1
|
Lai Y, He S, Chen Y, Lin T, Hou L, Zhao S. Hydrogen-Bonded Organic Framework Nanozyme with Multi-Enzyme Activity for Chemiluminescence Sensing of Acetylcholinesterase and Screening Its Inhibitors. Anal Chem 2025; 97:8362-8369. [PMID: 40207554 DOI: 10.1021/acs.analchem.4c06917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Strong and persistent chemiluminescence (CL) is essential for enhancing the detection accuracy and reproducibility of CL-based analytical methods. In this study, we explored the synergistic effects of amino groups present on the surface of hydrogen-bonded organic framework (HOF-PyTTA, where PyTTA is denoted as 4,4',4″,4‴-(pyrene-1,3,6,8-tetrayl)tetraaniline) materials and N-(4-aminobutyl-N-ethylisoluminol) (ABEI) for reducing gold nanoparticles (AuNPs) on the surface of HOFs. Additionally, we utilized the substantial specific surface area and abundant amino groups of HOFs to sequester Co2+ ions, resulting in the synthesis of HAACo material. The resulting HAACo exhibited remarkable peroxidase, oxidase, and catalase mimetic activities, enabling the luminol-H2O2 chemiluminescence system to maintain a glow-type CL phenomenon for more than 1 h. Subsequently, we developed a CL point-of-care testing (POCT) sensor that integrated the CL characteristics of HAACo with smartphone technology and 3D printing for the determination of acetylcholinesterase (AChE) activity in serum samples, as well as the screening for AChE inhibitors. The sensor demonstrated a linear detection range for AChE activity from 0.001 to 40 mU mL-1, with a detection limit of 0.00057 mU mL-1. The calculated IC50 for the AChE inhibitor tacrine was found to be 21.9 nmol L-1, indicating good selectivity and stability of the sensor. This work not only expands the applications of glow-type CL in biosensing but also enriches the utilization of HOF materials in analytical chemistry, paving the way for the development of multifunctional HOF-based materials for future applications.
Collapse
Affiliation(s)
- Yunping Lai
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Shuangshuang He
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yuanying Chen
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Li Hou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Shulin Zhao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
2
|
Li Y, Yang HS, Klasse PJ, Zhao Z. The significance of antigen-antibody-binding avidity in clinical diagnosis. Crit Rev Clin Lab Sci 2025; 62:9-23. [PMID: 39041650 DOI: 10.1080/10408363.2024.2379286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Immunoglobulin G (IgG) and immunoglobulin M (IgM) testing are commonly used to determine infection status. Typically, the detection of IgM indicates an acute or recent infection, while the presence of IgG alone suggests a chronic or past infection. However, relying solely on IgG and IgM antibody positivity may not be sufficient to differentiate acute from chronic infections. This limitation arises from several factors. The prolonged presence of IgM can complicate diagnostic interpretations, and false positive IgM results often arise from antibody cross-reactivity with various antigens. Additionally, IgM may remain undetectable in prematurely collected samples or in individuals who are immunocompromised, further complicating accurate diagnosis. As a result, additional diagnostic tools are required to confirm infection status. Avidity is a measure of the strength of the binding between an antigen and antibody. Avidity-based assays have been developed for various infectious agents, including toxoplasma, cytomegalovirus (CMV), SARS-CoV-2, and avian influenza, and are promising tools in clinical diagnostics. By measuring the strength of antibody binding, they offer critical insights into the maturity of the immune response. These assays are instrumental in distinguishing between acute and chronic or past infections, monitoring disease progression, and guiding treatment decisions. The development of automated platforms has optimized the testing process by enhancing efficiency and minimizing the risk of manual errors. Additionally, the recent advent of real-time biosensor immunoassays, including the label-free immunoassays (LFIA), has further amplified the capabilities of these assays. These advances have expanded the clinical applications of avidity-based assays, making them useful tools for the diagnosis and management of various infectious diseases. This review is structured around several key aspects of IgG avidity in clinical diagnosis, including: (i) a detailed exposition of the IgG affinity maturation process; (ii) a thorough discussion of the IgG avidity assays, including the recently emerged biosensor-based approaches; and (iii) an examination of the applications of IgG avidity in clinical diagnosis. This review is intended to contribute toward the development of enhanced diagnostic tools through critical assessment of the present landscape of avidity-based testing, which allows us to identify the existing knowledge gaps and highlight areas for future investigation.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - He S Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Wang M, Shu J, Zhang R, Yang D, Teng G, Cui H. Chemiluminescent Fe 3O 4@Nickel-Cobalt Double Hydroxide Magnetic Core-Shell Nanomaterial as an Analytical Interface for Label-Free CYFRA21-1 Immunosensing. Anal Chem 2024; 96:18890-18897. [PMID: 39536324 DOI: 10.1021/acs.analchem.4c05038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cytokeratin 19 fragment (CYFRA21-1) is considered to be a potential marker for the diagnosis and of classification of lung cancer. It is highly desired to develop rapid and highly sensitive label-free chemiluminescence (CL) immunosensors for the detection of CYFRA21-1. In this work, magnetic core-shell nanocomposite Fe3O4@nickel-cobalt double hydroxide (Fe3O4@DH) was used for the first time as a carrier to synthesize N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and gold and silver nanocluster (AuAgNC) bifunctionalized magnetic nanomaterials Fe3O4@DH/AuAgNCs-ABEI. The resulting Fe3O4@DH/AuAgNCs-ABEI demonstrated excellent CL performance, attributed to the exceptional catalytic capability of nickel-cobalt double hydroxide (NiCo-DH) and AuAgNCs, as well as the large specific surface area of NiCo-DH for AuAgNCs and ABEI enrichment. Moreover, Fe3O4@DH/AuAgNCs-ABEI exhibited superior stability compared to Fe3O4-based CL-functionalized magnetic nanomaterials, owing to the presence of NiCo-DH shells. On this basis, a label-free CL immunosensor using CYFRA21-1 antibody-modified Fe3O4@DH/AuAgNCs-ABEI as an analytical interface was constructed for the detection of CYFRA21-1 in the range from 1.0 × 10-13 to 1.0 × 10-8 g/mL. The detection limit of this CL immunosensor was 47.7 fg/mL, 4 orders of magnitude lower than existing CL methods. The CL immunosensor was able to accurately detect the concentration of CYFRA21-1 in serum samples, as evidenced by ELISA results. More importantly, it not only distinguished well between healthy persons and lung cancer patients (90.0% sensitivity and 90.0% specificity), but also effectively distinguished between patients with non-small cell lung cancer and small cell lung cancer (80.0% sensitivity and 86.7% specificity).
