1
|
Li J, Shi J, Fang X, Zhang Y, Xie Q, Danzeng Q, Hu J, Zhou CH, Xia Z, Liu C. Tuning the Excited-State Intramolecular Proton Transfer in Carbon Dots via Coordination with Metal Ion. Inorg Chem 2025; 64:7706-7715. [PMID: 40202949 DOI: 10.1021/acs.inorgchem.5c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Although carbon dots (CDs) are widely used in the detection of heavy metal ions, rationally designing high-performance CDs for metal ion detection remains a significant challenge due to the limited understanding of their interaction mechanism. Here, we reveal the excited-state intramolecular proton transfer (ESIPT) in CDs and provide an effective strategy for switching the ESIPT by coordinating with metal ions. This work demonstrates that Zn2+ has strong coordination capacity toward CDs, while Mn2+ has the mildest coordination mode that can effectively sense other metal ions. Reasonable design of CDs with unique responses to heavy metal ions is achieved by doping Zn2+ or Mn2+ to regulate the ESIPT process. Therefore, a fluorescent sensor array for the sensitive identification of 10 kinds of heavy metal ions in real samples is constructed, which shows consistent detection results with ICP-OES. This work deepens the understanding of the fundamental fluorescence mechanism of CDs, opens new avenues for the rational tuning the emissive process, and provides a simple yet reliable platform to design nanoprobes for heavy metal ions as well as other molecules.
Collapse
Affiliation(s)
- Jing Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, P. R. China
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Jinyu Shi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, P. R. China
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xiangyang Fang
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yu Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, P. R. China
| | - Qing Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, P. R. China
| | - Qunzeng Danzeng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, P. R. China
| | - Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Chuan-Hua Zhou
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhining Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, P. R. China
| | - Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
2
|
Shen J, Wang Y, Duan Z, Jin D, Shu Y, Hu X. MOF scaffold for anchoring platinum-nickel nanoparticles with enhanced oxidase-like activity to improve lateral flow immunoassay diagnosis. Biosens Bioelectron 2025; 273:117189. [PMID: 39862674 DOI: 10.1016/j.bios.2025.117189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation. Moreover, nickel (Ni) atoms were dopped into Pt nanoparticles to adjust crystal structure, thus greatly improving catalytic activity. The resulting MOF@PtNi nanocomposite showed enhanced colorimetric signal brightness and excellent oxidase-like activity, which can improve sensitivity via amplifying the color signal. The catalytic mechanism was further studied by scavenger and electron paramagnetic resonance analysis. Furthermore, integrated with the competitive immunization LFIA platform, the high sensitivity colorimetric detection of human immunoglobulin G was realized with a detection limit of 0.378 ng/mL and 0.269 ng/mL for pre- and post-catalytic detection, respectively. In addition, this MOF@PtNi based catalytic-colorimetric LFIA was used for detection of clinical serum samples and the results agreed well with that measured by the standard method. Therefore, this study helps open up the application of proposed catalytic-colorimetric nanocomposite in the ultrasensitive LFIA for point-of-care diseases diagnosis.
Collapse
Affiliation(s)
- Jin Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Zhengna Duan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Dangqin Jin
- College of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China.
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Song Q, Liao Z, Zheng L, Fu P, Qian S, Liang W, Zheng J, Wang K, Wang Y. Zero Background Visualizing Phosphorescence Lateral Flow Immunoassay of Cardiac Troponin I for Rapid and Accurate Diagnosis of Myocardial Infarction. Anal Chem 2025; 97:3651-3660. [PMID: 39921630 DOI: 10.1021/acs.analchem.4c06258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Fluorescence lateral flow immunoassays (FL-LFIA) have attracted considerable attention in clinical diagnosis due to their outstanding merits of affordable, sensitive, on-site, and quick detection. However, they are still plagued by significant signal interference, such as autofluorescence and scattered light. The development of high-performance and robust phosphors, i.e., label probes featuring with the character of low/no optical background, remains a great challenge. Herein, we report a novel visualized phosphorescence LFIA (Phos-LFIA), where the composite microspheres, i.e., carbon dots (CDs) covalently embedded in dendritic mesoporous silicon nanoparticles (DMSNs), were designed and selected as the report probes. The obtained CDs@DMSNs revealed uniform morphologies and particle sizes, as well as ultralong (lifetime: 1.14 s, visible for over 8 s to naked eyes) room temperature phosphorescence (RTP) in aqueous solution. As competitive nanotags, CDs@DMSNs were designed for an ultralong phosphorescence-based time-gated LFIA for cardiac troponin I (cTnI) without optical interference. The fabricated Phos-LFIA test strips demonstrated zero-background signal and were applied for highly sensitive cTnI detection in both buffer and a complex serum matrix, with corresponding limits of detection (LODs) of 0.19 and 0.21 ng/mL, respectively. For a clinical validation, the proposed Phos-LFIA revealed an excellent clinical analytical performance (sensitivity: 95.45%, specificity: 88.9%, κ value: 0.85), demonstrating its potential for rapid and accurate diagnosis of myocardial infarction. This work provided a promising background-free probe for FL-LFIA, and it would also open an opportunity for developing highly sensitive screening platforms for other targets through modifying different recognition ligands onto CDs@DMSNs.
