1
|
Vitale F, Zileri Dal Verme L, Paratore M, Negri M, Nista EC, Ainora ME, Esposto G, Mignini I, Borriello R, Galasso L, Alfieri S, Gasbarrini A, Zocco MA, Nicoletti A. The Past, Present, and Future of Biomarkers for the Early Diagnosis of Pancreatic Cancer. Biomedicines 2024; 12:2840. [PMID: 39767746 PMCID: PMC11673965 DOI: 10.3390/biomedicines12122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers with a very poor 5-year survival rate and reduced therapeutic options when diagnosed in an advanced stage. The dismal prognosis of pancreatic cancer has guided significant efforts to discover novel biomarkers in order to anticipate diagnosis, increasing the population of patients who can benefit from curative surgical treatment. CA 19-9 is the reference biomarker that supports the diagnosis and guides the response to treatments. However, it has significant limitations, a low specificity, and is inefficient as a screening tool. Several potential biomarkers have been discovered in the serum, urine, feces, and pancreatic juice of patients. However, most of this evidence needs further validation in larger cohorts. The advent of advanced omics sciences and liquid biopsy techniques has further enhanced this field of research. The aim of this review is to analyze the historical evolution of the research on novel biomarkers for the early diagnosis of pancreatic cancer, focusing on the current evidence for the most promising biomarkers from different body fluids and the novel trends in research, such as omics sciences and liquid biopsy, in order to favor the application of modern personalized medicine.
Collapse
Affiliation(s)
- Federica Vitale
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Lorenzo Zileri Dal Verme
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Mattia Paratore
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Marcantonio Negri
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Enrico Celestino Nista
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Elena Ainora
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Giorgio Esposto
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Irene Mignini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Raffaele Borriello
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Linda Galasso
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Sergio Alfieri
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Assunta Zocco
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Alberto Nicoletti
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| |
Collapse
|
2
|
Phuyathip W, Putthisen S, Panawan O, Ma-In P, Teeravirote K, Sintusen P, Udomkitkosol S, Detarya M, Luang S, Mahalapbutr P, Sato T, Kuno A, Chuangchaiya S, Silsirivanit A. Role of Wisteria floribunda agglutinin binding glycans in carcinogenesis and metastasis of cholangiocarcinoma. Histochem Cell Biol 2024:10.1007/s00418-024-02270-4. [PMID: 38393396 DOI: 10.1007/s00418-024-02270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Aberrant glycosylation is an important factor in facilitating tumor progression and therapeutic resistance. In this study, using Wisteria floribunda agglutinin (WFA), we examined the expression of WFA-binding glycans (WFAG) in cholangiocarcinoma (CCA). The results showed that WFAG was highly detected in precancerous and cancerous lesions of human CCA tissues, although it was rarely detected in normal bile ducts. The positive signal of WFAG in the cancerous lesion accounted for 96.2% (50/52) of the cases. Overexpression of WFAG was significantly associated with lymph node and distant metastasis (P < 0.05). The study using the CCA hamster model showed that WFAG is elevated in preneoplastic and neoplastic bile ducts as early as 1 month after being infected with liver fluke and exposed to N-nitrosodimethylamine. Functional analysis was performed to reveal the role of WFAG in CCA. The CCA cell lines KKU-213A and KKU-213B were treated with WFA, followed by migration assay. Our data suggested that WFAG facilitates the migration of CCA cells via the activation of the Akt and ERK signaling pathways. In conclusion, we have demonstrated the association of WFAG with carcinogenesis and metastasis of CCA, suggesting its potential as a target for the treatment of the disease.
Collapse
Affiliation(s)
- Winunya Phuyathip
- Department of Community Health, Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Siyaporn Putthisen
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Orasa Panawan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasertsri Ma-In
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Karuntarat Teeravirote
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Phisit Sintusen
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirintra Udomkitkosol
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Marutpong Detarya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukanya Luang
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Takashi Sato
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan
| | - Atsushi Kuno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan
| | - Sriwipa Chuangchaiya
- Department of Community Health, Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
3
|
Matsuda A, Boottanun P, Koizumi S, Nagai M, Kuno A. Differential Glycoform Analysis of MUC1 Derived from Biological Specimens Using an Antibody-Overlay Lectin Microarray. Methods Mol Biol 2024; 2763:223-236. [PMID: 38347414 DOI: 10.1007/978-1-0716-3670-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The association between altered glycosylation of MUC1 and various disease events has sparked significant interest. However, analytical technologies to investigate the disease-related glycoforms of endogenous MUC1 in blood and tissue specimens are limited. Therefore, we devised a reliable technique for differential analysis of endogenous MUC1 glycoforms based on an antibody-assisted lectin microarray. Its highly sensitive detection aids in analyzing soluble MUC1 from relatively small amounts of serum via a simple enrichment process. Micro-/macro-dissection of the MUC1-positive region is combined with glycoform analysis of the membrane-tethered MUC1. Thus, we have optimized the protocol for sample qualification using immunohistochemistry, sample pretreatment for tissue sections, protein extraction, purification via immunoprecipitation, and the antibody-overlay lectin microarray, which are sequentially essential for differential glycoform analysis of endogenous MUC1.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Sysmex Corporation, Reagent Engineering, Protein Technology Group, Hyogo, Japan
| | - Patcharaporn Boottanun
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Sachiko Koizumi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Misugi Nagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Atsushi Kuno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
| |
Collapse
|
4
|
Nicoletti A, Negri M, Paratore M, Vitale F, Ainora ME, Nista EC, Gasbarrini A, Zocco MA, Zileri Dal Verme L. Diagnostic and Prognostic Role of Extracellular Vesicles in Pancreatic Cancer: Current Evidence and Future Perspectives. Int J Mol Sci 2023; 24:885. [PMID: 36614326 PMCID: PMC9821035 DOI: 10.3390/ijms24010885] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive tumors, with a dismal prognosis due to poor detection rates at early stages, rapid progression, post-surgical complications, and limited effectiveness of conventional oncologic therapies. There are no consistently reliable biomarkers or imaging modalities to accurately diagnose, classify, and predict the biological behavior of this tumor. Therefore, it is imperative to develop new and improved strategies to detect pancreatic lesions in the early stages of cancerization with greater sensitivity and specificity. Extracellular vesicles, including exosome and microvesicles, are membrane-coated cellular products that are released in the outer environment. All cells produce extracellular vesicles; however, this process is enhanced by inflammation and tumorigenesis. Based on accumulating evidence, extracellular vesicles play a crucial role in pancreatic cancer progression and chemoresistance. Moreover, they may represent potential biomarkers and promising therapy targets. The aim of the present review is to review the current evidence on the role of extracellular vesicles in pancreatic cancer.
Collapse
|
5
|
Development and Evaluation of a Robust Sandwich Immunoassay System Detecting Serum WFA-Reactive IgA1 for Diagnosis of IgA Nephropathy. Int J Mol Sci 2022; 23:ijms23095165. [PMID: 35563555 PMCID: PMC9104065 DOI: 10.3390/ijms23095165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Aberrant glycosylation of IgA1 is involved in the development of IgA nephropathy (IgAN). There are many reports of IgAN markers focusing on the glycoform of IgA1. None have been clinically applied as a routine test. In this study, we established an automated sandwich immunoassay system for detecting aberrant glycosylated IgA1, using Wisteria floribunda agglutinin (WFA) and anti-IgA1 monoclonal antibody. The diagnostic performance as an IgAN marker was evaluated. The usefulness of WFA for immunoassays was investigated by lectin microarray. A reliable standard for quantitative immunoassay measurements was designed by modifying a purified IgA1 substrate. A validation study using multiple serum specimens was performed using the established WFA-antibody sandwich automated immunoassay. Lectin microarray results showed that WFA specifically recognized N-glycans of agglutinated IgA1 in IgAN patients. The constructed IgA1 standard exhibited a wide dynamic range and high reactivity. In the validation study, serum WFA-reactive IgA1 (WFA+-IgA1) differed significantly between healthy control subjects and IgAN patients. The findings indicate that WFA is a suitable lectin that specifically targets abnormal agglutinated IgA1 in serum. We also describe an automated immunoassay system for detecting WFA+-IgA1, focusing on N-glycans.