Collapse
Affiliation(s)
- Manli Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangnan Shu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruoxian Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dongliang Yang
- The Second Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui 230022, China
| | - Gang Teng
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Hua Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Ni B, Ye J, Xuan Z, Li L, Zhang R, Liu H, Wang S. A pretreatment-free and eco-friendly rapid detection for mycotoxins in edible oils based on magnetic separation technique. Food Chem 2024; 458:140217. [PMID: 38964106 DOI: 10.1016/j.foodchem.2024.140217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Pretreatment steps of current rapid detection methods for mycotoxins in edible oils not only restrict detection efficiency, but also produce organic waste liquid to pollute environment. In this work, a pretreatment-free and eco-friendly rapid detection method for edible oil is established. This proposed method does not require pretreatment operation, and automated quantitative detection could be achieved by directly adding oil samples. According to polarity of target molecules, the content of surfactant in reaction solutions could be adjusted to achieve the quantitative detection of AFB1 in peanut oil and ZEN in corn oil. The recoveries are between 96.5%-110.7% with standard deviation <10.4%, and the limit of detection is 0.17 μg/kg for AFB1 and 4.91 μg/kg for ZEN. This method realizes full automation of the whole chain detection, i.e. sample in-result out, and is suitable for the on-site detection of batches of edible oils samples.
Collapse
Affiliation(s)
- Baoxia Ni
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Zhihong Xuan
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Rui Zhang
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China..
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| |
Collapse
|
5
|
Zhang Y, Bi S, Xu Q, Liu Y. Trends and Perspectives in Biosensing and Diagnosis. BIOSENSORS 2024; 14:499. [PMID: 39451711 PMCID: PMC11505935 DOI: 10.3390/bios14100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Biosensors are attractive tools for detecting molecules and small particles, as they can produce rapid, sensitive, and specific signals [...].
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, China
| | - Qin Xu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yingju Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Viter R, Tepliakova I, Drobysh M, Zbolotnii V, Rackauskas S, Ramanavicius S, Grundsteins K, Liustrovaite V, Ramanaviciene A, Ratautaite V, Brazys E, Chen CF, Prentice U, Ramanavicius A. Photoluminescence-based biosensor for the detection of antibodies against SARS-CoV-2 virus proteins by ZnO tetrapod structure integrated within microfluidic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173333. [PMID: 38763199 DOI: 10.1016/j.scitotenv.2024.173333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
This paper reports on development of an optical biosensor for the detection of antibodies against SARS-CoV-2 virus proteins in blood serum. ZnO nanotetrapods with high surface area and stable room temperature photoluminescence (PL) were selected as transducers. Structure and optical properties of the ZnO tetrapods have been studied by XRD, SEM and Raman spectroscopy. Crystallinity, dimensions and emission peaks of the ZnO tetrapods were determined. The ZnO tetrapods were fixed on glass chip. Silanization of ZnO tetrapods surface resulted in forming of functional surface groups suitable for the immobilization of bioselective layer. Two types of recombinant proteins (rS and rN) have been used to form bioselective layer on the surface of the ZnO tetrapods. Flow through microfluidic system, integrated with optical system, has been used for the determination of antibodies against SARS-CoV-2 virus proteins present in blood samples. The SARS-CoV-2 probes, prepared in PBS solution, have been injected into the measurement chamber with a constant pumping speed. Steady-state photoluminescence spectra and photoluminescence kinetics have been studied before and after injection of the probes. The biosensor signal has been tested to anti-SARS-CoV-2 antibodies in the range of 0.001 nM-1 nM. Control measurements have been performed with blood serum of healthy person. ZnO-SARS-CoV-2-rS and ZnO-SARS-CoV-2-rN biosensors showed high stability and sensitivity to anti-SARS-CoV-2 antibodies in the range of 0.025-0.5 nM (LOD 0.01 nM) and 0.3-1 nM (LOD 0.3 nM), respectively. Gibbs free energy of interaction between ZnO/SARS-CoV-2-rS and ZnO/SARS-CoV-2-rN bioselective layers with anti-SARS-CoV-2 antibodies showed -35.5 and -21.4 kJ/mol, respectively. Average detection time of biosensor integrated within microfluidic system was 15-20 min. The detection time and pumping speed (50 μL/min) were optimized to make detection faster. The developed system and ZnO-SARS-CoV-2-rS nanostructures have good potential for detection of anti-SARS-CoV-2 antibodies from patient's probes.
Collapse
Affiliation(s)
- Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania.
| | - Iryna Tepliakova
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Maryia Drobysh
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Viktor Zbolotnii
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Simas Rackauskas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania
| | - Simonas Ramanavicius
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Karlis Grundsteins
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Viktorija Liustrovaite
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Ernestas Brazys
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Urte Prentice
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania.
| |
Collapse
|
7
|
Wang M, Shu J, Wang Y, Zhang W, Zheng K, Zhou S, Yang D, Cui H. Ultrasensitive PD-L1-Expressing Exosome Immunosensors Based on a Chemiluminescent Nickel-Cobalt Hydroxide Nanoflower for Diagnosis and Classification of Lung Adenocarcinoma. ACS Sens 2024; 9:3444-3454. [PMID: 38847105 DOI: 10.1021/acssensors.4c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Programmed death ligand-1 (PD-L1)-expressing exosomes are considered a potential marker for diagnosis and classification of lung adenocarcinoma (LUAD). There is an urgent need to develop highly sensitive and accurate chemiluminescence (CL) immunosensors for the detection of PD-L1-expressing exosomes. Herein, N-(4-aminobutyl)-N-ethylisopropanol-functionalized nickel-cobalt hydroxide (NiCo-DH-AA) with a hollow nanoflower structure as a highly efficient CL nanoprobe was synthesized using gold nanoparticles as a "bridge". The resulting NiCo-DH-AA exhibited a strong and stable CL emission, which was ascribed to the exceptional catalytic capability and large specific surface area of NiCo-DH, along with the capacity of AuNPs to facilitate free radical generation. On this basis, an ultrasensitive sandwich CL immunosensor for the detection of PD-L1-expressing exosomes was constructed by using PD-L1 antibody-modified NiCo-DH-AA as an effective signal probe and rabbit anti-CD63 protein polyclonal antibody-modified carboxylated magnetic bead as a capture platform. The immunosensor demonstrated outstanding analytical performance with a wide detection range of 4.75 × 103-4.75 × 108 particles/mL and a low detection limit of 7.76 × 102 particles/mL, which was over 2 orders of magnitude lower than the reported CL method for detecting PD-L1-expressing exosomes. Importantly, it was able to differentiate well not only between healthy persons and LUAD patients (100% specificity and 87.5% sensitivity) but also between patients with minimally invasive adenocarcinoma and invasive adenocarcinoma (92.3% specificity and 52.6% sensitivity). Therefore, this study not only presents an ultrasensitive and accurate diagnostic method for LUAD but also offers a novel, simple, and noninvasive approach for the classification of LUAD.
