1
|
Wang CY, Hu JQ, Wang DG, Li YZ, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat Prod Rep 2024; 41:905-934. [PMID: 38390645 DOI: 10.1039/d3np00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.
Collapse
Affiliation(s)
- Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| |
Collapse
|
2
|
Fu C, Liu Y, Walt C, Rasheed S, Bader CD, Lukat P, Neuber M, Haeckl FPJ, Blankenfeldt W, Kalinina OV, Müller R. Elucidation of unusual biosynthesis and DnaN-targeting mode of action of potent anti-tuberculosis antibiotics Mycoplanecins. Nat Commun 2024; 15:791. [PMID: 38278788 PMCID: PMC10817943 DOI: 10.1038/s41467-024-44953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
DNA polymerase III sliding clamp (DnaN) was recently validated as a new anti-tuberculosis target employing griselimycins. Three (2 S,4 R)-4-methylproline moieties of methylgriselimycin play significant roles in target binding and metabolic stability. Here, we identify the mycoplanecin biosynthetic gene cluster by genome mining using bait genes from the 4-methylproline pathway. We isolate and structurally elucidate four mycoplanecins comprising scarce homo-amino acids and 4-alkylprolines. Evaluating mycoplanecin E against Mycobacterium tuberculosis surprisingly reveals an excitingly low minimum inhibition concentration at 83 ng/mL, thus outcompeting griselimycin by approximately 24-fold. We show that mycoplanecins bind DnaN with nanomolar affinity and provide a co-crystal structure of mycoplanecin A-bound DnaN. Additionally, we reconstitute the biosyntheses of the unusual L-homoleucine, L-homonorleucine, and (2 S,4 R)-4-ethylproline building blocks by characterizing in vitro the full set of eight enzymes involved. The biosynthetic study, bioactivity evaluation, and drug target validation of mycoplanecins pave the way for their further development to tackle multidrug-resistant mycobacterial infections.
Collapse
Affiliation(s)
- Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
| | - Yunkun Liu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Christine Walt
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), 38124, Braunschweig, Germany
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), 38124, Braunschweig, Germany
| | - Chantal D Bader
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), 38124, Braunschweig, Germany
| | - Peer Lukat
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Markus Neuber
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), 38124, Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), 38124, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Olga V Kalinina
- Medical Faculty, Saarland University, 66421, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Center for Bioinformatics, Saarland Informatics Campus, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany.
- German Centre for Infection Research (DZIF), 38124, Braunschweig, Germany.
| |
Collapse
|
3
|
Wang DG, Wang CY, Hu JQ, Wang JJ, Liu WC, Zhang WJ, Du XR, Wang H, Zhu LL, Sui HY, Li YZ, Wu C. Constructing a Myxobacterial Natural Product Database to Facilitate NMR-Based Metabolomics Bioprospecting of Myxobacteria. Anal Chem 2023; 95:5256-5266. [PMID: 36917632 DOI: 10.1021/acs.analchem.2c05145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Myxobacteria are fascinating prokaryotes featuring a potent capacity for producing a wealth of bioactive molecules with intricate chemical topology as well as intriguing enzymology, and thus it is critical to developing an efficient pipeline for bioprospecting. Herein, we construct the database MyxoDB, the first public compendium solely dedicated to myxobacteria, which enabled us to provide an overview of the structural diversity and taxonomic distribution of known myxobacterial natural products. Moreover, we demonstrated that the cutting-edge NMR-based metabolomics was effective to differentiate the biosynthetic priority of myxobacteria, whereby MyxoDB could greatly streamline the dereplication of multifarious known compounds and accordingly speed up the discovery of new compounds. This led to the rapid identification of a class of linear di-lipopeptides (archangimins) and a rare rearranged sterol (corasterol) that were endowed with unique chemical architectures and/or biosynthetic enzymology. We also showcased that NMR-based metabolomics, MyxoDB, and genomics can also work concertedly to accelerate the targeted discovery of a polyketidic compound pyxipyrrolone C. All in all, this study sets the stage for the discovery of many more novel natural products from underexplored myxobacterial resources.