Collapse
|
6
|
Wang J, Wang X, Li J, Xia Y, Gao M, Zhang X, Huang LH. A novel hydrophilic MOFs-303-functionalized magnetic probe for the highly efficient analysis of N-linked glycopeptides. J Mater Chem B 2022; 10:2011-2018. [PMID: 35244662 DOI: 10.1039/d1tb02827h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effective analysis of glycoproteomics in clinical complex samples is of vital importance for the diagnosis and therapy of diseases. In this study, a hydrophilic MOFs-303-functionalized magnetic probe (GO@Fe3O4@MOF-303) is designed and fabricated to profile N-linked glycopeptides. Owing to its strong magnetic property, large surface area (845 m2 g-1), excellent hydrophilicity and suitable porous structure, the GO@Fe3O4@MOF-303 probe exhibits an ultralow detection limit (0.1 fmol μL-1), perfect size-exclusion effect (HRP digests/BSA protein/HRP protein, 1 : 1000 : 1000, w/w/w), a high binding capacity (200 mg g-1) and excellent reusability in the capture of standard N-linked glycopeptides. More excitingly, the GO@Fe3O4@MOF-303 probe also shows remarkable performance in practical applications, where 274 N-linked glycopeptides from 101 glycoproteins were identified in total for healthy controls, while a total of 265 N-linked glycopeptides from 102 glycoproteins were identified in serum (1 μL) with hepatocellular carcinoma (HCC). In addition, we discovered 4 up-regulated and 19 down-regulated serum glycoproteins in HCC patients by the hierarchical clustering heatmap. All results demonstrated that the reusable GO@Fe3O4@MOF-303 probe has great potential in profiling different N-linked glycopeptides in complex clinical samples. This study not only developed a novel probe for the highly effective capture of N-linked glycopeptides but also contributed to further understanding the mechanism of HCC and provides guidance for the development of novel clinical diagnostic methods.
Collapse
Affiliation(s)
- Jiaxi Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China. .,Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Xinmei Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Jie Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Yan Xia
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Mingxia Gao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Xiangmin Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Lectins applied to diagnosis and treatment of prostate cancer and benign hyperplasia: A review. Int J Biol Macromol 2021; 190:543-553. [PMID: 34508719 DOI: 10.1016/j.ijbiomac.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
Environmental factors, as well as genetic factors, contribute to the increase in prostate cancer cases (PCa), the second leading cause of cancer death in men. This fact calls for the development of more reliable, quick and low-cost early detection tests to distinguish between malignant and benign cases. Abnormal cell glycosylation pattern is a promising PCa marker for this purpose. Proteins, such as lectins can decode the information contained in the glycosylation patterns. Several studies have reported on applications of plant lectins as diagnostic tools for PCa considering the ability to differentiate it from benign cases. In addition, they can be used to detect, separate and differentiate the glycosylation patterns of cells or proteins present in serum, urine and semen. Herein, we present an overview of these studies, showing the lectins that map glycans differentially expressed in PCa, as well as benign hyperplasia (BPH). We further review their applications in biosensors, histochemical tests, immunoassays, chromatography, arrays and, finally, their therapeutic potential. This is the first study to review vegetable lectins applied specifically to PCa.
Collapse
|
8
|
Talabnin K, Talabnin C, Khiaowichit J, Sutatum N, Asavaritikrai P, Suksaweang S, Tongtawee T, Ishihara M, Azadi P, Sripa B. High expression of tissue O-linked glycans is associated with a malignant phenotype of cholangiocarcinoma. J Int Med Res 2021; 49:300060520976864. [PMID: 33535865 PMCID: PMC7869157 DOI: 10.1177/0300060520976864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective This study aimed to investigate the expression of O-linked
glycoprotein glycans in tissue of patients with cholangiocarcinoma compared
with adjacent normal tissue. Methods Sixty patients with cholangiocarcinoma were included in the study.
Permethylated O-linked glycans from intrahepatic
cholangiocarcinoma tissue and adjacent normal tissue were analyzed using
nano-spray ionization-linear ion trap mass spectrometry. Histochemistry of
peanut agglutinin lectin was used for detection and localization of
galactose (Gal) 1, N-acetyl-galactosamine (GalNAc) 1. Results O-linked glycans from patients with cholangiocarcinoma were
composed of di- to hexa-saccharides with a terminal galactose and sialic
acids (N-acetylneuraminic acid [NeuAc]). A total of eight
O-linked glycan structures were detected. Gal1GalNAc1 and
Gal2 N-acetyl-glucosamine 1 GalNAc1 expression was significantly higher in
tissue from patients with cholangiocarcinoma compared with adjacent normal
tissue, while NeuAc1Gal1GalNAc1 expression was significantly lower. High
Gal1GalNAc1 expression was significantly associated with the late stage of
cholangiocarcinoma (stages II–IV), lymphatic invasion, and vascular
invasion. Conclusion Our study shows expression of O-linked glycans in
progression of cholangiocarcinoma and highlights the association of
Gal1GalNAc1 with lymphatic and vascular invasion of cholangiocarcinoma.
Collapse
Affiliation(s)
- Krajang Talabnin
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chutima Talabnin
- Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Juthamas Khiaowichit
- School of Translational Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nuchanard Sutatum
- School of Translational Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pundit Asavaritikrai
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sanong Suksaweang
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Taweesak Tongtawee
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Banchob Sripa
- Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
9
|
Talabnin K, Talabnin C, Kumagai T, Sutatum N, Khiaowichit J, Dechsukhum C, Ishihara M, Azadi P, Sripa B. Ganglioside GM2: a potential biomarker for cholangiocarcinoma. J Int Med Res 2021; 48:300060520903216. [PMID: 32692591 PMCID: PMC7375732 DOI: 10.1177/0300060520903216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the expression of glycosphingolipids in serum and tissue from patients with cholangiocarcinoma compared with healthy controls. METHODS Nanospray ionization-linear ion trap mass spectrometry (NSI-MSn) was used to demonstrate the comparative structural glycomics of glycosphingolipids in serum from patients with cholangiocarcinoma (n=15), compared with healthy controls (n = 15). GM2 expression in cholangiocarcinoma tissues (n = 60) was evaluated by immunohistochemistry. RESULTS Eleven glycosphingolipids were detected by NSI-MSn: CMH (ceramide monohexose), Lac-Cer (galactose (Gal)β1-4 glucose (Glc)β1-1'-ceramide), Gb3 (Galα1-4Galβ1-4Glcβ1-1'-ceramide), Gb4/Lc4 (N-acetylgalactosamine (GalNAc)β1-3Galα1-4Galβ1-4Glcβ1-1'-ceramide/Galβ1-4 N-acetylglucosamine (GlcNAc)β1-3Galβ1-4Glcβ1-1'-ceramide), GM3 (N-acetylneuraminic acid (NeuAc)2-3Galβ1-4Glcβ1-1'-ceramide), GM2 (GalNAcβ1-4[NeuAc2-3]Galβ1-4Glcβ1-1'-ceramide), GM1 (Galβ1-3GalNAcβ1-4[NeuAc2-3]Galβ1-4Glcβ1-1'-ceramide), hFA (hydroxylated fatty acid)-CMH, hFA-Lac-Cer, hFA-Gb3, and hFA-GM3. Lac-Cer was the most abundant structure among the lactosides and globosides (normal, 24.40% ± 0.11%; tumor, 24.61% ± 2.10%), while GM3 predominated among the gangliosides (normal, 29.14% ± 1.31%; tumor, 30.53% ± 4.04%). The two glycosphingolipids that significantly differed between healthy controls and patients with cholangiocarcinoma were Gb3 and GM2. High expression of GM2 was associated with vascular invasion in tissue from patients with cholangiocarcinoma. CONCLUSIONS Altered expression of glycosphingolipids in tissue and serum from patients with cholangiocarcinoma may contribute to tumor growth and progression. The ganglioside GM2, which significantly increased in the serum of patients with cholangiocarcinoma, represents a promising target as a biomarker for cholangiocarcinoma.
