1
|
Zhang Y, Huang Y, Yang G, Xin H, Li K, Wang L, Gu S, Ren B, Zhao S, Cao D. Application of a fluorescent probe exhibiting a large stokes shift after the precise detection of hydrazine in plants, foods and living cells. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137452. [PMID: 39919633 DOI: 10.1016/j.jhazmat.2025.137452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
As a strongly reducing agent and highly reactive alkaline substance, hydrazine is widely used in various industrial productions. Excessive hydrazine may pose a significant risk to the environment and human health. Here, a new fluorescent probe, (E)-6-(2-(3-(dicyanomethylene)-5,5-dimethylcyclohex-1-en-1-yl)vinyl) naphthalen-2-yl-7-(diethylamino)-2-oxo-2H-chromene-3-carboxylate (abbreviated as MNC) for detecting hydrazine in environmental and biological samples was introduced. The probe not only shows a good photostability, a turn-on red fluorescent response with a low detection limit (0.40 μM), but also exhibits a large Stokes shift (215 nm) after reacting with hydrazine. In practical applications, this probe has been effectively used for the detection of hydrazine in environmental, plant, and food samples. It has also been applied to identify the presence of hydrazine in the roots of Arabidopsis thaliana, as well as in zebrafish and living cells. This research introduces a potent and versatile tool for the environmental and biological monitoring of hydrazine.
Collapse
Affiliation(s)
- Yan Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Yan Huang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Guiyi Yang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Haotian Xin
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Keyi Li
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Lei Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Shangcong Gu
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Baosheng Ren
- School of Materials Science and Engineering, University of Jinan, Jinan, China.
| | - Songfang Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan, China.
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, China.
| |
Collapse
|
2
|
Meng Z, Li X, Ye Q, Zhang S, Xu X, Yang Y, Wang Z, Wang S. A cellulose based fluorescent microsphere for sensitive detection and efficient removal of hydrazine and its versatile applications in environmental samples and live plants. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138253. [PMID: 40239522 DOI: 10.1016/j.jhazmat.2025.138253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Hydrazine (N2H4) is being extensively utilized in various industrial fields, yet its high toxicity can cause enormous adverse effects on human health and the ecological environment. Herein, an aggregation-induced emission (AIE) fluorescent probe FNA-B-CA (naphthalimide small molecule (FNA-B) grafting onto cellulose acetate (CA)) for sensitive detection and high effective removal of N2H4 was synthesized. Probe FNA-B-CA can recognize N2H4 across a wide pH range (5 -12) with a low detection limit (84 nM), high selectivity, and strong anti-interference ability. It enabled quantitative detection of N₂H₄ concentrations in actual water and soil samples quantitatively and functioned as an efficient tool for tracking N2H4 in plant tissue (bean sprouts). More importantly, probe FNA-B-CA was hereby successfully prepared into fluorescent microspheres using the favorable processing properties of CA, further facilitating the simultaneous detection and adsorption of N2H4 in aqueous solutions.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Shuo Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Li XH, Li MZ, Yang XY, Wang TY, Luo YH, Kandegama W, Li JY, Hao GF, Liu CR. Ultra-sensitive, versatile and portable detection of hydrazine in eco-environmental systems using a smartphone-integrated ratiometric fluorescent sensor. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138172. [PMID: 40188545 DOI: 10.1016/j.jhazmat.2025.138172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Hydrazine (N2H4), a highly reactive specie widely used in industrial processes, poses significant ecological risks. Accurate detection of N2H4 is essential for safeguarding public health, yet developing a robust tool for its global detection remains a significant challenge. Herein, we developed a ratiometric fluorescent sensor, DIPOT, designed for ultra-sensitive and portable detection of N2H4 in eco-environmental systems. DIPOT exhibited excellent ratiometric fluorescence performance for N2H4 in aqueous solution, with a detection limit as low as 4.5 nM and a substantial 156 nm blue shift, transitioning from red to green fluorescence. We integrated it into portable test strips for on-site quantitative detection and analysis of N2H4 vapor and solution via a smartphone application. DIPOT and its portable platform have been successfully applied to monitor ultra-trace levels of N2H4 in 20 diverse eco-environmental samples, including water, soil, crops, food and living organisms, showcasing its versatility. Furthermore, DIPOT facilitates real-time ratiometric bioimaging of N2H4 in living plants, cells and zebrafish. Our findings provide a robust and eco-friendly approach for global tracking of N2H4, representing a significant advancement in environmental sensing technology.
