1
|
Veličković D, Veličković M, O'Connor CL, Bitzer M, Anderton C. The Impact of the Mass Analyzer and Tissue Section Thickness on Spatial N-Glycomics with MALDI-MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:823-828. [PMID: 40017017 DOI: 10.1021/jasms.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
We compared matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) spatial N-glycomics data sets from Fourier-transform ion cyclotron resonance (FTICR) and orthogonal accelerated time-of-flight (timsTOF) mass spectrometers of FFPE preserved human kidney samples. We also tested different tissue section thicknesses. In these analyses, we assessed the impact of the mass analyzer and tissue section thickness on N-glycan coverage, sensitivity, and histological alignment. Our results indicate negligible differences in N-glycan coverage between the two mass analyzers, where N-glycan annotation numbers remained consistent and were highly reproducible. The timsTOF-MS analyses demonstrated significant advantages with higher duty cycles and better lateral resolution, allowing for finer spatial resolution without compromising signal integrity. Specifically, timsTOF was able to generate detailed MALDI-MS images at 20 μm step size, accurately identifying N-glycan Hex:5 HexNAc:5 dHex:1 as a tubular-specific marker without observable delocalization. Despite minor annotation discrepancies, where only three species detected by FTICR were not detected by using timsTOF, and a few false-positive annotations from the timsTOF analysis attributed to lower mass resolving power, the overall consistency between the instruments was high. Importantly, tissue section thickness did not affect analysis sensitivity in the timsTOF analyses, with the average glycan signal intensity remaining stable between 7 and 2 μm sections. These findings demonstrate that 2 μm thick tissue slices can be effectively used in spatial N-glycomics workflows, maintaining sensitivity while enhancing confidence in pathohistological evaluations.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Marija Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher L O'Connor
- University of Michigan, Department of Internal Medicine, Ann Arbor, Michigan 48109, United States
| | - Markus Bitzer
- University of Michigan, Department of Internal Medicine, Ann Arbor, Michigan 48109, United States
| | - Christopher Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
2
|
Angerstein AO, Young LEA, Thanasupawat T, Vriend J, Grimsley G, Lun X, Senger DL, Sinha N, Beiko J, Pitz M, Hombach-Klonisch S, Drake RR, Klonisch T. Distinct spatial N-glycan profiles reveal glioblastoma-specific signatures. J Pathol 2025; 265:486-501. [PMID: 39967571 DOI: 10.1002/path.6401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 02/20/2025]
Abstract
This study explored the complex interactions between glycosylation patterns, tumour biology, and therapeutic responses to temozolomide (TMZ) in human malignant glioma, specifically CNS WHO grade 3 oligodendroglioma (ODG) and glioblastoma (GB). Using spatial imaging of N-glycans in formalin-fixed paraffin-embedded (FFPE) tissue sections via MALDI-MSI, we analysed the N-glycome in primary and recurrent GB tissues and orthotopic xenografts of patient-derived brain tumour-initiating cells (BTIC) sensitive or resistant to TMZ. We identified unique N-glycosylation profiles, with nontumor brain (NTB) and ODG showing higher levels of bisecting and tri-antennary structures, while GB exhibited more tetra-antennary and sialylated N-glycans. Distinctive sialylation patterns were observed, with specific α2,6 and α2,3 isomeric linkages significantly altered in GB. Moreover, comparative analysis of primary and recurrent GB tissues revealed elevated high mannose N-glycans in primary GB and fucosylated bi- and tri-antennary N-glycans in recurrent GB tissues. Next, in the orthotopic xenografts of TMZ-sensitive and TMZ-resistant patient brain tumour initiating cells (BTIC), we identified potential N-glycan markers for TMZ treatment response and resistance. Finally, we found significantly altered expression of genes involved in N-glycan biosynthesis in malignant glioma, highlighting the crucial role of N-glycans in glioma and therapy resistance. This study lays the foundation for developing glycosylation-based diagnostic biomarkers and targeted therapies, potentially improving clinical outcomes for GB patients. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Aaron O Angerstein
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Lyndsay E A Young
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Xueqing Lun
- Cumming School of Medicine, Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Donna L Senger
- Cumming School of Medicine, Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Namita Sinha
- Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Jason Beiko
- Department of Surgery, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Marshall Pitz
- Department of Internal Medicine, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Zhu B, Bai Y, Yeo YY, Lu X, Rovira-Clavé X, Chen H, Yeung J, Nkosi D, Glickman J, Delgado-Gonzalez A, Gerber GK, Angelo M, Shalek AK, Nolan GP, Jiang S. A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment. Nat Commun 2025; 16:1230. [PMID: 39890778 PMCID: PMC11785740 DOI: 10.1038/s41467-025-56237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
The intricate interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host and microbiome across multiple spatial modalities. We demonstrate MicroCart by investigating gut host and microbiome changes in a murine colitis model, using spatial proteomics, transcriptomics, and glycomics. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multi-omics.
