1
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Alden S, Zhang L, Wang Y, Lavrik NV, Thorgaard SN, Baker LA. High-Throughput Single-Entity Electrochemistry with Microelectrode Arrays. Anal Chem 2024; 96:9177-9184. [PMID: 38780285 PMCID: PMC11154736 DOI: 10.1021/acs.analchem.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
We describe micro- and nanoelectrode array analysis with an automated version of the array microcell method (AMCM). Characterization of hundreds of electrodes, with diameters ranging from 100 nm to 2 μm, was carried out by using AMCM voltammetry and chronoamperometry. The influence of solvent evaporation on mass transport in the AMCM pipette and the resultant electrochemical response were investigated, with experimental results supported by finite element method simulations. We also describe the application of AMCM to high-throughput single-entity electrochemistry in measurements of stochastic nanoparticle impacts. Collision experiments recorded 3270 single-particle events from 671 electrodes. Data collection parameters were optimized to enable these experiments to be completed in a few hours, and the collision transient sizes were analyzed with a U-Net deep learning model. Elucidation of collision transient sizes by histograms from these experiments was enhanced due to the large sample size possible with AMCM.
Collapse
Affiliation(s)
- Sasha
E. Alden
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lingjie Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yunong Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nickolay V. Lavrik
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oakridge, Tennessee 37830, United States
| | - Scott N. Thorgaard
- Department
of Chemistry, Grand Valley State University, Allendale, Michigan 49401, United States
| | - Lane A. Baker
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Lu Y, Ma T, Lan Q, Liu B, Liang X. Single entity collision for inorganic water pollutants measurements: Insights and prospects. WATER RESEARCH 2024; 248:120874. [PMID: 37979571 DOI: 10.1016/j.watres.2023.120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
In the context of aquatic environmental issues, dynamic analysis of nano-sized inorganic water pollutants has been one of the key topics concerning their seriously amplified threat to natural ecosystems and life health. Its ultimate challenge is to reach a single-entity level of identification especially towards substantial amount of inorganic pollutants formed as natural or manufactured nanoparticles (NPs), which enter the water environments along with the potential release of constituents or other contaminating species that may have coprecipitated or adsorbed on the particles' surface. Here, we introduced a 'nano-impacts' approach-single entity collision electrochemistry (SECE) promising for in-situ characterization and quantification of nano-sized inorganic pollutants at single-entity level based on confinement-controlled electrochemistry. In comparison with ensemble analytical tools, advantages and features of SECE point at understanding 'individual' specific fate and effect under its free-motion condition, contributing to obtain more precise information for 'ensemble' nano-sized pollutants on assessing their mixture exposure and toxicity in the environment. This review gives a unique insight about the single-entity collision measurements of various inorganic water pollutants based on recent trends and directions of state-of-the-art single entity electrochemistry, the prospects for exploring nano-impacts in the field of inorganic water pollutants measurements were also put forward.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingting Ma
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingwen Lan
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boyi Liu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Vidal JC, Midón J, Vidal AB, Ciomaga D, Laborda F. Detection, quantification, and characterization of polystyrene microplastics and adsorbed bisphenol A contaminant using electroanalytical techniques. Mikrochim Acta 2023; 190:203. [PMID: 37156867 PMCID: PMC10167125 DOI: 10.1007/s00604-023-05780-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
The potential applications of electroanalytical techniques for the quantification and size characterization of nonelectroactive polystyrene microplastics is reported, in addition to characterizing the kinetics of adsorption of bisphenol A on these polystyrene microparticles. The individual adsorption events of very diluted polystyrene microparticles dispersions on glassy-carbon microelectrodes produce the blocking of the charge transfer of a mediator (ferrocene-methanol) thus decreasing the current of the recorded chronoamperogram in a stepwise manner. The magnitude of the current steps are in the order of pA values and can be related to the diameter of the plastic microparticles in the size range 0.1 to 10 µm. The frequency of the current steps in the domain time used (120 s) allows to quantify the number concentration of these microparticles in the range 0.005 to 0.500 pM. Electrochemical impedance spectroscopy confirms the adsorption of the polystyrene microplastics on carbon microelectrodes (and to a lesser extent on platinum microelectrodes) under the same experimental conditions as above. On the other hand, the adsorbed microplastics become concentrators of other pollutants found in the environment. The sensitive differential-pulse voltammetry determination of bisphenol A (linear range 0.80-15.00 µM; detection limit 0.24 µM) was used together with a simple separation procedure for studying the adsorption of bisphenol A on polystyrene microparticles. The adsorption capacity (mg of bisphenol A retained per g of the polystyrene microplastics) decreased from approximately 5.7 to 0.8 mg g-1 with increasing dosages of polystyrene microparticles from 0.2 to 1.6 g l-1. The adsorption isotherms were modeled resulting in a monolayer of bisphenol A adsorbed on the microplastics (i.e., best fitted to a Langmuir model).