Collapse
Affiliation(s)
- Xiao-Hong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and, Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Meng-Zhao Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiao-Yan Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and, Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Tian-Yan Wang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yin-Heng Luo
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Wmww Kandegama
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, NWP 60170, Sri Lanka
| | - Jing-Yi Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and, Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Chun-Rong Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
4
|
Gao W, Su J, Yang H, Zhao X, Liu J, Wang Z, Wang Q. A novel boronic acid-based fluorescent sensor for the selective detection of l-lysine in food samples and cells. RSC Adv 2025; 15:10453-10459. [PMID: 40191141 PMCID: PMC11969143 DOI: 10.1039/d5ra00621j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
A novel probe DFC (2-(dicyanomethylene)-2,5-dihydro-5,5-dimethyl-4-((E)-2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)furan-2-yl)vinyl)furan-3-carbonitrile) was successfully designed and synthesized for the detection of l-lysine (l-Lys). The sensing behavior was characterized using absorption and fluorescence emission spectra. Upon addition of l-Lys to DFC, a rapid response time of 5 seconds was observed, accompanied by a significant 4-fold enhancement in fluorescence intensity. Additionally, DFC exhibits an impressively low detection limit of 0.14 μMol L-1. Furthermore, the applicability of DFC was demonstrated through successful detection of l-Lys in water samples, food samples, and imaging of l-lys in live HeLa cells.
Collapse
Affiliation(s)
- Wei Gao
- Department of Chemistry, Changzhi University Changzhi 046011 People's Republic of China
| | - Jing Su
- Department of Chemistry, Changzhi University Changzhi 046011 People's Republic of China
| | - Huarui Yang
- Department of Chemistry, Changzhi University Changzhi 046011 People's Republic of China
| | - Xuefeng Zhao
- Department of Chemistry, Changzhi University Changzhi 046011 People's Republic of China
| | - Jingjing Liu
- Department of Chemistry, Changzhi University Changzhi 046011 People's Republic of China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University Changzhi 046011 People's Republic of China
| | - Qingming Wang
- School of Pharmacy, Yancheng Teachers' University Yancheng 224051 People's Republic of China
| |
Collapse
|
5
|
Hu Q, Tang C, Yin Y, Kong X, Fu C, Hu R, Wang H. AIE and ICT Synergistic Lysosome-Targeted Ratiometric Fluorescence Sensor for the Detection and Imaging of Th 4+ in the Liver of Zebrafish and Mice. Anal Chem 2025; 97:6101-6110. [PMID: 40064652 DOI: 10.1021/acs.analchem.4c06695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The sensitive detection of the radioactive thorium (Th) ion with an oxidation state of +4 (Th4+) is of great significance for environmental protection and life safety. In this study, five fluorescence sensors with regulated donor-acceptor (D-A) interactions were constructed for Th4+ detection based on intramolecular charge transfer and aggregation-induced emission mechanisms. Among the developed sensors, TPE-D bearing electron-deficient π-bridge and weak D-A interactions presented ratiometric fluorescence detection behavior toward Th4+ in aqueous solution due to its aggregation-induced emission characteristics and unique D-A-D structures. Moreover, TPE-D showed excellent selectivity and sensitivity for Th4+ detection, and the detection limit was as low as 8.1 × 10-8 M. The sensing mechanism observation revealed that Th4+ could coordinate with the hydroxyl, imine, and carbonyl groups of TPE-D accompanied by an electron transfer process. In addition, TPE-D could selectively be enriched in the lysosome. Both the detection of Th4+ in the lysosome and liver of mice and zebrafish were realized based on this strategy, and a mobile-assisted detection approach toward Th4+ in actual water samples was also established with high sensitivity. This is the first report for Th4+ detection in organelles and organs, which provides a great significance and reliable strategy for radionuclide toxicology detection and analysis applications.