Collapse
Affiliation(s)
- Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaowei Lu
- Mass Spectrometry Core Facility, Stanford University, Stanford, CA, USA
| | - Xavier Rovira-Clavé
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Biological and Medical Informatics Program, UCSF, San Francisco, CA, USA
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dingani Nkosi
- Department of Pathology, Massachusetts General Brigham, Boston, MA, USA
| | - Jonathan Glickman
- Department of Pathology, Massachusetts General Brigham, Boston, MA, USA
| | | | - Georg K Gerber
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard University and MIT, Cambridge, MA, USA
| | - Mike Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Sizun Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Oberholtzer N, Chakraborty P, Kassir MF, Dressman J, Das S, Mills S, Comte-Walters S, Gooz M, Choi S, Parikh RY, Hedley Z, Vaena S, DeMass R, Scurti G, Romeo M, Gangaraju VK, Berto S, Hill E, Ball LE, Mehta AS, Maldonado EN, Nishimura MI, Ogretmen B, Mehrotra S. H 2S-Prdx4 axis mitigates Golgi stress to bolster tumor-reactive T cell immunotherapeutic response. SCIENCE ADVANCES 2024; 10:eadp1152. [PMID: 39546607 PMCID: PMC11566994 DOI: 10.1126/sciadv.adp1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
The role of tumor microenvironment (TME)-associated inadequate protein modification and trafficking due to insufficiency in Golgi function, leading to Golgi stress, in the regulation of T cell function is largely unknown. Here, we show that disruption of Golgi architecture under TME stress, identified by the decreased expression of GM130, was reverted upon treatment with hydrogen sulfide (H2S) donor GYY4137 or overexpressing cystathionine β-synthase (CBS), an enzyme involved in the biosynthesis of endogenous H2S, which also promoted stemness, antioxidant capacity, and increased protein translation, mediated in part by endoplasmic reticulum-Golgi shuttling of Peroxiredoxin-4. In in vivo models of melanoma and lymphoma, antitumor T cells conditioned ex vivo with exogenous H2S or overexpressing CBS demonstrated superior tumor control upon adoptive transfer. Further, T cells with high Golgi content exhibited unique metabolic and glycation signatures with enhanced antitumor capacity. These data suggest that strategies to mitigate Golgi network stress or using Golgihi tumor-reactive T cells can improve tumor control upon adoptive transfer.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James Dressman
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Satyajit Das
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephanie Mills
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Susana Comte-Walters
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Seungho Choi
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rasesh Y. Parikh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zacharia Hedley
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Silvia Vaena
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Reid DeMass
- Department of Public Health, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gina Scurti
- Department of Surgery, Loyola University, Chicago, IL 60153, USA
| | - Martin Romeo
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Vamsi K. Gangaraju
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth Hill
- Department of Public Health, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eduardo N. Maldonado
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Veličković D, Anderton CR. Spatial Glycomics and Kidney Disease. Semin Nephrol 2024; 44:151581. [PMID: 40210529 DOI: 10.1016/j.semnephrol.2025.151581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Glycans are critical for the kidney's physiological and pathological cellular functions, and our ability to see their spatial distributions within tissues has helped us reveal how these carbohydrate moieties are involved in many of these processes. This review discusses the role of different types of glycans in kidney biology and disease, common approaches used for glycan imaging, and how glycan imaging has helped us better understand kidney pathology. We mainly focus on emerging methods using mass spectrometry imaging (MSI) because this technology is untargeted and provides complete information on glycan composition compared to the other methods, such as lectin and metabolite labeling, which are targeted and often inform only on the specific part of a glycan structure. We especially focus on protein N-glycosylation, as this is one of the most common post-translational modifications, and these moieties play a vital role in renal structure and function. The recent advancements in MSI of N-glycans we reviewed have provided new insights into the pathophysiology of the kidney and paved the way for clinical application.