Collapse
Affiliation(s)
- Juan C Vidal
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Javier Midón
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Ana B Vidal
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Dragos Ciomaga
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Francisco Laborda
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
5
|
Alpuche‐Aviles MA. Particle Impact Electrochemistry. ENCYCLOPEDIA OF ELECTROCHEMISTRY 2021:1-30. [DOI: 10.1002/9783527610426.bard030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Experiments involving collisions between a single entity and the electrode surface have become an active area of research. The electrochemical contribution of individual nanoparticles (NPs), enzymes, and other entities, such as aggregates or agglomerates, can be determined using particle impact experiments. Destructive nanoimpact experiments of materials, such as Ag, and the electrocatalytic amplification (ECA) are used to detect the NP/electrode interactions. This review covers the seminal work, critical theoretical studies, and some recent applications. The applications to electrocatalysis include measurements of electron transfer rate constants on individual nanoparticles. Applications in analytical chemistry have allowed the detection of nonelectroactive species by detecting the collisions of soft materials, e.g. micellar suspensions and proteins have increased the technique's analytical possibilities. With ECA, NPs can be used as tags for the electrochemical detection of bioanalytes such as DNA, proteins, and liposomes. The theory of ECA collisions, including frequency of collision and the size of the electrochemical current transients, are also covered. For nanoimpacts, the charge measured during a NP electrolysis, such as Ag NP, is used to detect the NP. Measurements of NP diameter are possible, but limitations to this analysis are covered. The electron transfer studies to the electrolysis of Ag and of metal oxides are discussed. Finally, key experimental instrumentations are discussed, including instrumentation techniques for the small currents inherent to single NP measurement. The effect of filtering, instrumentations rise time, and sampling frequency are also covered.
Collapse
|
6
|
Sánchez-Álvarez AO, Dick JE, Larios E, Cabrera CR. Anodic coulometry of zero-valent iron nanoparticles. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Kirk KA, Vasilescu A, Andreescu D, Senarathna D, Mondal S, Andreescu S. Collision-Based Electrochemical Detection of Lysozyme Aggregation. Anal Chem 2021; 93:2026-2037. [PMID: 33416307 DOI: 10.1021/acs.analchem.0c03578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteins are utilized across many biomedical and pharmaceutical industries; therefore, methods for rapid and accurate monitoring of protein aggregation are needed to ensure proper product quality. Although these processes have been previously studied, it is difficult to comprehensively evaluate protein folding and aggregation by traditional characterization techniques such as atomic force microscopy (AFM), electron microscopy, or X-ray diffraction, which require sample pre-treatment and do not represent native state proteins in solution. Herein, we report early tracking of lysozyme (Lyz) aggregation states by using single-particle collision electrochemistry (SPCE) of silver nanoparticle (AgNP) redox probes. The method relies on monitoring the rapid interaction of Lyz with AgNPs, which decreases the number of single AgNPs available for collisions and ultimately the frequency of oxidative impacts in the chronoamperometric profile. When Lyz is in a non-aggregated monomeric form, the protein forms a homogeneous coverage onto the surface of AgNPs, stabilizing the particles. When Lyz is aggregated, part of the AgNP surface remains uncoated, promoting the agglomeration of Lyz-AgNP conjugates. The frequency of AgNP impacts decreases with increasing aggregation time, providing a metric to track protein aggregation. Visualizations of integrated oxidation charge-transfer data displayed significant differences between the charge transfer per impact for AgNP samples alone and in the presence of non-aggregated and aggregated Lyz with 99% confidence using parametric ANOVA tests. Electrochemical results revealed meaningful associations with UV-vis, circular dichroism, and AFM, demonstrating that SPCE can be used as an alternative method for studying protein aggregation. This electrochemical technique could serve as a powerful tool to indirectly evaluate protein stability and screen protein samples for formation of aggregates.
Collapse
Affiliation(s)
- Kevin A Kirk
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, Sector 6, 060101 Bucharest, Romania
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Dinushani Senarathna
- Department of Mathematics, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Sumona Mondal
- Department of Mathematics, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| |
Collapse
|
8
|
Hernández D, Vidal JC, Laborda F, Pérez-Arantegui J, Giménez-Ingalaturre AC, Castillo JR. Detection, size characterization and quantification of silver nanoparticles in consumer products by particle collision coulometry. Mikrochim Acta 2021; 188:12. [PMID: 33389212 DOI: 10.1007/s00604-020-04662-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 11/24/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in industrial and consumer products owing to its antimicrobial nature and multiple applications. Consequently, their release into the environment is becoming a big concern because of their negative impacts on living organisms. In this work, AgNPs were detected at a potential of + 0.70 V vs. Ag/AgCl reference electrode, characterized, and quantified in consumer products by particle collision coulometry (PCC). The electrochemical results were compared with those measured with electron microscopy and single-particle inductively coupled plasma mass spectrometry. The theoretical and practical peculiarities of the application of PCC technique in the characterization of AgNPs were studied. Reproducible size distributions of the AgNPs were measured in a range 10-100 nm diameters. A power allometric function model was found between the frequency of the AgNPs collisions onto the electrode surface and the number concentration of nanoparticles up to a silver concentration of 1010 L-1 (ca. 25 ng L-1 for 10 nm AgNPs). A linear relationship between the number of collisions and the number concentration of silver nanoparticles was observed up to 5 × 107 L-1. The PCC method was applied to the quantification and size determination of the AgNPs in three-silver containing consumer products (a natural antibiotic and two food supplements). The mean of the size distributions (of the order 10-20 nm diameters) agrees with those measured by electron microscopy. The areas of current spikes from the chronoamperogram allow the rapid calculation of size distributions of AgNPs that impact onto the working electrode.
