1
|
Yu M, Gao Y, Liu Y, Wang Z, Zhang Y, Li Y, Fan L, Li X. Substrate Specificity of Adenine-Cu-PO 4 Nanozyme: Ascorbic Acid Oxidation and Selective Cytotoxicity. Chemistry 2025; 31:e202403568. [PMID: 39777753 DOI: 10.1002/chem.202403568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Though nanozymes are becoming promising alternatives to natural enzymes due to their superior properties, constructing nanozyme with high specificity is still a great challenge. Herein, with Cu2+ as an active site and adenine as a ligand, Adenine-Cu-PO4 is synthesized in phosphate-buffered saline. As an oxidase mimic, Adenine-Cu-PO4 could selectively catalyze oxidation of ascorbic acid (AA) to dehydroascorbic acid, but not universal substrates (3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,4-dichlorophenol (2,4-DP)), small biomolecules (dopamine, glutathione, glucose, galactose), other vitamins (vitamin A acid, vitamin B1, vitamin K1) and even dithiothreitol (a common interference of AA). Such the specific AA catalytic oxidation is revealed that Adenine-Cu-PO4 selectively binds with AA through hydrogen bonds, accompanied with catalyzing AA oxidation, and concurrently O2 transferring to H2O2 via O2⋅-, further to H2O via ⋅OH. Based on the produced reactive oxygen species, with AA as a pro-oxidant, Adenine-Cu-PO4 nanozyme efficiently triggers severe intratumor oxidative stress to induce tumor cell death. This work opens a new avenue to design intrinsic nanozymes with high specificity, and also presents a promising application in the field of AA oxidation induced cancer therapy.
Collapse
Affiliation(s)
- Mincong Yu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuanbo Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yichen Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhuo Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key, Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Ren Y, Bi X, He Y, Zhang L, Luo L, Li L, You T. Research progress and applications of iron-based nanozymes in colorimetric sensing of agricultural pollutants. Biosens Bioelectron 2025; 271:116999. [PMID: 39642529 DOI: 10.1016/j.bios.2024.116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Natural enzymes are highly valued for their efficient specificity and catalytic activity. However, their poor stability, environmental sensitivity, and costly preparation restrict their practical applications. Nanozymes are nanomaterials with superior catalytic properties that compensate for natural enzyme deficiencies. As one of the earliest developed nanozymes, iron-based nanozymes have diverse morphological structures and different simulated catalytic properties, showing promising potential for agricultural pollutant sensing. Compared with traditional detection methods, the colorimetric method based on nanozymes has the characteristics of simplicity, rapidity, and visualization, which can be used for immediate and rapid on-site detection. In this review, the catalytic types of iron-based nanozymes, such as peroxidase-like, oxidase-like, catalase-like, and superoxide dismutase-like activities, and the corresponding catalytic mechanisms are presented. The classification of iron-based nanozymes based on various structures is then discussed. Furthermore, this review focuses on the current status of iron-based nanozymes for the colorimetric detection of common agricultural pollutants, including heavy metal ions, nonmetal ions, pesticides, and pharmaceutical and personal care products. Finally, the current research status and development direction of iron-based nanozymes in sensing applications are summarized and prospected.
Collapse
Affiliation(s)
- Yue Ren
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yi He
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Li Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China.