Collapse
Affiliation(s)
- Dušan Veličković
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington Pacific Northwest National Laboratory.
| | - Christopher R Anderton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington Pacific Northwest National Laboratory
| |
Collapse
|
6
|
Hartig JP, Bejar K, Young LE, Grimsley G, Bethard JR, Troyer DA, Hernandez J, Wu JD, Ippolito JE, Ball LE, Gelfond JA, Johnson-Pais TL, Mehta AS, Leach RJ, Angel PM, Drake RR. Determining the N-Glycan and Collagen/Extracellular Matrix Protein Compositions in a Novel Outcome Cohort of Prostate Cancer Tissue Microarrays Using MALDI-MSI. CANCER RESEARCH COMMUNICATIONS 2024; 4:3036-3048. [PMID: 39347566 PMCID: PMC11600299 DOI: 10.1158/2767-9764.crc-24-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
SIGNIFICANCE Using matrix-assisted laser desorption/ionization mass spectrometry imaging techniques on a unique cohort of prostate cancer tissues, we highlighted several molecular characteristics of matrix that have potential to act as early predictors of prostate cancer metastasis.
Collapse
Affiliation(s)
- Jordan P. Hartig
- Medical University of South Carolina, Charleston, South Carolina
| | - Kaitlyn Bejar
- University of Texas Health Science Center, San Antonio, Texas
| | | | - Grace Grimsley
- Medical University of South Carolina, Charleston, South Carolina
| | | | | | - Javier Hernandez
- Audie L. Murphy Memorial Veteran’s Administration Hospital, San Antonio, Texas
| | - Jennifer D. Wu
- Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Joseph E. Ippolito
- Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Lauren E. Ball
- Medical University of South Carolina, Charleston, South Carolina
| | | | | | - Anand S. Mehta
- Medical University of South Carolina, Charleston, South Carolina
| | - Robin J. Leach
- University of Texas Health Science Center, San Antonio, Texas
| | - Peggi M. Angel
- Medical University of South Carolina, Charleston, South Carolina
| | - Richard R. Drake
- Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
7
|
Cumin C, Gee L, Litfin T, Muchabaiwa R, Martin G, Cooper O, Heinzelmann-Schwarz V, Lange T, von Itzstein M, Jacob F, Everest-Dass A. Highly Sensitive Spatial Glycomics at Near-Cellular Resolution by On-Slide Derivatization and Mass Spectrometry Imaging. Anal Chem 2024; 96:11163-11171. [PMID: 38953530 PMCID: PMC11256013 DOI: 10.1021/acs.analchem.3c05984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Glycans on proteins and lipids play important roles in maturation and cellular interactions, contributing to a variety of biological processes. Aberrant glycosylation has been associated with various human diseases including cancer; however, elucidating the distribution and heterogeneity of glycans in complex tissue samples remains a major challenge. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is routinely used to analyze the spatial distribution of a variety of molecules including N-glycans directly from tissue surfaces. Sialic acids are nine carbon acidic sugars that often exist as the terminal sugars of glycans and are inherently difficult to analyze using MALDI-MSI due to their instability prone to in- and postsource decay. Here, we report on a rapid and robust method for stabilizing sialic acid on N-glycans in FFPE tissue sections. The established method derivatizes and identifies the spatial distribution of α2,3- and α2,6-linked sialic acids through complete methylamidation using methylamine and PyAOP ((7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate). Our in situ approach increases the glycans detected and enhances the coverage of sialylated species. Using this streamlined, sensitive, and robust workflow, we rapidly characterize and spatially localize N-glycans in human tumor tissue sections. Additionally, we demonstrate this method's applicability in imaging mammalian cell suspensions directly on slides, achieving cellular resolution with minimal sample processing and cell numbers. This workflow reveals the cellular locations of distinct N-glycan species, shedding light on the biological and clinical significance of these biomolecules in human diseases.