Collapse
Affiliation(s)
- Deamelys Hernández
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, c/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Juan C Vidal
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, c/ Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Francisco Laborda
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, c/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Josefina Pérez-Arantegui
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, c/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Ana C Giménez-Ingalaturre
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, c/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Juan R Castillo
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, c/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
9
|
Du M, Meng Y, Zhu G, Gao M, Hsu HY, Liu F. Intrinsic electrocatalytic activity of a single IrO x nanoparticle towards oxygen evolution reaction. NANOSCALE 2020; 12:22014-22021. [PMID: 33140807 DOI: 10.1039/d0nr05780k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying the intrinsic electrocatalytic activity of an individual nanoparticle is challenging as traditional ensemble measurements only provide average activity over a large number of nanoparticles and may be greatly affected by the ensemble properties, irrelevant to the nanoparticle itself. Here, single-particle collision electrochemistry is used to investigate the electrocatalytic activity of a single IrOx nanoparticle towards the oxygen evolution reaction (OER). The collision frequency is linearly proportional to the nanoparticle concentration. The mean peak current and transferred charge, extracted from current spikes of the collision, present a similar potential dependence relevant to IrOx intrinsic activity. The turnover frequency (TOF) is determined as 1.55 × 102 O2 s-1, which is orders of magnitude larger than TOFs of the reported ensemble systems. In addition, the deactivation of a single IrOx nanoparticle is also explored based on a half-width analysis of current spikes. This versatilely applicable method provides new insights into the intrinsic performance of a single nanoparticle, which is essential to reveal the structure-activity relations of nanoscale materials for the rational design of advanced catalysts.
Collapse
Affiliation(s)
- Minshu Du
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Gutierrez-Portocarrero S, Sauer K, Karunathilake N, Subedi P, Alpuche-Aviles MA. Digital Processing for Single Nanoparticle Electrochemical Transient Measurements. Anal Chem 2020; 92:8704-8714. [PMID: 32510201 DOI: 10.1021/acs.analchem.9b05238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We demonstrate the use of digital frequency analysis in single nanoparticle electrochemical detection. The method uses fast Fourier transforms (FFT) of single entity electrochemical transients and digital filters. These filters effectively remove noise with the Butterworth filter preserving the amplitude of the fundamental processes in comparison with the rectangle filter. Filtering was done in three different types of experiments: single nanoparticle electrocatalytic amplification, photocatalytic amplification, and nanoimpacts of single entities. In the individual nanoparticle stepwise transients, low-pass filters maintain the step height. Furthermore, a Butterworth band-stop filter preserves the peak height in blip transients if the band-stop cutoff frequencies are compatible with the nanoparticle/electrode transient interactions. In hydrazine oxidation by single Au nanoparticles, digital filtering does not complicate the analysis of the step signal because the stepwise change of the particle-by-particle current is preserved with the rectangle, Bessel and Butterworth low pass filters, with the later minimizing time shifts. In the photocurrent single entity transients, we demonstrate resolving a step smaller than the noise. In photoelectrochemical setups, the background processes are stochastic and appear at distinct frequencies that do not necessarily correlate with the detection frequency (fp), of TiO2 nanoparticles. This lack of correlation indicates that background signals have their characteristic frequencies and that it is advantageous to perform filtering a posteriori. We also discuss selecting the filtering frequencies based on sampling rates and fp. In experiments electrolyzing ZnO, that model nanoimpacts, a band-stop filter can remove environmental noise within the sampling spectral region while preserving relevant information on the current transient. We discuss the limits of Bessel and Butterworth filters for resolving consecutive transients.
Collapse
Affiliation(s)
| | - Kiley Sauer
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Nelum Karunathilake
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Pradeep Subedi
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | | |
Collapse
|
12
|
Karunathilake N, Gutierrez‐Portocarrero S, Subedi P, Alpuche‐Aviles MA. Reduction Kinetics and Mass Transport of ZnO Single Entities on a Hg Ultramicroelectrode. ChemElectroChem 2020. [DOI: 10.1002/celc.202000031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Pradeep Subedi
- Department of Chemistry University of Nevada Reno Nevada 89557 USA
| | | |
Collapse
|
13
|
Hwang J, Chang J. Understanding the mass-transfer of Br species in an aqueous and quaternary ammonium polybromide biphasic system via particle-impact electrochemical analysis. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Xu W, Zou G, Hou H, Ji X. Single Particle Electrochemistry of Collision. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804908. [PMID: 30740883 DOI: 10.1002/smll.201804908] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Indexed: 05/23/2023]
Abstract
A novel electrochemistry method using stochastic collision of particles at microelectrode to study their performance in single-particle scale has obtained remarkable development in recent years. This convenient and swift analytical method, which can be called "nanoimpact," is focused on the electrochemical process of the single particle rather than in complex ensemble systems. Many researchers have applied this nanoimpact method to investigate various kinds of materials in many research fields, including sensing, electrochemical catalysis, and energy storage. However, the ways how they utilize the method are quite different and the key points can be classified into four sorts: sensing particles at ultralow concentration, theory optimization, kinetics of mediated catalytic reaction, and redox electrochemistry of the particles. This review gives a brief overview of the development of the nanoimpact method from the four aspects in a new perspective.