Collapse
Affiliation(s)
- Krajang Talabnin
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chutima Talabnin
- Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Tadahiro Kumagai
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Nuchanard Sutatum
- School of Translational Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Juthamas Khiaowichit
- School of Translational Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chawaboon Dechsukhum
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Banchob Sripa
- Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
10
|
Macedo-da-Silva J, Santiago VF, Rosa-Fernandes L, Marinho CRF, Palmisano G. Protein glycosylation in extracellular vesicles: Structural characterization and biological functions. Mol Immunol 2021; 135:226-246. [PMID: 33933815 DOI: 10.1016/j.molimm.2021.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles involved in intercellular communication, delivery of biomolecules from donor to recipient cells, cellular disposal and homeostasis, potential biomarkers and drug carriers. The content of EVs includes DNA, lipids, metabolites, proteins, and microRNA, which have been studied in various diseases, such as cancer, diabetes, pregnancy, neurodegenerative, and cardiovascular disorders. EVs are enriched in glycoconjugates and exhibit specific glycosignatures. Protein glycosylation is a co- and post-translational modification (PTM) that plays an important role in the expression and function of exosomal proteins. N- and O-linked protein glycosylation has been mapped in exosomal proteins. The purpose of this review is to highlight the importance of glycosylation in EVs proteins. Initially, we describe the main PTMs in EVs with a focus on glycosylation. Then, we explore glycan-binding proteins describing the main findings of studies that investigated the glycosylation of EVs in cancer, pregnancy, infectious diseases, diabetes, mental disorders, and animal fluids. We have highlighted studies that have developed innovative methods for studying the content of EVs. In addition, we present works related to lipid glycosylation. We explored the content of studies deposited in public databases, such as Exocarta and Vesiclepedia. Finally, we discuss analytical methods for structural characterization of glycoconjugates and present an overview of the critical points of the study of glycosylation EVs, as well as perspectives in this field.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Verônica F Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
11
|
Huang C, Liu L, Wang H, Fang M, Feng H, Li Y, Wang M, Tong L, Xiao X, Wang Z, Xu X, He Y, Gao C. Serum N-glycan fingerprint nomogram predicts liver fibrosis: a multicenter study. Clin Chem Lab Med 2021; 59:1087-1097. [PMID: 33554541 DOI: 10.1515/cclm-2020-1588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Liver cirrhosis (LC) is the end-stage of fibrosis in chronic liver diseases, non-invasive early detection of liver fibrosis (LF) is particularly essential for therapeutic decision. Aberrant glycosylation of glycoproteins has been demonstrated to be closely related to liver abnormalities. METHODS This study was designed to enroll a total of 1,565 participants with LC/LF, chronic hepatitis virus (CHB) and healthy controls. Fibrosis was confirmed by liver biopsy. Using capillary electrophoresis N-glycan fingerprint (NGFP) analysis, we developed a nomogram algorithm (FIB-G) to discriminate LC from non-cirrhotic subjects. RESULTS The FIB-G demonstrated good diagnostic performances in identifying LC with the area under the curve (AUC) 0.895 (95%CI: 0.857-0.915). Furthermore, the diagnostic efficiencies of FIB-G were superior to that of log (P2/P8), procollagen III N-terminal (PIIINP), type IV collage (IV-C), laminin (LN), hyaluronic acid (HA), aspartate transaminase to platelets ratio index (APRI), and FIB-4 when detecting significant fibrosis (S0-1 vs. S2-4, AUC: 0.787, 95%CI: 0.701-0.873), severe fibrosis (S0-2 vs. S3-4, AUC: 0.844, 95%CI: 0.763-0.924), and LC (S0-3 vs. S4, AUC: 0.773, 95%CI: 0.667-0.880). Besides, changes of FIB-G were associated well with the regression of fibrosis and liver function Child-Pugh classification. CONCLUSIONS FIB-G is an accurate multivariant N-glycomic algorithm for LC prediction and fibrosis progression/regression monitoring. The high throughput feasible NGFP using only 2 μL of serum could help physicians make the more precise non-invasive staging of LF or cirrhosis and reduce the need for invasive liver biopsy.
Collapse
Affiliation(s)
- Chenjun Huang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Lijuan Liu
- Department of Laboratory Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Hao Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Shanghai, P.R. China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Huijuan Feng
- Department of Laboratory Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Ya Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Mengmeng Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Lin Tong
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Xiao Xiao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Ziyi Wang
- Department of Data Analysis, Wonders Information Co. LTD., Shanghai, P.R. China
| | - Xuewen Xu
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Yutong He
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| |
Collapse
|
12
|
Yokose T, Kabe Y, Matsuda A, Kitago M, Matsuda S, Hirai M, Nakagawa T, Masugi Y, Hishiki T, Nakamura Y, Shinoda M, Yagi H, Abe Y, Oshima G, Hori S, Nakano Y, Honda K, Kashiro A, Morizane C, Nara S, Kikuchi S, Shibahara T, Itonaga M, Ono M, Minegishi N, Koshiba S, Yamamoto M, Kuno A, Handa H, Sakamoto M, Suematsu M, Kitagawa Y. O-Glycan-Altered Extracellular Vesicles: A Specific Serum Marker Elevated in Pancreatic Cancer. Cancers (Basel) 2020; 12:2469. [PMID: 32878320 PMCID: PMC7563872 DOI: 10.3390/cancers12092469] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/03/2023] Open
Abstract
Pancreatic cancer (PC) is among the most lethal malignancies due to an often delayed and difficult initial diagnosis. Therefore, the development of a novel, early stage, diagnostic PC marker in liquid biopsies is of great significance. In this study, we analyzed the differential glycomic profiling of extracellular vesicles (EVs) derived from serum (two cohorts including 117 PC patients and 98 normal controls) using lectin microarray. The glyco-candidates of PC-specific EVs were quantified using a high-sensitive exosome-counting system, ExoCounter. An absolute quantification system for altered glycan-containing EVs elevated in PC serum was established. EVs recognized by O-glycan-binding lectins ABA or ACA were identified as candidate markers by lectin microarray. Quantitative analyses using ExoCounter revealed that the ABA- or ACA-positive EVs were significantly increased in the culture of PC cell lines or in the serum of PC patients including carbohydrate antigen 19-9 negative patients with high area under curve values. The elevated numbers of EVs in PC serum returned to normal levels after pancreatectomy. Histological examination confirmed that the tumors stained with ABA/ACA. These specific EVs with O-glycans recognized by ABA/ACA are elevated in PC sera and can act as potential biomarkers in a liquid biopsy for PC patients screening.
Collapse
Affiliation(s)
- Takahiro Yokose
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.Y.); (S.M.); (Y.N.); (M.S.); (H.Y.); (Y.A.); (G.O.); (S.H.); (Y.N.); (Y.K.)
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.M.); (M.H.); (T.N.); (T.H.)
| | - Atsushi Matsuda
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.M.); (M.H.); (T.N.); (T.H.)
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.Y.); (S.M.); (Y.N.); (M.S.); (H.Y.); (Y.A.); (G.O.); (S.H.); (Y.N.); (Y.K.)
| | - Sachiko Matsuda
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.Y.); (S.M.); (Y.N.); (M.S.); (H.Y.); (Y.A.); (G.O.); (S.H.); (Y.N.); (Y.K.)
| | - Miwa Hirai
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.M.); (M.H.); (T.N.); (T.H.)
| | - Tomomi Nakagawa
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.M.); (M.H.); (T.N.); (T.H.)
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.M.); (M.S.)
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.M.); (M.H.); (T.N.); (T.H.)
| | - Yuki Nakamura
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.Y.); (S.M.); (Y.N.); (M.S.); (H.Y.); (Y.A.); (G.O.); (S.H.); (Y.N.); (Y.K.)
| | - Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.Y.); (S.M.); (Y.N.); (M.S.); (H.Y.); (Y.A.); (G.O.); (S.H.); (Y.N.); (Y.K.)
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.Y.); (S.M.); (Y.N.); (M.S.); (H.Y.); (Y.A.); (G.O.); (S.H.); (Y.N.); (Y.K.)
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.Y.); (S.M.); (Y.N.); (M.S.); (H.Y.); (Y.A.); (G.O.); (S.H.); (Y.N.); (Y.K.)
| | - Go Oshima
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.Y.); (S.M.); (Y.N.); (M.S.); (H.Y.); (Y.A.); (G.O.); (S.H.); (Y.N.); (Y.K.)
| | - Shutaro Hori
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.Y.); (S.M.); (Y.N.); (M.S.); (H.Y.); (Y.A.); (G.O.); (S.H.); (Y.N.); (Y.K.)
| | - Yutaka Nakano
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.Y.); (S.M.); (Y.N.); (M.S.); (H.Y.); (Y.A.); (G.O.); (S.H.); (Y.N.); (Y.K.)
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (K.H.); (A.K.)
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| | - Ayumi Kashiro
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (K.H.); (A.K.)
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Satoshi Nara
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Shojiro Kikuchi
- Institute for Advanced Medical Science, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
| | - Takahiko Shibahara
- Department of Oral and Maxillo-Facial Surgery, Tokyo Dental College, Tokyo 102-8159, Japan;
| | - Makoto Itonaga
- Healthcare Business Division, JVCKENWOOD Corporation, Yokosuka 239-8520, Japan; (M.I.); (M.O.)
| | - Masayuki Ono
- Healthcare Business Division, JVCKENWOOD Corporation, Yokosuka 239-8520, Japan; (M.I.); (M.O.)
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (N.M.); (S.K.); (M.Y.)
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (N.M.); (S.K.); (M.Y.)
- The Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (N.M.); (S.K.); (M.Y.)
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Atsushi Kuno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Tokyo 160-0023, Japan;
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.M.); (M.S.)
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.M.); (M.H.); (T.N.); (T.H.)