| |
Collapse
|
3
|
Cai X, Huang Y, Zhu C. Immobilized Multi-Enzyme/Nanozyme Biomimetic Cascade Catalysis for Biosensing Applications. Adv Healthc Mater 2025; 14:e2401834. [PMID: 38889805 DOI: 10.1002/adhm.202401834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Multiple enzyme-induced cascade catalysis has an indispensable role in the process of complex life activities, and is widely used to construct robust biosensors for analyzing various targets. The immobilized multi-enzyme cascade catalysis system is a novel biomimetic catalysis strategy that immobilizes various enzymes with different functions in stable carriers to simulate the synergistic catalysis of multiple enzymes in biological systems, which enables high stability of enzymes and efficiency enzymatic cascade catalysis. Nanozymes, a type of nanomaterial with intrinsic enzyme-like characteristics and excellent stabilities, are also widely applied instead of enzymes to construct immobilized cascade systems, achieving better catalytic performance and reaction stability. Due to good stability, reusability, and remarkably high efficiency, the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems show distinct advantages in promoting signal transduction and amplification, thereby attracting vast research interest in biosensing applications. This review focuses on the research progress of the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems in recent years. The construction approaches, factors affecting the efficiency, and applications for sensitive biosensing are discussed in detail. Further, their challenges and outlooks for future study are also provided.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
4
|
Zhang H, Wei Z, Wang Y, Bi Z, Han W, Shi M, Chen T, Sun Y, Wang L, Zhang S. Au 3+-Functionalized Metal-Organic Framework Coordinated Nanotherapeutics for Substrate Self-Supplied Parallel Catalytic and Calcium-Overload-Mediated Therapy of Cancer. ACS APPLIED BIO MATERIALS 2025; 8:446-456. [PMID: 39829267 DOI: 10.1021/acsabm.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The multiple enzymatic properties of the Au3+-modified metal-organic framework (Au3+-MOFs) have made it a functional catalytic system for antitumor treatment. However, in the face of insufficient catalytic substrates in tumor tissue, it is still impossible to achieve efficient treatment of tumors. Herein, Au3+-MOFs loaded with hyaluronic acid (HA)-modified calcium peroxide nanoparticles (CaO2 NPs) were used to construct a nanozyme (Au3+-MOF/CaO2/HA) for substrate self-supplied and parallel catalytic/calcium-overload-mediated therapy of cancer. Due to the specific targeted ability and retention (EPR) effect of the HA, the built nanozyme can effectively accumulate at the tumor site. Due to the oxidase-like (OXD) activity and peroxidase-like (POD) activity of Au3+-MOFs, superoxide radical anion (O2•-) and hydroxyl radicals (·OH) were cooperatively formed for parallel catalytic therapy (PCT) of cancer. Subsequently, CaO2 NPs were decomposed to Ca2+, H2O2, and O2 in the weak acidic environment of the tumor microenvironment (TME). Thus, self-supplementation of O2 as well as H2O2 was achieved, alleviating the deficiency of Au3+-MOF nanozyme catalytic substrate. In addition, Ca2+ can lead to oxidative stress for tumor calcification and calcium-overload-mediated therapy (COMT) to promote tumor necrosis in vivo. An effective paradigm of tumor PCT/COMT therapy with a self-supplying substrate has been successfully established for considerably enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Huairong Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zizhen Wei
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yuqi Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhiru Bi
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Wenxiu Han
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Minghui Shi
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China
| | - Tingting Chen
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yongbiao Sun
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China
| | - Linjing Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| |
Collapse
|
5
|
Jain S, Nehra M, Dilbaghi N, Chaudhary GR, Kumar S. Detection of Hg 2+ Using a Dual-Mode Biosensing Probe Constructed Using Ratiometric Fluorescent Copper Nanoclusters@Zirconia Metal-Organic Framework/ N-Methyl Mesoporphyrin IX and Colorimetry G-Quadruplex/Hemin Peroxidase-Mimicking G-Quadruplex DNAzyme. BME FRONTIERS 2024; 5:0078. [PMID: 39691776 PMCID: PMC11650877 DOI: 10.34133/bmef.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
Mercury (Hg2+) has been recognized as a global pollutant with a toxic, mobile, and persistent nature. It adversely affects the ecosystem and human health. Already developed biosensors for Hg2+ detection majorly suffer from poor sensitivity and specificity. Herein, a colorimetric/fluorimetric dual-mode sensing approach is designed for the quantitative detection of Hg2+. This novel sensing approach utilizes nanofluorophores, i.e., fluorescent copper nanoclusters-doped zirconia metal-organic framework (CuNCs@Zr-MOF) nanoconjugate (blue color) and N-methyl mesoporphyrin IX (NMM) (red color) in combination with peroxidase-mimicking G-quadruplex DNAzyme (PMDNAzyme). In the presence of Hg2+, dabcyl conjugated complementary DNA with T-T mismatches form the stable duplex with the CuNCs@Zr-MOF@G-quadruplex structure through T-Hg2+-T base pairing. It causes the quenching of fluorescence of CuNCs@Zr-MOF (463 nm) due to the Förster resonance energy transfer (FRET) system. Moreover, the G-quadruplex (G4) structure of the aptamer enhances the fluorescence emission of NMM (610 nm). Besides this, the peroxidase-like activity of G4/hemin DNAzyme offers the colorimetric detection of Hg2+. The formation of duplex with PMDNAzyme increases the catalytic activity. This novel biosensing probe quantitatively detected Hg2+ using both fluorimetry and colorimetry approaches with a low detection limit of 0.59 and 36.3 nM, respectively. It was also observed that the presence of interfering metal ions in case of real aqueous samples does not affect the performance of this novel biosensing probe. These findings confirm the considerable potential of the proposed biosensing probe to screen the concentration of Hg2+ in aquatic products.