Collapse
Affiliation(s)
- Qingwei Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zixuan Liao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Lin Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, P. R. China
| | - Pan Fu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Sihua Qian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, P. R. China
| | - Jianping Zheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Kaizhe Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yuhui Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
4
|
Zeng R, Zhou F, Wang Y, Liao Z, Qian S, Luo Q, Zheng J. Polydopamine modified colloidal gold nanotag-based lateral flow immunoassay platform for highly sensitive detection of pathogenic bacteria and fast evaluation of antibacterial agents. Talanta 2024; 278:126525. [PMID: 38991406 DOI: 10.1016/j.talanta.2024.126525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Bacterial infection is a great threat to human health. Lateral flow immunoassays (LFIAs) with the merits of low cost, quick screening, and on-site detection are competitive technologies for bacteria detection, but their detection limits depend on the optical performance of the adopted nanotags. Herein, we presented a LFIA platform for bacteria detection using polydopamine (PDA) functionalized Au nanoparticles (denoted as Au@PDA) as the nanotag. The introduction of PDA could provide enhanced light absorption of Au, as well as numerous functional groups for conjugation. Small recognition molecules i.e. vancomycin (Van) and p-mercaptophenylboronic acid (PMBA) were covalently anchored to Au@PDA, and selected as the specific probes towards Gram-positive (G+) and Gram-negative (G-) bacteria, respectively. Taken Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) as the representative targets of G+ and G- bacteria, two LFA strips were successfully constructed based on the immuno-sandwich principle. They could quantitatively detect S. aureus and E. coli both down to 102 cfu/mL, a very competitive detection limit in comparison with other colorimetric or luminescent probes-based LFIAs. Furthermore, the proposed two strips were applied for the quantitative, accurate, and rapid detection of S. aureus and E. coli in food and human urine samples with good analytical results obtained. In addition, they were integrated as a screening platform for quick evaluation of diverse antibacterial agents within 3 h, which is remarkably shortened compared with that of the two traditional methods i.e. bacterial culture and plate-counting.
Collapse
Affiliation(s)
- Ruoxi Zeng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315302, PR China
| | - Fangfang Zhou
- Department of Nephrology, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
| | - Yuhui Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315302, PR China.
| | - Zixuan Liao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315302, PR China
| | - Sihua Qian
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315302, PR China
| | - Qun Luo
- Department of Nephrology, Ningbo No. 2 Hospital, Ningbo, 315010, PR China.
| | - Jianping Zheng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315302, PR China.
| |
Collapse
|
5
|
Kakkar S, Gupta P, Singh Yadav SP, Raj D, Singh G, Chauhan S, Mishra MK, Martín-Ortega E, Chiussi S, Kant K. Lateral flow assays: Progress and evolution of recent trends in point-of-care applications. Mater Today Bio 2024; 28:101188. [PMID: 39221210 PMCID: PMC11364909 DOI: 10.1016/j.mtbio.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Paper based point-of-care (PoC) detection platforms applying lateral flow assays (LFAs) have gained paramount approval in the diagnostic domain as well as in environmental applications owing to their ease of utility, low cost, and rapid signal readout. It has centralized the aspect of self-evaluation exhibiting promising potential in the last global pandemic era of Covid-19 implementing rapid management of public health in remote areas. In this perspective, the present review is focused towards landscaping the current framework of LFAs along with integration of components and characteristics for improving the assay by pushing the detection limits. The review highlights the synergistic aspects of assay designing, sample enrichment strategies, novel nanomaterials-based signal transducers, and high-end analytical techniques that contribute significantly towards sensitivity and specificity enhancement. Various recent studies are discussed supporting the innovations in LFA systems that focus upon the accuracy and reliability of rapid PoC testing. The review also provides a comprehensive overview of all the possible difficulties in commercialization of LFAs subjecting its applicability to pathogen surveillance, water and food testing, disease diagnostics, as well as to agriculture and environmental issues.
