1
|
Gao H, You J, Wu H, Tian M. A dual action electrochemical molecular imprinting sensor based on FeCu-MOF and RGO/PDA@MXene hybrid synergies for trace detection of ribavirin. Food Chem 2025; 473:143092. [PMID: 39879747 DOI: 10.1016/j.foodchem.2025.143092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
In this study, we designed a molecularly imprinted electrochemical sensor based on the reduced graphene oxide/polydopamine@Mxene (RPM) and FeCu-MOF for the detection of antiviral drug ribavirin (RBV). The RPM composite enhances the active surface area and electron transport capacity of the sensor, and the incorporation of FeCu-MOF can not only further improve the catalytic performance of the material, but also enables the sensor to harness the electrical reduction signal of H2O2. Furthermore, we developed an optimized molecularly imprinted polymer via density functional theory (DFT) to enhance the sensor's specificity and sensitivity for RBV detection. The sensor demonstrated detection limits as low as 0.053 nmol L-1 and 0.086 nmol L-1 for differential pulse voltammetry (DPV) and current-time (I-t), respectively. The sensor proposed in this paper was applied to the analysis of real food and surface water samples, yielding recovery rates ranging from 98.3 % to 106.7 %, reaching a satisfactory degree.
Collapse
Affiliation(s)
- Haifeng Gao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Junyi You
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Hongbo Wu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China.
| |
Collapse
|
2
|
He Y, Tang C, Ren Y, Yuan B, Li L, You T, Chen X. Better Together: Synergistic Enhancement of AuNPs and Bifunctional Monomers in a Dual-Channel Molecularly Imprinting Electrochemical Sensor for Simultaneous Detection of Diuron and Thidiazuron. Anal Chem 2025; 97:7869-7878. [PMID: 40186539 DOI: 10.1021/acs.analchem.4c06793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
The combination of diuron (DU) and thidiazuron (TDZ) is commonly used in cotton production for its excellent adaptability to low temperatures, which may lead to increased crop and soil pollution. The simultaneous detection of DU and TDZ poses significant challenges due to their weak and overlapping signals, along with an unclear electrochemical detection mechanism for TDZ. This study developed a dual-channel multifunctional molecularly imprinted electrochemical (MMIP-EC) sensing platform by optimizing the substrate material and MIP layer for high performance. First, amino-functionalized graphene-based poly(pyrrole)-poly(3,4-ethylenedioxythiophene) (NH2-rGO/PPy-PEDOT) with high conductivity was synthesized as the substrate. Subsequently, MMIPs were prepared in one step using electropolymerization by introducing chloroauric acid (HAuCl4) and bifunctional monomers (dopamine and thiophene). This method not only enhanced specific binding capacity of the MMIP layer but also amplified the signal through the synergistic effect of reduced AuNPs and bifunctional monomers. Furthermore, two independent modules (MMIP-DU and MMIP-TDZ) were integrated into a dual-channel EC platform for simultaneous transmission of DU and TDZ responses to separate windows. Finally, based on high-performance liquid chromatography-mass spectrometry (HPLC-MS) and electrochemical kinetics studies, it was speculated that the electrochemical oxidation of TDZ via the carbonylation of a secondary amine under strongly acidic conditions, followed by hydrolysis to form a carboxyl group, reveals the electrochemical oxidation mechanism of TDZ. The developed sensor exhibited excellent performance in selectivity and sensitivity, with low detection limits of 26.6 pg/mL (DU) and 39.2 pg/mL (TDZ). In conclusion, this sensing platform presents a novel perspective for the cost-effective and highly efficient detection of diverse environmental pollutants.
