1
|
Hu J, Xu X, Liu L, Qu A, Kuang H, Xu C. Molecular Modeling Studies of Hapten Design and Antibody Recognition for Sensitive Detection of Vitamin K3 by Strip Biosensor. Adv Healthc Mater 2025:e2404569. [PMID: 40166814 DOI: 10.1002/adhm.202404569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/19/2025] [Indexed: 04/02/2025]
Abstract
Computer-aided molecular design techniques are used to analyze vitamin K3 (VK3) and VK3-hapten. Based on VK3-hapten, a specific monoclonal antibody (mAb) against VK3 is prepared with a sensitivity (IC50) of 0.49 ng mL-1. The recombinant technology is used to investigate the molecular docking mechanism of mAb recognition of VK3. Then, a model of the mAb is established, and the amino acid distributions of the complementarity determining region regions of the mAb are determined. Hydrogen bonding and hydrophobic interactions of specific amino acids of the mAb are further confirmed by the recognition mechanism of the antibody with VK3. Based on these results, a gold immunochromatographic assay (GICA) is developed to detect VK3. The recovery of VK3 in the sample is 99.50%-101.12%, showing a better agreement with the results of the high-performance liquid chromatography. In addition, the calculated limit of detection of VK3 in milk powder, vitamin tablets, and mixed animal feed is 1.16, 1.18, and 10.06 µg kg-1, respectively. The concentrations of VK3 in vitamin tablets and mixed animal feed as determined with the GICA strips are 5.82 mg/tablet and 1.47 mg kg-1, respectively. These results confirmed that the developed GICA strips have great potential for detecting VK3 in actual samples.
Collapse
Affiliation(s)
- Jialin Hu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
2
|
Adedokun G, Alipanah M, Fan ZH. Sample preparation and detection methods in point-of-care devices towards future at-home testing. LAB ON A CHIP 2024; 24:3626-3650. [PMID: 38952234 PMCID: PMC11270053 DOI: 10.1039/d3lc00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Timely and accurate diagnosis is critical for effective healthcare, yet nearly half the global population lacks access to basic diagnostics. Point-of-care (POC) testing offers partial solutions by enabling low-cost, rapid diagnosis at the patient's location. At-home POC devices have the potential to advance preventive care and early disease detection. Nevertheless, effective sample preparation and detection methods are essential for accurate results. This review surveys recent advances in sample preparation and detection methods at POC. The goal is to provide an in-depth understanding of how these technologies can enhance at-home POC devices. Lateral flow assays, nucleic acid tests, and virus detection methods are at the forefront of POC diagnostic technology, offering rapid and sensitive tools for identifying and measuring pathogens, biomarkers, and viral infections. By illuminating cutting-edge research on assay development for POC diagnostics, this review aims to accelerate progress towards widely available, user-friendly, at-home health monitoring tools that empower individuals in personalized healthcare in the future.
Collapse
Affiliation(s)
- George Adedokun
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
| | - Morteza Alipanah
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611, USA
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Kong D, Chen Y, Gu Y, Ding C, Liu C, Shen W, Kee Lee H, Tang S. Sensitive fluorescence detection based on dimeric G-quadruplex combined with enzyme-assisted solid-phase microextraction of streptomycin in honey. Food Chem 2024; 442:138505. [PMID: 38266408 DOI: 10.1016/j.foodchem.2024.138505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Streptomycin (STR), an aminoglycoside antibiotic with the potential to persist in honey and other food products, may induce allergy, toxicity and antibiotic resistance in humans. In this study, we developed a solid-phase microextraction (SPME) biosensor based on a quartz rod that was modified with double-stranded DNA structures consisting of partially complementary G-rich base DNA strand and STR aptamer. The STR isolated by SPME initially bound to the aptamer. Then the remaining double-stranded DNA structures were cleaved by the Nt.BstNBI enzyme, resulting in release of G-quadruplex dimers. The latter formed a complex with thioflain T fluorescent dye, resulting in an amplified fluorescence response. The method exhibited high sensitivity (a limit of detection of 10.84 pM), wide linear range (0.05 nM ∼ 500 nM (with determination coefficient > 0.99)), and simple operation, making it suitable and convenient for STR detection. Successful STR determination in genuine honey samples was demonstrated.