Collapse
Affiliation(s)
- Cécile Cumin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
| | - Lindsay Gee
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Thomas Litfin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Ropafadzo Muchabaiwa
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Gael Martin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Oren Cooper
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Viola Heinzelmann-Schwarz
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
- Hospital
for Women, Department of Gynaecology and Gynaecological Oncology, University Hospital Basel and University of Basel, Basel 4001, Switzerland
| | - Tobias Lange
- Institute
of Anatomy and Experimental Morphology, University Cancer Center Hamburg
(UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Institute
of Anatomy I, Comprehensive Cancer Center Central Germany (CCCG), Jena University Hospital, Jena 07740, Germany
| | - Mark von Itzstein
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Francis Jacob
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
| | - Arun Everest-Dass
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
8
|
Fastenau C, Bunce M, Keating M, Wickline J, Hopp SC, Bieniek KF. Distinct patterns of plaque and microglia glycosylation in Alzheimer's disease. Brain Pathol 2024; 34:e13267. [PMID: 38724175 PMCID: PMC11189777 DOI: 10.1111/bpa.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 06/23/2024] Open
Abstract
Glycosylation is the most common form of post-translational modification in the brain. Aberrant glycosylation has been observed in cerebrospinal fluid and brain tissue of Alzheimer's disease (AD) cases, including dysregulation of terminal sialic acid (SA) modifications. While alterations in sialylation have been identified in AD, the localization of SA modifications on cellular or aggregate-associated glycans is largely unknown because of limited spatial resolution of commonly utilized methods. The present study aims to overcome these limitations with novel combinations of histologic techniques to characterize the sialylation landscape of O- and N-linked glycans in autopsy-confirmed AD post-mortem brain tissue. Sialylated glycans facilitate important cellular functions including cell-to-cell interaction, cell migration, cell adhesion, immune regulation, and membrane excitability. Previous studies have not investigated both N- and O-linked sialylated glycans in neurodegeneration. In this study, the location and distribution of sialylated glycans were evaluated in three brain regions (frontal cortex, hippocampus, and cerebellum) from 10 AD cases using quantitative digital pathology techniques. Notably, we found significantly greater N-sialylation of the Aβ plaque microenvironment compared with O-sialylation. Plaque-associated microglia displayed the most intense N-sialylation proximal to plaque pathology. Further analyses revealed distinct differences in the levels of N- and O-sialylation between cored and diffuse Aβ plaque morphologies. Interestingly, phosphorylated tau pathology led to a slight increase in N-sialylation and no influence of O-sialylation in these AD brains. Confirming our previous observations in mice with novel histologic approach, these findings support microglia sialylation appears to have a relationship with AD protein aggregates while providing potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Caitlyn Fastenau
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Madison Bunce
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Mallory Keating
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Jessica Wickline
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Sarah C. Hopp
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| |
Collapse
|
9
|
Palomino TV, Muddiman DC. Mass spectrometry imaging of N-linked glycans: Fundamentals and recent advances. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21895. [PMID: 38934211 PMCID: PMC11671621 DOI: 10.1002/mas.21895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
With implications in several medical conditions, N-linked glycosylation is one of the most important posttranslation modifications present in all living organisms. Due to their nontemplate synthesis, glycan structures are extraordinarily complex and require multiple analytical techniques for complete structural elucidation. Mass spectrometry is the most common way to investigate N-linked glycans; however, with techniques such as liquid-chromatography mass spectrometry, there is complete loss of spatial information. Mass spectrometry imaging is a transformative analytical technique that can visualize the spatial distribution of ions within a biological sample and has been shown to be a powerful tool to investigate N-linked glycosylation. This review covers the fundamentals of mass spectrometry imaging and N-linked glycosylation and highlights important findings of recent key studies aimed at expanding and improving the glycomics imaging field.