Collapse
Affiliation(s)
- Wei Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
15
|
Zhang L, Yang YJ, Xiong JY, Wu Z, Xie ZX, Pang DW, Zhang ZL. Absolute quantification of particle number concentration using a digital single particle counting system. Mikrochim Acta 2019; 186:529. [PMID: 31302797 DOI: 10.1007/s00604-019-3692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
The accurate determination of the molar concentration or the number concentration of particles in a defined volume is important but challenging. Since particle diversity and heterogeneity cannot be ignored in particle quantification, single particle counting has become quite important. However, most methods require standard samples (calibrators) which are usually difficult to obtain. The authors describe a method for single particle counting that is based on the combination of digital counting and formation of microdroplets in a microchip. By compartmentalizing particles into picoliter droplets, positive droplets encapsulating particles were counted and particle concentrations were calculated by Poisson statistics. The concentration of particles over a wide range (from 5.0 × 103 to 1.8 × 107 particles per mL) were accurately determined without the need for using a calibrator. A microdroplet chip including a T-junction channel achieved a 9-fold increase of signal-to-background ratio compared to the traditional flow-focusing chip. This makes the digital counting system a widely applicable tool for quantification of fluorescent particles. Various particles including differently sized fluorescent microspheres and bacteria with large heterogeneity in shape such as Escherichia coli DH5α-pDsRed were accurately quantified by this method. Graphical abstract Schematic representation of the digital single particle counting system for absolute quantification of particles. Particles compartmentalized in picoliter droplets were counted and the number concentration of particles was determined using digital analysis.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yu-Jun Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jun-Yi Xiong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhen Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhi-Xiong Xie
- College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
16
|
Hafez ME, Ma H, Peng YY, Ma W, Long YT. Correlated Anodic-Cathodic Nanocollision Events Reveal Redox Behaviors of Single Silver Nanoparticles. J Phys Chem Lett 2019; 10:3276-3281. [PMID: 31141367 DOI: 10.1021/acs.jpclett.9b01369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We reported a novel method to real-time monitor the redox behaviors of single Ag nanoparticles (AgNPs) at a Au ultramicroelectrode between oxidizing and reducing pulse potentials using the nanocollision electrochemical method. At fast pulse potentials, the instantaneous anodic-cathodic current transients of a single AgNP were observed for the electrooxidation of AgNP, followed by the electroreduction of the newborn silver oxide (AgO) NP in alkaline media via switching of redox potentials; however, only anodic oxidation signals of individual AgNPs were observed in neutral solution. Through this study, we have revealed the substantial different dynamic nanocollision electrochemical behaviors of single AgNPs on the electrode surface in various media. Our study offers a new view for clearly clarifying in situ tracking of the electron-transfer process of single NPs by correlating electrochemical oxidation and reduction behaviors with the complementary information.
Collapse
Affiliation(s)
- Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials & Department of Chemistry , East China University of Science and Technology , Shanghai 200237 , P. R. China
- Department of Chemistry, Faculty of Science , Beni-Suef University , Beni-Suef 62511 , Egypt
| | - Hui Ma
- Key Laboratory for Advanced Materials & Department of Chemistry , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Yue-Yi Peng
- Key Laboratory for Advanced Materials & Department of Chemistry , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Wei Ma
- Key Laboratory for Advanced Materials & Department of Chemistry , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & Department of Chemistry , East China University of Science and Technology , Shanghai 200237 , P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
17
|
Patrice FT, Qiu K, Ying YL, Long YT. Single Nanoparticle Electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:347-370. [PMID: 31018101 DOI: 10.1146/annurev-anchem-061318-114902] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Experimental techniques to monitor and visualize the behaviors of single nanoparticles have not only revealed the significant spatial and temporal heterogeneity of those individuals, which are hidden in ensemble methods, but more importantly, they have also enabled researchers to elucidate the origin of such heterogeneity. In pursuing the intrinsic structure-function relations of single nanoparticles, the recently developed stochastic collision approach demonstrated some early promise. However, it was later realized that the appropriate sizing of a single nanoparticle by an electrochemical method could be far more challenging than initially expected owing to the dynamic motion of nanoparticles in electrolytes and complex charge-transfer characteristics at electrode surfaces. This clearly indicates a strong necessity to integrate single nanoparticle electrochemistry with high-resolution optical microscopy. Hence, this review aims to give a timely update of the latest progress for both electrochemically sensing and seeing single nanoparticles. A major focus is on collision-based measurements, where nanoparticles or single entities in solution impact on a collector electrode and the electrochemical response is recorded. These measurements are further enhanced with optical measurements in parallel. For completeness, advances in other related methods for single nanoparticle electrochemistry are also included.