Collapse
Affiliation(s)
- Qinghua Hu
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Cen Tang
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Yuting Yin
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Xianghe Kong
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Chao Fu
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| |
Collapse
|
6
|
Mathivanan M, Malecki JG, Murugesapandian B. An interesting aggregation induced red shifted emissive and ESIPT active hydroxycoumarin tagged symmetrical azine: Colorimetric and fluorescent turn on-off-on response towards Cu 2+ and Cysteine, real sample analysis and logic gate application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125270. [PMID: 39418682 DOI: 10.1016/j.saa.2024.125270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
We report a newly synthesized 7-diethylamino-4-hydroxycoumarin tagged symmetrical azine derivative (SHC), with an interesting color transformation from yellowish green to orange via aggregation induced red shifted emissive (117 nm) feature in THF-H2O mixture. Interestingly, the single crystal X-ray analysis of this molecule demonstrates that two hydroxycoumarin moieties were present in azine unit, among them one of the coumarin units was exist as enol form and another one transferred to keto form via ground state proton transfer reaction. The optical responses of the compound in different solvents exposed the observation of dual emissive bands which corresponds to the presence of ESIPT phenomenon in SHC molecule. Further, this characteristic was confirmed by absorption, emission, solid state structure and time resolved fluorescence decay measurements. Furthermore, the fluorophore, SHC was exploited as a colorimetric and turn on-off-on fluorescent probe for detection of Cu2+ ions and Cysteine (Cys). The 1:1 binding ratio of the probe with Cu2+ and Cys with SHC-Cu2+, was established via Job plot analysis, mass spectral technique and the DFT calculations. The probe, SHC was employed for the detection of copper ions in the environmental real water samples. Finally, the reversible fluorescent turn on-off-on character of the probe, SHC was established to construct the IMPLICATION logic gate application.
Collapse
Affiliation(s)
- Moorthy Mathivanan
- Department of Chemistry, Bharathiar University, Coimbatore-641046, Tamil Nadu, India
| | - Jan Grzegorz Malecki
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | | |
Collapse
|
7
|
Ghorpade M, Rajput D, Mahalingam P, Kanvah S. Live cell imaging of lipid droplets: fluorescent chalcones as probes for lipophagy and lipid-mitochondria interactions. J Mater Chem B 2025; 13:1338-1349. [PMID: 39660366 DOI: 10.1039/d4tb01871k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Lipid droplets are crucial organelles involved in cellular energy storage and metabolism, which is key in maintaining energy homeostasis through lipophagy. In this work, we successfully synthesized donor-acceptor chalcone derivatives (M1-M3) with improved photophysical characteristics, such as significant Stokes shifts and strong emission features. DFT and TDDFT calculations have been employed to evaluate the structure-property relationship of the chalcone derivatives. The molecules show excellent selectivity in staining lipid droplets in COS-7 cells and other cell lines. The molecule M1 was also further utilized to monitor verapamil-induced lipophagy. Using M1, we also demonstrate the link between lipid droplets and mitochondria during stress, emphasizing the significance of lipophagy in cellular energy balance and metabolism. These results not only shed light on the lipid metabolism but also have profound implications for researching and potentially treating metabolic diseases, underscoring the importance of our work in the field.
Collapse
Affiliation(s)
- Mohini Ghorpade
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, India.
| | - Deeksha Rajput
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, India.
| | - Paramasivam Mahalingam
- School of Chemistry and Biochemistry and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, India.
| |
Collapse
|
8
|
Zhang Y, Tang L, Yang G, Xin H, Huang Y, Li K, Liu J, Pang J, Cao D. Coumarin-aurone based fluorescence probes for cysteine sensitive in-situ identification in living cells. Colloids Surf B Biointerfaces 2024; 244:114173. [PMID: 39191111 DOI: 10.1016/j.colsurfb.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
The quantification of cysteine (Cys) levels in the organisms holds paramount significance in biological research and disease diagnosis, which can give the correlation between abnormal Cys levels and diseases. In this study, two fluorescent probes, designated as DEA-OH and DEA-AC, featuring a coumarin-aurone backbone specifically engineered for Cys detection, were meticulously designed and synthesized. The diethylamino coumarin-aurone probe DEA-OH and the acrylate-substituted probe DEA-AC demonstrated remarkable sensitivity in detecting cysteine by means of copper displacement (DEA-OH) and acrylate hydrolysis mechanisms (DEA-AC) with fluorescence detection limits of 7.25 μM and 1.65 μM, respectively. Moreover, the fluorescence peak wavelength of the two probes displayed a linear relationship with solvent polarity in the ET (30) range of 30-65 kcal•mol-1, indicating the potential for monitoring changes in environmental polarity within this ET (30) range. The outstanding attributes exhibited by DEA-AC including superior photostability, remarkable selectivity, and swift response (kinetic rate constant: 0.00747 s-1), coupled with the exceptional anti-interference ability, have significantly broadened its scope of applications, for example detecting alterations in Cys within biological systems.