Collapse
Affiliation(s)
- Yi He
- Key Laboratory of Modern Agricultural Equipment and Technology, School of Agricultural Engineering, Ministry of Education, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chunyuan Tang
- Key Laboratory of Modern Agricultural Equipment and Technology, School of Agricultural Engineering, Ministry of Education, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yue Ren
- Key Laboratory of Modern Agricultural Equipment and Technology, School of Agricultural Engineering, Ministry of Education, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Bingzheng Yuan
- Key Laboratory of Modern Agricultural Equipment and Technology, School of Agricultural Engineering, Ministry of Education, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, School of Agricultural Engineering, Ministry of Education, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, School of Agricultural Engineering, Ministry of Education, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Xuegeng Chen
- Key Laboratory of Modern Agricultural Equipment and Technology, School of Agricultural Engineering, Ministry of Education, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
3
|
Li Z, Luo D, Zhang Y, Niu X, Liu H. Smart Health Monitoring: Review of Electrochemical Biosensors for Cortisol Monitoring. Adv Healthc Mater 2025; 14:e2404454. [PMID: 40099568 DOI: 10.1002/adhm.202404454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Cortisol, also known as the stress hormone, is a crucial corticosteroid hormone that significantly increases secretion in the human body when facing notable stress. Monitoring cortisol levels is crucial for personal stress management and the diagnosis and treatment of certain diseases. Electrochemical biosensors combine the efficient sensitivity of electrochemical technology with the high specificity of biological recognition processes, making them widely applicable in the analysis of human body fluid components. This work outlines the working mechanism of cortisol electrochemical biosensors, focusing particularly on sensing elements such as antibodies, aptamers, and molecularly imprinted polymers. It provides detailed explanations of the operational principles of these different recognition elements. This work summarizes and evaluates the latest advancements in electrochemical biosensors for detecting cortisol in human body fluids, discussing the influence of different recognition elements on sensor design and electrochemical performance. Subsequently, through a comparative analysis of various sensor performances, the work further discusses the challenges in translating laboratory achievements into practical applications, including enhancing key metrics such as sensor reusability, reproducibility, long-term stability, continuous monitoring capability, and response time. Finally, it offers insights and recommendations for achieving real-time, continuous, and long-term monitoring with cortisol electrochemical biosensors.
Collapse
Affiliation(s)
- Zhijie Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Dan Luo
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Yaqian Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Xin Niu
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
- School of Arts, Tiangong University, Tianjin, 300387, China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
4
|
Xue Y, Li J, Ma M, Fu P, Qian S, Han C, Wang Y. Recent Advances on Rapid Detection Methods of Steroid Hormones in Animal Origin Foods. BIOSENSORS 2025; 15:216. [PMID: 40277530 PMCID: PMC12024979 DOI: 10.3390/bios15040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/26/2025]
Abstract
Animal-derived foods constitute a crucial source of nutrients for humans. The judicious application of steroid hormones in the breeding process can serve multiple purposes, including growth promotion, weight gain, and anti-inflammatory effects, among others. However, excessive misuse poses a considerable risk to both food safety and consumer health. Currently, the primary means of detecting steroid hormones involve liquid chromatography, gas chromatography, and their combination with mass spectrometry. These methods necessitate advanced instrumentation, intricate pretreatment procedures, and the expertise of specialized laboratories and technicians. In recent years, the swift evolution of analytical science, technology, and instrumentation has given rise to various rapid detection techniques for steroid hormone residues, providing a robust technical foundation for ensuring food safety. This review commences by delineating the roles of steroid hormones, the associated residue hazards, and the pertinent residue restriction standards. Subsequently, it delves deeply into the analysis of the most recent rapid detection techniques for steroid hormones, ultimately culminating in an assessment of the challenges currently confronting the field, along with an exploration of potential future advancements. We sincerely hope that this review will inspire and provide valuable insights to the pertinent researchers.
Collapse
Affiliation(s)
- Yaohui Xue
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China; (P.F.); (S.Q.)
| | - Jinhua Li
- Ningbo Customs Technology Center, Ningbo 315048, China; (J.L.); (M.M.)
| | - Ming Ma
- Ningbo Customs Technology Center, Ningbo 315048, China; (J.L.); (M.M.)
| | - Pan Fu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China; (P.F.); (S.Q.)
| | - Sihua Qian
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China; (P.F.); (S.Q.)
| | - Chao Han
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| | - Yuhui Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China; (P.F.); (S.Q.)