Collapse
Affiliation(s)
- Fato Tano Patrice
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Kaipei Qiu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Yi-Lun Ying
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Zhang Y, Mao J, Ji W, Feng T, Fu Z, Zhang M, Mao L. Collision of Aptamer/Pt Nanoparticles Enables Label-Free Amperometric Detection of Protein in Rat Brain. Anal Chem 2019; 91:5654-5659. [PMID: 30888153 DOI: 10.1021/acs.analchem.8b05457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Single particle collision is emerging as a powerful and sensitive technique for analyzing small molecules, however, its application in biomacromolecules detection, for example, protein, in complex biological environments is still challenging. Here, we present the first demonstration on the single particle collision that can be developed for the detection of platelet-derived growth factor (PDGF), an important protein involved in the central nervous system in living rat brain. The system features Pt nanoparticles (PtNPs) conjugated with the PDGF recognition aptamer, suppressing the electrocatalytic collision of PtNPs toward the oxidation of hydrazine. In the presence of PDGF, the stronger binding between targeted protein and the aptamer disrupts the aptamer/PtNPs conjugates, recovering the electrocatalytic performance of PtNPs, and allowing quantitative, selective, and highly sensitive detection of PDGF in cerebrospinal fluid of rat brain.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jinpeng Mao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Wenliang Ji
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Taotao Feng
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Zixuan Fu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Meining Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry , The Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
19
|
Ortiz-Ledón CA, Zoski CG. Fabrication of Glass-Insulated Ultramicrometer to Submicrometer Carbon Fiber Electrodes to Support a Single Nanoparticle and Nanoparticle Ensembles in Electrocatalytic Investigations. Anal Chem 2018; 90:12616-12624. [DOI: 10.1021/acs.analchem.8b02785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- César A. Ortiz-Ledón
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Cynthia G. Zoski
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Li M, Ge Z, Zhang S, He P, Gu Y, Qi L, Shao Y. Electrocatalytic Reduction of Hydrogen Peroxide by Pd−Ag Nanoparticles Based on the Collisional Approach. ChemElectroChem 2018. [DOI: 10.1002/celc.201801249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mingzhi Li
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Zhiqiang Ge
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Shudong Zhang
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Peng He
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Yaxiong Gu
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Limin Qi
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Yuanhua Shao
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| |
Collapse
|
21
|
Frkonja-Kuczin A, Ray L, Zhao Z, Konopka MC, Boika A. Electrokinetic preconcentration and electrochemical detection of Escherichia coli at a microelectrode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Blocking electrochemical collisions of single E. coli and B. subtilis bacteria at ultramicroelectrodes elucidated using simultaneous fluorescence microscopy. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2
-Filmed Ultramicroelectrode. Angew Chem Int Ed Engl 2018; 57:3758-3762. [DOI: 10.1002/anie.201710568] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/06/2018] [Indexed: 01/22/2023]
|
24
|
Peng YY, Ma H, Ma W, Long YT, Tian H. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2
-Filmed Ultramicroelectrode. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yue-Yi Peng
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Hui Ma
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Wei Ma
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
25
|
Eloul S, Kätelhön E, Compton RG. When does near-wall hindered diffusion influence mass transport towards targets? Phys Chem Chem Phys 2018; 18:26539-26549. [PMID: 27711751 DOI: 10.1039/c6cp05716k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The diffusion of a particle is slowed as it moves close to a surface. We identify the conditions under which this hindered diffusion is significant and show that is strongly dependant on the sizes of both the particle and the target. We focus particularly on the transport of nano-particles to a variety of targets including a planar surface, a sphere, a disc and a wire, and provide data which allows the frequency of impacts to be inferred for a variety of experimental conditions. Equations are given to estimate the particle fluxes and we explain literature observations reported on the detected frequency of impacts. Finally we observe a drastic effect on the calculation of the mean first passage time of a single particle impacting a sub-micron sized target, showing the importance of this effect in biological systems.
Collapse
Affiliation(s)
- Shaltiel Eloul
- Department of Chemistry, Physical and Theoretical Chemistry, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Enno Kätelhön
- Department of Chemistry, Physical and Theoretical Chemistry, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
26
|
Pathirathna P, Balla RJ, Amemiya S. Simulation of Fast-Scan Nanogap Voltammetry at Double-Cylinder Ultramicroelectrodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2018; 165:G3026-G3032. [PMID: 31156270 PMCID: PMC6541457 DOI: 10.1149/2.0051812jes] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
High temporal resolution of fast-scan cyclic voltammetry (FSCV) is widely appreciated in fundamental and applied electrochemistry to quantitatively investigate rapid dynamics of electron transfer and neurotransmission using ultramicroelectrodes (UMEs). Faster potential scan, however, linearly increases the background current, which must be subtracted for quantitative FSCV. Herein, we numerically simulate fast-scan nanogap voltammetry (FSNV) for quantitative detection of diffusing redox species under quasi-steady states without the need of background subtraction while maintaining high temporal resolution of transient FSCV. These advantages of FSNV originate from the use of a parallel pair of cylindrical UMEs with nanometer-wide separation in contrast to FSCV with single UMEs. In FSNV, diffusional redox cycling across the nanogap is driven voltammetrically at the generator electrode and monitored amperometrically at the collector electrode without the transient background. We reveal that the cylindrical collector electrode can reach quasi-steady states ~104 times faster than the generator electrode with identical sizes to allow for fast scan. Double-microcylinder and nanocylinder UMEs enable quasi-steady-state FSNV at hundreds volts per second as practiced for in-vivo FSCV and megavolts per second as achieved for ultra-FSCV, respectively. Rational design and simple fabrication of double-cylinder UMEs are proposed to broaden the application of nanogap voltammetry.