Collapse
Affiliation(s)
- Yan Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Luyao Tang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Guiyi Yang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Haotian Xin
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Yan Huang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Keyi Li
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Jiandong Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Jiaojiao Pang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, China.
| |
Collapse
|
9
|
Sun X, Jiang X, Wang Z, Li Y, Ren J, Zhong K, Li X, Tang L, Li J. Fluorescent probe for imaging N 2H 4 in plants, food, and living cells and for quantitative detection of N 2H 4 in soil and water using a smartphone. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135701. [PMID: 39217942 DOI: 10.1016/j.jhazmat.2024.135701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Hydrazine is volatile and highly toxic, causing severe harm to water, soil, air, and organisms. Therefore, real-time detection and long-term monitoring of hydrazine are crucial for environmental protection and human health. Herein, an "OFF-ON" fluorescent probe 5-((10-ethyl-2-methoxy-10 H-phenothiazin-3-yl)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (MPD) for hydrazine detection through a nucleophilic addition reaction was developed. MPD could exclusively identify hydrazine through colorimetric and fluorescent dual-channel responses within 30 s, which also demonstrated high sensitivity (detection limit, 12 nM) and a wide pH range (6 -12). The sensing mechanism of MPD was confirmed using theoretical calculations, where fluorescence was emitted following the recognition of hydrazine because of the disappearance of the photoinduced electron transfer (PET) process. Using a smartphone, MPD enabled the quantitative detection of hydrazine in real water samples and sandy soil. Notably, in the process of detecting hydrazine in actual water samples, the establishment of analytical methods and the completion of rapid quantitative detection only required a smartphone and built-in apps. Additionally, we showed that MPD could recognize hydrazine in various environmental samples, including plants, food, hydrazine vapors, and cells. We believe that the fluorescent probe MPD developed in this study and the established smartphone visualization platform will provide a convenient and effective tool for detecting hydrazine in environmental monitoring, food safety assessment, biological system safety, and other fields.
Collapse
Affiliation(s)
- Xiaofei Sun
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, PR China
| | - Xin Jiang
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Zengdong Wang
- Shandong Anyuan Marine Breeding Co., Ltd., Yantai 265617, PR China
| | - Yang Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Jiashu Ren
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Keli Zhong
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Xuepeng Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Lijun Tang
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China.
| | - Jianrong Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China.
| |
Collapse
|
10
|
Pan Y, Tang L, Li L, Wu X, Yan L. A versatile fluorescent probe for the ratiometric detection of hydrazine (N 2H 4) in water, soil, plant, and food samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124766. [PMID: 39154880 DOI: 10.1016/j.envpol.2024.124766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Hydrazine (N2H4) is a crucial chemical raw material extensively utilized in chemical production. However, due to its volatility, water solubility, and high toxicity, both the gaseous form and aqueous solution of N2H4 pose significant environmental risks by causing severe pollution that can adversely impact plants, microorganisms, and human health. Therefore, accurate detection of N2H4 in the environment is imperative for safeguarding public health. In this study, we synthesized a ratiometric fluorescent probe (BCaz-Cy2) based on Carbazole and Hemicyanine groups. This probe exhibits simple synthesis procedure, rapid response time, high sensitivity and selectivity as well as remarkable detection signals. It enables effective detection of N2H4 in various matrices such as water, food, soil and plant samples thereby significantly expanding the scope of applications for N2H4 probes.
Collapse
Affiliation(s)
- Yan Pan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China
| | - Liting Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China
| | - Lin Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China
| | - Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China.
| |
Collapse
|
11
|
Li QX, Yuan YJ, Cheng RX, Ma Y, Tan R, Wang YW, Peng Y. An AIE-active tetra-aryl imidazole-derived chemodosimeter for turn-on recognition of hydrazine and its bioimaging in living cells. Org Biomol Chem 2024. [PMID: 39011846 DOI: 10.1039/d4ob01009d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A new chemodosimeter SWJT-31 with an aggregation-induced emission (AIE) effect was designed and constructed. Upon increasing the water fraction in the solution, it exhibited typical AIE, which showed bright red fluorescence at 610 nm. SWJT-31 could sensitively and specifically recognize hydrazine by the TICT effect with an LOD of 33.8 nM, which was much lower than the standard of the USEPA. A portable test strip prepared using SWJT-31 was also developed for the visual detection of hydrazine. Eventually, it was successfully used for the detection of hydrazine in water samples and HeLa cells.
