1
|
Haavisto V, Landry Z, Pontrelli S. High-throughput profiling of metabolic responses to exogenous nutrients in Synechocystis sp. PCC 6803. mSystems 2024; 9:e0022724. [PMID: 38534128 PMCID: PMC11019784 DOI: 10.1128/msystems.00227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Cyanobacteria fix carbon dioxide and release carbon-containing compounds into the wider ecosystem, yet they are sensitive to small metabolites that may impact their growth and physiology. Several cyanobacteria can grow mixotrophically, but we currently lack a molecular understanding of how specific nutrients may alter the compounds they release, limiting our knowledge of how environmental factors might impact primary producers and the ecosystems they support. In this study, we develop a high-throughput phytoplankton culturing platform and identify how the model cyanobacterium Synechocystis sp. PCC 6803 responds to nutrient supplementation. We assess growth responses to 32 nutrients at two concentrations, identifying 15 that are utilized mixotrophically. Seven nutrient sources significantly enhance growth, while 19 elicit negative growth responses at one or both concentrations. High-throughput exometabolomics indicates that oxidative stress limits Synechocystis' growth but may be alleviated by antioxidant metabolites. Furthermore, glucose and valine induce strong changes in metabolite exudation in a possible effort to correct pathway imbalances or maintain intracellular elemental ratios. This study sheds light on the flexibility and limits of cyanobacterial physiology and metabolism, as well as how primary production and trophic food webs may be modulated by exogenous nutrients.IMPORTANCECyanobacteria capture and release carbon compounds to fuel microbial food webs, yet we lack a comprehensive understanding of how external nutrients modify their behavior and what they produce. We developed a high throughput culturing platform to evaluate how the model cyanobacterium Synechocystis sp. PCC 6803 responds to a broad panel of externally supplied nutrients. We found that growth may be enhanced by metabolites that protect against oxidative stress, and growth and exudate profiles are altered by metabolites that interfere with central carbon metabolism and elemental ratios. This work contributes a holistic perspective of the versatile response of Synechocystis to externally supplied nutrients, which may alter carbon flux into the wider ecosystem.
Collapse
Affiliation(s)
- Vilhelmiina Haavisto
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Zachary Landry
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Clerc EE, Raina JB, Keegstra JM, Landry Z, Pontrelli S, Alcolombri U, Lambert BS, Anelli V, Vincent F, Masdeu-Navarro M, Sichert A, De Schaetzen F, Sauer U, Simó R, Hehemann JH, Vardi A, Seymour JR, Stocker R. Strong chemotaxis by marine bacteria towards polysaccharides is enhanced by the abundant organosulfur compound DMSP. Nat Commun 2023; 14:8080. [PMID: 38057294 DOI: 10.1038/s41467-023-43143-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While many bacteria are chemotactic towards small metabolites, marine organic matter is predominantly composed of large molecules and polymers. Yet, the signalling role of these large molecules is largely unknown. Using in situ and laboratory-based chemotaxis assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharides laminarin and alginate. Unexpectedly, these polysaccharides elicited stronger chemoattraction than their oligo- and monosaccharide constituents. Furthermore, chemotaxis towards laminarin was strongly enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. We demonstrate that marine bacteria are capable of strong chemotaxis towards large soluble polysaccharides and uncover a new ecological role for DMSP in enhancing this attraction. These navigation behaviours may contribute to the rapid turnover of polymers in the ocean, with important consequences for marine carbon cycling.
Collapse
Affiliation(s)
- Estelle E Clerc
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Johannes M Keegstra
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Zachary Landry
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Uria Alcolombri
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
- Institute for Life Sciences, Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bennett S Lambert
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Valerio Anelli
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Developmental Biology Unit, European Molecular Biological Laboratory, Heidelberg, 69117, Germany
| | | | - Andreas Sichert
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Frédéric De Schaetzen
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Rafel Simó
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | | | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Amarnath K, Narla AV, Pontrelli S, Dong J, Reddan J, Taylor BR, Caglar T, Schwartzman J, Sauer U, Cordero OX, Hwa T. Stress-induced metabolic exchanges between complementary bacterial types underly a dynamic mechanism of inter-species stress resistance. Nat Commun 2023; 14:3165. [PMID: 37258505 PMCID: PMC10232422 DOI: 10.1038/s41467-023-38913-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Metabolic cross-feeding plays vital roles in promoting ecological diversity. While some microbes depend on exchanges of essential nutrients for growth, the forces driving the extensive cross-feeding needed to support the coexistence of free-living microbes are poorly understood. Here we characterize bacterial physiology under self-acidification and establish that extensive excretion of key metabolites following growth arrest provides a collaborative, inter-species mechanism of stress resistance. This collaboration occurs not only between species isolated from the same community, but also between unrelated species with complementary (glycolytic vs. gluconeogenic) modes of metabolism. Cultures of such communities progress through distinct phases of growth-dilution cycles, comprising of exponential growth, acidification-triggered growth arrest, collaborative deacidification, and growth recovery, with each phase involving different combinations of physiological states of individual species. Our findings challenge the steady-state view of ecosystems commonly portrayed in ecological models, offering an alternative dynamical view based on growth advantages of complementary species in different phases.