| |
Collapse
|
5
|
Chen Y, He Z, Wu Y, Bai X, Li Y, Yang W, Liu Y, Li RW. A Wearable Molecularly Imprinted Electrochemical Sensor for Cortisol Stable Monitoring in Sweat. BIOSENSORS 2025; 15:194. [PMID: 40136990 PMCID: PMC11940103 DOI: 10.3390/bios15030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Cortisol, a steroid hormone, is closely associated with human mental stress. The rapid, real-time, and continuous detection of cortisol using wearable devices offers a promising approach for individual mental health. These devices must exhibit high sensitivity and long-term stability to ensure reliable performance. This study developed a wearable electrochemical sensor based on molecularly imprinted polymer (MIP) technology for real-time and dynamic monitoring of cortisol in sweat. A flexible gold (Au) electrode with interfacial hydrophilic treatment was employed to construct a highly stable electrode. The integration of a silk fibroin/polyvinylidene fluoride (SF/PVDF) composite membrane facilitates directional sweat transport, while liquid metal bonding enhances electrode flexibility and mechanical anti-delamination capability. The sensor exhibits an ultrawide detection range (0.1 pM to 5 μM), high selectivity (over 100-fold against interferents such as glucose and lactic acid), and long-term stability (less than 3.76% signal attenuation over 120 cycles). Additionally, a gradient modulus design was implemented to mitigate mechanical deformation interference under wearable conditions. As a flexible wearable device for cortisol monitoring in human sweat, the sensor's response closely aligns with the diurnal cortisol rhythm, offering a highly sensitive and interference-resistant wearable solution for mental health monitoring and advancing personalized dynamic assessment of stress-related disorders.
Collapse
Affiliation(s)
- Yitao Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315000, China; (Y.C.); (X.B.); (Y.L.)
| | - Zidong He
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315000, China; (Z.H.); (Y.L.)
| | - Yuanzhao Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315000, China; (Z.H.); (Y.L.)
| | - Xinyu Bai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315000, China; (Y.C.); (X.B.); (Y.L.)
| | - Yuancheng Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315000, China; (Y.C.); (X.B.); (Y.L.)
| | - Weiwei Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China;
| | - Yiwei Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315000, China; (Z.H.); (Y.L.)
| | - Run-Wei Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315000, China; (Z.H.); (Y.L.)
| |
Collapse
|
6
|
Choudhury S, Zafar S, Deepak D, Panghal A, Lochab B, Roy SS. A surface modified laser-induced graphene based flexible biosensor for multiplexed sweat analysis. J Mater Chem B 2024; 13:274-287. [PMID: 39535206 DOI: 10.1039/d4tb01936a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The growing popularity of electrochemical sensors featuring non-invasive biosensing technologies has generated significant enthusiasm for continuous monitoring of bodily fluid biomarkers, potentially aiding in the early detection of health issues in individuals. However, detection of multiple biomarkers in complex biofluids often necessitates a high-density array which creates a challenge in achieving cost-effective fabrication methods. To overcome this constraint, this work reports the fabrication of an electrochemical sensor utilizing a NiO-Ti3C2Tx MXene-modified flexible laser-induced graphene (LIG) electrode for the separate and concurrent analysis of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in human sweat and also addresses the deficiencies in the existing state of the art by offering a cost-efficient and high-performance sensor that mitigates the degrading constraints of conventional LIG electrodes. Cyclic voltammetry and differential pulse voltammetry measurements reveals that the electrochemical properties of the modified electrode, attain a low detection limit and great sensitivity for the target biomarkers. The NiO-Ti3C2Tx/LIG sensor demonstrated enhanced electrocatalytic activity for the oxidation of ascorbic acid, dopamine, and uric acid, and proved useful for analysing these biomarkers in synthetic sweat samples. Under the optimized conditions, the LOD values were estimated to be 16, 1.97 and 0.78 μM for AA, DA and UA, respectively. The developed high-efficiency sensor holds significant promise for applications in flexible and wearable electronics for health monitoring.
Collapse
Affiliation(s)
- Sudipta Choudhury
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India.
| | - Saad Zafar
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Greater Noida, 201314, India
| | - Deepak Deepak
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India.
| | - Abhishek Panghal
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India.