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.Y.); (S.M.); (Y.N.); (M.S.); (H.Y.); (Y.A.); (G.O.); (S.H.); (Y.N.); (Y.K.)
| |
Collapse
|
13
|
Yamada K, Suzuki K, Hirohata Y, Kinoshita M. Analysis of Minor Acidic N-Glycans in Human Serum. J Proteome Res 2020; 19:3033-3043. [PMID: 32436713 DOI: 10.1021/acs.jproteome.0c00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prior investigations by our research group focused on the method development for the simultaneous analysis of sulfated and phosphorylated glycans. Herein, the developed method was applied to analyze minor acidic N-glycans including sulfated and phosphorylated N-glycans in human serum. First, 2-aminobenzoic acid-labeled minor acidic N-glycans were enriched from the serum using a serotonin-immobilized column and were then separated into groups using hydrophilic interaction liquid chromatography, and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Phosphorylated hybrid-type and sulfated bi-antennary N-glycans were detected in the serum. In addition, we observed that multiple types of glucuronidated N-glycans were present. These results indicate that the developed method is applicable to the analysis of glucuronidated as well as sulfated and phosphorylated N-glycans. It was also applied to the sera obtained from 17 healthy subjects and 15 pancreatic cancer patients, and the profiles of sulfated, phosphorylated, and glucuronidated N-glycans were compared. The expressed amount of glucuronidated N-glycans was significantly decreased in some pancreatic cancer patients. Numerous examples of the N-glycan analysis in human serum were reported, but phosphorylated and glucuronidated glycans were not investigated. The methods described herein allow the analysis of minor acidic glycans that are typically difficult to detect.
Collapse
Affiliation(s)
- Keita Yamada
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Koji Suzuki
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Yoshihiko Hirohata
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Mitsuhiro Kinoshita
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
14
|
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen 2020; 9:285-300. [PMID: 32154049 PMCID: PMC7050261 DOI: 10.1002/open.201900326] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Kai Dang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Wenjuan Zhang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| |
Collapse
|
15
|
Yu H, Shu J, Li Z. Lectin microarrays for glycoproteomics: an overview of their use and potential. Expert Rev Proteomics 2020; 17:27-39. [PMID: 31971038 DOI: 10.1080/14789450.2020.1720512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Glycoproteomics is an important subdiscipline of proteomics, focusing on the role of protein glycosylation in various biological processes. Protein glycosylation is the enzymatic addition of sugars or oligosaccharides to proteins. Altered glycosylation often occurs in the early stages of disease development, for example, certain tumor-associated glycans have been shown to be expressed in precursor lesions of different types of cancer, making them powerful early diagnostic markers. Lectin microarrays have become a powerful tool for both the study of glycosylation and the diagnosis of various diseases including cancer.Areas covered: This review will discuss the most useful features of lectin microarrays, such as their technological advances, their capability for parallel/high-throughput analysis for the important glycopatterns of glycoprotein, and an overview of their use for glycosylation analysis of various complex protein samples, as well as their diagnostic potential in various diseases.Expert opinion: Lectin microarrays have proved to be useful in studying multiple lectin-glycan interactions in a single experiment and, with the advances made in the field, hold a promise of enabling glycopatterns of diseases in a fast and efficient manner. Lectin microarrays will become increasingly powerful early diagnostic tool for a variety of conditions.
Collapse
Affiliation(s)
- Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
16
|
Tommasone S, Allabush F, Tagger YK, Norman J, Köpf M, Tucker JHR, Mendes PM. The challenges of glycan recognition with natural and artificial receptors. Chem Soc Rev 2019; 48:5488-5505. [PMID: 31552920 DOI: 10.1039/c8cs00768c] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans - simple or complex carbohydrates - play key roles as recognition determinants and modulators of numerous physiological and pathological processes. Thus, many biotechnological, diagnostic and therapeutic opportunities abound for molecular recognition entities that can bind glycans with high selectivity and affinity. This review begins with an overview of the current biologically and synthetically derived glycan-binding scaffolds that include antibodies, lectins, aptamers and boronic acid-based entities. It is followed by a more detailed discussion on various aspects of their generation, structure and recognition properties. It serves as the basis for highlighting recent key developments and technical challenges that must be overcome in order to fully deal with the specific recognition of a highly diverse and complex range of glycan structures.
Collapse
Affiliation(s)
- Stefano Tommasone
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Shimazaki H, Saito K, Matsuda A, Sawakami K, Kariya M, Segawa O, Miyashita Y, Ueda T, Koizuka M, Nakamura K, Kaji H, Tajima H, Kuno A. Lectin Bead Array in a Single Tip Facilitates Fully Automatic Glycoprotein Profiling. Anal Chem 2019; 91:11162-11169. [DOI: 10.1021/acs.analchem.9b01876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroko Shimazaki
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Kozue Saito
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Atsushi Matsuda
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Kazumi Sawakami
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Minoru Kariya
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Osamu Segawa
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Yukiko Miyashita
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Tetsuya Ueda
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Michinori Koizuka
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Kazuhiro Nakamura
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Hiroyuki Kaji
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Hideji Tajima
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
18
|
Dos Santos Silva PM, Albuquerque PBS, de Oliveira WF, Coelho LCBB, Dos Santos Correia MT. Glycosylation products in prostate diseases. Clin Chim Acta 2019; 498:52-61. [PMID: 31400314 DOI: 10.1016/j.cca.2019.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
Although prostate cancer is notable for its high incidence and mortality in men worldwide, its identification remains a challenge. Biomarkers have been useful tools for the specific detection of prostate cancer. Unfortunately, benign prostate diseases cause similar alterations in screening assays thus reducing the potential for early and specific diagnosis. Changes in glycan and glycoprotein expression have often been associated with the onset and progression of cancer. Abnormal glycans and glycoproteins have been reported as new biomarkers of prostate metabolism that can distinguish benign prostate disease and cancer in non-aggressive and aggressive stages. Carbohydrate-binding proteins known as lectins have been valuable tools to detect these changes, investigate potential biomarkers and improve our understanding aberrant glycosylation in cancer. Here we review progress in elucidating prostate disease and discuss the roles of glycans in the differential detection of benign and cancerous prostate disease. We also summarize the lectin-based tools for detecting glycosylation changes.
Collapse
Affiliation(s)
- Priscila Marcelino Dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | | | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil.
| |
Collapse
|
19
|
Tian Z, Mi L, Wu Y, Shao F, Zou M, Zhou Z, Liu S. Visual Electrofluorochromic Detection of Cancer Cell Surface Glycoprotein on a Closed Bipolar Electrode Chip. Anal Chem 2019; 91:7902-7910. [PMID: 31135138 DOI: 10.1021/acs.analchem.9b01760] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work reports an electrofluorochromic strategy on the basis of electric field control of fluorescent signal generation on bipolar electrodes (BPEs) for visualizing cancer cell surface glycoprotein (mucin 1). The device included two separate cells: anodic sensing cell and cathodic reporting cell, which were connected by a screen-printing electrode patterned on poly(ethylene terephthalate) (PET) membrane. In the sensing cell, anti-MUC1 antibody immobilized on a chitosan-multiwalled carbon nanotube (CS-MWCNT)-modified anodic BPE channel was used for capturing mucin-1 (MUC1) or MCF-7 cancer cells. Then ferrocene (Fc)-labeled mucin 1 aptamers were introduced through hybridization. Under an applied voltage, the ferrocene was oxidized and the electroactive molecules of 1,4-benzoquinone (BQ) in the cathodic reporting cell were reduced according to electroneutrality. This produced a strongly basic 1,4-benzoquinone anion radical (BQ•-), which turned on the fluorescence of pH-responsive fluorescent molecules of (2-(2-(4-hydroxystyryl)-6-methyl-4 H-pyran-4-ylidene)malononitrile) (SPM) coexisting in the cathode reporting cell for both spectrophotometric detection and imaging. This strategy allowed sensitive detection of MUC1 at a concentration down to 10 fM and was capable of detecting a minimum of three MCF-7 cells. Furthermore, the amount of MUC1 on MCF-7 cells was calculated to be 6.02 × 104 molecules/cell. Our strategy also had the advantages of high temporal and spatial resolution, short response time, and high luminous contrast and is of great significance for human health and the promotion of life science development.