Collapse
Affiliation(s)
- Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Yitong Chen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Yidan Gu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Chao Ding
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Hian Kee Lee
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Sheng Tang
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| |
Collapse
|
4
|
Lin M, Gao Z, Qian Z, Deng Y, Chen Y, Wang Y, Li X. Ultrasensitive Ti 3C 2Tx@Pt-Based Immunochromatography with Catalytic Amplification and a Dual Signal for the Detection of Chloramphenicol in Animal-Derived Foods. Foods 2024; 13:1416. [PMID: 38731787 PMCID: PMC11083481 DOI: 10.3390/foods13091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Herein, a catalytic amplification enhanced dual-signal immunochromatographic assay (ICA) based on Pt nanoparticles (Pt NPs) modified with Ti3C2Tx MXene (Ti3C2Tx@Pt) was first developed for chloramphenicol (CAP) in animal-derived foods. Due to the large specific surface area and abundant active sites of Ti3C2Tx@Pt, they can be loaded with hundreds of Pt NPs to enhance their catalytic activity, resulting in a significant increase in the detection sensitivity; the sensitivity was up to 50-fold more sensitive than the reported ICA for CAP. The LODs of the developed method for milk/chicken/fish were 0.01 μg/kg, the LOQs were 0.03 μg/kg and the recovery rates were 80.5-117.0%, 87.2-118.1% and 92.7-117.9%, with corresponding variations ranging from 3.1 to 9.6%, 6.0 to 12.7% and 6.0 to 13.6%, respectively. The linear range was 0.0125-1.0 μg/kg. The results of the LC-MS/MS confirmation test on 30 real samples had a good correlation with that of our established method (R2 > 0.98), indicating the practical reliability of the established method. The above results indicated that an ICA based on the Ti3C2Tx@Pt nanozyme has excellent potential as a food safety detection tool.
Collapse
Affiliation(s)
- Mengfang Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Y.D.)
| | - Zhimin Gao
- Guangdong Agricultural Product Quality and Safety Center (Guangdong Green Food Development Center), Guangzhou 510230, China;
| | - Zhenjie Qian
- Guangzhou Institute for Food Inspection, Guangzhou 511410, China; (Z.Q.); (Y.C.)
| | - Youwen Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Y.D.)
| | - Yanhong Chen
- Guangzhou Institute for Food Inspection, Guangzhou 511410, China; (Z.Q.); (Y.C.)
| | - Yu Wang
- Guangzhou Institute for Food Inspection, Guangzhou 511410, China; (Z.Q.); (Y.C.)
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Y.D.)
| |
Collapse
|
5
|
Liu S, Shu R, Zhang M, Zhao C, Wang K, Zhang J, Sun J, Dou L, Zhang D, Wang J. Goat anti-mouse immunoglobulin as "crosslinker" assisted signal tracer assemble with intensive antibody utilization efficiency for sensitive paper-based strip nanobiosensors. Int J Biol Macromol 2024; 258:128923. [PMID: 38151088 DOI: 10.1016/j.ijbiomac.2023.128923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Engineered collaborative biochemical techniques and regulated nanomaterials (NMs) offer extraordinary opportunities for improving the analysis performance of lateral flow immunoassay (LFIA). Herein, inspired by the ability of macromolecules (e.g., proteins) to assemble into new functional units and the remarkable optical performance of engineered regulated NMs, goat anti-mouse immunoglobulin (GAMI) serves as the "crosslinker" integrate with gold‑manganese oxide (Au-MnOx) to assemble the "signal tracers (STs)-crosslinker-antibody (mAb)" for elevating the mAb utilization efficiency. Notably, the "STs-crosslinker-mAb" assembly shows ~13.33-folds mAb utilization efficiency enhance, which perfectly response the challenge between limited sensitivity and sufficient signal intensity in competitive-type LFIA. The black color and rough structure of Au-MnOx offer higher colorimetric brightness (~2-folds than AuNPs) and enhanced mAb coupling efficiency (up to 92.47%), which further improves sensitivity under the premise of functional assembly to intensify the competitive immunoreaction. Additionally, the convenient synthesis conditions (~13 min at room temperature) even comparable to direct purchase commercial products indicate that using Au-MnOx undoubtedly increases the cost-effectiveness. Encouragingly, the Au-MnOx-GAMI-mAb based LFIA exhibited high sensitivity (LOD: 0.063 ng mL-1 for clenbuterol (CLE) monitoring) by elevating mAb utilization efficiency with the attendant enhancing immune competition response in a cost-effective manner, which provides an invigorating reference pathway in point-of-care immunoassay.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingrui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cong Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kexin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiayi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Leina Dou
- College of veterinary medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Guo Y, Sang P, Lu G, Yang X, Xie Y, Hu Z, Qian H, Yao W. RNA-cleaving deoxyribozyme-linked immunosorbent assay for the ultrasensitive detection of chloramphenicol in milk. Food Chem 2023; 408:135174. [PMID: 36535184 DOI: 10.1016/j.foodchem.2022.135174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/16/2022]
Abstract