Collapse
Affiliation(s)
- Manli Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangnan Shu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yisha Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wencan Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Keying Zheng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengnian Zhou
- The Second Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui 230022, China
| | - Dongliang Yang
- The Second Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui 230022, China
| | - Hua Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Dong Y, Yuan X, Zhuang K, Li Y, Luo X. Simultaneous and sensitive detection of SARS-CoV-2 proteins spike and nucleocapsid based on long-range SERS biosensor. Anal Chim Acta 2024; 1287:342070. [PMID: 38182376 DOI: 10.1016/j.aca.2023.342070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Early diagnosis of SARS-CoV-2 infection is still critical to control COVID-19 outbreak. Traditional polymerase chain reaction, enzyme-linked immunosorbent assay or lateral flow immunoassay performed poorly on detection times, sample preparation process and accuracy. Surface-enhanced Raman scattering (SERS)-based detection has emerged as a powerful analytical technique, which overcomes the above limitations. However, due to the near-field effect of traditional substrate, it is difficult to monitor the binding event of aptamers with proteins. It is obvious that a novel SERS substrate thatsupportedextended and stronger electromagnetic fields was required to hold long-range effects and allow for binding event testing. RESULTS Driven by this challenge, we reported a long-range SERS-active substrate, which was built by inserting bowtie nanoaperture arrays in a refractive-index-symmetric environment and Au mirror surfaces, for SARS-CoV-2 protein binding event detection. Then, a double-π structure aptasensor was simply designed through the hybridization of spike (S) and nucleocapsid (N) proteins aptamers, and a corresponding complementary strand. This kind of double-π structure would dissociate when targets proteins S and N existed and led to the SERS responses decreased, which established the detection basis of our system. What's more, due to two Raman labels were involved, both proteins S and N can be sensed simultaneously. Our proposed method showed improved sensitivity with a low limit of detection for multiplex detection (1.6 × 10-16 g/mL for protein S and 1.0 × 10-16 g/mL for protein N) over a wide concentration range. SIGNIFICANCE This represents the first long-range SERS apatasensor platform for detection of S and N proteins simultaneously. Our method showed high sensitivity, selectivity, reproducibility, stability and remarkable recoveries in human in saliva and serum samples, which is particularly important for the early diagnostics of COVID as well as for future unknown coronavirus.
Collapse
Affiliation(s)
- Ying Dong
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Xue Yuan
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Kaiyi Zhuang
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yuanyuan Li
- Shanghai Anti-Doping Laboratory, Shanghai University of Sport, Shanghai, 200438, PR China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, PR China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, PR China.
| |
Collapse
|
9
|
Kim YJ, Min J. Advances in nanobiosensors during the COVID-19 pandemic and future perspectives for the post-COVID era. NANO CONVERGENCE 2024; 11:3. [PMID: 38206526 PMCID: PMC10784265 DOI: 10.1186/s40580-023-00410-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The unprecedented threat of the highly contagious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes exponentially increased infections of coronavirus disease 2019 (COVID-19), highlights the weak spots of the current diagnostic toolbox. In the midst of catastrophe, nanobiosensors offer a new opportunity as an alternative tool to fill a gap among molecular tests, rapid antigen tests, and serological tests. Nanobiosensors surpass the potential of antigen tests because of their enhanced sensitivity, thus enabling us to see antigens as stable and easy-to-access targets. During the first three years of the COVID-19 pandemic, a substantial number of studies have reported nanobiosensors for the detection of SARS-CoV-2 antigens. The number of articles on nanobiosensors and SARS-CoV-2 exceeds the amount of nanobiosensor research on detecting previous infectious diseases, from influenza to SARS-CoV and MERS-CoV. This unprecedented publishing pace also implies the significance of SARS-CoV-2 and the present pandemic. In this review, 158 studies reporting nanobiosensors for detecting SARS-CoV-2 antigens are collected to discuss the current challenges of nanobiosensors using the criteria of point-of-care (POC) diagnostics along with COVID-specific issues. These advances and lessons during the pandemic pave the way for preparing for the post-COVID era and potential upcoming infectious diseases.
Collapse
Affiliation(s)
- Young Jun Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
10
|
du Plooy J, Kock B, Jahed N, Iwuoha E, Pokpas K. Carbon Nanostructured Immunosensing of Anti-SARS-CoV-2 S-Protein Antibodies. Molecules 2023; 28:8022. [PMID: 38138513 PMCID: PMC10745885 DOI: 10.3390/molecules28248022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The rampant spread and death rate of the recent coronavirus pandemic related to the SARS-CoV-2 respiratory virus have underscored the critical need for affordable, portable virus diagnostics, particularly in resource-limited settings. Moreover, efficient and timely monitoring of vaccine efficacy is needed to prevent future widespread infections. Electrochemical immunosensing poses an effective alternative to conventional molecular spectroscopic approaches, offering rapid, cost-effective, sensitive, and portable electroanalysis of disease biomarkers and antibodies; however, efforts to improve binding efficiency and sensitivity are still being investigated. Graphene quantum dots (GQDs) in particular have shown promise in improving device sensitivity. This study reports the development of a GQD-functionalized point-of-contamination device leveraging the selective interactions between SARS-CoV-2-specific Spike (S) Protein receptor binding domain (RBD) antigens and IgG anti-SARS-CoV-2-specific S-protein antibodies at screen-printed carbon electrode (SPCE) surfaces. The immunocomplexes formed at the GQD surfaces result in the interruption of the redox reactions that take place in the presence of a redox probe, decreasing the current response. Increased active surface area, conductivity, and binding via EDC/NHS chemistry were achieved due to the nanomaterial inclusion, with 5 nm, blue luminescent GQDs offering the best results. GQD concentration, EDC/NHS ratio, and RBD S-protein incubation time and concentration were optimized for the biosensor, and inter- and intra-screen-printed carbon electrode detection was investigated by calibration studies on multiple and single electrodes. The single electrode used for the entire calibration provided the best results. The label-free immunosensor was able to selectively detect anti-SARS-CoV-2 IgG antibodies between 0.5 and 100 ng/mL in the presence of IgM and other coronavirus antibodies with an excellent regression of 0.9599. A LOD of 2.028 ng/mL was found, offering comparable findings to the literature-reported values. The detection sensitivity of the sensor is further compared to non-specific IgM antibodies. The developed GQD immunosensor was compared to other low-oxygen content carbon nanomaterials, namely (i) carbon quantum dot (CQD), (ii) electrochemically reduced graphene oxide, and (iii) carbon black-functionalized devices. The findings suggest that improved electron transfer kinetics and increased active surface area of the CNs, along with surface oxygen content, aid in the detection of anti-SARS-CoV-2 IgG antibodies. The novel immunosensor suggests a possible application toward monitoring of IgG antibody production in SARS-CoV-2-vaccinated patients to study immune responses, vaccine efficacy, and lifetime to meet the demands for POC analysis in resource-limited settings.