Collapse
Affiliation(s)
- Kapil Amarnath
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA
| | - Avaneesh V Narla
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA
| | - Sammy Pontrelli
- Institute of Molecular and Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Jiajia Dong
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jack Reddan
- Division of Biological Sciences, U.C. San Diego, La Jolla, CA, 92093, USA
| | - Brian R Taylor
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA
| | - Tolga Caglar
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA
| | - Julia Schwartzman
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, 02139, USA
| | - Uwe Sauer
- Institute of Molecular and Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, 02139, USA
| | - Terence Hwa
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA.
- Division of Biological Sciences, U.C. San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, Bertrand EM, Braakman R, Brown CT, Covert MW, Doney SC, Dyhrman ST, Edison AS, Eren AM, Levine NM, Li L, Ross AC, Saito MA, Santoro AE, Segrè D, Shade A, Sullivan MB, Vardi A. Microbial metabolites in the marine carbon cycle. Nat Microbiol 2022; 7:508-523. [PMID: 35365785 DOI: 10.1038/s41564-022-01090-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.
Collapse
Affiliation(s)
- Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Shady A Amin
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nicholas R Bates
- Bermuda Institute of Ocean Sciences, St George's, Bermuda.,School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rogier Braakman
- Departments of Earth, Atmospheric and Planetary Sciences, and Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Titus Brown
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Scott C Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Science, Columbia University, Palisades, NY, USA
| | - Arthur S Edison
- Departments of Biochemistry and Genetics, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Helmholtz-Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Naomi M Levine
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Mak A Saito
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Daniel Segrè
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Pontrelli S, Szabo R, Pollak S, Schwartzman J, Ledezma-Tejeida D, Cordero OX, Sauer U. Metabolic cross-feeding structures the assembly of polysaccharide degrading communities. SCIENCE ADVANCES 2022; 8:eabk3076. [PMID: 35196097 PMCID: PMC8865766 DOI: 10.1126/sciadv.abk3076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/27/2021] [Indexed: 06/01/2023]
Abstract
Metabolic processes that fuel the growth of heterotrophic microbial communities are initiated by specialized biopolymer degraders that decompose complex forms of organic matter. It is unclear, however, to what extent degraders structure the downstream assembly of the community that follows polymer breakdown. Investigating a model marine microbial community that degrades chitin, we show that chitinases secreted by different degraders produce oligomers of specific chain lengths that not only select for specialized consumers but also influence the metabolites secreted by these consumers into a shared resource pool. Each species participating in the breakdown cascade exhibits unique hierarchical preferences for substrates, which underlies the sequential colonization of metabolically distinct groups as resource availability changes over time. By identifying the metabolic underpinnings of microbial community assembly, we reveal a hierarchical cross-feeding structure that allows biopolymer degraders to shape the dynamics of community assembly.
Collapse
Affiliation(s)
- Sammy Pontrelli
- Institute of Molecular Systems Biology, ETH Zürich, Zurich 8093, Switzerland
| | - Rachel Szabo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shaul Pollak
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julia Schwartzman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Otto X. Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zurich 8093, Switzerland
| |
Collapse
|
6
|
Abstract
Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of nonpolar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory, freshwater Chlamydomonas reinhardtii, brackish Desmodesmus sp., marine Phaeodactylum tricornutum, and marine Microchloropsis salina, to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature-based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of these compounds, five (lumichrome, 5′-S-methyl-5′-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures. Two of these compounds (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions. IMPORTANCE Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. In this study, we characterize exometabolomes across marine and freshwater algae to gain insights into the diverse metabolites they release into their environments (“exudates”). We observe that while phylogeny can play a role in exometabolome content, environmental conditions or habitat origin (freshwater versus marine) are also important. We also find that several of these compounds can influence algal growth (as measured by chlorophyll production) when provided exogenously, highlighting the importance of characterization of these novel compounds and their role in microalgal ecophysiology.
Collapse
|