Collapse
Affiliation(s)
- Shikha Jain
- Department of Bio-nanotechnology,
College of Biotechnology, CCS Haryana Agricultural University (CCSHAU), Hisar-Haryana 125004, India
- Department of Chemistry & Center of Advanced Studies in Chemistry,
Panjab University, Chandigarh 160014, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology,
Panjab University, Chandigarh 160014, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology,
Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India
| | - Ganga Ram Chaudhary
- Department of Chemistry & Center of Advanced Studies in Chemistry,
Panjab University, Chandigarh 160014, India
| | - Sandeep Kumar
- Department of Physics,
Punjab Engineering College (Deemed to be University), Chandigarh 160012, India
| |
Collapse
|
6
|
Zhou X, Shao Z, Yan S, Lin Y, Liu Y, Feng X, Sha J, Ding L, Wang K. Coencapsulating TMB Probes and Bimetallic MOF Nanozymes in a Hydrogel Patch for Fabricating Reusable Visual VC Sensors. Anal Chem 2024; 96:17310-17318. [PMID: 39412411 DOI: 10.1021/acs.analchem.4c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
As a typical chromogenic probe, 3,3',5,5'-tetramethylbenzidine (TMB) has been widely applied in the field of visual detection due to its low toxicity and highly sensitive response. Due to the hydrophobic nature of TMB, encapsulating it into a hydrogel, which serves as an ideal matrix for wearable sensors, presents significant challenges that complicate the fabrication of visual wearable devices. Herein, the TMB probe and bimetallic MOF nanozymes are coencapsulated in a hydrogel patch for the fabrication of reusable visual sensors. Hydrophobic TMB is oxidized to hydrophilic ox-TMB by a bimetallic MOF (CuFe-MOF), allowing its diffusion into a hydrophilic agarose hydrogel patch, where it is reduced back to TMB. This process allows the coimmobilization and coencapsulation of CuFe-MOF and TMB within the hydrogel patch. Leveraging the color change between TMB and ox-TMB, as a proof-of-concept application, a reusable visual "On-Off-On" sensor is simply constructed and successfully applied to detect vitamin C in human sweat. Color changes can be quickly read by the naked eye or by smart devices without the need for external equipment. Meanwhile, based on the reversible conversion relationship between TMB and ox-TMB, a reusable sensor construction strategy is proposed. This approach not only facilitates the use of a TMB probe in hydrogel applications but also offers inspiration for the development of point-of-care testing equipment, demonstrating significant application potential.
Collapse
Affiliation(s)
- Xilong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhiying Shao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Sihan Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuhang Lin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanhao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xujing Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Junling Sha
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lijun Ding
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
7
|
Mao X, Chen Q, Wei S, Qiu D, Zhang X, Lei J, Mergny JL, Ju H, Zhou J. Bioinspired Dual Hemin-Bonded G-Quadruplex and Histidine-Functionalized Metal-Organic Framework for Sensitive Biosensing. Anal Chem 2024; 96:13371-13378. [PMID: 39116285 DOI: 10.1021/acs.analchem.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Biomimetic enzymes have emerged as ideal alternatives to natural enzymes, and there is considerable interest in designing biomimetic enzymes with enhanced catalytic performance to address the low activity of the current biomimetic enzymes. In this study, we proposed a meaningful strategy for constructing an efficient peroxidase-mimicking catalyst, called HhG-MOF, by anchoring histidine (H) and dual hemin-G-quadruplex DNAzyme (double hemin covalently linked to 3' and 5' terminals of G-quadruplex DNA, short as hG) to a mesoporous metal-organic framework (MOF). This design aims to mimic the microenvironment of natural peroxidase. Remarkably, taking a terbium MOF as a typical model, the initial rate of the resulting catalyst was found to be 21.1 and 4.3 times higher than that of Hh-MOF and hG-MOF, respectively. The exceptional catalytic properties of HhG-MOF can be attributed to its strong affinity for substrates. Based on the inhibitory effect of thiocholine (TCh) produced by the reaction between acetylcholinesterase (AChE) and acetylthiocholine, a facile, cost-effective, and sensitive colorimetric method was designed based on HhG-MOF for the measurement of AChE, a marker of several neurological diseases, and its inhibitor. This allowed a linear response in the 0.002 to 1 U L-1 range, with a detection limit of 0.001 U L-1. Furthermore, the prepared sensor demonstrated great selectivity and performed well in real blood samples, suggesting that it holds promise for applications in the clinical field.