Collapse
Affiliation(s)
| | | | | | | | - Keagan Pokpas
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
11
|
Nie W, Zhang R, Hu C, Jin T, Wei X, Cui H. A self-enhanced electrochemiluminescence array chip for portable label-free detection of SARS-CoV-2 nucleocapsid protein with smartphone. Biosens Bioelectron 2023; 240:115662. [PMID: 37669588 DOI: 10.1016/j.bios.2023.115662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
SARS-CoV-2 antigen detection plays a key role in the rapid diagnosis of COVID-19. However, current clinically used immunoassays are often limited by assay throughput, sensitivity, accuracy, and field operating conditions. To address these challenges, we constructed a self-enhanced electrochemiluminescence (ECL) array chip (SE2AC) for highly sensitive and label-free detection of SARS-CoV-2 nucleocapsid protein (N protein) with a facile and portable assay setup. Firstly, the self-enhanced ECL nanomaterials with inherent film-forming properties were synthesized by co-doping Ru(bpy)32+ and polyethyleneimine (PEI) in silica nanoparticles (Ru/PEI@SiO2). Secondly, a resistance-induced potential difference-based single-electrode electrochemical system (SEES) was adapted to serve as the electrode array to facilitate one-step assembly without the need for chip alignment. Thirdly, the chip electrode array was functionalized with the synthesized self-enhanced ECL emitters and captured antibodies. In addition, a portable detection box equipped with a smartphone was 3D-printed to serve as the chip holder and "dark room" for imaging acquisition. The SE2AC performance was validated with N protein with a limit of detection (LOD) of 0.47 pg/mL in the range of 1-10,000 pg/mL. Furthermore, the chip successfully detected the viral antigen residue as low as 1.92 pg/mL from diluted rehabilitation patients' serum samples. This is the first study reporting label-free detection of SARS-Cov-2 N protein based on a self-enhanced ECL immunosensor, which provides a novel facile method for highly sensitive diagnosis of COVID-19 with high throughput, portability, and low cost.
Collapse
Affiliation(s)
- Wei Nie
- Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ruoxian Zhang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chao Hu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Diseases, CAS Center for Excellence in Molecular Cell Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Xi Wei
- Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Hua Cui
- Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
12
|
Shang Z, Deng Z, Yi X, Yang M, Nong X, Lin M, Xia F. Construction and bioanalytical applications of poly-adenine-mediated gold nanoparticle-based spherical nucleic acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5564-5576. [PMID: 37861233 DOI: 10.1039/d3ay01618h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Owing to the versatile photophysical and chemical properties, spherical nucleic acids (SNAs) have been widely used in biosensing. However, traditional SNAs are formed by self-assembly of thiolated DNA on the surface of a gold nanoparticle (AuNP), where it is challenging to precisely control the orientation and surface density of DNA. As a new SNA, a polyadenine (polyA)-mediated SNA using the high binding affinity of consecutive adenines to AuNPs shows controllable surface density and configuration of DNA, which can be used to improve the performance of a biosensor. Herein, we first introduce the properties of polyA-mediated SNAs and fundamental principles regarding the polyA-AuNP interaction. Then, we provide an overview of current representative synthesis methods of polyA-mediated SNAs and their advantages and disadvantages. After that, we summarize the application of polyA-mediated SNAs in biosensing based on fluorescence and colorimetric methods, followed by discussion and an outlook of future challenges in this field.
Collapse
Affiliation(s)
- Zhiwei Shang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Zixuan Deng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Mengyu Yang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xianliang Nong
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
13
|
Liu S, Li J, Zou Y, Jiang Y, Wu L, Deng Y. Construction of Magnetic Core-Large Mesoporous Satellite Immunosensor for Long-Lasting Chemiluminescence and Highly Sensitive Tumor Marker Determination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304631. [PMID: 37438544 DOI: 10.1002/smll.202304631] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 07/14/2023]
Abstract
Chemiluminescence immunoassay exhibits high sensitivity and signal-to-noise ratio, thus attracting great attention in the early diagnosis and dynamic monitoring of diseases. However, the collection of conventional flash-type chemiluminescence signal (<5 s) relies heavily on automatic sampling and reading instrument. Herein, a novel core-satellite multifunctional chemiluminescence immunosensor is designed for the efficient enrichment and highly sensitive determination of cancer biomarker carcinoembryonic antigen (CEA) with enhanced and long-lasting output signal that can be conveniently recorded by a simple microplate plate reading instrument. Anti-CEA monoclonal antibody 2 (Ab2) modified Fe3 O4 @SiO2 microspheres (Fe3 O4 @SiO2 -Ab2, 370 nm in diameter) are synthesized as the core for selectively capturing and enriching target CEA in solution, and anti-human CEA monoclonal antibody 1 (Ab1) and horseradish peroxidase (HRP) co-immobilized dendritic large-mesoporous silica nanospheres (MSNs-HRP/Ab1, 80 nm in diameter, pore size: 17 nm) are synthesized as the satellite for efficient immunological recognition and signal amplification. The as-designed core-satellite magnetic chemiluminescence immunosensors exhibit a broad linear range of 0.01-20 ng mL-1 and a low detection limit of 3.0 pg mL-1 for the convenient, highly specific, and sensitive determination of CEA in human serum. Such core-satellite chemiluminescence immunosensors are expected to act as a powerful tool for in vitro detection of various biomarkers, overcome the defect of conventional chemiluminescence relying heavily on expensive and bulky automatic instruments and popularize chemiluminescence analysis to primary medical institutions and remote areas.
Collapse
Affiliation(s)
- Shude Liu
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Juan Li
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yidong Zou
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yongjian Jiang
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Limin Wu
- Institute of Energy and Materials Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Yonghui Deng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| |
Collapse
|
14
|
Yin W, Hu J, Chen F, Zhu L, Ma Y, Wang N, Wei H, Yang H, Chou SH, He J. Combining hybrid nanoflowers with hybridization chain reaction for highly sensitive detection of SARS-CoV-2 nucleocapsid protein. Anal Chim Acta 2023; 1279:341838. [PMID: 37827653 DOI: 10.1016/j.aca.2023.341838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND COVID-19 (coronavirus disease 2019) pandemic has had enormous social and economic impacts so far. The nucleocapsid protein (N protein) is highly conserved and is a key antigenic marker for the diagnosis of early SARS-CoV-2 infection. RESULTS In this study, the N protein was first captured by an aptamer (Aptamer 58) coupled to magnetic beads (MBs), which in turn were bound to another DNA sequence containing the aptamer (Aptamer 48-Initiator). After adding 5'-biotinylated hairpin DNA Amplifier 1 and Amplifier 2 with cohesive ends for complementary hybridization, the Initiator in the Aptamer 48-Initiator began to trigger the hybridization chain reaction (HCR), generating multiple biotin-labeled DNA concatamers. When incubated with synthetic streptavidin-invertase-Ca3(PO4)2 hybrid nanoflower (SICa), DNA concatamers could specifically bind to SICa through biotin-streptavidin interaction with high affinity. After adding sucrose, invertase in SICa hydrolyzed sucrose to glucose, whose concentration could be directly read with a portable glucometer, and its concentration was positively correlated with the amount of captured N protein. The method is highly sensitive with a detection limit as low as 1 pg/mL. SIGNIFICANCE We believe this study provided a practical solution for the early detection of SARS-CoV-2 infection, and offered a new method for detecting other viruses through different target proteins.
