. In comparison to SM-102 LNP, (4S)-KEL12 LNP exhibited better spleen tropism, reduced liver tropism, and hepatotoxicity. Additionally, (4S)-KEL12 demonstrated good biodegradability following intramuscular or intravenous injection. Notably, (4S)-KEL12 LNP encapsulated with a therapeutic mRNA cancer vaccine elicited robust cellular immune responses leading to substantial tumor regression along with prolonged survival in tumor-bearing mice. Our results suggest that (4S)-KEL12 LNP holds great promise for mRNA vaccine delivery. The comprehensive analysis of the structure-activity relationship, toxicity, biodegradability, distribution, expression, efficacy, and stereochemistry of these LNPs will greatly contribute to the rational design and discovery of novel lipid-based delivery systems.
Collapse
Affiliation(s)
- Kai Lv
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Zhenlei Yu
- RinuaGene Biotechnology Co. LtdSuzhouJiangsuChina
| | - Jing Wang
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Na Li
- RinuaGene Biotechnology Co. LtdSuzhouJiangsuChina
| | - Apeng Wang
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Tiezheng Xue
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Qixin Wang
- RinuaGene Biotechnology Co. LtdSuzhouJiangsuChina
| | - Yanqin Shi
- RinuaGene Biotechnology Co. LtdSuzhouJiangsuChina
| | - Lu Han
- RinuaGene Biotechnology Co. LtdSuzhouJiangsuChina
| | - Wei Qin
- RinuaGene Biotechnology Co. LtdSuzhouJiangsuChina
| | - Jiaqi Gong
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Huijuan Song
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | | | | | - Hua Chen
- RinuaGene Biotechnology Co. LtdSuzhouJiangsuChina
| | - Xijun Zhong
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Jian Ding
- RinuaGene Biotechnology Co. LtdSuzhouJiangsuChina
| | - Rui Chen
- RinuaGene Biotechnology Co. LtdSuzhouJiangsuChina
| | - Mingliang Liu
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Weiguo Zhang
- RinuaGene Biotechnology Co. LtdSuzhouJiangsuChina
| | - Shan Cen
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Yijie Dong
- RinuaGene Biotechnology Co. LtdSuzhouJiangsuChina
| |
Collapse
|
46
|
Adhikari B, Stager MA, Collins EG, Fischenich KM, Olusoji J, Ruble AF, Payne KA, Krebs MD. Sustained release of MAPK14-targeting siRNA from polyelectrolyte complex hydrogels mitigates MSC osteogenesis in vitro with potential application in growth plate injury. J Biomed Mater Res A 2024; 112:2346-2357. [PMID: 39145460 DOI: 10.1002/jbm.a.37784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
The growth plate is a cartilage structure at the end of long bones which mediates growth in children. When fractured, the formation of bony repair tissue known as a "bony bar" can occur and cause limb deformities. There are currently no effective clinical solutions for the prevention of the bony bar formation or regeneration of healthy growth plate cartilage after a fracture. This study employs previously developed alginate/chitosan polyelectrolyte complex (PEC) hydrogels as a sustained release vehicle for the delivery of short-interfering RNA (siRNA). Specifically, the siRNA targets the p38-MAPK pathway in mesenchymal stem cells (MSCs) to prevent their osteogenic differentiation. In vitro experimental findings show sustained release of siRNA from the hydrogels for 6 months. Flow cytometry and confocal imaging indicate that the hydrogels release siRNA to effectively knockdown GFP expression over a sustained period. MAPK-14 targeting siRNA was used to knockdown the expression of MAPK-14 and correspondingly decrease the expression of other osteogenic genes in MSCs in vitro over the span of 21 days. These hydrogels were used in a rat model of growth plate injury to determine whether siMAPK-14 released from the gels could inhibit bony bar formation. No significant reduction of bony bar formation was seen in vivo at the one concentration of siRNA examined. This PEC hydrogel represents a significant advancement for siRNA sustained delivery, and presents an interesting potential therapeutic delivery system for growth plate injuries and other regenerative medicine applications.