Collapse
Affiliation(s)
- Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Qianqian Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Pal-aiseau Cedex 91128, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
8
|
Li Q, Ding X, Chang Z, Fan X, Pan J, Yang Y, Li X, Jiang W, Fan K. Metal-Organic Framework Based Nanozyme System for NLRP3 Inflammasome-Mediated Neuroinflammatory Regulation in Parkinson's Disease. Adv Healthc Mater 2024; 13:e2303454. [PMID: 38031989 DOI: 10.1002/adhm.202303454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Neuroinflammation is associated with a series of pathological symptoms in Parkinson's disease (PD), including α-synuclein aggregation and dopaminergic neuronal death. The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation at the lesion site and is a promising target for PD treatment. In this study, a nanoscale metal-organic framework (Zr-FeP MOF) based nanozyme is fabricated using Fe-5,10,15,20-tetra (4-carboxyphenyl) porphyrin (Fe-TCPP) and Zr6 cluster as ligands. The Zr-FeP MOF is subsequently encapsulated with mannitol (Man)-liposome, resulting in the formation of Zr-FeP MOF@Man liposome (MOF@Man Liposome) nanozyme system. The in vitro studies show that this nanozyme system is effective in relieving the formation of NLRP3 inflammasome and mitochondrial dysfunction. In mouse models of PD, the nanozyme system demonstrates a significant blood-brain barrier-crossing capability attributed to the Man-mediated brain targeting. Additionally, transcriptomic and biochemical studies show that the nanozyme system effectively inhibits the formation and assembly of inflammasome components, mitigating the activation of glial cells and neuroinflammatory response, and ultimately regulating the pathological symptoms of PD effectively.
Collapse
Affiliation(s)
- Qing Li
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Ding
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohui Chang
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaowan Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangpeng Pan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Yang
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Li
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wei Jiang
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
9
|
Lai R, Zeng X, Xu Q, Xu Y, Li X, Ru Y, Wang Y, Wang D, Zhou X, Shao Y. Ratiometric G-quadruplex/hemin DNAzymes with low-dosage associative substrates. Anal Chim Acta 2024; 1295:342320. [PMID: 38355221 DOI: 10.1016/j.aca.2024.342320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND G-quadruplex (G4)/hemin DNAzymes with conversion of substrates into colorimetric readouts are well recognized as convenient biocatalysis tools in sensor development. However, the previously developed colorimetric G4/hemin DNAzymes are diffusive substrate-based DNAzymes (DSBDs). The current colorimetric DSBDs have several drawbacks including high dosage (∼mM) of diffusive substrates (DSs), colorimetric product toxicity, and single colorimetric readout without tolerance to fluctuation of experimental factors and background. In addition, the usage of high-dosage DSs can smear the G4 foldings and their discard is more harmful to environment. Therefore, exploring alternative DNAzymes with potential to overcome these drawbacks of DSBDs is urgently needed. RESULTS We herein developed associative substrate-based DNAzymes (ASBDs). Cyanine dyes were selected as associative substrates (ASs) due to their binding competency with G4/hemin DNAzymes. With respect to DSBDs, ASBDs needed only low dosage (∼10 μM) of ASs to be able to cause a rapid and visible substrate conversion. In addition, since cyanine dyes are NIR dyes with high extinction coefficients and their conversion products have absorption bands at shorter wavelength. Therefore, a colorimetric ratio response can be developed to follow activities of G4/hemin DNAzymes with competency to tolerate fluctuation of experimental factors and background. In particular, herein developed ASBDs can endure somewhat concentration fluctuation of H2O2. ASBDs are able to cowork with other enzymes (for example, glucose oxidase) to realize cascade sensing. SIGNIFICANCE The developed ASBDs can operate at low dosage of substrates with a colorimetric ratio response and can overcome the drawbacks met in DSBDs. We expect that, by designing ASs with fruitful color panel in the future, our work will inspire more interesting in developing environment-benign and low-carbon G4/hemin DNAzymes and desired colorful high-performance sensors.