Collapse
Affiliation(s)
- Wen Yin
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ji Hu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Chen
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Nuo Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430000, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430000, China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Dou X, Zhang Z, Liu B, Li C, Du Y, Tian F. Highly sensitive digital detection of SARS-CoV-2 nucleocapsid protein through single-molecule counting. Anal Bioanal Chem 2023; 415:6155-6164. [PMID: 37596347 DOI: 10.1007/s00216-023-04886-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Nucleocapsid protein (NP) is one of the structural proteins of SARS-CoV-2 which is stable, well-conserved, highly immunogenic, and abundantly expressed due to the host's adaptive immune response, making it a promising antigenic biomarker for the early and rapid identification and diagnosis of SARS-CoV-2. Traditional antigen analytical methods with NP as the detection marker often have insufficient sensitivity. To achieve rapid and highly sensitive detection of NP, we constructed a novel single-molecule (digital) fluorescence-linked immunosorbent assay (FLISA) based on streptavidin-modified transparent 96-well microplates. Streptavidin was immobilized on the microplate under optimized conditions with a 15 mM carbonate buffer solution (pH 9.6) as the coating solution, biotinylated antibodies conjugated with streptavidin as capture probes, and carboxylated fluorescent microsphere-conjugated monoclonal antibodies (FMs-mAbs) as fluorescent probes. Individual sandwich immunolabeled complexes of the SARS-CoV-2 diagnostic marker NP were detected and counted though wide-field inverted fluorescence microscopy (1.1 × 1.4 mm2). FLISA had a linear detection range of 0.2 pg/mL to 200 ng/mL and a limit of detection (LOD) of 0.73 fg/mL and 8 fg/mL for NP in phosphate buffer saline and spiked nasal swab samples, respectively. The sensitivity was much higher than commercial antigen detection kits, providing wide detection prospects in future clinical diagnosis, environmental monitoring, and other fields.
Collapse
Affiliation(s)
- Xuechen Dou
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China
| | - Zhiwei Zhang
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China
| | - Bo Liu
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China
| | - Chao Li
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China
- National Bio-Protection Engineering Center, Tianjin, 300161, China
| | - Yaohua Du
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China.
- National Bio-Protection Engineering Center, Tianjin, 300161, China.
| | - Feng Tian
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China.
| |
Collapse
|
16
|
Wang M, Shu J, Wang S, Lyu A, Wang Y, Huang D, Cui H. N-(4-Aminobutyl)- N-ethylisopropanol and Co 2+ Dual-Functionalized Core-Shell Fe 3O 4@Au/Ag Magnetic Nanomaterials with Strong and Stable Chemiluminescence for a Label-Free Exosome Immunosensor. Anal Chem 2023; 95:12982-12991. [PMID: 37587428 DOI: 10.1021/acs.analchem.3c03135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Recently, magnetic beads (MBs) are moving toward chemiluminescence (CL) functional magnetic nanomaterials with a great potential for constructing label-free immunosensors. However, most of the CL-functionalized MBs suffer from scarce binding sites, easy aggregation, and leakage of CL reagents, which will ultimately affect the analytical performance of immunosensors. Herein, by using core-shell Fe3O4@Au/Ag magnetic nanomaterials as a nanoplatform, a novel N-(4-aminobutyl)-N-ethylisopropanol (ABEI) and Co2+ dual-functionalized magnetic nanomaterial, namely, Fe3O4@Au/Ag/ABEI/Co2+, with strong and stable CL emission was successfully synthesized. Its CL intensity was 36 and 3.5 times higher than that of MB@ABEI-Au/Co2+ and ABEI and Co2+ dual-functionalized chemiluminescent MBs previously reported by our group, respectively. It was found that the excellent CL performance of Fe3O4@Au/Ag/ABEI/Co2+ could be attributed to the enrichment effect of the Au/Ag shell and the synergistic enhance effect of the Au/Ag shell and Co2+. A related CL mechanism has been proposed. Afterward, based on the intense and stable CL emission of Fe3O4@Au/Ag/ABEI/Co2+, a sensitive and effective label-free CL immunosensor for exosome detection was established. It exhibited excellent analytical performance with a wide detection range of 3.1 × 103 to 3.1 × 108 particles/mL and a low detection limit of 2.1 × 103 particles/mL, which were better than the vast majority of the reported CL immunosensors. Moreover, the proposed label-free CL immunosensor was successfully used to detect exosomes in human serum samples and enabled us to distinguish healthy persons and lung cancer patients. It has the potential to be a powerful tool for exosome study and early cancer diagnosis.
Collapse
Affiliation(s)
- Manli Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangnan Shu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shanshan Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Aihua Lyu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yisha Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dabing Huang
- Department of Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of the University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Hua Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Wang S, Qu F, Zhang R, Jin T, Zheng T, Shu J, Cui H. Emission Onset Time-Adjustable Chemiluminescent Gold Nanoparticles with Ultrastrong Emission for Smartphone-Based Immunoassay of Severe Acute Respiratory Syndrome Coronavirus 2 Antigen. Anal Chem 2023; 95:12497-12504. [PMID: 37560897 DOI: 10.1021/acs.analchem.3c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Recently, our group reported a chemical timer approach to manipulate the onset time of chemiluminescence (CL) emission. However, it is still in the proof-of-concept stage, and its analytical applications have not been explored yet. Nanomaterials have merits of good catalytic effect, large specific surface area, good biocompatibility, and ease of self-assembly, which are ideal for constructing analytical-interfaces for bioassays. Herein, an emission onset time-adjustable chemiluminescent L012-Au/Mn2+ was synthesized for the first time by modifying Mn2+ on the surface of L012-protected gold nanoparticle. By using H2O2 and NaHCO3 as coreactants, L012-Au/Mn2+ could not only generate an ultrastrong and long-time CL emission but also its CL emission onset time could be adjusted by the addition of thiourea, which could effectively eliminate interference from the addition of coreactants, shorten the exposure time, reduce the detection background, and finally achieve high sensitivity CL imaging analysis. On this basis, a label-free CL immunoassay was constructed with a smartphone-based imaging system for high-throughput and sensitive determination of severe acute respiratory syndrome coronavirus 2 nucleocapsid (N) protein. The CL image of the immunoassay with different concentrations of N proteins was captured in one photograph 100 s after the injection of H2O2 with a short exposure time of 0.5 s. The immunoassay showed good linearity over the concentration range of 1 pg/mL to 10 ng/mL with a detection limit of 0.13 pg/mL, which was much lower than the reported CCD imaging detection method. In addition, it showed good selectivity and stability and was successfully applied in serum samples from healthy individuals and COVID-19 rehabilitation patients.