Collapse
Affiliation(s)
- Qing-Xiu Li
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yan-Ju Yuan
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Rui-Xing Cheng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Ma
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Rui Tan
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Peng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
12
|
Xu W, Li X, Wang S, Zhang H, Li W. Fluorescence Recognition of Hydrazine Driven by Neighboring Group Participation. J Fluoresc 2024:10.1007/s10895-024-03782-x. [PMID: 38997565 DOI: 10.1007/s10895-024-03782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Hydrazine (N2H4) has toxic effects on the environment. Although a variety of reactive probes have been used to identify hydrazine, practical applications required continuous development of hydrazine fluorescent probes with improved performance. Here, we applied the neighboring group participation (NGP) to the design of a fluorescent probe for hydrazine. The probe exhibited a rapid response to N2H4 and strong anti-interference ability, with detection limited to 0.031 μmol/L. Theoretical calculation showed that the energy barrier could be reduced by NGP. The cyclic intermediate formed by the indole ring and the α-ester carbonyl group significantly reduced the activation energy of the reaction. Practically, the probe could detect hydrazine in actual water samples.
Collapse
Affiliation(s)
- Wenzhi Xu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Materials Science, Hebei University, Baoding, 071002, PR China.
| | - Xue Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Materials Science, Hebei University, Baoding, 071002, PR China
| | - Shuo Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Materials Science, Hebei University, Baoding, 071002, PR China
| | - Honglei Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Materials Science, Hebei University, Baoding, 071002, PR China
| | - Wei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Materials Science, Hebei University, Baoding, 071002, PR China.
| |
Collapse
|
13
|
Liu LH, Shang XZ, Yuan JH, Luo YN, Wang JY, Xue XL, Jiang N, Wang KP, Hu ZQ. A fluorescent probe based on cyclochalcone for detecting peroxynitrite. Photochem Photobiol Sci 2024; 23:1031-1039. [PMID: 38839721 DOI: 10.1007/s43630-024-00565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 06/07/2024]
Abstract
A novel cyclic chalcone fluorescent probe C-PN was synthesized to detect ONOO-. After reaction with peroxynitrite, the double bond of C-PN in the cyclic chalcone structure was disconnected, which caused the change of intramolecular charge transfer (ICT) effect, emitting blue fluorescence and quenching orange red fluorescence. Visible to the naked eye, the color of the probe solution changed. The probe showed low sensitivity (detection limit = 20.2 nm), short response time (less than 60 s) at low concentration of ONOO-, good visibility, and good selectivity and stability for ONOO-.
Collapse
Affiliation(s)
- Li-Hao Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xian-Zhao Shang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jian-Hao Yuan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yi-Ning Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jia-Yi Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiao-Lei Xue
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Nan Jiang
- Genetic Testing Center, Women and Children's Hospital Affiliated to Qingdao University, Qingdao, 266034, Shandong, China.
| | - Kun-Peng Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
14
|
Bai C, Yao J, Meng Q, Dong Y, Chen M, Liu X, Wang X, Qiao R, Huang H, Wei B, Qu C, Miao H. A near-infrared fluorescent ratiometric probe with large Stokes shift for multi-mode sensing of Pb 2+ and bioimaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133968. [PMID: 38452682 DOI: 10.1016/j.jhazmat.2024.133968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Pb2+ is a heavy metal ion pollutant that poses a serious threat to human health and ecosystems. The conventional methods for detecting Pb2+ have several limitations. In this study, we introduce a novel fluorescent probe that enables the detection of Pb2+ in the near-infrared region, free from interference from other common ions. A unique characteristic of this probe is its ability to rapidly and accurately identify Pb2+ through ratiometric measurements accompanied by a large Stokes shift of 201 nm. The limit of detection achieved by probe was remarkably low, surpassing the standards set by the World Health Organization, and outperforming previously reported probes. To the best of our knowledge, this is the first organic small-molecule fluorescent probe with both near-infrared emission and ratiometric properties for the detection of Pb2+. We present a triple-mode sensing platform constructed using a probe that allows for the sensitive and selective recognition of Pb2+ in common food items. Furthermore, we successfully conducted high-quality fluorescence imaging of Pb2+ in various samples from common edible plants, HeLa cells, Caenorhabditis elegans, and mice. Importantly, the probe-Pb2+ complex exhibited tumour-targeting capabilities. Overall, this study presents a novel approach for the development of fluorescent probes for Pb2+ detection.