Collapse
Affiliation(s)
- Zhaoyan Tian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Li Mi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Yafeng Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Fengying Shao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ) , No. A3, Gaobeidian Road, Chaoyang District , Beijing 100123 , China
| | - Zhenxian Zhou
- Nanjing Second Hospital , No. 121, Jiangjiayuan, Gulou District , Nanjing , Jiangsu , China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| |
Collapse
|
20
|
Wang M, Zhu J, Lubman DM, Gao C. Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clin Chem Lab Med 2019; 57:407-416. [PMID: 30138110 PMCID: PMC6785348 DOI: 10.1515/cclm-2018-0379] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/15/2018] [Indexed: 12/12/2022]
Abstract
Glycosylation is among the most important post-translational modifications for proteins and is of intrinsic complex character compared with DNAs and naked proteins. Indeed, over 50%-70% of proteins in circulation are glycosylated, and the "sweet attachments" have versatile structural and functional implications. Both the configuration and composition of the attached glycans affect the biological activities of consensus proteins significantly. Glycosylation is generated by complex biosynthetic pathways comprising hundreds of glycosyltransferases, glycosidases, transcriptional factors, transporters and the protein backbone. In addition, lack of direct genetic templates and glyco-specific antibodies such as those commonly used in DNA amplification and protein capture makes research on glycans and glycoproteins even more difficult, thus resulting in sparse knowledge on the pathophysiological implications of glycosylation. Fortunately, cutting-edge technologies have afforded new opportunities and approaches for investigating cancer-related glycosylation. Thus, glycans as well as aberrantly glycosylated protein-based cancer biomarkers have been increasingly recognized. This mini-review highlights the most recent developments in glyco-biomarker studies in an effort to discover clinically relevant cancer biomarkers using advanced analytical methodologies such as mass spectrometry, high-performance liquid chromatographic/ultra-performance liquid chromatography, capillary electrophoresis, and lectin-based technologies. Recent clinical-centered glycobiological studies focused on determining the regulatory mechanisms and the relation with diagnostics, prognostics and even therapeutics are also summarized. These studies indicate that glycomics is a treasure waiting to be mined where the growth of cancer-related glycomics and glycoproteomics is the next great challenge after genomics and proteomics.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| |
Collapse
|
21
|
Iizuka D, Izumi S, Suzuki F, Kamiya K. Analysis of a lectin microarray identifies altered sialylation of mouse serum glycoproteins induced by whole-body radiation exposure. JOURNAL OF RADIATION RESEARCH 2019; 60:189-196. [PMID: 30521038 PMCID: PMC6430252 DOI: 10.1093/jrr/rry100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/19/2018] [Indexed: 05/08/2023]
Abstract
Microarrays containing 45 different lectins were analyzed to identify global changes in the glycosylation of serum glycoproteins from mice exposed to whole-body γ-radiation. The results showed that radiation exposure increased and decreased the relative amounts of α-2,3- and α-2,6-sialic acids, respectively. The expression of α-2,3- and α-2,6-sialyltransferase genes in the liver was analyzed to determine whether changes in their expression were responsible for the sialic acid changes. The increase in α-2,3-sialic acid correlated with St3gal5 upregulation after radiation exposure; however, a decrease in St6gal1 expression was not observed. Analysis of a PCR array of genes expressed in irradiated mouse livers revealed that irradiation did not alter the expression of most of the included genes. These results suggest that glycomic screening of serum glycoproteins using lectin microarrays can be a powerful tool for identifying radiation-induced changes in the post-translational addition of sugar moieties to proteins. In addition, the results indicate that altered sialylation of glycoproteins may be an initial response to acute radiation exposure.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
- Corresponding author. Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan. Tel: +81-43-206-3160; Fax: +81-43-206-4138;
| | - Shunsuke Izumi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-2, Kagamiyama, Higashi-Hiroshima, Japan
| | - Fumio Suzuki
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| |
Collapse
|
22
|
Tang Z, Yang Y, Wang X, Meng W, Li X. Meta-analysis of the diagnostic value of Wisteria floribunda agglutinin-sialylated mucin1 and the prognostic role of mucin1 in human cholangiocarcinoma. BMJ Open 2019; 9:e021693. [PMID: 30700476 PMCID: PMC6352767 DOI: 10.1136/bmjopen-2018-021693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Serum carbohydrate antigen 19-9 (CA19-9) is a widely used tumour marker for cholangiocarcinoma (CCA). However, it is not a necessarily good CCA marker in terms of diagnostic accuracy. The purpose of this study is to evaluate the diagnostic value of Wisteria floribundaagglutinin-sialylated Mucin1 (WFA-MUC1) and the prognostic role of Mucin1 (MUC1) in human CCA. DESIGN Meta-analysis. DATA SOURCES Studies published in PubMed, Web of Science, The Cochrane Library and the China National Knowledge Infrastructure up to 11 October 2017. ELIGIBILITY CRITERIA We included reports assessing the diagnostic capacity of WFA-MUC1 and the prognostic role of MUC1 in CCA. The receiver operating characteristic curve (ROC) of WFA-MUC1 and/or CA19-9 was described, and the HRs including 95% CI and the corresponding p value for MUC1 can be extracted. DATA EXTRACTION AND SYNTHESIS Two independent researchers extracted data and assessed risk of bias. The diagnostic sensitivity and specificity data of WFA-MUC1 were extracted and analysed as bivariate data. Pooled HRs and its 95% CI for MUC1 were calculated with a random-effects meta-analysis model on overall survival of resectable CCA. RESULTS Sixteen reports were included in this study. The pooled sensitivity and specificity of WFA-MUC1 were 0.76 (95% CI 0.71 to 0.81) and 0.72 (95% CI 0.59 to 0.83) in serum, 0.85 (95% CI 0.81 to 0.89) and 0.72 (95% CI 0.64 to 0.80) in bile and 0.72 (95% CI 0.50 to 0.87) and 0.85 (95% CI 0.70 to 0.93) in tissue, respectively. The summary ROC (SROC) were 0.77 (95% CI 0.73 to 0.81) in serum, 0.88 (95% CI 0.85 to 0.90) in bile and 0.86 (95% CI 0.83 to 0.89) in tissue, respectively. Furthermore, the pooled sensitivity and specificity and the SROC of CA19-9 in serum were 0.67 (95% CI 0.61 to 0.72), 0.86 (95% CI 0.75 to 0.93) and 0.75 (95% CI 0.71 to 0.79), respectively. The pooled HRs for MUC1 was 2.20 (95% CI 1.57 to 3.01) in CCA and 4.17 (95% CI 1.71 to 10.17) in mass-forming intrahepatic CCA. CONCLUSIONS Compared with CA19-9, WFA-MUC1 was shown to possess stronger diagnostic capability. MUC1 could serve as a prognosis factor for poor outcomes of CCA, particularly, mass-forming intrahepatic CCA.
Collapse
Affiliation(s)
- Zengwei Tang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Yuan Yang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Xiaolu Wang
- Department of General Surgery, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Wenbo Meng
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
- The Second Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Wagatsuma T, Kuno A, Angata K, Tajiri K, Takahashi J, Korenaga M, Mizokami M, Narimatsu H. Highly Sensitive Glycan Profiling of Hepatitis B Viral Particles and a Simple Method for Dane Particle Enrichment. Anal Chem 2018; 90:10196-10203. [PMID: 30074767 DOI: 10.1021/acs.analchem.8b01030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) is a double-stranded DNA virus composed of three types of viral particles. The virions are called Dane particles and the others are noninfectious subviral particles (SVPs). In blood, SVPs are detected in abundance, about 1000-10000 fold higher than Dane particles. Dane particles are hazardous because of their strong infectivity, unlike SVPs. Dane particles are covered with an envelope of glycoprotein called HBV surface antigen (HBsAg). HBsAg glycosylation is involved in viral particle formation and secretion. In this study, we established a novel and highly sensitive method for viral glycan profiling of HBsAg using small aliquots of patient serum. Our lectin microarray system could sensitively profile the glycans exposed on HBV while retaining the intact viral particle structure under nonreducing conditions. Several typical lectins were chosen from the lectin microarray results. Specifically, jacalin, which recognizes O-glycan, showed specific and strong reactivity to the M-HBsAg required for Dane particle secretion. Employing the lectin-fractionation method using jacalin, HBV particles were fractionated into jacalin-bound and unbound fractions from patient serum. We measured HBsAg titer and viral DNA load in each fraction using clinical tests. Interestingly, the jacalin-bound fraction contained a major fraction of the HBV viral DNA load. Thus, in this study we have presented a glycan profiling method for HBsAg on the intact HBV particle and an easy and simple method to enrich Dane particles from patient serum by jacalin fractionation.