Collapse
Affiliation(s)
- Saloni Kakkar
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, India
| | - Shiv Pratap Singh Yadav
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Garima Singh
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Sakshi Chauhan
- Dept. of Cardiothoracic and Vascular Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Elena Martín-Ortega
- IFCAE, Research Institute of Physics and Aerospace Science, Universidade de Vigo, Ourense, 32004, Spain
| | - Stefano Chiussi
- CINTECX, Universidade de Vigo, New Materials Group, Vigo, 36310, Spain
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo, 36310, Spain
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, U.P., India
| |
Collapse
|
6
|
Binabaji F, Dashtian K, Zare-Dorabei R, Naseri N, Noroozifar M, Kerman K. Innovative Wearable Sweat Sensor Array for Real-Time Volatile Organic Compound Detection in Noninvasive Diabetes Monitoring. Anal Chem 2024; 96:13522-13532. [PMID: 39110633 DOI: 10.1021/acs.analchem.4c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Wearable sweat sensors are reshaping healthcare monitoring, providing real-time data on hydration and electrolyte levels with user-friendly, noninvasive devices. This paper introduces a highly portable two-channel microfluidic device for simultaneous sweat sampling and the real-time detection of volatile organic compound (VOC) biomarkers. This innovative wearable microfluidic system is tailored for monitoring diabetes through the continuous and noninvasive tracking of acetone and ammonia VOCs, and it seamlessly integrates with smartphones for easy data management. The core of this system lies in the utilization of carbon polymer dots (CPDs) and carbon dots (CDs) derived from monomers such as catechol, resorcinol, o-phenylenediamine, urea, and citric acid. These dots are seamlessly integrated into hydrogels made from gelatin and poly(vinyl alcohol), resulting in an advanced solid-state fluorometric sensor coating on a cellulose paper substrate. These sensors exhibit exceptional performance, offering linear detection ranges of 0.05-0.15 ppm for acetone and 0.25-0.37 ppm for ammonia, with notably low detection limits of 0.01 and 0.08 ppm, respectively. Rigorous optimization of operational parameters, encompassing the temperature, sample volume, and assay time, has been undertaken to maximize device performance. Furthermore, these sensors demonstrate impressive selectivity, effectively discerning between biologically similar substances and other potential compounds commonly present in sweat. As this field matures, the prospect of cost-effective, continuous, personalized health monitoring through wearable VOC sensors holds significant potential for overcoming barriers to comprehensive medical care in underserved regions. This highlights the transformative capacity of wearable VOC sweat sensing in ensuring equitable access to advanced healthcare diagnostics, particularly in remote or geographically isolated areas.
Collapse
Affiliation(s)
- Fatemeh Binabaji
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Neda Naseri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
7
|
Feng Q, Wang C, Miao X, Wu M. A novel paper-based electrochemiluminescence biosensor for non-destructive detection of pathogenic bacteria in real samples. Talanta 2024; 267:125224. [PMID: 37751632 DOI: 10.1016/j.talanta.2023.125224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
The demand for sensitive, portable, and non-destructive analysis of pathogenic bacteria is of significance in point-of-care diagnosis. Herein, we constructed a smart electrochemiluminescence (ECL) biosensor by integrating a flexible paper-based sensing device and a disposable three-electrode detecting system. Staphylococcus aureus (S. aureus)-responsive cellulose paper was prepared by employing aptamer as recognition element and a probe DNA (probe DNA-GOD) tagged with glucose oxidase (GOD) as a signal amplification unit. The formation of aptamer-S. aureus complex mediated the quantitative release of probe DNA-GOD. The remaining probe DNA-GOD on the paper-based aptasensor was then activated by glucose, which resulted in a significant decrease in ECL signal. To further improve the ECL performance of biosensor, a large number of Ru(bpy)32+ molecules were embedded into porous zinc-based metal-organic frameworks (MOFs) to form Ru(bpy)32+ functionalized MOF nanoflowers (Ru-MOF-5 NFs). Such biosensor enabled accurate, non-destructive, and real-time monitoring of S. aureus-contaminated food samples, opening a new avenue for sensitive recognition of pathogenic bacteria.