Collapse
Affiliation(s)
- De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wen-Chao Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wen-Juan Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xin-Ran Du
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Han Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Le-Le Zhu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hai-Yan Sui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Boness HVM, de Sá HC, Dos Santos EKP, Canuto GAB. Sample Preparation in Microbial Metabolomics: Advances and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:149-183. [PMID: 37843809 DOI: 10.1007/978-3-031-41741-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Microbial metabolomics has gained significant interest as it reflects the physiological state of microorganisms. Due to the great variability of biological organisms, in terms of physicochemical characteristics and variable range of concentration of metabolites, the choice of sample preparation methods is a crucial step in the metabolomics workflow and will reflect on the quality and reliability of the results generated. The procedures applied to the preparation of microbial samples will vary according to the type of microorganism studied, the metabolomics approach (untargeted or targeted), and the analytical platform of choice. This chapter aims to provide an overview of the sample preparation workflow for microbial metabolomics, highlighting the pre-analytical factors associated with cultivation, harvesting, metabolic quenching, and extraction. Discussions focus on obtaining intracellular and extracellular metabolites. Finally, we introduced advanced sample preparation methods based on automated systems.
Collapse
Affiliation(s)
- Heiter V M Boness
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Hanna C de Sá
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Emile K P Dos Santos
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Gisele A B Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
5
|
Optimization of Extraction of Natural Antimicrobial Pigments Using Supercritical Fluids: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It has become increasingly popular to replace chemically synthesized compounds with natural counterparts mostly found in natural sources, such as natural pigments. The conventional extraction processes for these compounds are limited by the toxicity and flammability of the solvents. To obtain pure extracts, it is always a longer process that requires several steps. Supercritical fluid extraction (SFE) is a cutting-edge green technology that is continuously increasing and expanding its fields of application, with benefits such as no waste produced, shorter extraction time, automation, and lower solvent consumption. The SFE of natural pigments has high potential in food, textiles, cosmetics, and pharmaceuticals; there are a number of other applications that can benefit from the SFE technique of natural pigments. The pigments that are extracted via SFE have a high potential for application and sustainability because of their biological and antimicrobial properties as well as low environmental risk. This review provides an update on the SFE technique, specifically as it pertains to the optimization of health-promoting pigments. This review focuses on antimicrobial pigments and the high efficiency of SFE in extracting pure antimicrobial pigments. In addition, the optimal conditions, biological activities, and possible applications of each category are explained.
Collapse
|
6
|
Moeini A, Pedram P, Fattahi E, Cerruti P, Santagata G. Edible Polymers and Secondary Bioactive Compounds for Food Packaging Applications: Antimicrobial, Mechanical, and Gas Barrier Properties. Polymers (Basel) 2022; 14:2395. [PMID: 35745971 PMCID: PMC9229000 DOI: 10.3390/polym14122395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Edible polymers such as polysaccharides, proteins, and lipids are biodegradable and biocompatible materials applied as a thin layer to the surface of food or inside the package. They enhance food quality by prolonging its shelf-life and avoiding the deterioration phenomena caused by oxidation, humidity, and microbial activity. In order to improve the biopolymer performance, antimicrobial agents and plasticizers are also included in the formulation of the main compounds utilized for edible coating packages. Secondary natural compounds (SC) are molecules not essential for growth produced by some plants, fungi, and microorganisms. SC derived from plants and fungi have attracted much attention in the food packaging industry because of their natural antimicrobial and antioxidant activities and their effect on the biofilm's mechanical properties. The antimicrobial and antioxidant activities inhibit pathogenic microorganism growth and protect food from oxidation. Furthermore, based on the biopolymer and SC used in the formulation, their specific mass ratio, the peculiar physical interaction occurring between their functional groups, and the experimental procedure adopted for edible coating preparation, the final properties as mechanical resistance and gas barrier properties can be opportunely modulated. This review summarizes the investigations on the antimicrobial, mechanical, and barrier properties of the secondary natural compounds employed in edible biopolymer-based systems used for food packaging materials.
Collapse
Affiliation(s)
- Arash Moeini
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (P.P.); (E.F.)
| | - Parisa Pedram
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (P.P.); (E.F.)
| | - Ehsan Fattahi
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (P.P.); (E.F.)
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (P.C.); (G.S.)