Collapse
Affiliation(s)
- Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ying Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xueni Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yulu Ru
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yilin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| |
Collapse
|
10
|
Li J, Li C, Zhao Z, Guo Y, Chen H, Liu P, Zhao M, Guo J. Biomolecules meet organic frameworks: from synthesis strategies to diverse applications. NANOSCALE 2024; 16:4529-4541. [PMID: 38293903 DOI: 10.1039/d3nr05586h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Biomolecules are essential in pharmaceuticals, biocatalysts, biomaterials, etc., but unfortunately they are extremely susceptible to extraneous conditions. When biomolecules meet porous organic frameworks, significantly improved thermal, chemical, and mechanical stabilities are not only acquired for raw biomolecules, but also molecule sieving, substrate enrichment, chirality property, and other functionalities are additionally introduced for application expansions. In addition, the intriguing synergistic effect stemming from elaborate and concerted interactions between biomolecules and frameworks can further enhance application performances. In this paper, the synthesis strategies of the so-called bio-organic frameworks (BOFs) in recent years are systematically reviewed and classified. Additionally, their broad applications in biomedicine, catalysis, separation, sensing, and imaging are introduced and discussed. Before ending, the current challenges and prospects in the future for this infancy-stage but significant research field are also provided. We hope that this review will offer a concise but comprehensive vision of designing and constructing multifunctional BOF materials as well as their full explorations in various fields.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Chunyan Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Zelong Zhao
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Yuxue Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Hongli Chen
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tiangong University, Tianjin 300387, China
| | - Pai Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Meiting Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Jun Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
11
|
Yan X, Yang P, Qiu D, Chen D, Pan J, Zhang X, Ju H, Zhou J. Ligation-Based High-Performance Mimetic Enzyme Sensing Platform for Nucleic Acid Detection. Anal Chem 2024; 96:388-393. [PMID: 38153911 DOI: 10.1021/acs.analchem.3c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
G-quadruplex (G4)/hemin DNAzyme is a promising candidate to substitute horseradish peroxidase in biosensing systems, especially for the detection of nucleic acids. However, the relatively suboptimal catalytic capacity limits its potential applications. This makes it imperative to develop an ideal signal for the construction of highly sensitive biosensing platforms. Herein, we integrated a novel chimeric peptide-DNAzyme (CPDzyme) with the ligase chain reaction (LCR) for the cost-efficient and highly sensitive detection of nucleic acids. By employing microRNA (miRNA) and single-nucleotide polymorphism detection as the model, we designed a G4-forming sequence on the LCR probe with a terminally labeled amino group. Subsequently, asymmetric hemin with carboxylic arms allowed assembly with the LCR products and peptide to form CPDzyme, followed by the magnetic separation of the extraneous components and chemiluminescence detection. Compared with the conventional G4/hemin signaling-based method, the LCR-CPDzyme system demonstrated 3 orders of magnitude improved sensitivity, with accurate quantification of as low as 25 aM miRNA and differentiation of 0.1% of mutant DNA from the pool containing a large amount of wild-type DNA. The proposed LCR-CPDzyme strategy is a potentially powerful method for in vitro diagnostics and serves as a reference for the development of other ligation- or hybridization-based nucleic acid amplification assays.
Collapse
Affiliation(s)
- Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Peiru Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
12
|
Mo F, Zhong S, You T, Lu J, Sun D. Aptamer and DNAzyme-Functionalized Cu-MOF Hybrid Nanozymes for the Monitoring and Management of Bacteria-Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37921634 DOI: 10.1021/acsami.3c10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Metal-organic frameworks (MOFs) with peroxidase (POD)-like activity have great potential for combating drug-resistant bacterial infections. However, the use of POD-like activities is severely limited by low oxygen levels and high levels of glutathione (GSH) within the microenvironment of bacterial infection. Herein, G-quadruplex/hemin DNAzyme-aptamer probes and tannic acid-chelated Au nanoparticle (Au-TA)-decorated Cu-based MOF nanosheets (termed GATC) with triple-enzyme activities were developed for visual detection and efficient antibacterial therapy. First, the monometallic MOFs (Cu-ZIF) showed the best catalytic and loading capacity performance compared with the bimetallic MOFs (CoCu-ZIF and ZnCu-ZIF). Then, Cu-MOFs, Au-TA, and DNAzyme improve the POD-like activity to generate more hydroxyl radicals (•OH) to kill bacteria. GATC can bind to bacteria through aptamer recognition, increasing the bacterial surface contact area for efficient antibacterial activity. GATC can decompose H2O2 into O2 to alleviate hypoxia and improve the microenvironment due to its catalase (CAT)-like activity. In addition, GATC exhibited GSH peroxidase-like activity, which can avoid the loss of •OH and result in bacterial death more easily. Compared with previous studies, GATC exhibited extraordinary bactericidal ability at an extremely low dosage of 3 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Notably, the GATC-catalyzed chromogenic reaction could accurately monitor the MRSA infection treatment process. Overall, this work could establish a therapeutic platform for the monitoring and management of bacteria-infected wounds.