Collapse
Affiliation(s)
- Cuibing Bai
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Junxiong Yao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Qian Meng
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Yajie Dong
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Mengyu Chen
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xinyi Liu
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xinyu Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| | - Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Xinghuo Organosilicon Industry Research Center, Jiujiang University, Jiujiang 332005, PR China.
| | - Biao Wei
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Changqing Qu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, PR China
| | - Hui Miao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| |
Collapse
|
15
|
Fernandes RS, Vasistha SD, Singh RK, Goel S, Dey N. Converging optical and electrochemical detection strategies for multimodal hydrazine sensing: insights into substituent-driven diverse response. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2643-2653. [PMID: 38624187 DOI: 10.1039/d4ay00063c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
A pair of pyrene-based chalcogen derivatives have been developed, which demonstrate multimodal ratiometric response towards hydrazine. Although these probes share a common pyrene core and differ primarily in the electronic nature of their terminal side arms, they display distinct photophysical properties. Notably, both probes undergo significant spectral changes upon the addition of hydrazine, but probe 1 exhibits a more pronounced interaction (∼5-fold fluorescence enhancement) than probe 2, attributed to the higher level of aggregation in probe 2, rendering the binding site less accessible to the incoming analyte. Additionally, we have explored electrochemical techniques, including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), for hydrazine detection. Our molecular design strategy relies on ratiometric-responsive specific cyclization triggered by hydrazine, leading to the disruption of the π-conjugated system and the subsequent suppression of intramolecular charge transfer (ICT) processes, along with dis-assembly of the aggregated probe molecules. These probes enable the nakеd-eye detection of hydrazine, with a low detection limit of 7.33 ppb and 7.58 ppb for probe 1 and 2, respectively. Furthermore, we have investigated cost-effective probe-coatеd paper strips for the detection of hydrazine in water.
Collapse
Affiliation(s)
- Rikitha S Fernandes
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India.
| | - Sahil Deepak Vasistha
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India.
| | - Ritesh Kumar Singh
- Department of Department of Electrical & Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Sanket Goel
- Department of Department of Electrical & Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India.
| |
Collapse
|
16
|
Rao Q, Zhou J, Su Y, Zhang L, Feng Y, Lv Y. Near-Infrared Catalytic Chemiluminescence System based on Zinc Gallate Nanoprobe for Hydrazine Sensing. Anal Chem 2024; 96:6373-6380. [PMID: 38600879 DOI: 10.1021/acs.analchem.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
To the deep tissue penetration and ultra-low background, developing near-infrared (NIR) chemiluminescence probes for human health and environmental safety has attracted more and more attention, but it remains a huge challenge. Herein, a novel NIR chemiluminescence (CL) system was rationally designed and developed, utilizing Cr3+-activated ZnGa2O4 (ZGC) nanoparticles as a catalytic luminophore via hypochlorite (NaClO) activation for poisonous target (hydrazine, N2H4) detection. With superior optical performance and unique catalytic structure of ZGC nanoparticles, the fabricated ZGC-NaClO-N2H4 CL system successfully demonstrated excellent NIR emission centered at 700 nm, fast response, and high sensibility (limit of detection down to 0.0126 μM). Further experimental studies and theoretical calculations found the cooperative catalytic chemiluminescence resonance energy transfer mechanism in the ZGC-NaClO-N2H4 system. Remarkably, the ZGC-based NIR CL system was further employed for N2H4 detection in a complicated matrix involving bioimaging and real water samples, thereby opening a new way as a highly reliable and accurate tool in biomedical and environmental monitoring applications.