Collapse
Affiliation(s)
- Tana V. Palomino
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
10
|
Hodgson K, Orozco-Moreno M, Goode EA, Fisher M, Garnham R, Beatson R, Turner H, Livermore K, Zhou Y, Wilson L, Visser EA, Pijnenborg JF, Eerden N, Moons SJ, Rossing E, Hysenaj G, Krishna R, Peng Z, Nangkana KP, Schmidt EN, Duxfield A, Dennis EP, Heer R, Lawson MA, Macauley M, Elliott DJ, Büll C, Scott E, Boltje TJ, Drake RR, Wang N, Munkley J. Sialic acid blockade inhibits the metastatic spread of prostate cancer to bone. EBioMedicine 2024; 104:105163. [PMID: 38772281 PMCID: PMC11134892 DOI: 10.1016/j.ebiom.2024.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Bone metastasis is a common consequence of advanced prostate cancer. Bisphosphonates can be used to manage symptoms, but there are currently no curative treatments available. Altered tumour cell glycosylation is a hallmark of cancer and is an important driver of a malignant phenotype. In prostate cancer, the sialyltransferase ST6GAL1 is upregulated, and studies show ST6GAL1-mediated aberrant sialylation of N-glycans promotes prostate tumour growth and disease progression. METHODS Here, we monitor ST6GAL1 in tumour and serum samples from men with aggressive prostate cancer and using in vitro and in vivo models we investigate the role of ST6GAL1 in prostate cancer bone metastasis. FINDINGS ST6GAL1 is upregulated in patients with prostate cancer with tumours that have spread to the bone and can promote prostate cancer bone metastasis in vivo. The mechanisms involved are multi-faceted and involve modification of the pre-metastatic niche towards bone resorption to promote the vicious cycle, promoting the development of M2 like macrophages, and the regulation of immunosuppressive sialoglycans. Furthermore, using syngeneic mouse models, we show that inhibiting sialylation can block the spread of prostate tumours to bone. INTERPRETATION Our study identifies an important role for ST6GAL1 and α2-6 sialylated N-glycans in prostate cancer bone metastasis, provides proof-of-concept data to show that inhibiting sialylation can suppress the spread of prostate tumours to bone, and highlights sialic acid blockade as an exciting new strategy to develop new therapies for patients with advanced prostate cancer. FUNDING Prostate Cancer Research and the Mark Foundation For Cancer Research, the Medical Research Council and Prostate Cancer UK.
Collapse
Affiliation(s)
- Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Matthew Fisher
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Rebecca Garnham
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Richard Beatson
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne 9 Building, London WC1E 6JF, UK
| | - Helen Turner
- Cellular Pathology, The Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK
| | - Karen Livermore
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Yuhan Zhou
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne NE2 4HH, UK
| | - Eline A Visser
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | | | - Nienke Eerden
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands; GlycoTherapeutics B.V., Nijmegen, the Netherlands
| | | | - Emiel Rossing
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Gerald Hysenaj
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Rashi Krishna
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Ziqian Peng
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Kyla Putri Nangkana
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Adam Duxfield
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK; International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Ella P Dennis
- International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne NE2 4HH, UK; Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Michelle A Lawson
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Matthew Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Christian Büll
- Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands
| | - Emma Scott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK; Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, LE2 7LX, UK.
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK.
| |
Collapse
|
11
|
Hartig J, Young LEA, Grimsley G, Mehta AS, Ippolito JE, Leach RJ, Angel PM, Drake RR. The glycosylation landscape of prostate cancer tissues and biofluids. Adv Cancer Res 2024; 161:1-30. [PMID: 39032948 DOI: 10.1016/bs.acr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An overview of the role of glycosylation in prostate cancer (PCa) development and progression is presented, focusing on recent advancements in defining the N-glycome through glycomic profiling and glycoproteomic methodologies. Glycosylation is a common post-translational modification typified by oligosaccharides attached N-linked to asparagine or O-linked to serine or threonine on carrier proteins. These attached sugars have crucial roles in protein folding and cellular recognition processes, such that altered glycosylation is a hallmark of cancer pathogenesis and progression. In the past decade, advancements in N-glycan profiling workflows using Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) technology have been applied to define the spatial distribution of glycans in PCa tissues. Multiple studies applying N-glycan MALDI-MSI to pathology-defined PCa tissues have identified significant alterations in N-glycan profiles associated with PCa progression. N-glycan compositions progressively increase in number, and structural complexity due to increased fucosylation and sialylation. Additionally, significant progress has been made in defining the glycan and glycopeptide compositions of prostatic-derived glycoproteins like prostate-specific antigen in tissues and biofluids. The glycosyltransferases involved in these changes are potential drug targets for PCa, and new approaches in this area are summarized. These advancements will be discussed in the context of the further development of clinical diagnostics and therapeutics targeting glycans and glycoproteins associated with PCa progression. Integration of large scale spatial glycomic data for PCa with other spatial-omic methodologies is now feasible at the tissue and single-cell levels.