Collapse
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fajin Qu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruoxian Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Diseases, CAS Center for Excellence in Molecular Cell Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Tianhua Zheng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangnan Shu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
19
|
Zhang X, Wang F, Zhi H, Wan P, Feng L. A label-free colorimetric 3D paper-based device for ochratoxin A detection using G-quadruplex/hemin DNAzyme with a smartphone readout. Talanta 2023; 260:124603. [PMID: 37141823 DOI: 10.1016/j.talanta.2023.124603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The colorimetric sensor usually depends on enzyme-mediated signal amplification to achieve trace analysis of ochratoxin A (OTA) residues in food samples. However, the enzyme labeling and manual addition of reagents steps increased assay time and operation complexity, restricting their application in point-of-care testing (POCT). Herein, we report a label-free colorimetric device integrating a 3D paper-based analytical device and a smartphone as handheld readout for rapid and sensitive detection of OTA. Using vertical-flow design, the paper-based analytical device enables the specific recognition of target and self-assembly of G-quadruplex (G4)/hemin DNAzyme to be performed, then employs DNAzyme for transducing the OTA binding event signal into a colorimetric signal. The design of independent functional units, including biorecognition unit, self-assembly unit and colorimetric units, which can address crowding and disorder of biosensing interfaces and improve the recognition efficiency of aptamer (apta). In addition, we eliminated signal losses and nonuniform coloring by introducing carboxymethyl chitosan (CMCS) to obtain perfectly focused signals on colorimetric unit. On the basis of parameter optimization, the device exhibited a detection range of 0.1-500 ng/mL and a detection limit of 41.9 pg/mL for OTA. Importantly, good results were obtained in spiked real samples, indicating applicability and reliability of developed device.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian, 116600, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fengya Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hui Zhi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Peng Wan
- Instrumental Analysis Center, Dalian University of Technology, Dalian, 116024, PR China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
20
|
Zhu J, Zhao X, Mao J, Na N, Ouyang J. Single-Molecule Evaluation of the SARS-CoV-2 Nucleocapsid Protein Using Gold Particle-in-a-Frame Nanostructures Enhanced Fluorescent Assay. Anal Chem 2023; 95:5267-5274. [PMID: 36912606 PMCID: PMC10022750 DOI: 10.1021/acs.analchem.2c05191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
Ultrasensitive evaluation of low-abundance analytes, particularly with limits approaching a single molecule, is a key challenge in the design of an assay for profiling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen. Herein, we report an aptamer claw strategy for directly evaluating the SARS-CoV-2 antigen based on gold particle-in-a-frame nanostructures (Au PIAFs). Au PIAF was used as a metal-enhanced fluorescence material. The assay integrated with a microplate reader achieved a sensitivity of 44 fg·mL-1 in under 3 min and accurately detected the SARS-CoV-2 nucleocapsid protein (N protein) in human saliva samples. When our assay is combined with a single-molecule counting platform, the limit of detection can be as low as 0.84 ag·mL-1. This rapid and ultrasensitive assay holds promise as a tool for screening SARS-CoV-2 and other contagious viruses.
Collapse
Affiliation(s)
- Jiale Zhu
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Xuan Zhao
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Jinpeng Mao
- Department of Chemistry, Tsinghua
University, Beijing 100084, China
| | - Na Na
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| |
Collapse
|
21
|
Ma W, Xie W, Tian R, Zeng X, Liang L, Hou C, Huo D, Wang D. An ultrasensitive aptasensor of SARS-CoV-2 N protein based on ion current rectification with nanopipettes. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 377:133075. [PMID: 36467330 PMCID: PMC9700395 DOI: 10.1016/j.snb.2022.133075] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 05/27/2023]
Abstract
Since the outbreak of COVID-19 in the world, it has spread rapidly all over the world. Rapid and effective detection methods have been a focus of research. The SARS-CoV-2 N protein (NP) detection methods currently in use focus on specific recognition of antibodies, but the reagents are expensive and difficult to be produced. Here, aptamer-functionalized nanopipettes utilize the unique ion current rectification (ICR) of nanopipette to achieve rapid and highly sensitive detection of trace NP, and can significantly reduce the cost of NP detection. In the presence of NP, the surface charge at the tip of the nanopipette changes, which affects ion transport and changes the degree of rectification. Quantitative detection of NP is achieved through quantitative analysis. Relying on the high sensitivity of nanopipettes to charge fluctuations, this sensor platform achieves excellent sensing performance. The sensor platform exhibited a dynamic working range from 102-106 pg/mL with a detection limit of 73.204 pg/mL, which showed great potential as a tool for rapidly detecting SARS-CoV-2. As parallel and serial testing are widely used in the clinic to avoid missed diagnosis or misdiagnosis, we hope this platform can play a role in controlling the spread and prevention of COVID-19.
Collapse
Affiliation(s)
- Wenhao Ma
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Wanyi Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Xiaoqing Zeng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China
| |
Collapse
|
22
|
Qu F, Shu J, Wang S, Haghighatbin MA, Cui H. Chemiluminescent Nanogels as Intensive and Stable Signal Probes for Fast Immunoassay of SARS-CoV-2 Nucleocapsid Protein. Anal Chem 2022; 94:17073-17080. [PMID: 36448939 PMCID: PMC9718083 DOI: 10.1021/acs.analchem.2c03055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
It is highly desired to exploit good nanomaterials as nanocarriers for immobilizing chemiluminescence (CL) reagents, catalysts and antibodies to develop signal probes with intensive and stable CL properties for immunoassays. In this work, N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and Co2+ bifunctionalized polymethylacrylic acid nanogels (PMAANGs-ABEI/Co2+) were synthesized via a facile strategy by utilizing carboxyl group-rich PMAANGs as nanocarriers to immobilize ABEI and Co2+. The obtained PMAANGs-ABEI/Co2+ showed extraordinary CL performance. The CL intensity is 2 orders of magnitude higher than that of previously reported ABEI and Cu2+-cysteine complex bifunctionalized gold nanoparticles with high CL efficiency. This was attributed to the excellent catalytic ability of Co2+ and polymethylacrylic acid nanogels, as well as the improved CL catalytic efficiency from a decreased spatial distance between ABEI and the catalyst. The as-prepared nanogels also possess abundant surface reaction sites and good CL stability. On this basis, a sandwich immunoassay for the nucleocapsid protein of SARS-CoV-2 (N protein) was developed by using magnetic bead connected primary antibody as a capture probe and PMAANGs-ABEI/Co2+ connected secondary antibody as a signal probe. The linear range of the proposed method for N protein detection was 3.16-316 ng/mL, and its detection limit was 2.19 ng/mL (S/N = 3). Moreover, the developed immunoassay was performed with a short incubation time of 5 min, which greatly reduced the detection time for N protein. By using corresponding antibodies, the developed strategy might be applied to detect other biomarkers.