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Greater Noida, 201314, India
| | - Susanta Sinha Roy
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India.
| |
Collapse
|
7
|
Chen R, Tang L, Li G, Luo P, Wang Y, Wu X, Nong J, Wei W. Tailoring Infrared Light-Molecule Coupling for Highly Sensitive Cortisol Detection Employing Aptamer-Conjugated Gold Nanonails. Anal Chem 2024; 96:19908-19916. [PMID: 39639597 DOI: 10.1021/acs.analchem.4c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Chemically synthesized gold nanoantennas possess easy processability, low cost, and suitability for large-area fabrication, making them advantageous for surface-enhanced infrared (SEIRA) biosensing. Nevertheless, current gold nanoantennas face challenges with limited enhancement of biomolecular signals that hinder their practical applications. Here, we demonstrate that the coupling rate between antennas and molecules critically impacts the enhancement of molecular signals based on temporal coupled mode theory. To improve this coupling rate, we synthesized gold nanonails with sharp tips, significantly amplifying the localized electric fields of antenna resonance modes. Modulating the nanonail aspect ratio allows us to tailor antenna resonance frequencies to match molecular vibrational frequencies. Additionally, we introduced specific aptamers on antenna surfaces through solution exchange methods to control the antenna-molecule distances. These combined strategies enabled noninvasive, label-free detection with high sensitivity for the biomarker cortisol. Experiments revealed 3 orders of magnitude enhancement in cortisol detection levels upon increasing coupling efficiency, achieving a detection limit of 0.1 ng/mL, notably lower than the normal cortisol concentration in human saliva (0.398 ng/mL). In addition to demonstrating a novel strategy for cortisol detection, this study provides a viable approach to biomarker detection for future applications in disease diagnosis and human health monitoring.
Collapse
Affiliation(s)
- Rong Chen
- Key Laboratory of Optoelectronic Technology and System, Ministry of Education of China, College of Optoelectronic Engineering Chongqing University, Chongqing 400044, P. R. China
| | - Linlong Tang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Guowei Li
- Key Laboratory of Optoelectronic Technology and System, Ministry of Education of China, College of Optoelectronic Engineering Chongqing University, Chongqing 400044, P. R. China
| | - Peng Luo
- Key Laboratory of Optoelectronic Technology and System, Ministry of Education of China, College of Optoelectronic Engineering Chongqing University, Chongqing 400044, P. R. China
| | - Yipei Wang
- Key Laboratory of Optoelectronic Technology and System, Ministry of Education of China, College of Optoelectronic Engineering Chongqing University, Chongqing 400044, P. R. China
| | - Xiaoqin Wu
- Key Laboratory of Optoelectronic Technology and System, Ministry of Education of China, College of Optoelectronic Engineering Chongqing University, Chongqing 400044, P. R. China
| | - Jinpeng Nong
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR), Innovis, Singapore 138634, Singapore
| | - Wei Wei
- Key Laboratory of Optoelectronic Technology and System, Ministry of Education of China, College of Optoelectronic Engineering Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
8
|
Elancheziyan M, Singh M, Won K. Gold Nanoparticle-Embedded Thiol-Functionalized Ti 3C 2T x MXene for Sensitive Electrochemical Sensing of Ciprofloxacin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1655. [PMID: 39452991 PMCID: PMC11510598 DOI: 10.3390/nano14201655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
The unregulated use of ciprofloxacin (CIPF) has led to increased resistance in patients and has threatened human health with issues such as digestive disorders, kidney disorders, and liver complications. In order to overcome these concerns, this work introduces a portable electrochemical sensor based on a disposable integrated screen-printed carbon electrode (SPCE) coated with gold nanoparticle-embedded thiol-functionalized Ti3C2Tx MXene (AuNPs-S-Ti3C2Tx MXene) for simple, rapid, precise, and sensitive quantification of CIPF in milk and water samples. The high surface area and electrical conductivity of AuNPs are maximized thanks to the strong interaction between AuNPs and SH-Ti3C2Tx MXene, which can prevent the aggregation of AuNPs and endow larger electroactive areas. Ti3C2Tx MXene was synthesized from Ti3AlC2 MAX phases, and its thiol functionalization was achieved using 3-mercaptopropyl trimethoxysilane. The prepared AuNPs-S-Ti3C2Tx MXene nanocomposite was characterized using FESEM, EDS, XRD, XPS, FTIR, and UV-visible spectroscopy. The electrochemical behavior of the nanocomposite was examined using CV, EIS, DPV, and LSV. The AuNPs-S-Ti3C2Tx MXene/SPCE showed higher electrochemical performances towards CIPF oxidation than a conventional AuNPs-Ti3C2Tx MXene/SPCE. Under the optimized DPV and LSV conditions, the developed nonenzymatic CIPF sensor displayed a wide range of detection concentrations from 0.50 to 143 μM (DPV) and from 0.99 to 206 μM (LSV) with low detection limits of 0.124 μM (DPV) and 0.171 μM (LSV), and high sensitivities of 0.0863 μA/μM (DPV) and 0.2182 μA/μM (LSV).