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (P.C.); (G.S.)
| |
Collapse
|
7
|
Bader CD, Panter F, Garcia R, Tchesnokov EP, Haid S, Walt C, Spröer C, Kiefer AF, Götte M, Overmann J, Pietschmann T, Müller R. Sandacrabins - Structurally Unique Antiviral RNA Polymerase Inhibitors from a Rare Myxobacterium. Chemistry 2022; 28:e202104484. [PMID: 34990513 PMCID: PMC9306752 DOI: 10.1002/chem.202104484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Structure elucidation and total synthesis of five unprecedented terpenoid-alkaloids, the sandacrabins, are reported, alongside with the first description of their producing organism Sandaracinus defensii MSr10575, which expands the Sandaracineae family by only its second member. The genome sequence of S. defensii as presented in this study was utilized to identify enzymes responsible for sandacrabin formation, whereby dimethylbenzimidazol, deriving from cobalamin biosynthesis, was identified as key intermediate. Biological activity profiling revealed that all sandacrabins except congener A exhibit potent antiviral activity against the human pathogenic coronavirus HCoV229E in the three digit nanomolar range. Investigation of the underlying mode of action discloses that the sandacrabins inhibit the SARS-CoV-2 RNA-dependent RNA polymerase complex, highlighting them as structurally distinct non-nucleoside RNA synthesis inhibitors. The observed segregation between cell toxicity at higher concentrations and viral inhibition opens the possibility for their medicinal chemistry optimization towards selective inhibitors.
Collapse
Affiliation(s)
- Chantal D. Bader
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Center for Infection Research (DZIF)Inhoffenstraße 738124BraunschweigGermany
| | - Fabian Panter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Center for Infection Research (DZIF)Inhoffenstraße 738124BraunschweigGermany
- Helmholtz International Lab for anti-infectivesCampus E8 166123SaarbrückenGermany
| | - Ronald Garcia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Center for Infection Research (DZIF)Inhoffenstraße 738124BraunschweigGermany
| | - Egor P. Tchesnokov
- Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Sibylle Haid
- Institute of Experimental Virology, TWINCORECentre for Experimental and Clinical Infection Research a joint venture between the Medical School Hannover (MHH) andThe Helmholtz Centre for Infection Research (HZI)Feodor-Lynen-Str. 730625HannoverGermany
| | - Christine Walt
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Center for Infection Research (DZIF)Inhoffenstraße 738124BraunschweigGermany
| | - Cathrin Spröer
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und ZellkulturenInhoffenstraße 7 and German Centre of Infection Research (DZIF) Partner Site Hannover-Braunschweig38124BraunschweigGermany
- MicrobiologyTechnical University of Braunschweig38106BraunschweigGermany
| | - Alexander F. Kiefer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Center for Infection Research (DZIF)Inhoffenstraße 738124BraunschweigGermany
| | - Matthias Götte
- Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Jörg Overmann
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und ZellkulturenInhoffenstraße 7 and German Centre of Infection Research (DZIF) Partner Site Hannover-Braunschweig38124BraunschweigGermany
- MicrobiologyTechnical University of Braunschweig38106BraunschweigGermany
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORECentre for Experimental and Clinical Infection Research a joint venture between the Medical School Hannover (MHH) andThe Helmholtz Centre for Infection Research (HZI)Feodor-Lynen-Str. 730625HannoverGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
- German Center for Infection Research (DZIF)Inhoffenstraße 738124BraunschweigGermany
- Helmholtz International Lab for anti-infectivesCampus E8 166123SaarbrückenGermany
| |
Collapse
|
8
|
Dzeha T, Hall MJ, Burgess JG. Micrococcin P1 and P2 from Epibiotic Bacteria Associated with Isolates of Moorea producens from Kenya. Mar Drugs 2022; 20:md20020128. [PMID: 35200657 PMCID: PMC8878052 DOI: 10.3390/md20020128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Epibiotic bacteria associated with the filamentous marine cyanobacterium Moorea producens were explored as a novel source of antibiotics and to establish whether they can produce cyclodepsipeptides on their own. Here, we report the isolation of micrococcin P1 (1) (C48H49N13O9S6; obs. m/z 1144.21930/572.60381) and micrococcin P2 (2) (C48H47N13O9S6; obs. m/z 1142.20446/571.60370) from a strain of Bacillus marisflavi isolated from M. producens’ filaments. Interestingly, most bacteria isolated from M. producens’ filaments were found to be human pathogens. Stalked diatoms on the filaments suggested a possible terrestrial origin of some epibionts. CuSO4·5H2O assisted differential genomic DNA isolation and phylogenetic analysis showed that a Kenyan strain of M. producens differed from L. majuscula strain CCAP 1446/4 and L. majuscula clones. Organic extracts of the epibiotic bacteria Pseudoalteromonas carrageenovora and Ochrobactrum anthropi did not produce cyclodepsipeptides. Further characterization of 24 Firmicutes strains from M. producens identified extracts of B. marisflavi as most active. Our results showed that the genetic basis for synthesizing micrococcin P1 (1), discovered in Bacillus cereus ATCC 14579, is species/strain-dependent and this reinforces the need for molecular identification of M. producens species worldwide and their epibionts. These findings indicate that M. producens-associated bacteria are an overlooked source of antimicrobial compounds.