Collapse
|
27
|
Ortiz-Ledón CA, Zoski CG. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface. Anal Chem 2017; 89:6424-6431. [DOI: 10.1021/acs.analchem.7b00188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- César A. Ortiz-Ledón
- Department of Chemistry and
Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Cynthia G. Zoski
- Department of Chemistry and
Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
28
|
Bonezzi J, Boika A. Deciphering the Magnitude of Current Steps in Electrochemical Blocking Collision Experiments and Its Implications. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Zhou M, Yu Y, Hu K, Xin HL, Mirkin MV. Collisions of Ir Oxide Nanoparticles with Carbon Nanopipettes: Experiments with One Nanoparticle. Anal Chem 2017; 89:2880-2885. [DOI: 10.1021/acs.analchem.6b04140] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Min Zhou
- Department
of Chemistry and Biochemistry, Queens College—CUNY, Flushing, New York 11367, United States
| | - Yun Yu
- Department
of Chemistry and Biochemistry, Queens College—CUNY, Flushing, New York 11367, United States
- The Graduate Center, CUNY, New York, New York 10016, United States
| | - Keke Hu
- Department
of Chemistry and Biochemistry, Queens College—CUNY, Flushing, New York 11367, United States
- The Graduate Center, CUNY, New York, New York 10016, United States
| | - Huolin L. Xin
- Center
for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael V. Mirkin
- Department
of Chemistry and Biochemistry, Queens College—CUNY, Flushing, New York 11367, United States
- The Graduate Center, CUNY, New York, New York 10016, United States
| |
Collapse
|
30
|
Peng YY, Qian RC, Hafez ME, Long YT. Stochastic Collision Nanoelectrochemistry: A Review of Recent Developments. ChemElectroChem 2017. [DOI: 10.1002/celc.201600673] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yue-Yi Peng
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
31
|
Meekins BH. Detection of single metal nanoparticle collision events in non-aqueous media. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp03042h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate detection of single metal nanoparticle collisions in non-aqueous media and discuss challenges revealed by results.
Collapse
Affiliation(s)
- Benjamin H. Meekins
- Department of Chemical Engineering
- The University of South Carolina
- Columbia
- USA
| |
Collapse
|
32
|
Abstract
Metal nanoparticles are key electrode materials in a variety of electrochemical applications including basic electron-transfer study, electrochemical sensing, and electrochemical surface enhanced Raman spectroscopy (SERS). Metal nanoparticles have also been extensively applied to electrocatalytic processes in recent years due to their high catalytic activity and large surface areas. Because the catalytic activity of metal nanoparticle is often highly dependent on their size, shape, surface ligands, and so forth, methods for examining and better understanding the correlation between particle structure and function are of great utility in the development of more efficient catalytic systems. Despite considerable progress in this field, the understanding of the structure-activity relationships remains challenging in nanoparticle-based electrochemistry and electrocatalysis due to limitations associated with traditional ensemble measurements. One of the major issues is the ensemble averaging of the electrocatalytic response which occurs over a very large number of nanoparticles of various sizes and shapes. Additionally, the electrochemical response can also be greatly affected by properties of the ensemble itself, such as the particle spacing. The ability to directly measure kinetics of electrochemical reactions at structurally well-characterized single nanoparticles opens up new possibilities in many important areas including nanoscale electrochemistry, electrochemical sensing, and nanoparticle electrocatalysis. When a macroscopic electrode is placed in a solution containing redox molecules and metal nanoparticles, random collision and adsorption of nanoparticles occurs at the electrode surface in addition to redox reactions when a suitable potential is present on the electrode. In a special case where particles are catalytically more active than the substrate, the faradaic signals can be greatly amplified on particle surfaces and a steady shift in the baseline current would be expected due to many particles adsorbing on the electrode. Single particle events can be temporally resolved when an ultramicroelectrode (UME) is used as the recording electrode. The use of an UME not only reduces the collision frequency, but also greatly decreases baseline noise, thereby resulting in clear resolution of single collision events. Single particle collision has quickly grown into a popular electroanalytical technique in recent years. Alternatively, one can use nanoelectrodes to immobilize single nanoparticles so that they can be individually studied in electrochemistry and electrocatalysis. Nanoparticle immobilization also allows one to obtain detailed structural information on the same particles and offers enormous potential for developing more comprehensive understanding of the structure-function relationship in nanoparticle-based electrocatalysts. This Account summarizes recent electrochemical experiments of single metal nanoparticles which have been performed by our group using both of these schemes.
Collapse
Affiliation(s)
- Todd J. Anderson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
33
|
Abstract
The diffusion of a particle from bulk solution is slowed as it moves close to an adsorbing surface. A general model is reported that is easily applied by theoreticians and experimentalists. Specifically, it is shown here that in general and regardless of the space size, the magnitude of the effect of hindered diffusion on the flux is a property of the diffusion layer thickness. We explain and approximate the effect. Predictions of concentration profiles show that a "hindered diffusion layer" is formed near the adsorbing surface within the diffusion layer, observed even when the particle radius is just a 0.1% of the diffusion layer thickness. In particular, we focus on modern electrochemistry processes involving with impact of particles with either ultrasmall electrodes or particles in convective systems. The concept of the "hindered diffusion layer" is generally important for example in recent biophysical models of particles diffusion to small targets.