Collapse
Affiliation(s)
- Bikram Adhikari
- Quantitative Biosciences and Bioengineering, Colorado School of Mines, Golden, Colorado, USA
| | - Michael A Stager
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Elise G Collins
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Kristine M Fischenich
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jesutomisin Olusoji
- Quantitative Biosciences and Bioengineering, Colorado School of Mines, Golden, Colorado, USA
| | - Ana Ferreira Ruble
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karin A Payne
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melissa D Krebs
- Quantitative Biosciences and Bioengineering, Colorado School of Mines, Golden, Colorado, USA
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
47
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
48
|
Laila UE, An W, Xu ZX. Emerging prospects of mRNA cancer vaccines: mechanisms, formulations, and challenges in cancer immunotherapy. Front Immunol 2024; 15:1448489. [PMID: 39654897 PMCID: PMC11625737 DOI: 10.3389/fimmu.2024.1448489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer continues to pose an alarming threat to global health, necessitating the need for the development of efficient therapeutic solutions despite massive advances in the treatment. mRNA cancer vaccines have emerged as a hopeful avenue, propelled by the victory of mRNA technology in COVID-19 vaccines. The article delves into the intricate mechanisms and formulations of cancer vaccines, highlighting the ongoing efforts to strengthen mRNA stability and ensure successful translation inside target cells. Moreover, it discusses the design and mechanism of action of mRNA, showcasing its potential as a useful benchmark for developing efficacious cancer vaccines. The significance of mRNA therapy and selecting appropriate tumor antigens for the personalized development of mRNA vaccines are emphasized, providing insights into the immune mechanism. Additionally, the review explores the integration of mRNA vaccines with other immunotherapies and the utilization of progressive delivery platforms, such as lipid nanoparticles, to improve immune responses and address challenges related to immune evasion and tumor heterogeneity. While underscoring the advantages of mRNA vaccines, the review also addresses the challenges associated with the susceptibility of RNA to degradation and the difficulty in identifying optimum tumor-specific antigens, along with the potential solutions. Furthermore, it provides a comprehensive overview of the ongoing research efforts aimed at addressing these hurdles and enhancing the effectiveness of mRNA-based cancer vaccines. Overall, this review is a focused and inclusive impression of the present state of mRNA cancer vaccines, outlining their possibilities, challenges, and future predictions in the fight against cancer, ultimately aiding in the development of more targeted therapies against cancer.
Collapse
Affiliation(s)
| | | | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
49
|
Rejinold NS, Jin GW, Choy JH. Insight into Preventing Global Dengue Spread: Nanoengineered Niclosamide for Viral Infections. NANO LETTERS 2024; 24:14541-14551. [PMID: 39194045 PMCID: PMC11583367 DOI: 10.1021/acs.nanolett.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
Millions of cases of dengue virus (DENV) infection yearly from Aedes mosquitoes stress the need for effective antivirals. No current drug effectively combats dengue efficiently. Transient immunity and severe risks highlight the need for broad-spectrum antivirals targeting all serotypes of DENV. Niclosamide, an antiparasitic, shows promising antiviral activity against the dengue virus, but enhancing its bioavailability is challenging. To overcome this issue and enable niclosamide to address the global dengue problem, nanoengineered niclosamides can be the solution. Not only does it address cost issues but also with its broad-spectrum antiviral effects nanoengineered niclosamide offers hope in addressing the current health crisis associated with DENV and will play a crucial role in combating other arboviruses as well.
Collapse
Affiliation(s)
- N. Sanoj Rejinold
- Intelligent
Nanohybrid Materials Laboratory (INML), College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Institute
of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic
of Korea
| | - Geun-woo Jin
- R&D
Center, Hyundai Bioscience Co. LTD., Seoul 03759, Republic
of Korea
| | - Jin-Ho Choy
- Intelligent
Nanohybrid Materials Laboratory (INML), College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Division
of Natural Sciences, The National Academy
of Sciences, Seoul 06579, Republic of Korea
- Tokyo
Tech World Research Hub Initiative (WRHI), Institute of Innovative
Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
50
|
Zhu M, Chen X, Zhang Y, Chen Y, Wu J, Duan X. Intestinal probiotic-based nanoparticles for cytotoxic siRNA delivery in immunotherapy against cancer. Int J Pharm 2024; 665:124689. [PMID: 39278289 DOI: 10.1016/j.ijpharm.2024.124689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
Immunogene therapy has emerged as strategy against cancer by introducing immune-stimulating components into gene therapy. However, there is still a need for an ideal platform to achieve both immune stimulation and efficient gene delivery. Lactobacillus reuteri has potential immunomodulatory activity owing to its unique antigenicity, which is potentially relevant to cancer progression. Here, we designed a novel non-viral siRNA vector (DMPLAC) by encapsulating Lactobacillus reuteri lysate in DMP. DMPLAC can promote maturation and activation of immune cells, increase infiltration of APC and cytotoxic T cells in tumor microenvironment, and exhibit tumor suppressive effects. Loading of siRNA targeting Stat3, DMPLAC/siStat3 further inhibits tumor in multiple models. We designed a strategy that combines immune activation with Stat3 silencing, triggering an immune response and tumor killing. This dual-functional design provides a new choice in development of effective immunogene therapy.
Collapse
Affiliation(s)
- Manfang Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiaohua Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yueyang Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yang Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|