Collapse
Affiliation(s)
- Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chengcheng Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
8
|
Li Z, Jallow A, Nidiaye S, Huang Y, Zhang Q, Li P, Tang X. Improvement of the sensitivity of lateral flow systems for detecting mycotoxins: Up-to-date strategies and future perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13255. [PMID: 38284606 DOI: 10.1111/1541-4337.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 01/30/2024]
Abstract
Mycotoxins are dangerous human and animal health-threatening secondary fungal metabolites that can be found in various food and agricultural products. Several countries have established regulations to restrict their presence in food and agricultural products destined for human and animal consumption. Consequently, the need to develop highly sensitive and smart detection systems was recognized worldwide. Lateral flow assay possesses the advantages of easy operation, rapidity, stability, accuracy, and specificity, and it plays an important role in the detection of mycotoxins. Nevertheless, strategies to comprehensively improve the sensitivity of lateral flow assay to mycotoxins in food have rarely been highlighted and discussed. In this article, a comprehensive overview was presented on the application of lateral flow assay in mycotoxin detection in food samples by highlighting the principle of lateral flow assay, presenting a detailed discussion on various analytical performance-improvement strategies, such as the development of high-affinity recognition reagents, immunogen immobilization methods, and signal amplification. Additionally, a detailed discussion on the various signal analyzers and interpretation approaches was provided. Finally, current hurdles and future perspectives on the application of lateral flow assay in the detection of mycotoxins were discussed.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Abdoulie Jallow
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Seyni Nidiaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Xianghu Laboratory, Hangzhou, China
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
9
|
Liang J, Wang K, Gong L, Zhang Z, Wang J, Cao Y, Yang T, Zeng H. High extinction coefficient material combined with multi-line lateral flow immunoassay strip for ultrasensitive detection of bacteria. Food Chem 2023; 427:136721. [PMID: 37390742 DOI: 10.1016/j.foodchem.2023.136721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Lateral flow immunoassay strips (LFIAs) are a reliable and point-of-care detection method for rapid monitoring of bacteria, but their sensitivity was limited by the low extinction coefficient of colloidal gold nanoparticles (Au NPs) and low capture efficiency of test-line. In this study, polydopamine nanoparticles (PDA NPs) were employed to replace Au NPs, due to their high extinction coefficient. And the amount of test-line was increased to 5 for further improving the efficiency of bacteria capture. Thus, under visual observation, the detection limits of PDA-based LFIAs (102 CFU/mL) were about 2 orders of magnitude lower than Au-based LFIAs (104 CFU/mL). Furthermore, the invisible signal could be collected by Image J and the detection limit can reach 10 CFU/mL. The proposed test strips were successfully applied for the quantitative, accurate, and rapid screening of E. coli in food samples. This study provided a universal approach to enhance the sensitivity of bacteria LFIAs.
Collapse
Affiliation(s)
- Jianwei Liang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Kuiyu Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Liangke Gong
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhaoyang Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jinhao Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yuhua Cao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Tao Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Hui Zeng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Youkai Science and Technology Co., Ltd., Foshan 528000, Guangdong, China.
| |
Collapse
|
10
|
Gong L, Wang K, Liang J, Zhang L, Yang T, Zeng H. Enhanced sensitivity and accuracy via gold nanoparticles based multi-line lateral flow immunoassay strip for Salmonella typhimurium detection in milk and orange juice. Talanta 2023; 265:124929. [PMID: 37442004 DOI: 10.1016/j.talanta.2023.124929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Food borne pathogens threaten food safety and affect human health. The lateral flow immunoassays (LFIAs) are widely concerned because of simplicity, low cost and user friendliness, and have broad application prospects in pathogen detection. However, the sensitivity of LFIAs is limited. Herein, multi-line LFIAs are introduced into pathogen detection for the first time. Compared with traditional single-line LFIAs, the overall signal strength of multi-line LFIAs has been significantly improved. It is particularly noteworthy that multi-line LFIAs detection accuracy of 103 CFU/mL pathogen has been improved by about 55%. The proposed multi-line LFIAs reduce the possibility of judging a positive result as a false negative result. The LFIAs strip was validated in real samples of milk and orange juice. This strategy has great potential for rapid detection of pathogens in real samples, and provides new insights for improving the accuracy and sensitivity of LFIAs strips.