Collapse
Affiliation(s)
- Takanori Wagatsuma
- Research Center for Medical Glycoscience (RCMG) , National Institute of Advanced Industrial Science and Technology , AIST Tsukuba Central 2, 1-1-1, Umezono , Tsukuba , Ibaraki 305-8568 , Japan
- The Research Center for Hepatitis and Immunology , National Center for Global Health and Medicine , 1-7-1, Kohnodai , Ichikawa , Chiba 272-8516 , Japan
| | - Atsushi Kuno
- Research Center for Medical Glycoscience (RCMG) , National Institute of Advanced Industrial Science and Technology , AIST Tsukuba Central 2, 1-1-1, Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Kiyohiko Angata
- Research Center for Medical Glycoscience (RCMG) , National Institute of Advanced Industrial Science and Technology , AIST Tsukuba Central 2, 1-1-1, Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Kazuto Tajiri
- The Third Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science , University of Toyama , 2630, Sugitani , Toyama , Toyama 930-0194 , Japan
| | - Junko Takahashi
- Japanese Red Cross Kinki Block Blood Center , Japanese Red Cross Society , 7-5-17, Saitoasagi , Ibaraki-city , Osaka 567-0085 , Japan
| | - Masaaki Korenaga
- The Research Center for Hepatitis and Immunology , National Center for Global Health and Medicine , 1-7-1, Kohnodai , Ichikawa , Chiba 272-8516 , Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology , National Center for Global Health and Medicine , 1-7-1, Kohnodai , Ichikawa , Chiba 272-8516 , Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience (RCMG) , National Institute of Advanced Industrial Science and Technology , AIST Tsukuba Central 2, 1-1-1, Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| |
Collapse
|
24
|
Phoomak C, Silsirivanit A, Park D, Sawanyawisuth K, Vaeteewoottacharn K, Wongkham C, Lam EWF, Pairojkul C, Lebrilla CB, Wongkham S. O-GlcNAcylation mediates metastasis of cholangiocarcinoma through FOXO3 and MAN1A1. Oncogene 2018; 37:5648-5665. [PMID: 29915392 PMCID: PMC6151127 DOI: 10.1038/s41388-018-0366-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
The leading cause of death in cancer patients is metastasis, for which an effective treatment is still necessary. During metastasis, cancer cells aberrantly express several glycans that are correlated with poor patient outcome. This study was aimed toward exploring the effects of O-GlcNAcylation on membranous N-glycans that are associated with the progression of cholangiocarcinoma (CCA). Global O-GlcNAcylation in CCA cells was depleted using specific siRNA against O-GlcNAc transferase (OGT), which transfers GlcNAc to the acceptor proteins. Using an HPLC-Chip/Time-of-Flight (Chip/TOF) MS system, the N-glycans associated with O-GlcNAcylation were identified by comparing the membranous N-glycans of siOGT-treated cells with those of scramble siRNA-treated cells. In parallel, the membranous N-glycans of the parental cells (KKU-213 and KKU-214) were compared with those of the highly metastatic cells (KKU-213L5 and KKU-214L5). Together, these data revealed that high mannose (Hex9HexNAc2) and biantennary complex (Hex5HexNAc4Fuc1NeuAc1) N-linked glycans correlated positively with metastasis. We subsequently demonstrate that suppression of O-GlcNAcylation decreased the expression of these two N-glycans, suggesting that O-GlcNAcylation mediates their levels in CCA. In addition, the ability of highly metastatic cells to migrate and invade was reduced by the presence of Pisum Sativum Agglutinin (PSA), a mannose-specific lectin, further indicating the association of high mannose type N-glycans with CCA metastasis. The molecular mechanism of O-GlcNAc-mediated progression of CCA was shown to proceed via a series of signaling events, involving the activation of Akt/Erk (i), an increase in FOXO3 phosphorylation (ii), which results in the reduction of MAN1A1 expression (iii) and thus the accumulation of Hex9HexNAc2 N-glycans (iv). This study demonstrates for the first time the association between O-GlcNAcylation, high mannose type N-glycans, and the progression of CCA metastasis, suggesting a novel therapeutic target for treatment of metastatic CCA.
Collapse
Affiliation(s)
- Chatchai Phoomak
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, CA, 95616, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, W12 0NN, UK
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
25
|
Tian R, Zhang H, Chen H, Liu G, Wang Z. Uncovering the Binding Specificities of Lectins with Cells for Precision Colorectal Cancer Diagnosis Based on Multimodal Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800214. [PMID: 29938190 PMCID: PMC6010763 DOI: 10.1002/advs.201800214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/09/2018] [Indexed: 05/03/2023]
Abstract
There is a high desire for novel targets/biomarkers to diagnose and treat colorectal cancer (CRC). Here, an approach starting from a polyacrylamide hydrogel-based lectin microarray is presented to screen the high expression of glycans on the CRC cell surface and to identify new lectin biomarkers for CRC. Three common CRC cell lines (SW480, SW620, and HCT116) and one normal colon cell line (NCM460) are profiled on the microarray with 27 lectins. The experimental results reveal that CRC cells highly express the glycans with d-galactose, d-glucose, and/or sialic acid residues, and Uelx Europaeus Agglutinin-I (UEA-I) exhibits reasonable specificity with SW480 cells. After conjugation of UEA-I with silica-coated NaGdF4:Yb3+, Er3+@NaGdF4 upconversion nanoparticles, the follow-up in vitro and in vivo experiments provide further evidence on that UEA-I can serve as tumor-targeting molecule to diagnose SW480 tumor by multimodal imaging including upconversion luminescence imaging, T1-weighted magnetic resonance imaging, and X-ray computed tomography imaging.
Collapse
Affiliation(s)
- Rongrong Tian
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaRoad Baohe DistrictHefeiAnhui230026P. R. China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Hongda Chen
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Guifeng Liu
- Department of RadiologyChina–Japan Union Hospital of Jilin UniversityNo. 126, Xiantai StreetChangchun130033P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
26
|
Narimatsu H, Sato T. Wisteria floribunda agglutinin positive glycobiomarkers: a unique lectin as a serum biomarker probe in various diseases. Expert Rev Proteomics 2017; 15:183-190. [DOI: 10.1080/14789450.2018.1419066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hisashi Narimatsu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takashi Sato
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
27
|
Talabnin K, Talabnin C, Ishihara M, Azadi P. Increased expression of the high-mannose M6N2 and NeuAc3H3N3M3N2F tri-antennary N-glycans in cholangiocarcinoma. Oncol Lett 2017; 15:1030-1036. [PMID: 29399163 PMCID: PMC5772869 DOI: 10.3892/ol.2017.7384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/03/2017] [Indexed: 01/07/2023] Open
Abstract
Changes in protein glycosylation have been reported in various types of cancer, including cholangiocarcinoma (CCA). Nanospray ionization-linear ion trap mass spectrometry (NSI-MSn) was used in the present study to determine the comparative structural glycomics of the N-linked glycans in the serum of patients with CCA compared with healthy controls. A total of 5 high-mannose and 4 complex N-linked glycans were detected. Mannose7-N-acetyl-glucosamine2 was the most abundant structure among the high-mannose types (control 12.12±2.54 vs. CCA 9.27±2.66%), whereas NeuAc2H2N2M3N2 predominated the complex types (control 61.17±2.55 vs. CCA 64.68±4.23%). The expression of 3 different N-glycans differed significantly between the CCA cases and controls. These included mannose6-N-acetyl-glucosamine2 (P=0.044), mannose9-N-acetyl-glucosamine2 (Ρ=0.030) and NeuAc3H3N3M3N2F (Ρ=0.002). These three glycan structures may therefore be associated with tumor progression in CCA and may be useful for its diagnosis.