Collapse
Affiliation(s)
- Qianli Rao
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jing Zhou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yang Feng
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
17
|
Xia HC, Wang HH, Han D, Yang HK, Lv JL, Kong YY. Phenothiazine-based fluorescent probes for the detection of hydrazine in environment and living cells. Talanta 2024; 269:125448. [PMID: 38029607 DOI: 10.1016/j.talanta.2023.125448] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
As an important chemical raw material, hydrazine brings convenience to people's lives and provides opportunities for human development. However, the misuse or leakage of hydrazine has brought pollution to the environment, including water, soil and living organisms. At the same time, hydrazine poses a potential threat to human health as a carcinogen. Despite the enormous challenges, it is crucial to develop an effective method to detect hydrazine in environmental samples. In this work, we have synthesized a series of probes based on phenothiazine fluorophore by the introduction of different substituents and developed a novel probe for the detection of hydrazine. The probe is capable of detecting hydrazine in aqueous solutions with high sensitivity and selectivity, and can be easily fabricated into paper test strips for use in in situ samples. In addition, the probe is effective in detecting hydrazine in water, soil, cells, and zebrafish, providing an excellent tool for detecting hydrazine in the environment.
Collapse
Affiliation(s)
- Hong-Cheng Xia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Huan-Huan Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Di Han
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Hong-Kun Yang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Jie-Li Lv
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Ying-Ying Kong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| |
Collapse
|
18
|
Wang Y, Huo F, Yin C. Development of Human Serum Albumin Fluorescent Probes in Detection, Imaging, and Disease Therapy. J Phys Chem B 2024; 128:1121-1138. [PMID: 38266243 DOI: 10.1021/acs.jpcb.3c06915] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Human serum albumin (HSA) acts as a repository and transporter of substances in the blood. An abnormal concentration may indicate the occurrence of liver- and kidney-related diseases, which has attracted people to investigate the precise quantification of HSA in body fluids. Fluorescent probes can combine with HSA covalently or noncovalently to quantify HSA in urine and plasma. Moreover, probes combined with HSA can improve its photophysical properties; probe-HSA has been applied in real-time monitoring and photothermal and photodynamic therapy in vivo. This Review will introduce fluorescent probes for quantitative HSA according to the three reaction mechanisms of spatial structure, enzymatic reaction, and self-assembly and systematically introduce the application of probes combined with HSA in disease imaging and phototherapy. It will help develop multifunctional applications for HSA probes and provide assistance in the early diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
19
|
Sheng X, Sun X, Zhang Y, Zhang C, Liu S, Wang S. A Ratiometric Fluorescent Probe for N 2H 4 Having a Large Detection Range Based upon Coumarin with Multiple Applications. Molecules 2023; 28:7629. [PMID: 38005353 PMCID: PMC10674487 DOI: 10.3390/molecules28227629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Although hydrazine (N2H4) is a versatile chemical used in many applications, it is toxic, and its leakage may pose a threat to both human health and environments. Consequently, the monitoring of N2H4 is significant. This study reports a one-step synthesis for coumarin-based ratiometric fluorescent probe (FP) CHAC, with acetyl as the recognition group. Selected deprotection of the acetyl group via N2H4 released the coumarin fluorophore, which recovered the intramolecular charge transfer process, which caused a prominent fluorescent, ratiometric response. CHAC demonstrated the advantages of high selectivity, a strong capacity for anti-interference, a low limit of detection (LOD) (0.16 μM), a large linear detection range (0-500 μM), and a wide effective pH interval (6-12) in N2H4 detection. Furthermore, the probe enabled quantitative N2H4 verifications in environmental water specimens in addition to qualitative detection of N2H4 in various soils and of gaseous N2H4. Finally, the probe ratiometrically monitored N2H4 in living cells having low cytotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouxin Wang
- School of Pharmaceutical Sciences, Jining Medical University, Rizhao 276826, China; (X.S.); (S.L.)
| |
Collapse
|
20
|
Tang S, Yang R, Gao Y, Zhu L, Zheng S, Zan X. Hydrazone-Based Amphiphilic Brush Polymer for Fast Endocytosis and ROS-Active Drug Release. ACS Macro Lett 2023; 12:639-645. [PMID: 37129207 DOI: 10.1021/acsmacrolett.3c00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to the high reactivity of reactive oxygen species (ROS), it is essential to sweep them away in time. In this study, ClO--responsible amphiphilic brush polymers were prepared by free radical polymerization using two monomers consisting of polyethylene glycol as the hydrophilic part, and an alkyl chain connected by hydrazone as the hydrophobic part. The macromolecules assemble into particles with nanoscaled dimensions in a neutral buffer, which ensures quick cellular internalization. The polymer has a low critical micellization concentration and can encapsulate hydrophobic drug molecules up to 19% wt. The micelles formed by the polymer disassemble in a ClO--rich environment and release 80% of their cargo within 2 h, which possesses a faster release rate compared to the previous systems. The relatively small size and the quick response of hydrazone toward ClO- ensure a quick uptake and elimination of ROS in vitro and in vivo.