Collapse
Affiliation(s)
- Fayin Mo
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| | - Sheng Zhong
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Tianhui You
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| |
Collapse
|
13
|
Mao X, Zhang X, Chao Z, Qiu D, Wei S, Luo R, Chen D, Zhang Y, Chen Y, Yang Y, Monchaud D, Ju H, Mergny JL, Lei J, Zhou J. A Versatile G-Quadruplex (G4)-Coated Upconverted Metal-Organic Framework for Hypoxic Tumor Therapy. Adv Healthc Mater 2023; 12:e2300561. [PMID: 37402245 DOI: 10.1002/adhm.202300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Given the complexity of the tumor microenvironment, multiple strategies are being explored to tackle hypoxic tumors. The most efficient strategies combine several therapeutic modalities and typically requires the development of multifunctional nanocomposites through sophisticated synthetic procedures. Herein, the G-quadruplex (G4)-forming sequence AS1411-A (d[(G2 T)4 TG(TG2 )4 A]) is used for both its anti-tumor and biocatalytic properties when combined with hemin, increasing the production of O2 ca. two-fold as compared to the parent AS1411 sequence. The AS1411-A/hemin complex (GH) is grafted on the surface and pores of a core-shell upconverted metal-organic framework (UMOF) to generate a UMGH nanoplatform. Compared with UMOF, UMGH exhibits enhanced colloidal stability, increased tumor cell targeting and improved O2 production (8.5-fold) in situ. When irradiated by near-infrared (NIR) light, the UMGH antitumor properties are bolstered by photodynamic therapy (PDT), thanks to its ability to convert O2 into singlet oxygen (1 O2 ). Combined with the antiproliferative activity of AS1411-A, this novel approach lays the foundation for a new type of G4-based nanomedicine.
Collapse
Affiliation(s)
- Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, uB, Dijon, 21078, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
14
|
Du B, Lu G, Zhang Z, Feng Y, Liu M. Glucose oxidase-like Co-MOF nanozyme-catalyzed self-powered sensor for sensitive detection of trace atrazine in complex environments. Anal Chim Acta 2023; 1280:341817. [PMID: 37858571 DOI: 10.1016/j.aca.2023.341817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 10/21/2023]
Abstract
The self-powered sensor (SPS) is a sensor method that does not require the external power source and has the potential for portable detection of environmental contaminants. In this work, for the first time, a biomolecule-free SPS for detection of ultra-trace triazine endocrine disruptor atrazine (ATZ) with high sensitivity and selectivity is constructed using a glucose oxidase (GOD)-like cobalt metal-organic framework (Co-MOF) nanozyme-modified high-performance anode and a molecularly imprinted cathode. By modulating the size and morphology of the prepared materials, Co-MOF nanozyme with superior GOD-like property (Michaelis constant Km = 15.8 mM) has been obtained and modified at the anode to catalyze glucose oxidation with high efficiency and provide energy continuously and stably for the SPS. The separation mode of anodic energy supply-cathodic recognition ensures the recognition effect without affecting the catalytic characteristic of Co-MOF and the output signal of the SPS. The designed SPS has a wide linear range of 1 pM-100 nM and a detection limit as low as 0.65 pM, as well as superior selectivity and good stability. The present work provides a promising approach for the design of self-powered sensors which can be extended to detection of a wider range of environmental pollutants.
Collapse
Affiliation(s)
- Bingyu Du
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Guangqiu Lu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ziwei Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ye Feng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
15
|
Zhu X, Xu J, Ling G, Zhang P. Tunable metal-organic frameworks assist in catalyzing DNAzymes with amplification platforms for biomedical applications. Chem Soc Rev 2023; 52:7549-7578. [PMID: 37817667 DOI: 10.1039/d3cs00386h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Various binding modes of tunable metal organic frameworks (MOFs) and functional DNAzymes (Dzs) synergistically catalyze the emergence of abundant functional nanoplatforms. Given their serial variability in formation, structural designability, and functional controllability, Dzs@MOFs tend to be excellent building blocks for the precise "intelligent" manufacture of functional materials. To present a clear outline of this new field, this review systematically summarizes the progress of Dz integration into MOFs (MOFs@Dzs) through different methods, including various surface infiltration, pore encapsulation, covalent binding, and biomimetic mineralization methods. Atomic-level and time-resolved catalytic mechanisms for biosensing and imaging are made possible by the complex interplay of the distinct molecular structure of Dzs@MOF, conformational flexibility, and dynamic regulation of metal ions. Exploiting the precision of DNAzymes, MOFs@Dzs constructed a combined nanotherapy platform to guide intracellular drug synthesis, photodynamic therapy, catalytic therapy, and immunotherapy to enhance gene therapy in different ways, solving the problems of intracellular delivery inefficiency and insufficient supply of cofactors. MOFs@Dzs nanostructures have become excellent candidates for biosensing, bioimaging, amplification delivery, and targeted cancer gene therapy while emphasizing major advancements and seminal endeavors in the fields of biosensing (nucleic acid, protein, enzyme activity, small molecules, and cancer cells), biological imaging, and targeted cancer gene delivery and gene therapy. Overall, based on the results demonstrated to date, we discuss the challenges that the emerging MOFs@Dzs might encounter in practical future applications and briefly look forward to their bright prospects in other fields.