In this presented work, an artificial deoxyribozyme was employed as the substitute for horseradish peroxidase (or alkaline phosphatase) in ELISA for generating amplified signals. The feasibility of the proposed deoxyribozyme-based ELISA (DLISA) was demonstrated in the detection of a forbidden veterinary drug, chloramphenicol. And its efficiency was praised since that ultrahigh sensitivity was accomplished with a detection limit of 0.1 ng/L. The wide linear range from 0.000001 μg/mL to 1.0 μg/mL, as well as good recoveries from 86 % to 104 % in whole milk samples showed its excellent practical performances. Besides, the DLISA was worth popularizing due to the easy connection of antibody and DNAzyme through a facile functionalization process of gold nanoparticles. These advantages showed the possibility of DLISA for developing commercial kits, and the utilization of flexible DNA fluorescent probes in DLISA would inspire more work on innovations.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Panting Sang
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gang Lu
- Food Safety Research Center, Safety & Quality Management Department, Inner Mongolia Mengniu Dairy (Group) CO, LTD., Hohhot 011500, China
| | - Xue Yang
- Wuxi Children's Hospital Affiliated to Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhigang Hu
- Wuxi Children's Hospital Affiliated to Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Wang Z, Guo Y, Xianyu Y. Applications of self-assembly strategies in immunoassays: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Jia C, Shi L, Li Y, Tian Y, Liu S, Wang S, Liao X, Wu H, Wang Z, Sun J, Zhang D, Zhu M, Ni Y, Wang J. "Potential Scalpel": A Bioassisted Ultrafast Staining Lateral Flow Immunoassay from De Novo to Results. Anal Chem 2023; 95:4095-4103. [PMID: 36780295 DOI: 10.1021/acs.analchem.2c04878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
It is of great importance to overcome potential incompatibility problems between dyestuffs and antibodies (mAbs) for extensive commercial application of a dyestuff-chemistry-based ultrafast colorimetric lateral flow immunoassay (cLFIA). Herein, inspired by traditional staining technologies, a basic dyestuff gallocyanine (GC)-assisted biogenic "potential scalpel"-based cLFIA (GC-ABPS-based cLFIA) by employing clenbuterol (CLE) as proof-of-concept was proposed to solve a high degree of incompatibility between the same potential dyestuffs and mAbs. Goat antimouse immunoglobulin (Ab2) could serve as the "potential scalpel" to form the positive potential value biomolecular network self-assemblers (BNSA) with anti-CLE mAbs (AbCLE) by noncovalent force. The cLFIA completed the entire detection process from de novo to detection results within 30 min thanks to the easy availability and ideal marking efficiency (≤1 min, saving 0.4-10 h) of GC. Encouragingly, the proposed ultrafast GC-ABPS-based cLFIA has also exhibited high sensitivity (0.411 ng mL-1) and low cost (300 times) compared with other cLFIAs. Also, the feasibility of the proposed cLFIA was demonstrated by detecting CLE in beef, pork ham, and skim milk. Finally, the proposed GC-ABPS-based cLFIA has broadened the application range of dyestuffs and provided an effective reference strategy for the application of dyestuffs in food safety monitoring.
Collapse
Affiliation(s)
- Conghui Jia
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanli Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xingrui Liao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Haofen Wu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ziqi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining 810008, Qinghai, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
9
|
Wang S, Du T, Liu S, Li Y, Wang Y, Zhang L, Zhang D, Sun J, Zhu M, Wang J. Dyestuff chemistry auxiliary instant immune-network label strategy for immunochromatographic detection of chloramphenicol. Food Chem 2023; 401:134140. [DOI: 10.1016/j.foodchem.2022.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
10
|
Zhong ZT, Ashraf G, Chen W, Liu B, Wang GP, Zhao YD. Detection of Matrix Metalloproteinase-1 in Human Saliva Based on a Pregnancy Test Strip Platform. Anal Chem 2022; 94:16384-16392. [DOI: 10.1021/acs.analchem.2c03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Guo-Ping Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
11
|
Multiplex immunochromatographic platform based on crystal violet tag for simultaneous detection of streptomycin and chloramphenicol. Food Chem 2022; 393:133351. [PMID: 35689929 DOI: 10.1016/j.foodchem.2022.133351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/23/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022]
Abstract
Antibiotic abuse has caused serious health risks for human beings for long. To address the problem, novel and facile detection techniques are highly desired. Here, an effective multiplex immunochromatographic platform (MICP) with synthesis-free and cost-effective merits is established for simultaneous detection of antibiotics on a single immunochromatographic assay (ICA) strip. Adopting crystal violet (CV) as a signal tag for multiplex ICA allows for direct coupling with multiple antibodies in several minutes. By combining CV and ICA perfectly, this convenient strategy offers improvements in convenience, speed, flexibility, and portability, eventually ensuring the optimized effectiveness of this approach. As a result, the established platform is successfully used to detect streptomycin (STR) and chloramphenicol (CAP) with visual detection mode, and the obtained total recoveries of milk and honey real samples changed from 83.82 to 113.38% with total RSD values of 0.48 to 4.15%.
Collapse
|