Collapse
Affiliation(s)
- Fajin Qu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative
Innovation Center of Chemistry for Energy Materials, Department of Chemistry,
University of Science and Technology of China, Hefei,
Anhui230026, P. R. China
| | - Jiangnan Shu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative
Innovation Center of Chemistry for Energy Materials, Department of Chemistry,
University of Science and Technology of China, Hefei,
Anhui230026, P. R. China
| | - Shanshan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative
Innovation Center of Chemistry for Energy Materials, Department of Chemistry,
University of Science and Technology of China, Hefei,
Anhui230026, P. R. China
| | - Mohammad A. Haghighatbin
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative
Innovation Center of Chemistry for Energy Materials, Department of Chemistry,
University of Science and Technology of China, Hefei,
Anhui230026, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative
Innovation Center of Chemistry for Energy Materials, Department of Chemistry,
University of Science and Technology of China, Hefei,
Anhui230026, P. R. China
| |
Collapse
|
23
|
Wang L, Li Z. Smart Nanostructured Materials for SARS-CoV-2 and Variants Prevention, Biosensing and Vaccination. BIOSENSORS 2022; 12:1129. [PMID: 36551096 PMCID: PMC9775677 DOI: 10.3390/bios12121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised great concerns about human health globally. At the current stage, prevention and vaccination are still the most efficient ways to slow down the pandemic and to treat SARS-CoV-2 in various aspects. In this review, we summarize current progress and research activities in developing smart nanostructured materials for COVID-19 prevention, sensing, and vaccination. A few established concepts to prevent the spreading of SARS-CoV-2 and the variants of concerns (VOCs) are firstly reviewed, which emphasizes the importance of smart nanostructures in cutting the virus spreading chains. In the second part, we focus our discussion on the development of stimuli-responsive nanostructures for high-performance biosensing and detection of SARS-CoV-2 and VOCs. The use of nanostructures in developing effective and reliable vaccines for SARS-CoV-2 and VOCs will be introduced in the following section. In the conclusion, we summarize the current research focus on smart nanostructured materials for SARS-CoV-2 treatment. Some existing challenges are also provided, which need continuous efforts in creating smart nanostructured materials for coronavirus biosensing, treatment, and vaccination.
Collapse
Affiliation(s)
- Lifeng Wang
- Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Zhiwei Li
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
24
|
Gul I, Zhai S, Zhong X, Chen Q, Yuan X, Du Z, Chen Z, Raheem MA, Deng L, Leeansyah E, Zhang C, Yu D, Qin P. Angiotensin-Converting Enzyme 2-Based Biosensing Modalities and Devices for Coronavirus Detection. BIOSENSORS 2022; 12:984. [PMID: 36354493 PMCID: PMC9688389 DOI: 10.3390/bios12110984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 05/30/2023]
Abstract
Rapid and cost-effective diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a critical and valuable weapon for the coronavirus disease 2019 (COVID-19) pandemic response. SARS-CoV-2 invasion is primarily mediated by human angiotensin-converting enzyme 2 (hACE2). Recent developments in ACE2-based SARS-CoV-2 detection modalities accentuate the potential of this natural host-virus interaction for developing point-of-care (POC) COVID-19 diagnostic systems. Although research on harnessing ACE2 for SARS-CoV-2 detection is in its infancy, some interesting biosensing devices have been developed, showing the commercial viability of this intriguing new approach. The exquisite performance of the reported ACE2-based COVID-19 biosensors provides opportunities for researchers to develop rapid detection tools suitable for virus detection at points of entry, workplaces, or congregate scenarios in order to effectively implement pandemic control and management plans. However, to be considered as an emerging approach, the rationale for ACE2-based biosensing needs to be critically and comprehensively surveyed and discussed. Herein, we review the recent status of ACE2-based detection methods, the signal transduction principles in ACE2 biosensors and the development trend in the future. We discuss the challenges to development of ACE2-biosensors and delineate prospects for their use, along with recommended solutions and suggestions.
Collapse
Affiliation(s)
- Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiyao Zhai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyun Zhong
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhicheng Du
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Canyang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dongmei Yu
- Department of Computer Science and Technology, School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
25
|
Liu J, Mao J, Hou M, Hu Z, Sun G, Zhang S. A Rapid SARS-CoV-2 Nucleocapsid Protein Profiling Assay with High Sensitivity Comparable to Nucleic Acid Detection. Anal Chem 2022; 94:14627-14634. [PMID: 36226357 PMCID: PMC9578372 DOI: 10.1021/acs.analchem.2c02670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/06/2022] [Indexed: 12/27/2022]
Abstract
Existing nucleic acid and antigen profiling methods for COVID-19 diagnosis fail to simultaneously meet the demands in sensitivity and detection speed, hampering them from being a comprehensive way for epidemic prevention and control. Thus, effective screening of COVID-19 requires a simple, fast, and sensitive method. Here, we report a rapid assay for ultrasensitive and highly specific profiling of COVID-19 associated antigen. The assay is based on a binding-induced DNA assembly on a nanoparticle scaffold that acts by fluorescence translation. By binding two aptamers to a target protein, the protein brings the DNA regions into close proximity, forming closed-loop conformation and resulting in the formation of the fluorescence translator. Using this assay, saliva nucleocapsid protein (N protein) has been profiled quantitatively by converting the N protein molecule information into a fluorescence signal. The fluorescence intensity is enhanced with increasing N protein concentration caused by the metal enhanced fluorescence using a simple, specific, and fast profiling assay within 3 min. On this basis, the assay enables a high recognition ratio and a limit of detection down to 150 fg mL-1. It is 1-2 orders of magnitude lower than existing commercial antigen ELISA kits, which is comparative to or superior than the PCR based nucleic acid testing. Owing to its rapidity, ultrasensitivity, as well as easy operation, it holds great promise as a tool for screening of COVID-19 and other epidemics such as monkey pox.