Collapse
Affiliation(s)
- Liangke Gong
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Kuiyu Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jianwei Liang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Liren Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Tao Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Hui Zeng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| |
Collapse
|
11
|
He S. No-cost ballpoint pen dispenser for lateral flow assays. Talanta 2023; 263:124742. [PMID: 37257236 DOI: 10.1016/j.talanta.2023.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
We have developed a no-cost, lightweight, human-powered dispenser using an empty ballpoint pen. Used in lateral flow assays, this dispenser restricts antibody deposition to narrow zones, allowing freehand drawing of test and control lines. The lines can be drawn in widths ranging from 0.15 to 1.00 mm. Naphthol green B, a compatible stain, was used to label antibody solutions and certify handwriting traces. Using human chorionic gonadotropin (HCG) as a model antigen, we demonstrated that the pen dispenser can imprint antibodies on nitrocellulose membranes without affecting their microstructure and chromatographic function. A lateral flow assay using the pen dispenser detected HCG at 0.1 μg/mL, comparable to the sensitivity of standard tests using traditional benchtop dispensers.
Collapse
Affiliation(s)
- Shengbin He
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
12
|
Wang Z, Guo Y, Xianyu Y. Applications of self-assembly strategies in immunoassays: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Yue X, Liao Q, He H, Li H, Xie J, Fu Z. Mycobacteriophage Derived Lipoarabinomannan Binding Protein for Recognizing Non-Tuberculosis Mycobacteria. Anal Chem 2023; 95:3754-3760. [PMID: 36758121 DOI: 10.1021/acs.analchem.2c04851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Non-tuberculosis mycobacteria (NTM) is one family of pathogens usually leading to nosocomial infections. Exploration of high-performance biological recognition agent plays a pivotal role for the development of point-of-care testing device and kit for detecting NTM. Mycobacterium smegmatis (M. smegmatis) is a NTM which has been frequently applied as an alternative model for highly pathogenic mycobacteria. Herein, a recombinant tail protein derived from mycobacteriophage SWU1 infecting M. smegmatis was expressed with Escherichia coli system and noted as GP89. It shows a fist-like structure according to the results of homology modeling and ab initio modeling. It is confirmed as a lipoarabinomannan (LAM) binding protein, which can recognize studied NTM genus since abundant LAM constructed with d-mannan and d-arabinan is distributed over the mycobacterial surface. Meanwhile an enhanced green fluorescent protein (eGFP)-fused GP89 protein was acquired with a fusion expression technique. Then GP89 and eGFP-fused GP89 were applied to establish a sensitive and rapid method for fluorescent detection of M. smegmatis with a broad linear range of 1.0 × 102 to 1.0 × 106 CFU mL-1 and a low detection limit of 69 CFU mL-1. Rapid and reliable testing of antimicrobial susceptibility was achieved by the GP89-based fluorescent method. The present work provides a promising recognition agent for studied NTM and opens an avenue for clinical diagnosis of NTM-induced infections.
Collapse
Affiliation(s)
- Xin Yue
- The State Key Lab of Silkworm Geneome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qinchen Liao
- The State Key Lab of Silkworm Geneome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hongmei He
- College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongtao Li
- College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- The State Key Lab of Silkworm Geneome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Recent progress on lateral flow immunoassays in foodborne pathogen detection. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
15
|
Qian S, Li L, Wu K, Wang Y, Wei G, Zheng J. Emerging and Versatile Platforms of Metal-Ion-Doped Carbon Dots for Biosensing, Bioimaging, and Disease Therapy. ChemMedChem 2023; 18:e202200479. [PMID: 36250779 DOI: 10.1002/cmdc.202200479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/16/2022] [Indexed: 01/24/2023]
Abstract
Metal ions possess abundant electrons and unoccupied orbitals, as well as large atomic radii, whose doping into carbon dots (CDs) is a facile strategy to endow CDs with additional physicochemical characteristics. After being doped with metal ions, CDs reveal obvious changes in their optical, electronic, and magnetic properties by adjustments to their electron density distribution and the energy gaps, leading them to be promising and competitive candidates as labeling probes, imaging agents, catalysts, nanodrugs, and so on. In this review, we summarize the fabrication methods of metal-ion-doped CDs (M-CDs), and highlight their biological applications including biosensing, bioimaging, tumor therapy, and anti-microbial treatment. Finally, the challenging future perspectives of M-CDs are analyzed. We hope this review will provide inspiration for further development of M-CDs in various biological aspects, and help readers who are interested in M-CDs and their biological applications.
Collapse
Affiliation(s)
- Sihua Qian
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| | - Lin Li
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| | - Kerong Wu
- Translational Research Laboratory for Urology, Department of Urology, Ningbo First Hospital, 315010, Ningbo, P. R. China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, P. R. China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| |
Collapse
|