Collapse
Affiliation(s)
- Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
16
|
Peng X, Xu L, Zeng M, Dang H. Application and Development Prospect of Nanoscale Iron Based Metal-Organic Frameworks in Biomedicine. Int J Nanomedicine 2023; 18:4907-4931. [PMID: 37675409 PMCID: PMC10479543 DOI: 10.2147/ijn.s417543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Metal-organic frameworks (MOFs) are coordination polymers that comprise metal ions/clusters and organic ligands. MOFs have been extensively employed in different fields (eg, gas adsorption, energy storage, chemical separation, catalysis, and sensing) for their versatility, high porosity, and adjustable geometry. To be specific, Fe2+/Fe3+ exhibits unique redox chemistry, photochemical and electrical properties, as well as catalytic activity. Fe-based MOFs have been widely investigated in numerous biomedical fields over the past few years. In this study, the key index requirements of Fe-MOF materials in the biomedical field are summarized, and a conclusion is drawn in terms of the latest application progress, development prospects, and future challenges of Fe-based MOFs as drug delivery systems, antibacterial therapeutics, biocatalysts, imaging agents, and biosensors in the biomedical field.
Collapse
Affiliation(s)
- Xiujuan Peng
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Li Xu
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Min Zeng
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People’s Republic of China
| | - Hao Dang
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| |
Collapse
|
17
|
Liu W, Zhang D, Zhang F, Hao Z, Li Y, Shao M, Zhang R, Li X, Zhang L. Self-enhanced peroxidase-like activity in a wide pH range enabled by heterostructured Au/MOF nanozymes for multiple ascorbic acid-related bioenzyme analyses. Analyst 2023; 148:1579-1586. [PMID: 36892478 DOI: 10.1039/d3an00017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Nanozymes, a class of catalytic nanomaterials, have shown great potential to substitute natural enzymes in various applications. Nevertheless, the pursuit of high-efficiency peroxidase-like activity in a wide pH range is one of the major challenges existing in designing nanozymes. A feasible strategy is to construct an artificial active center by using porous materials as stable supporting structures, which can actively modulate biocatalytic activities via their porous atomic structures and more active sites. Herein, a gold nanoparticles/metal-organic framework (MOF) heterostructure was prepared using UiO-66 as a stable support structure (Au NPs/UiO-66), which demonstrates enhanced peroxidase-like activity, ∼8.95 times higher than that of pure Au NPs. Strikingly, Au NPs/UiO-66 exhibits excellent stability (maintains above 80% activity at 40-70 °C and retains 93% activity after 3 months of storage) and sustained high relative activity (above 90%) over a pH range of 5.0-9.0 due to the homogeneous dispersibility of free-ligand Au NPs and the strong chemical interaction between the Au NPs and the UiO-66 host. Moreover, a colorimetric assay of ascorbic acid (AA) and three AA-related biological enzymes was developed based on Au NPs/UiO-66 nanozyme, which has a good linear detection range and excellent anti-interference ability. This work provides important guidance for the expansion of metal NPs/MOF heterostructure nanozymes and their application prospects in the development of biosensors.
Collapse
Affiliation(s)
- Wendong Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Dingding Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Fanghua Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuyan Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Mingzheng Shao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, P. R. China.
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
18
|
Lian X, Cheng L, Shan J, Wu M, Zheng F, Niu H. Nonsteroidal anti-inflammatory drug monitoring in serum: a Tb-MOF-based luminescent mixed matrix membrane detector with high sensitivity and reliability. Dalton Trans 2023; 52:644-651. [PMID: 36533903 DOI: 10.1039/d2dt03426c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of drugs or biomolecules for public health monitoring requires facile analytical technologies with excellent sensitivity, portability and reliability. In the past decades, different sensing materials have inspired the development of various bioanalytical strategies. However, sensing platforms based on powder materials are not suitable for medical diagnosis, which limits further exploration and application of biosensors. Herein, a point-of-care testing (POCT) membrane was designed from an energy competition mechanism and achieved the detection of the nonsteroidal antiphlogistic diclofenac, and exhibited remarkable testing efficacy at the ppb level. The mixed matrix membrane (MMM) sensor consists of electrospun polyacrylonitrile nanofibers and luminescent Tb-MOFs and possess the advantages of high stability, outstanding anti-interference ability, efficient detection (LOD = 98.5 ppb) and easy visual recognition. Furthermore, this MMM sensor exhibits excellent recyclability in serum, which is beneficial for developing a portable and convenient device to distinguish diclofenac in practical sensing applications. Meanwhile, the feasibility and mechanism of this recyclable sensor were verified by theory and experiments, indicating that it is a promising device for diclofenac detection in biological environments to evaluate the toxic effect caused by the accumulation of nonsteroidal drugs.