Collapse
Affiliation(s)
- Krajang Talabnin
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chutima Talabnin
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand.,School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Matsuda A, Higashi M, Nakagawa T, Yokoyama S, Kuno A, Yonezawa S, Narimatsu H. Assessment of tumor characteristics based on glycoform analysis of membrane-tethered MUC1. J Transl Med 2017; 97:1103-1113. [PMID: 28581490 DOI: 10.1038/labinvest.2017.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/12/2022] Open
Abstract
Clinical tissue specimens are useful for pathological diagnosis, which is, in some cases, supported by visualization of biomolecule localization. In general, diagnostic specificity in molecular pathology is increased by the acquisition of a probe to distinguish the modification of isomers. Although glycosylation is one of the candidate modifications in a protein, comparative glycan analysis of disease-associated proteins derived from a single tissue section is still challenging because of the lack of analytical sensitivity. Here we demonstrate a possible method for differential glycoform analysis of an endogenous tumor-associated glycoprotein MUC1 by an antibody-overlay lectin microarray. Tissue sections (5 μm thick) of patients with cholangiocarcinoma (CCA; n=21) and pancreatic ductal adenocarcinoma (PDAC; n=50) were stained with an anti-MUC1 antibody MY.1E12 that was established as a monoclonal antibody recognizing an MUC1 glycosylation isoform with a sialyl-core 1 structure (NeuAcα2-3galactosyl β1-3-N-acetylgalactosamine). MY.1E12-positive tissue areas (2.5 mm2) were selectively dissected with a laser capture microdissection procedure. The membrane MUC1 was enriched by immunoprecipitation with MY.1E12 and subjected to lectin microarray analysis. Even though the reactivities of MY.1E12 between CCA and PDAC were similar, the lectin-binding patterns varied. We found Maackia amurensis leukoagglutinin and pokeweed lectin distinguished MY.1E12-reactive MUC1 of CCA from that of PDAC. Moreover, MUC1 with M. amurensis hemagglutinin (MAH) reactivity potentially reflected the degree of malignancy. These results were confirmed with MAH-MY.1E12 double fluorescent immunostaining. These glycan changes on MUC1 were detected with high sensitivity owing to the cluster effect of immobilized lectins on a tandem repeat peptide antigen covered with highly dense glycosylation such as mucin. Our approach provides the information to investigate novel glycodynamics in biology, for example, glycoalteration, as well as diseases related to not only MUC1 but also other membrane proteins.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Michiyo Higashi
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Tomomi Nakagawa
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Seiya Yokoyama
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Atsushi Kuno
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Suguru Yonezawa
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Hisashi Narimatsu
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
Poiroux G, Barre A, van Damme EJM, Benoist H, Rougé P. Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy. Int J Mol Sci 2017; 18:ijms18061232. [PMID: 28598369 PMCID: PMC5486055 DOI: 10.3390/ijms18061232] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022] Open
Abstract
Aberrant O-glycans expressed at the surface of cancer cells consist of membrane-tethered glycoproteins (T and Tn antigens) and glycolipids (Lewis a, Lewis x and Forssman antigens). All of these O-glycans have been identified as glyco-markers of interest for the diagnosis and the prognosis of cancer diseases. These epitopes are specifically detected using T/Tn-specific lectins isolated from various plants such as jacalin from Artocarpus integrifola, and fungi such as the Agaricus bisporus lectin. These lectins accommodate T/Tn antigens at the monosaccharide-binding site; residues located in the surrounding extended binding-site of the lectins often participate in the binding of more extended epitopes. Depending on the shape and size of the extended carbohydrate-binding site, their fine sugar-binding specificity towards complex O-glycans readily differs from one lectin to another, resulting in a great diversity in their sugar-recognition capacity. T/Tn-specific lectins have been extensively used for the histochemical detection of cancer cells in biopsies and for the follow up of the cancer progression and evolution. T/Tn-specific lectins also induce a caspase-dependent apoptosis in cancer cells, often associated with a more or less severe inhibition of proliferation. Moreover, they provide another potential source of molecules adapted to the building of photosensitizer-conjugates allowing a specific targeting to cancer cells, for the photodynamic treatment of tumors.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche, Centre de Recherche en Cancérologie de Toulouse, 31037 Toulouse, France.
| | - Annick Barre
- Unité Mixte de Recherche, 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers Université Paul Sabatier, 31062 Toulouse, France.
| | - Els J M van Damme
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Hervé Benoist
- Unité Mixte de Recherche, 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers Université Paul Sabatier, 31062 Toulouse, France.
| | - Pierre Rougé
- Unité Mixte de Recherche, 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers Université Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
30
|
Tamaki N, Kuno A, Matsuda A, Tsujikawa H, Yamazaki K, Yasui Y, Tsuchiya K, Nakanishi H, Itakura J, Korenaga M, Mizokami M, Kurosaki M, Sakamoto M, Narimatsu H, Izumi N. Serum Wisteria Floribunda Agglutinin-Positive Sialylated Mucin 1 as a Marker of Progenitor/Biliary Features in Hepatocellular Carcinoma. Sci Rep 2017; 7:244. [PMID: 28325920 PMCID: PMC5428232 DOI: 10.1038/s41598-017-00357-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/21/2017] [Indexed: 12/18/2022] Open
Abstract
Histological molecular classification of hepatocellular carcinoma (HCC) is clinically important for predicting the prognosis. However, a reliable serum marker has not been established. The aim of this study was to evaluate the diagnostic value of serum Wisteria Floribunda agglutinin-positive sialylated mucin 1 (WFA-sialylated MUC1), which is a novel biliary marker, as a marker of HCC with hepatic progenitor cell (HPC)/biliary features and of prognosis. A total of 144 consecutive patients who underwent complete radiofrequency ablation of primary HCC were enrolled. A serum WFA-sialylated MUC1 level of 900 μL/mL was determined as the optimal cutoff value for prediction of immunohistochemical staining for HPC/biliary features [sialylated MUC1 and cytokeratin 19 (CK19)]. Positive staining rate of sialylated MUC1 and CK19 was significantly higher in patients with WFA-sialylated MUC1 ≥900 than those with WFA-sialylated MUC1 <900. Furthermore, cumulative incidence of HCC recurrence was significantly higher in patients with WFA-sialylated MUC1 ≥900 and on multivariate analysis, serum WFA-sialylated MUC1 levels was an independent predictor of HCC recurrence. These results revealed that serum WFA-sialylated MUC1 was associated with histological feature of HCC and recurrence after curative therapy and it could be a novel marker of HPC/biliary features in HCC and of prognosis.
Collapse
Affiliation(s)
- Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Atsushi Kuno
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Atsushi Matsuda
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of medicine, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of medicine, Tokyo, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Kaoru Tsuchiya
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Hiroyuki Nakanishi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Jun Itakura
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Masaaki Korenaga
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Masashi Mizokami
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of medicine, Tokyo, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan.
| |
Collapse
|
31
|
Zhu H, Liu M, Yu H, Liu X, Zhong Y, Shu J, Fu X, Cai G, Chen X, Geng W, Yang X, Wu M, Li Z, Zhang D. Glycopatterns of Urinary Protein as New Potential Diagnosis Indicators for Diabetic Nephropathy. J Diabetes Res 2017; 2017:5728087. [PMID: 28401167 PMCID: PMC5376433 DOI: 10.1155/2017/5728087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022] Open
Abstract
Diabetic nephropathy is a major cause of chronic kidney disease and end-stage kidney disease. However, so little is known about alterations of the glycopatterns in urine with the development of diabetic nephropathy. Presently, we interrogated glycopatterns in urine specimens using a lectin microarray. The results showed that expression levels of Siaα2-6Gal/GalNAc recognized by SNA exhibited significantly increased tendency with the development of diabetic nephropathy; moreover, SNA blotting indicated glycoproteins (90 kDa, 70 kDa, and 40 kDa) in urine may contribute to this alteration. Furthermore, the glycopatterns of (GlcNAc)2-4 recognized by STL exhibited difference between diabetic and nondiabetic nephropathy. The results of urinary protein microarray fabricated by another 48 urine specimens also indicated (GlcNAc)2-4 is a potential indictor to differentiate the patients with diabetic nephropathy from nondiabetic nephropathy. Furtherly, STL blotting showed that the 50 kDa glycoproteins were correlated with this alteration. In conclusion, our data provide pivotal information to monitor the development of diabetic nephropathy and distinguish between diabetic nephropathy and nondiabetic renal disease based on precise alterations of glycopatterns in urinary proteins, but further studies are needed in this regard.