Collapse
Affiliation(s)
- Jordan Hartig
- Medical University of South Carolina, Charleston, SC, United States
| | | | - Grace Grimsley
- Medical University of South Carolina, Charleston, SC, United States
| | - Anand S Mehta
- Medical University of South Carolina, Charleston, SC, United States
| | - Joseph E Ippolito
- Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
| | - Robin J Leach
- University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Peggi M Angel
- Medical University of South Carolina, Charleston, SC, United States
| | - Richard R Drake
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
12
|
Chao X, Zhang B, Yang S, Liu X, Zhang J, Zang X, Chen L, Qi L, Wang X, Hu H. Enrichment methods of N-linked glycopeptides from human serum or plasma: A mini-review. Carbohydr Res 2024; 538:109094. [PMID: 38564900 DOI: 10.1016/j.carres.2024.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Human diseases often correlate with changes in protein glycosylation, which can be observed in serum or plasma samples. N-glycosylation, the most common form, can provide potential biomarkers for disease prognosis and diagnosis. However, glycoproteins constitute a relatively small proportion of the total proteins in human serum and plasma compared to the non-glycosylated protein albumin, which constitutes the majority. The detection of microheterogeneity and low glycan abundance presents a challenge. Mass spectrometry facilitates glycoproteomics research, yet it faces challenges due to interference from abundant plasma proteins. Therefore, methods have emerged to enrich N-glycans and N-linked glycopeptides using glycan affinity, chemical properties, stationary phase chemical coupling, bioorthogonal techniques, and other alternatives. This review focuses on N-glycans and N-glycopeptides enrichment in human serum or plasma, emphasizing methods and applications. Although not exhaustive, it aims to elucidate principles and showcase the utility and limitations of glycoproteome characterization.
Collapse
Affiliation(s)
- Xuyuan Chao
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Baoying Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Shengjie Yang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xizi Liu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, People's Republic of China
| | - Jingyi Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xin Zang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Lu Chen
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Lu Qi
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, People's Republic of China.
| |
Collapse
|
13
|
Zhu B, Bai Y, Yeo YY, Lu X, Rovira-Clavé X, Chen H, Yeung J, Gerber GK, Angelo M, Shalek AK, Nolan GP, Jiang S. A Spatial Multi-Modal Dissection of Host-Microbiome Interactions within the Colitis Tissue Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583400. [PMID: 38496402 PMCID: PMC10942342 DOI: 10.1101/2024.03.04.583400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The intricate and dynamic interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host features and its microbiome across multiple spatial modalities. We demonstrate MicroCart by comprehensively investigating the alterations in both gut host and microbiome components in a murine model of colitis by coupling MicroCart with spatial proteomics, transcriptomics, and glycomics platforms. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, and bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multiomics.
Collapse
Affiliation(s)
- Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaowei Lu
- Mass Spectrometry Core Facility, Stanford University, Stanford, CA, United States
| | - Xavier Rovira-Clavé
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Biological and Medical Informatics program, UCSF, San Francisco, CA, United States
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georg K Gerber
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard University and MIT, Cambridge, MA, USA
| | - Mike Angelo
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Sizun Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Kumar BS. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Mass Spectrom (Tokyo) 2024; 13:A0142. [PMID: 38435075 PMCID: PMC10904931 DOI: 10.5702/massspectrometry.a0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024] Open
Abstract
Among the most typical posttranslational modifications is glycosylation, which often involves the covalent binding of an oligosaccharide (glycan) to either an asparagine (N-linked) or a serine/threonine (O-linked) residue. Studies imply that the N-glycan portion of a glycoprotein could serve as a particular disease biomarker rather than the protein itself because N-linked glycans have been widely recognized to evolve with the advancement of tumors and other diseases. N-glycans found on protein asparagine sites have been especially significant. Since N-glycans play clearly defined functions in the folding of proteins, cellular transport, and transmission of signals, modifications to them have been linked to several illnesses. However, because these N-glycans' production is not template driven, they have a substantial morphological range, rendering it difficult to distinguish the species that are most relevant to biology and medicine using standard techniques. Mass spectrometry (MS) techniques have emerged as effective analytical tools for investigating the role of glycosylation in health and illness. This is due to developments in MS equipment, data collection, and sample handling techniques. By recording the spatial dimension of a glycan's distribution in situ, mass spectrometry imaging (MSI) builds atop existing methods while offering added knowledge concerning the structure and functionality of biomolecules. In this review article, we address the current development of glycan MSI, starting with the most used tissue imaging techniques and ionization sources before proceeding on to a discussion on applications and concluding with implications for clinical research.