Collapse
Affiliation(s)
- Xiao Lian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei 230601, P. R. China. .,Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230601, P. R. China
| | - Lele Cheng
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
| | - Jingrui Shan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
| | - Mingzai Wu
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Physics and Materials Science, Anhui University, Hefei 230039, P. R. China
| | - Fangcai Zheng
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Helin Niu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
| |
Collapse
|
19
|
Design and Applications of Enzyme-Linked Nanostructured Materials for Efficient Bio-catalysis. Top Catal 2023. [DOI: 10.1007/s11244-022-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Liu H, Chen Y, Ju H. Functional DNA structures for cytosensing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Mao X, Qiu D, Wei S, Zhang X, Lei J, Mergny JL, Ju H, Zhou J. A Double Hemin Bonded G-Quadruplex Embedded in Metal-Organic Frameworks for Biomimetic Cascade Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54598-54606. [PMID: 36459081 DOI: 10.1021/acsami.2c18473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biocatalytic transformations in living cells, such as enzymatic cascades, function effectively in spatially confined microenvironments. However, mimicking enzyme catalytic cascade processes is challenging. Herein, we report a new dual-Hemin-G-quadruplex (dHemin-G4) DNAzyme with high catalytic activity over noncovalent G4/Hemin and monocovalent counterparts (G4-Hemin and Hemin-G4) by covalently linking hemin to both ends of an intramolecular G4. We use MAF-7, a hydrophilic metal-organic framework (MOF), as the protecting scaffold to integrate a biocatalytic cascade consisting of dHemin-G4 DNAzyme and glucose oxidase (GOx), by a simple and mild method with a single-step encapsulation of both enzymes. Such a MAF-7-confined cascade system shows superior activity over not only traditional G4/Hemin but also other MOFs (ZIF-8 and ZIF-90), which was mainly attributed to high-payload enzyme packaging. Notably, the introduction of hydrophilic G4 allows to avoid the accumulation of hydrophobic hemin on the surface of MAF-7, which decreases cascade biocatalytic activity. Furthermore, MAF-7 as protective coatings endowed the enzyme with excellent recyclability and good operational stability in harsh environments, including elevated temperature, urea, protease, and organic solvents, extending its practical application in biocatalysis. In addition, the incorporated enzymes can be replaced on demand to broaden the scope of catalytic substrates. Taking advantages of these features, the feasibility of dHemin-G4/GOx@MAF-7 systems for biosensing was demonstrated. This study is conducive to devise efficient and stable enzyme catalytic cascades to facilitate applications in biosensing and industrial processes.
Collapse
Affiliation(s)
- Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
22
|
Cheng H, Wang Z, Sun H, Chen B, Huang J, Jia R, He X, Wang K. Colorimetric and electrochemical integrated dual-mode detection of glucose by utilizing CoOOH@Cu nanosheets as peroxidase mimetics. Chem Commun (Camb) 2022; 58:13487-13490. [PMID: 36383163 DOI: 10.1039/d2cc05578c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we developed a colorimetric and electrochemical integrated dual-mode assay for glucose detection by utilizing CoOOH@Cu nanosheets as peroxidase mimetics. With the advantages of self-calibration, sensitivity and lower sample cost, this designed dual-mode assay offers great potential in blood glucose analysis.
Collapse
Affiliation(s)
- Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| | - Zhaoyang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| |
Collapse
|
23
|
Mei X, Wang Y, Li F, Yang R, Zhao Y, Yang X. Peptide nanotube/hemin composite with enhanced peroxidase activity for the detection of dopamine in food and drug samples. Methods 2022; 208:28-34. [DOI: 10.1016/j.ymeth.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
|
24
|
Liu Q, Hu K, She Y, Hu Y. In-situ growth G4-nanowire-driven electrochemical biosensor for probing H2O2 in living cell and the activity of terminal deoxynucleotidyl transferase. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Gao G, Chen JH, Li CJ, Wang CS, Hu J, Zhou H, Lin P, Xu Q, Zhao WW. Duplex-Specific Nuclease-Enabled Target Recycling on Semiconducting Metal–Organic Framework Heterojunctions for Energy-Transfer-Based Organic Photoelectrochemical Transistor miRNA Biosensing. Anal Chem 2022; 94:15856-15863. [DOI: 10.1021/acs.analchem.2c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ge Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou225002, China
| | - Jia-Hao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Cheng-Jun Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Cheng-Shuang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou225002, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|