Collapse
Affiliation(s)
- Shaltiel Eloul
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Richard G Compton
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University , South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
34
|
Abstract
Electrochemistry at metal nanoparticles (NPs) is of significant current interest because of its applications in catalysis, energy conversion and storage, and sensors. The electrocatalytic activity of NPs depends strongly on their size, shape, and surface attachment. The use of a large number of particles in most reported kinetic experiments obscured the effects of these factors because of polydispersity and different NP orientations. Recent efforts to probe electrochemistry at single NPs included recording of the catalytically amplified current produced by random collisions of particles with the electrode surface, immobilizing an NP on the surface of a small electrode, and delivering individual NPs to electrode surfaces. Although the signals recorded in such experiments were produced by single NPs, the characterization issues and problems with separating an individual particle from other NPs present in the system made it difficult to obtain spatially and/or temporally resolved information about heterogeneous processes occurring at a specific NP. To carry out electrochemical experiments involving only one NP and characterize such an NP in situ, one needs nanoelectrochemical tools with the characteristic dimension smaller than or comparable to those of the particle of interest. This Account presents fundamentals of two complementary approaches to studying NP electrochemistry, i.e., probing single immobilized NPs with the tip of a scanning electrochemical microscope (SECM) and monitoring the collisions between one catalytic NP and a carbon nanopipette. The former technique can provide spatially resolved information about NP geometry and measure its electron transfer properties and catalytic activity under steady-state conditions. The emphasis here is on the extraction of quantitative physicochemical information from nanoelectrochemical data. By employing a polished disk-type nanoelectrode as an SECM tip, one can characterize a specific nanoparticle in situ and then use the same NP for kinetic experiments. A new mode of SECM operation based on tunneling between the tip and nanoparticle can be used to image the NP topography with a lateral resolution of ∼1 nm. An alternative approach employs carbon nanoprobes produced by chemical vapor deposition of carbon into quartz nanopipettes. One metal NP is captured inside the carbon nanocavity to probe the dynamics of its interactions with the electrode surface on the microsecond time scale. The use of high-resolution transmission electron microscopy is essential for interpreting the results of single-NP collision experiments. A brief discussion of the nanoelectrochemical methodology, recent advances, and future directions is included.
Collapse
Affiliation(s)
- Michael V. Mirkin
- Department
of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
- The
Ph.D. Program in Chemistry, The Graduate Center of City University of New York, New York, New York 10016, United States
| | - Tong Sun
- Department
of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
- The
Ph.D. Program in Chemistry, The Graduate Center of City University of New York, New York, New York 10016, United States
| | - Yun Yu
- Department
of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
- The
Ph.D. Program in Chemistry, The Graduate Center of City University of New York, New York, New York 10016, United States
| | - Min Zhou
- Department
of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
| |
Collapse
|
35
|
Cepriá G, Córdova WR, Céspedes O, Sánchez-García L, Ferrer P, Gianolio D, Castillo JR. Physical and chemical characterization of cerium(IV) oxide nanoparticles. Anal Bioanal Chem 2016; 408:6589-98. [PMID: 27438717 DOI: 10.1007/s00216-016-9771-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 01/08/2023]
Abstract
Chemical composition, size and structure of the nanoparticle are required to describe nanoceria. Nanoparticles of similar size and Ce(III) content might exhibit different chemical behaviour due to their differences in structure. A simple and direct procedure based on affordable techniques for all the laboratories is presented in this paper. The combination of Raman and UV-vis spectroscopy and particle impact coulometry (PIC) allows the characterization of nanoceria of small size from 4 to 65 nm at a concentration from micromolar to nanomolar, a concentration range suitable for the analysis of lab-prepared or commercial nanoparticle suspensions, but too high for most analytical purposes aimed at nanoparticle monitoring. While the PIC limits of size detection are too high to observe small nanoparticles unless catalytic amplification is used, the method provides a simple means to study aggregation of nanoparticles in the media they are needed to be dispersed for each application. Raman spectroscopy provided information about structure of the nanoparticle, and UV-vis about their chemical behaviour against some common reducing and oxidizing agents. Graphical Abstract To characterize nanoceria it is necessary to provide information about the shape, size and structure of the nanoparticles as well as the chemical composition.
Collapse
Affiliation(s)
- Gemma Cepriá
- Analytical Spectroscopy and Sensors Group (GEAS), Environmental Sciences Institute (IUCA), Analytical Chemistry Department, University of Zaragoza, C/Cerbuna 12, 50009, Zaragoza, Spain.
| | - Walvin R Córdova
- Analytical Spectroscopy and Sensors Group (GEAS), Environmental Sciences Institute (IUCA), Analytical Chemistry Department, University of Zaragoza, C/Cerbuna 12, 50009, Zaragoza, Spain
| | - Oscar Céspedes
- School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK
| | - Laura Sánchez-García
- Analytical Spectroscopy and Sensors Group (GEAS), Environmental Sciences Institute (IUCA), Analytical Chemistry Department, University of Zaragoza, C/Cerbuna 12, 50009, Zaragoza, Spain
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Diego Gianolio
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Juan R Castillo
- Analytical Spectroscopy and Sensors Group (GEAS), Environmental Sciences Institute (IUCA), Analytical Chemistry Department, University of Zaragoza, C/Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
36
|
Robinson DA, Kondajji AM, Castañeda AD, Dasari R, Crooks RM, Stevenson KJ. Addressing Colloidal Stability for Unambiguous Electroanalysis of Single Nanoparticle Impacts. J Phys Chem Lett 2016; 7:2512-2517. [PMID: 27306603 DOI: 10.1021/acs.jpclett.6b01131] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein the problem of colloidal instability on electrochemically detected nanoparticle (NP) collisions with a Hg ultramicroelectrode (UME) by electrocatalytic amplification is addressed. NP tracking analysis (NTA) shows that rapid aggregation occurs in solution after diluting citrate-stabilized Pt NPs with hydrazine/phosphate buffers of net ionic strength greater than 70 mM. Colloidal stability improves by lowering the ionic strength, indicating that aggregation processes were strongly affected by charge screening of the NP double layer interactions at high cation concentrations. For the system of lowest ionic strength, the overwhelming majority of observed electrocatalytic current signals represent single NP/electrode impacts, as confirmed by NTA kinetic monitoring. NP diffusion coefficients determined by NTA and NP impact electroanalysis are in excellent agreement for the stable colloids, which signifies that the sticking probability of Pt NPs interacting with Hg is unity and that the observed NP impact rate agrees with the expected steady-state diffusive flux expression for the spherical cap Hg UME.