Collapse
Affiliation(s)
| | | | - Keehoon Won
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea; (M.E.); (M.S.)
| |
Collapse
|
9
|
Chen F, Wang J, Chen L, Lin H, Han D, Bao Y, Wang W, Niu L. A Wearable Electrochemical Biosensor Utilizing Functionalized Ti 3C 2T x MXene for the Real-Time Monitoring of Uric Acid Metabolite. Anal Chem 2024; 96:3914-3924. [PMID: 38387027 DOI: 10.1021/acs.analchem.3c05672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Wearable, noninvasive sensors enable the continuous monitoring of metabolites in sweat and provide clinical information related to an individual's health and disease states. Uric acid (UA) is a key indicator highly associated with gout, hyperuricaemia, hypertension, kidney disease, and Lesch-Nyhan syndrome. However, the detection of UA levels typically relies on invasive blood tests. Therefore, developing a wearable device for noninvasive monitoring of UA concentrations in sweat could facilitate real-time personalized disease prevention. Here, we introduce 1,3,6,8-pyrene tetrasulfonic acid sodium salt (PyTS) as a bifunctional molecule functionalized with Ti3C2Tx via π-π conjugation to design nonenzymatic wearable sensors for sensitive and selective detection of UA concentration in human sweat. PyTS@Ti3C2Tx provides many oxidation-reduction active groups to enhance the electrocatalytic ability of the UA oxidation reaction. The PyTS@Ti3C2Tx-based electrochemical sensor demonstrates highly sensitive detection of UA in the concentration range of 5 μM-100 μM, exhibiting a lower detection limit of 0.48 μM compared to the uricase-based sensor (0.84 μM). In volunteers, the PyTS@Ti3C2Tx-based wearable sensor is integrated with flexible microfluidic sweat sampling and wireless electronics to enable real-time monitoring of UA levels during aerobic exercise. Simultaneously, it allows for comparison of blood UA levels via a commercial UA analyzer. Herein, this study provides a promising electrocatalyst strategy for nonenzymatic electrochemical UA sensor, enabling noninvasive real-time monitoring of UA levels in human sweat and personalized disease prevention.
Collapse
Affiliation(s)
- Fan Chen
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinhao Wang
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Lijuan Chen
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Haoliang Lin
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Wang
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
10
|
Ahmad N, Rasheed S, Mohyuddin A, Fatima B, Nabeel MI, Riaz MT, Najam-Ul-Haq M, Hussain D. 2D MXenes and their composites; design, synthesis, and environmental sensing applications. CHEMOSPHERE 2024; 352:141280. [PMID: 38278447 DOI: 10.1016/j.chemosphere.2024.141280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Novel 2D layered MXene materials were first reported in 2011 at Drexel University. MXenes are widely used in multidisciplinary applications due to their anomalous electrical conductivity, high surface area, and chemical, mechanical, and physical properties. This review summarises MXene synthesis and applications in environmental sensing. The first section describes different methods for MXene synthesis, including fluorinated and non-fluorinated methods. MXene's layered structure, surface terminal groups, and the space between layers significantly impact its properties. Different methods to separate different MXene layers are also discussed using various intercalation reagents and commercially synthesized MXene without compromising the environment. This review also explains the effect of MXene's surface functionalization on its characteristics. The second section of the review describes gas and pesticide sensing applications of Mxenes and its composites. Its good conductivity, surface functionalization with negatively charged groups, intrinsic chemical nature, and good mechanical stability make it a prominent material for room temperature sensing of environmental samples, such as polar and nonpolar gases, volatile organic compounds, and pesticides. This review will enhance the young scientists' knowledge of MXene-based materials and stimulate their diversity and hybrid conformation in environmental sensing applications.
Collapse
Affiliation(s)
- Naseer Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sufian Rasheed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, 60000, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Ikram Nabeel
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Tariq Riaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|