Collapse
Affiliation(s)
- Sicheng Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, Zhejiang Province 325001, China
| | - Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Yuhan Gao
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Limeng Zhu
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, Zhejiang Province 325001, China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., Ltd., Wenzhou, 325000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, Zhejiang Province 325001, China
| |
Collapse
|
21
|
Liang Z, Sun Y, Zeng H, Qin H, Yang R, Qu L, Zhang K, Li Z. Broad-Specificity Screening of Pyrethroids Enabled by the Catalytic Function of Human Serum Albumin on Coumarin Hydrolysis. Anal Chem 2023; 95:5678-5686. [PMID: 36952638 DOI: 10.1021/acs.analchem.2c05556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Sensing systems based on cholinesterase and carboxylesterase coupled with different transduction technologies have emerged for pesticide screening owing to their simple operation, fast response, and suitability for on-site analysis. However, the broad spectrum and specificity screening of pyrethroids over organophosphates and carbamates remains an unmet challenge for current enzymatic sensors. Human serum albumin (HSA), a multifunctional protein, can promote various chemical transformations and show a high affinity for pyrethroids, which offer a route for specific and broad-spectrum pyrethroid screening. Herein, for the first time, we evaluated the catalytic hydrolysis function of human serum albumin (HSA) on the coumarin lactone bond and revealed that HSA can act as an enzyme to catalyze the hydrolysis of the coumarin lactone bond. Molecular docking and chemical modifications indicate that lysine 199 and tyrosine 411 serve as the catalytic general base and contribute to most of the catalytic activity. Utilizing this enzymatic activity, a broad specific ratiometric fluorescence pyrethroids sensing system was developed. The binding energetics and binding constants of pesticides and HSA show that pyrethroids bind to HSA more easily than organophosphates and carbamates, which is responsible for the specificity of the sensing system. This study provides a general sensor platform and strategy for screening pesticides and reveals the catalytic activity of HSA on the hydrolysis of the coumarin lactone bond, which may open innovative horizons for the chemical sensing and biomedical applications of HSA.
Collapse
Affiliation(s)
- Zengqiang Liang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Huajin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haimei Qin
- Fujian Provincial Key Lab of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Zhengzhou 450001, China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Chen R, Hu T, Xing S, Wei T, Chen J, Li T, Niu Q, Zhang Z, Ren H, Qin X. A dual-responsive fluorescent turn-on sensor for sensitively detecting and bioimaging of hydrazine and hypochlorite in biofluids, live-cells, and plants. Anal Chim Acta 2023; 1239:340735. [PMID: 36628730 DOI: 10.1016/j.aca.2022.340735] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Hydrazine (N2H4) and hypochlorite (ClO-) are extremely harmful to the public health, so it is vitally necessary to detect them in living system. Herein, we developed a new phenthiazine-thiobarbituric acid based dual-analyte responsive fluorescent sensor PT for visually distinguishing and detecting N2H4 and ClO-. PT underwent N2H4/ClO--induced CC breakage, achieving olive-drab/brilliant green fluorescence lighting-up response towards N2H4/ClO- with superb specifity, ultra-sensitivity (detection limit: 15.4 nM for N2H4, 13.7 nM for ClO-), and ultra-fast response (N2H4: <15 s, ClO-: <20 s). The mechanisms for sensing N2H4 and ClO- were investigated with support of spectral measurements and DFT investigation. Sensor based paper-strip/silica-gel device was developed for in-field supervision and on-site monitoring of gaseous and aqueous N2H4 and ClO- solution. In addition, the PT was also applied for quantitatively detecting N2H4 and ClO- in soil, food, plants and bio-fluids. Moreover, PT was utilized to visualize exogenous N2H4 and ClO- in living plants and live-cells, demonstrating this sensor utilized as a powerful tool to detect N2H4 and ClO- in biological fields.
Collapse
Affiliation(s)
- Ruiming Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Tingting Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Shu Xing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Tao Wei
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.
| | - Zhengyang Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Huijun Ren
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Xiaoxu Qin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| |
Collapse
|