Collapse
Affiliation(s)
- Donald A Robinson
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Aditya M Kondajji
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Alma D Castañeda
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Radhika Dasari
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Richard M Crooks
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Keith J Stevenson
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
37
|
Brasiliense V, Patel AN, Martinez-Marrades A, Shi J, Chen Y, Combellas C, Tessier G, Kanoufi F. Correlated Electrochemical and Optical Detection Reveals the Chemical Reactivity of Individual Silver Nanoparticles. J Am Chem Soc 2016; 138:3478-83. [PMID: 26900633 DOI: 10.1021/jacs.5b13217] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrochemical (EC) impacts of single nanoparticles (NPs) on an ultramicroelectrode are coupled with optics to identify chemical processes at the level of individual NPs. While the EC signals characterize the charge transfer process, the optical monitoring gives a complementary picture of the transport and chemical transformation of the NPs. This is illustrated in the case of electrodissolution of Ag NPs. In the simplest case, the optically monitored dissolution of individual NPs is synchronized with individual EC spikes. Optics then validates in situ the concept of EC nanoimpacts for sizing and counting of NPs. Chemical complexity is introduced by using a precipitating agent, SCN(-), which tunes the overall electrodissolution kinetics. Particularly, the charge transfer and dissolution steps occur sequentially as the synchronicity between the EC and optical signals is lost. This demonstrates the level of complexity that can be revealed from such electrochemistry/optics coupling.
Collapse
Affiliation(s)
- Vitor Brasiliense
- Sorbonne Paris Cité, Université Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086 , 15 rue J. A. Baif, F-75013 Paris, France
| | - Anisha N Patel
- Sorbonne Paris Cité, Université Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086 , 15 rue J. A. Baif, F-75013 Paris, France
| | - Ariadna Martinez-Marrades
- Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory, CNRS-UMR 8250 , 45 rue des Saints-Pères, F-75006 Paris, France
| | - Jian Shi
- Chemistry Department, Ecole Normale Supérieure-PSL Research University CNRS-UMR 8640 , 24 Rue Lhomond, F-75005 Paris, France
| | - Yong Chen
- Chemistry Department, Ecole Normale Supérieure-PSL Research University CNRS-UMR 8640 , 24 Rue Lhomond, F-75005 Paris, France
| | - Catherine Combellas
- Sorbonne Paris Cité, Université Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086 , 15 rue J. A. Baif, F-75013 Paris, France
| | - Gilles Tessier
- Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory, CNRS-UMR 8250 , 45 rue des Saints-Pères, F-75006 Paris, France
| | - Frédéric Kanoufi
- Sorbonne Paris Cité, Université Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086 , 15 rue J. A. Baif, F-75013 Paris, France
| |
Collapse
|
38
|
Wo X, Li Z, Jiang Y, Li M, Su YW, Wang W, Tao N. Determining the Absolute Concentration of Nanoparticles without Calibration Factor by Visualizing the Dynamic Processes of Interfacial Adsorption. Anal Chem 2016; 88:2380-5. [DOI: 10.1021/acs.analchem.5b04386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiang Wo
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhimin Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yingyan Jiang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minghe Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yu-wen Su
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Nongjian Tao
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
39
|
Abstract
This perspective article provides a survey of recent advances in nanoscale electrochemistry, with a brief theoretical background and a detailed discussion of experimental results of nanoparticle based electrodes, including the rapidly expanding field of “impact electrochemistry”.
Collapse
Affiliation(s)
- Peter H. Robbs
- School of Chemical Engineering
- University of Birmingham
- Birmingham
- UK
| | - Neil V. Rees
- School of Chemical Engineering
- University of Birmingham
- Birmingham
- UK
| |
Collapse
|
40
|
Dick JE, Bard AJ. Recognizing Single Collisions of PtCl62– at Femtomolar Concentrations on Ultramicroelectrodes by Nucleating Electrocatalytic Clusters. J Am Chem Soc 2015; 137:13752-5. [DOI: 10.1021/jacs.5b08628] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jeffrey E. Dick
- Center
for Electrochemistry,
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Allen J. Bard
- Center
for Electrochemistry,
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
41
|
Eloul S, Kätelhön E, Batchelor-McAuley C, Tschulik K, Compton RG. Diffusional impacts of nanoparticles on microdisc and microwire electrodes: The limit of detection and first passage statistics. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.07.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|