Collapse
Affiliation(s)
- Thomas Dzeha
- D. John Faulkner Centre for Marine Biodiscovery and Biomedicine, P.O. Box 4, Kinango 80405, Kenya
- Department of Pure and Applied Sciences, Technical University of Mombasa, P.O. Box 90420, Mombasa 80100, Kenya
- Correspondence:
| | - Michael John Hall
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.J.H.); (J.G.B.)
| | - James Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.J.H.); (J.G.B.)
| |
Collapse
|
9
|
Measurements of drugs and metabolites in biological matrices using SFC and SFE-SFC-MS. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, Arimondo PB, Glaser P, Aigle B, Bode HB, Moreira R, Li Y, Luzhetskyy A, Medema MH, Pernodet JL, Stadler M, Tormo JR, Genilloud O, Truman AW, Weissman KJ, Takano E, Sabatini S, Stegmann E, Brötz-Oesterhelt H, Wohlleben W, Seemann M, Empting M, Hirsch AKH, Loretz B, Lehr CM, Titz A, Herrmann J, Jaeger T, Alt S, Hesterkamp T, Winterhalter M, Schiefer A, Pfarr K, Hoerauf A, Graz H, Graz M, Lindvall M, Ramurthy S, Karlén A, van Dongen M, Petkovic H, Keller A, Peyrane F, Donadio S, Fraisse L, Piddock LJV, Gilbert IH, Moser HE, Müller R. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem 2021; 5:726-749. [PMID: 34426795 PMCID: PMC8374425 DOI: 10.1038/s41570-021-00313-1] [Citation(s) in RCA: 564] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.
Collapse
Affiliation(s)
- Marcus Miethke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Marco Pieroni
- Food and Drug Department, University of Parma, Parma, Italy
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mark Brönstrup
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Chemical Biology (CBIO), Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Peter Hammann
- Infectious Diseases & Natural Product Research at EVOTEC, and Justus Liebig University Giessen, Giessen, Germany
| | - Ludovic Halby
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, Paris, France
| | - Paola B. Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, Paris, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance Unit, Microbiology Department, Institut Pasteur, CNRS UMR3525, Paris, France
| | | | - Helge B. Bode
- Department of Biosciences, Goethe University Frankfurt, Frankfurt, Germany
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, Marburg, Germany
| | - Rui Moreira
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Yanyan Li
- Unit MCAM, CNRS, National Museum of Natural History (MNHN), Paris, France
| | - Andriy Luzhetskyy
- Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Jean-Luc Pernodet
- Institute for Integrative Biology of the Cell (I2BC) & Microbiology Department, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Marc Stadler
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Microbial Drugs (MWIS), Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | | | | | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Kira J. Weissman
- Molecular and Structural Enzymology Group, Université de Lorraine, CNRS, IMoPA, Nancy, France
| | - Eriko Takano
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Evi Stegmann
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Wolfgang Wohlleben
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Myriam Seemann
- Institute for Chemistry UMR 7177, University of Strasbourg/CNRS, ITI InnoVec, Strasbourg, France
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Timo Jaeger
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Silke Alt
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | | | | | - Andrea Schiefer
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Heather Graz
- Biophys Ltd., Usk, Monmouthshire, United Kingdom
| | - Michael Graz
- School of Law, University of Bristol, Bristol, United Kingdom
| | | | | | - Anders Karlén
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Hrvoje Petkovic
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | | | | | - Laurent Fraisse
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Laura J. V. Piddock
- The Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Ian H. Gilbert
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Heinz E. Moser
- Novartis Institutes for BioMedical Research (NIBR), Emeryville, CA USA
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
11
|
Shrivastava A, Sharma RK. Myxobacteria and their products: current trends and future perspectives in industrial applications. Folia Microbiol (Praha) 2021; 66:483-507. [PMID: 34060028 DOI: 10.1007/s12223-021-00875-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