Collapse
|
15
|
Li Y, Wang H, Chen Y, Ding L, Ju H. In Situ Glycan Analysis and Editing in Living Systems. JACS AU 2024; 4:384-401. [PMID: 38425935 PMCID: PMC10900212 DOI: 10.1021/jacsau.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yiran Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Haiqi Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
16
|
Young LEA, Nietert PJ, Stubler R, Kittrell CG, Grimsley G, Lewin DN, Mehta AS, Hajar C, Wang K, O’Quinn EC, Angel PM, Wallace K, Drake RR. Utilizing multimodal mass spectrometry imaging for profiling immune cell composition and N-glycosylation across colorectal carcinoma disease progression. Front Pharmacol 2024; 14:1337319. [PMID: 38273829 PMCID: PMC10808565 DOI: 10.3389/fphar.2023.1337319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Colorectal cancer (CRC) stands as a leading cause of death worldwide, often arising from specific genetic mutations, progressing from pre-cancerous adenomas to adenocarcinomas. Early detection through regular screening can result in a 90% 5-year survival rate for patients. However, unfortunately, only a fraction of CRC cases are identified at pre-invasive stages, allowing progression to occur silently over 10-15 years. The intricate interplay between the immune system and tumor cells within the tumor microenvironment plays a pivotal role in the progression of CRC. Immune cell clusters can either inhibit or facilitate tumor initiation, growth, and metastasis. To gain a better understanding of this relationship, we conducted N-glycomic profiling using matrix-assisted laser desorption-ionization mass spectrometry imaging (MALDI-MSI). We detected nearly 100 N-glycan species across all samples, revealing a shift in N-glycome profiles from normal to cancerous tissues, marked by a decrease in high mannose N-glycans. Further analysis of precancerous to invasive carcinomas showed an increase in pauci-mannose biantennary, and tetraantennary N-glycans with disease progression. Moreover, a distinct stratification in the N-glycome profile was observed between non-mucinous and mucinous CRC tissues, driven by pauci-mannose, high mannose, and bisecting N-glycans. Notably, we identified immune clusters of CD20+ B cells and CD3/CD44+ T cells distinctive and predictive with signature profiles of bisecting and branched N-glycans. These spatial N-glycan profiles offer potential biomarkers and therapeutic targets throughout the progression of CRC.
Collapse
Affiliation(s)
- Lyndsay E. A. Young
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Paul J. Nietert
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Rachel Stubler
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Caroline G. Kittrell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - David N. Lewin
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Chadi Hajar
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Katherine Wang
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Elizabeth C. O’Quinn
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Kristin Wallace
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
17
|
Wallace EN, West CA, McDowell CT, Lu X, Bruner E, Mehta AS, Aoki-Kinoshita KF, Angel PM, Drake RR. An N-glycome tissue atlas of 15 human normal and cancer tissue types determined by MALDI-imaging mass spectrometry. Sci Rep 2024; 14:489. [PMID: 38177192 PMCID: PMC10766640 DOI: 10.1038/s41598-023-50957-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
N-glycosylation is an abundant post-translational modification of most cell-surface proteins. N-glycans play a crucial role in cellular functions like protein folding, protein localization, cell-cell signaling, and immune detection. As different tissue types display different N-glycan profiles, changes in N-glycan compositions occur in tissue-specific ways with development of disease, like cancer. However, no comparative atlas resource exists for documenting N-glycome alterations across various human tissue types, particularly comparing normal and cancerous tissues. In order to study a broad range of human tissue N-glycomes, N-glycan targeted MALDI imaging mass spectrometry was applied to custom formalin-fixed paraffin-embedded tissue microarrays. These encompassed fifteen human tissue types including bladder, breast, cervix, colon, esophagus, gastric, kidney, liver, lung, pancreas, prostate, sarcoma, skin, thyroid, and uterus. Each array contained both normal and tumor cores from the same pathology block, selected by a pathologist, allowing more in-depth comparisons of the N-glycome differences between tumor and normal and across tissue types. Using established MALDI-IMS workflows and existing N-glycan databases, the N-glycans present in each tissue core were spatially profiled and peak intensity data compiled for comparative analyses. Further structural information was determined for core fucosylation using endoglycosidase F3, and differentiation of sialic acid linkages through stabilization chemistry. Glycan structural differences across the tissue types were compared for oligomannose levels, branching complexity, presence of bisecting N-acetylglucosamine, fucosylation, and sialylation. Collectively, our research identified the N-glycans that were significantly increased and/or decreased in relative abundance in cancer for each tissue type. This study offers valuable information on a wide scale for both normal and cancerous tissues, serving as a reference for future studies and potential diagnostic applications of MALDI-IMS.