Collapse
Affiliation(s)
- Jie Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jinpeng Mao
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Mengyu Hou
- Beijing
Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Zhian Hu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Gongwei Sun
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Beijing
TASI Technology CO., LTD, Beijing 100085, P. R. China
| | - Sichun Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
26
|
Luo S, Gao J, Xian J, Ouyang H, Wang L, Fu Z. Defective Site Modulation Strategy for Preparing Single Atom-Dispersed Catalysts as Superior Chemiluminescent Signal Probes. Anal Chem 2022; 94:13533-13539. [PMID: 36150091 DOI: 10.1021/acs.analchem.2c02825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single atom-dispersed catalysts (SADCs) with highly exposed active sites can be used as sensitive signal probes because of their superior catalytic efficiency. However, the dispersed atoms tend to aggregate, restricting the loading capacity of metal atoms. Herein, the defective sites on Zr-oxo clusters of metal-organic frameworks (MOFs) UiO-66-NH2 were modulated by excessive acetic acid and utilized for confining metal atoms with high loading capacity. To verify the feasibility of the designed strategy, the Co element was loaded onto MOFs UiO-66-NH2 to prepare SADCs with desirable Fenton-like activity. The prepared Co SADCs at a low concentration of 1.0 μg mL-1 are found to boost chemiluminescent (CL) emission for 3700 times due to the significantly improved Co content of 5.55 wt %. The superior CL enhancement efficiency is ascribed to reactive oxygen species generated by the accelerated decay of H2O2. To verify the application potential in CL assay, they were used as signal probes to establish an immunoassay method for carbendazim with a dynamic range of 1.0 pg mL-1 to 25 ng mL-1 and a limit of detection of 0.33 pg mL-1. This defective site modulation strategy paves an avenue for preparing SADCs with a high CL response by improving the loading capacity of metal atoms.
Collapse
Affiliation(s)
- Shuai Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiaqi Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
27
|
Wang G, Wang L, Meng Z, Su X, Jia C, Qiao X, Pan S, Chen Y, Cheng Y, Zhu M. Visual Detection of COVID-19 from Materials Aspect. ADVANCED FIBER MATERIALS 2022; 4:1304-1333. [PMID: 35966612 PMCID: PMC9358106 DOI: 10.1007/s42765-022-00179-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 05/25/2023]
Abstract
Abstract In the recent COVID-19 pandemic, World Health Organization emphasized that early detection is an effective strategy to reduce the spread of SARS-CoV-2 viruses. Several diagnostic methods, such as reverse transcription-polymerase chain reaction (RT-PCR) and lateral flow immunoassay (LFIA), have been applied based on the mechanism of specific recognition and binding of the probes to viruses or viral antigens. Although the remarkable progress, these methods still suffer from inadequate cellular materials or errors in the detection and sampling procedure of nasopharyngeal/oropharyngeal swab collection. Therefore, developing accurate, ultrafast, and visualized detection calls for more advanced materials and technology urgently to fight against the epidemic. In this review, we first summarize the current methodologies for SARS-CoV-2 diagnosis. Then, recent representative examples are introduced based on various output signals (e.g., colorimetric, fluorometric, electronic, acoustic). Finally, we discuss the limitations of the methods and provide our perspectives on priorities for future test development. Graphical Abstract
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Le Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Xiaolong Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Xiaolan Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Shaowu Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Yinjun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| |
Collapse
|
28
|
Liu J, Ma C, Shi S, Liu H, Wen W, Zhang X, Wu Z, Wang S. A general controllable release amplification strategy of liposomes for single-particle collision electrochemical biosensing. Biosens Bioelectron 2022; 207:114182. [PMID: 35305388 PMCID: PMC8925861 DOI: 10.1016/j.bios.2022.114182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
As an important component of the COVID-19 mRNA vaccines, liposomes play a key role in the efficient protection and delivery of mRNA to cells. Herein, due to the controllable release amplification strategy of liposomes, a reliable and robust single-particle collision electrochemical (SPCE) biosensor was constructed for H9N2 avian influenza virus (H9N2 AIV) detection by combining liposome encapsulation-release strategy with immunomagnetic separation. The liposomes modified with biotin and loaded with platinum nanoparticles (Pt NPs) were used as signal probes for the first time. Biotin facilitated the coupling of biomolecules (DNA or antibodies) through the specific reaction of biotin-streptavidin. Each liposome can encapsulate multiple Pt NPs, which were ruptured under the presence of 1 × PBST (phosphate buffer saline with 0.05% Tween-20) within 2 min, and the encapsulated Pt NPs were released for SPCE experiment. The combination of immunomagnetic separation not only improved the anti-interference capabilities but also avoided the agglomeration of Pt NPs, enabling the SPCE biosensor to realize ultrasensitive detection of 18.1 fg/mL H9N2 AIV. Furthermore, the reliable SPCE biosensor was successfully applied in specific detection of H9N2 AIV in complex samples (chicken serum, chicken liver and chicken lung), which promoted the universality of SPCE biosensor and its application prospect in early diagnosis of diseases.
Collapse
Affiliation(s)
- Jinrong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Chong Ma
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Siwei Shi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Heng Liu
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
29
|
Zhang GQ, Gao Z, Zhang J, Ou H, Gao H, Kwok RTK, Ding D, Tang BZ. A wearable AIEgen-based lateral flow test strip for rapid detection of SARS-CoV-2 RBD protein and N protein. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:100740. [PMID: 35072123 PMCID: PMC8761541 DOI: 10.1016/j.xcrp.2022.100740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 05/16/2023]
Abstract
Accurate and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is significant for early tracing, isolation, and treatment of infected individuals, which will efficiently prevent large-scale transmission of coronavirus disease 2019 (COVID-19). Here, two kinds of test strips for receptor binding domain (RBD) and N antigens of SARS-CoV-2 are established with high sensitivity and specificity, in which AIE luminogens (AIEgens) are utilized as reporters. Because of the high brightness and resistance to quenching in aqueous solution, the limit of detection can be as low as 6.9 ng/mL for RBD protein and 7.2 ng/mL for N protein. As an antigen collector, an N95 mask equipped with a test strip with an excellent enrichment effect would efficiently simplify the sampling procedures. Compared with a test strip based on Au nanoparticles or fluorescein isothiocyanate (FITC), the AIEgen-based test strip shows high anti-interference capacity in complex biosamples. Therefore, an AIEgen-based test strip assay could be built as a promising platform for emergency use during the pandemic.
Collapse
Affiliation(s)
- Guo-Qiang Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Heqi Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, China
| |
Collapse
|
30
|
Li F, Zhao A, Li Z, Xi Y, Jiang J, He J, Wang J, Cui H. Multifunctionalized Hydrogel Beads for Label-Free Chemiluminescence Imaging Immunoassay of Acute Myocardial Infarction Biomarkers. Anal Chem 2022; 94:2665-2675. [DOI: 10.1021/acs.analchem.1c05434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Anqi Zhao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Zimu Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Yachao Xi
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Jianming Jiang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Jianbo He
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Jue Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|