Myxobacteria belong to a group of bacteria that are known for their well-developed communication system and synchronized or coordinated movement. This typical behavior of myxobacteria is mediated through secondary metabolites. They are capable of producing secondary metabolites belonging to several chemical classes with unique and wide spectrum of bioactivities. It is predominantly significant that myxobacteria specialize in mechanisms of action that are very rare with other producers. Most of the metabolites have been explored for their medical and pharmaceutical values while a lot of them are still unexplored. This review is an attempt to understand the role of potential metabolites produced by myxobacteria in different applications. Different myxobacterial metabolites have demonstrated antibacterial, antifungal, and antiviral properties along with cytotoxic activity against various cell lines. Beside their metabolites, these myxobacteria have also been discussed for better exploitation and implementation in different industrial sectors.
Collapse
Affiliation(s)
- Akansha Shrivastava
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, Jaipur, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, Jaipur, India.
| |
Collapse
|
12
|
Süntar I, Çetinkaya S, Haydaroğlu ÜS, Habtemariam S. Bioproduction process of natural products and biopharmaceuticals: Biotechnological aspects. Biotechnol Adv 2021; 50:107768. [PMID: 33974980 DOI: 10.1016/j.biotechadv.2021.107768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Decades of research have been put in place for developing sustainable routes of bioproduction of high commercial value natural products (NPs) on the global market. In the last few years alone, we have witnessed significant advances in the biotechnological production of NPs. The development of new methodologies has resulted in a better understanding of the metabolic flux within the organisms, which have driven manipulations to improve production of the target product. This was further realised due to the recent advances in the omics technologies such as genomics, transcriptomics, proteomics, metabolomics and secretomics, as well as systems and synthetic biology. Additionally, the combined application of novel engineering strategies has made possible avenues for enhancing the yield of these products in an efficient and economical way. Invention of high-throughput technologies such as next generation sequencing (NGS) and toolkits for genome editing Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) have been the game changers and provided unprecedented opportunities to generate rationally designed synthetic circuits which can produce complex molecules. This review covers recent advances in the engineering of various hosts for the production of bioactive NPs and biopharmaceuticals. It also highlights general approaches and strategies to improve their biosynthesis with higher yields in a perspective of plants and microbes (bacteria, yeast and filamentous fungi). Although there are numerous reviews covering this topic on a selected species at a time, our approach herein is to give a comprehensive understanding about state-of-art technologies in different platforms of organisms.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey.
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Ülkü Selcen Haydaroğlu
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
13
|
Li X, Zhao H, Chen X. Screening of Marine Bioactive Antimicrobial Compounds for Plant Pathogens. Mar Drugs 2021; 19:69. [PMID: 33525648 PMCID: PMC7912171 DOI: 10.3390/md19020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Plant diseases have been threatening food production. Controlling plant pathogens has become an important strategy to ensure food security. Although chemical control is an effective disease control strategy, its application is limited by many problems, such as environmental impact and pathogen resistance. In order to overcome these problems, it is necessary to develop more chemical reagents with new functional mechanisms. Due to their special living environment, marine organisms have produced a variety of bioactive compounds with novel structures, which have the potential to develop new fungicides. In the past two decades, screening marine bioactive compounds to inhibit plant pathogens has been a hot topic. In this review, we summarize the screening methods of marine active substances from plant pathogens, the identification of marine active substances from different sources, and the structure and antibacterial mechanism of marine active natural products. Finally, the application prospect of marine bioactive substances in plant disease control was prospected.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|