Collapse
Affiliation(s)
- Elizabeth N Wallace
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Connor A West
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Colin T McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Evelyn Bruner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
18
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
19
|
Weigand MR, Moore AM, Hu H, Angel PM, Drake RR, Laskin J. Imaging of N-Linked Glycans in Biological Tissue Sections Using Nanospray Desorption Electrospray Ionization (nano-DESI) Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2481-2490. [PMID: 37779241 DOI: 10.1021/jasms.3c00209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
N-linked glycans are complex biomolecules vital to cellular functions that have been linked to a wide range of pathological conditions. Mass spectrometry imaging (MSI) has been used to study the localization of N-linked glycans in cells and tissues. However, their structural diversity presents a challenge for MSI techniques, which stimulates the development of new approaches. In this study, we demonstrate for the first time spatial mapping of N-linked glycans in biological tissues using nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI). Nano-DESI MSI is an ambient ionization technique that has been previously used for imaging of metabolites, lipids, and proteins in biological tissue samples without special sample pretreatment. N-linked glycans are released from glycoproteins using an established enzymatic digestion with peptide N-glycosidase F, and their spatial localization is examined using nano-DESI MSI. We demonstrate imaging of N-linked glycans in formalin-fixed paraffin-embedded human hepatocellular carcinoma and human prostate tissues in both positive and negative ionization modes. We examine the localization of 38 N-linked glycans consisting of high mannose, hybrid fucosylated, and sialyated glycans. We demonstrate that negative mode nano-DESI MSI is well-suited for imaging of underivatized sialylated N-linked glycans. On-tissue MS/MS of different adducts of N-linked glycans proves advantageous for elucidation of the glycan sequence. This study demonstrates the applicability of liquid extraction techniques for spatial mapping of N-linked glycans in biological samples, providing an additional tool for glycobiology research.
Collapse
Affiliation(s)
- Miranda R Weigand
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alyssa M Moore
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hang Hu
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Julia Laskin
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Dressman JW, McDowell CT, Lu X, Angel PM, Drake RR, Mehta AS. Development of an Antibody-Based Platform for the Analysis of Immune Cell-Specific N-linked Glycosylation. Anal Chem 2023; 95:10289-10297. [PMID: 37293957 PMCID: PMC10988393 DOI: 10.1021/acs.analchem.3c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
N-linked glycosylation plays an important role in both the innate and adaptive immune response through the modulation of cell surface receptors as well as general cell-to-cell interactions. The study of immune cell N-glycosylation is gaining interest but is hindered by the complexity of cell-type-specific N-glycan analysis. Analytical techniques such as chromatography, LC-MS/MS, and the use of lectins are all currently used to analyze cellular glycosylation. Issues with these analytical techniques include poor throughput, which is often limited to a single sample at a time, lack of structural information, the need for a large amount of starting materials, and the requirement for cell purification, thereby reducing their feasibility for N-glycan study. Here, we report the development of a rapid antibody array-based approach for the capture of specific nonadherent immune cells coupled with MALDI-IMS to analyze cellular N-glycosylation. This workflow is adaptable to multiple N-glycan imaging approaches such as the removal or stabilization and derivatization of terminal sialic acid residues providing unique avenues of analysis that have otherwise not been explored in immune cell populations. The reproducibility, sensitivity, and versatility of this assay provide an invaluable tool for researchers and clinical applications, significantly expanding the field of glycoimmunology.
Collapse
Affiliation(s)
- James W. Dressman
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Colin T. McDowell
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Xiaowei Lu
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Peggi M. Angel
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Richard R. Drake
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Anand S. Mehta
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| |
Collapse
|