Collapse
Affiliation(s)
- Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Moyan Liu
- Department of Nephrology, General Hospital of Jinan Military Command, Jinan, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinle Fu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Wenjia Geng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Xiaoli Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Minghui Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Dong Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| |
Collapse
|
32
|
Manna D, Pust S, Torgersen ML, Cordara G, Künzler M, Krengel U, Sandvig K. Polyporus squamosus Lectin 1a (PSL1a) Exhibits Cytotoxicity in Mammalian Cells by Disruption of Focal Adhesions, Inhibition of Protein Synthesis and Induction of Apoptosis. PLoS One 2017; 12:e0170716. [PMID: 28114329 PMCID: PMC5256987 DOI: 10.1371/journal.pone.0170716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/09/2017] [Indexed: 11/18/2022] Open
Abstract
PSL1a is a lectin from the mushroom Polyporus squamosus that binds to sialylated glycans and glycoconjugates with high specificity and selectivity. In addition to its N-terminal carbohydrate-binding domain, PSL1a possesses a Ca2+-dependent proteolytic activity in the C-terminal domain. In the present study, we demonstrate that PSL1a has cytotoxic effects on mammalian cancer cells, and we show that the cytotoxicity is dependent on the cysteine protease activity. PSL1a treatment leads to cell rounding and detachment from the substratum, concomitant with disruption of vinculin complexes in focal adhesions. We also demonstrate that PSL1a inhibits protein synthesis and induces apoptosis in HeLa cells, in a time- and concentration-dependent manner.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Chemistry, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sascha Pust
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maria L. Torgersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Markus Künzler
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
- * E-mail: (UK); (KS)
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- * E-mail: (UK); (KS)
| |
Collapse
|
33
|
Shoda J, Matsuda A, Shida T, Yamamoto M, Nagino M, Tsuyuguchi T, Yasaka T, Tazuma S, Uchiyama K, Unno M, Ohkohchi N, Nakanuma Y, Kuno A, Narimatsu H. Wisteria floribunda agglutinin-sialylated mucin core polypeptide 1 is a sensitive biomarker for biliary tract carcinoma and intrahepatic cholangiocarcinoma: a multicenter study. J Gastroenterol 2017; 52:218-228. [PMID: 27358229 PMCID: PMC5281651 DOI: 10.1007/s00535-016-1230-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/05/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Wisteria floribunda agglutinin (WFA)-sialylated mucin core polypeptide 1 (MUC1) was investigated as a new glycoprotein marker for cholangiocarcinoma (CC) using glycoproteomics technologies. In this multicenter study, WFA-sialylated MUC1 levels in serum and bile samples were measured to determine their diagnostic capability in biliary tract carcinoma (BTC) and intrahepatic (Ih) CC. METHODS The study included 244 patients with BTC, 59 patients with IhCC, 287 patients with benign biliary tract diseases, and 44 control subjects. RESULTS Serum WFA-sialylated MUC1 levels were significantly higher in patients with either BTC or IhCC than in control subjects and those with benign biliary tract diseases. Patients with IhCC showed higher WFA-sialylated MUC1 levels than patients with tumors at other sites. No significant differences in WFA-sialylated MUC1 levels were found with regard to cancer stage or tissue type. Receiver operating characteristic curve analysis showed that WFA-sialylated MUC1 was superior to carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) for the diagnosis of benign biliary tract diseases, BTC, and IhCC, as well as for stage I and II carcinomas. Significantly higher levels of biliary WFA-sialylated MUC1 were observed in BTC/IhCC than in benign biliary tract diseases. The diagnostic capability of biliary WFA-sialylated MUC1 was also superior to that of CA19-9, and diagnostic sensitivity was higher than that of biliary cytology for BTC/IhCC. CONCLUSIONS WFA-sialylated MUC1 is a useful novel biomarker for BTC/IhCC. In the future, this measurement should be applied in the clinical setting.
Collapse
Affiliation(s)
- Junichi Shoda
- Department of Medical Science, Faculty of Medicine,, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Atsushi Matsuda
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Tsukuba, Ibaraki Japan
| | - Takashi Shida
- Department of Medical Science, Faculty of Medicine,, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Tsuyuguchi
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Yasaka
- Division of Surgery, Nagasaki Prefectural Kamigoto Hospital, Nagasaki, Japan
| | - Susumu Tazuma
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Nobuaki Ohkohchi
- Department of Gastrointestinal Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Yasuni Nakanuma
- Department of Human Pathology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Atsushi Kuno
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Tsukuba, Ibaraki Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Tsukuba, Ibaraki Japan
| |
Collapse
|
34
|
Saldova R, Kilcoyne M, Stöckmann H, Millán Martín S, Lewis AM, Tuite CME, Gerlach JQ, Le Berre M, Borys MC, Li ZJ, Abu-Absi NR, Leister K, Joshi L, Rudd PM. Advances in analytical methodologies to guide bioprocess engineering for bio-therapeutics. Methods 2016; 116:63-83. [PMID: 27832969 DOI: 10.1016/j.ymeth.2016.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
This study was performed to monitor the glycoform distribution of a recombinant antibody fusion protein expressed in CHO cells over the course of fed-batch bioreactor runs using high-throughput methods to accurately determine the glycosylation status of the cell culture and its product. Three different bioreactors running similar conditions were analysed at the same five time-points using the advanced methods described here. N-glycans from cell and secreted glycoproteins from CHO cells were analysed by HILIC-UPLC and MS, and the total glycosylation (both N- and O-linked glycans) secreted from the CHO cells were analysed by lectin microarrays. Cell glycoproteins contained mostly high mannose type N-linked glycans with some complex glycans; sialic acid was α-(2,3)-linked, galactose β-(1,4)-linked, with core fucose. Glycans attached to secreted glycoproteins were mostly complex with sialic acid α-(2,3)-linked, galactose β-(1,4)-linked, with mostly core fucose. There were no significant differences noted among the bioreactors in either the cell pellets or supernatants using the HILIC-UPLC method and only minor differences at the early time-points of days 1 and 3 by the lectin microarray method. In comparing different time-points, significant decreases in sialylation and branching with time were observed for glycans attached to both cell and secreted glycoproteins. Additionally, there was a significant decrease over time in high mannose type N-glycans from the cell glycoproteins. A combination of the complementary methods HILIC-UPLC and lectin microarrays could provide a powerful and rapid HTP profiling tool capable of yielding qualitative and quantitative data for a defined biopharmaceutical process, which would allow valuable near 'real-time' monitoring of the biopharmaceutical product.
Collapse
Affiliation(s)
- Radka Saldova
- NIBRT GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland.
| | - Michelle Kilcoyne
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland; Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Henning Stöckmann
- NIBRT GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland.
| | - Silvia Millán Martín
- NIBRT GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland.
| | - Amanda M Lewis
- Bristol-Myers Squibb, BMS, Biologics Development, 38 Jackson Road, Devens, MA 01434, USA.
| | - Catherine M E Tuite
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland.
| | - Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland; Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland.
| | - Marie Le Berre
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland.
| | - Michael C Borys
- Bristol-Myers Squibb, BMS, Biologics Development, 38 Jackson Road, Devens, MA 01434, USA.
| | - Zheng Jian Li
- Bristol-Myers Squibb, BMS, Biologics Development, 38 Jackson Road, Devens, MA 01434, USA.
| | - Nicholas R Abu-Absi
- Bristol-Myers Squibb, BMS, Biologics Development, 38 Jackson Road, Devens, MA 01434, USA.
| | - Kirk Leister
- Bristol-Myers Squibb, BMS, Biologics Development, 38 Jackson Road, Devens, MA 01434, USA.
| | - Lokesh Joshi
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland.
| | - Pauline M Rudd
- NIBRT GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland.
| |
Collapse
|
35
|
Haji-Ghassemi O, Gilbert M, Spence J, Schur MJ, Parker MJ, Jenkins ML, Burke JE, van Faassen H, Young NM, Evans SV. Molecular Basis for Recognition of the Cancer Glycobiomarker, LacdiNAc (GalNAc[β1→4]GlcNAc), by Wisteria floribunda Agglutinin. J Biol Chem 2016; 291:24085-24095. [PMID: 27601469 DOI: 10.1074/jbc.m116.750463] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Indexed: 01/10/2023] Open
Abstract
Aberrant glycosylation and the overexpression of specific carbohydrate epitopes is a hallmark of many cancers, and tumor-associated oligosaccharides are actively investigated as targets for immunotherapy and diagnostics. Wisteria floribunda agglutinin (WFA) is a legume lectin that recognizes terminal N-acetylgalactosaminides with high affinity. WFA preferentially binds the disaccharide LacdiNAc (β-d-GalNAc-[1→4]-d-GlcNAc), which is associated with tumor malignancy in leukemia, prostate, pancreatic, ovarian, and liver cancers and has shown promise in cancer glycobiomarker detection. The mechanism of specificity for WFA recognition of LacdiNAc is not fully understood. To address this problem, we have determined affinities and structure of WFA in complex with GalNAc and LacdiNAc. Affinities toward Gal, GalNAc, and LacdiNAc were measured via surface plasmon resonance, yielding KD values of 4.67 × 10-4 m, 9.24 × 10-5 m, and 5.45 × 10-6 m, respectively. Structures of WFA in complex with LacdiNAc and GalNAc have been determined to 1.80-2.32 Å resolution. These high resolution structures revealed a hydrophobic groove complementary to the GalNAc and, to a minor extent, to the back-face of the GlcNAc sugar ring. Remarkably, the contribution of this small hydrophobic surface significantly increases the observed affinity for LacdiNAc over GalNAc. Tandem MS sequencing confirmed the presence of two isolectin forms in commercially available WFA differing only in the identities of two amino acids. Finally, the WFA carbohydrate binding site is similar to a homologous lectin isolated from Vatairea macrocarpa in complex with GalNAc, which, unlike WFA, binds not only αGalNAc but also terminal Ser/Thr O-linked αGalNAc (Tn antigen).
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - Michel Gilbert
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Jenifer Spence
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - Melissa J Schur
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Matthew J Parker
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - Meredith L Jenkins
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - John E Burke
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - Henk van Faassen
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - N Martin Young
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Stephen V Evans
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| |
Collapse
|
36
|
Yamamoto S, Kinoshita M, Suzuki S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J Pharm Biomed Anal 2016; 130:273-300. [PMID: 27461579 DOI: 10.1016/j.jpba.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 12/25/2022]
Abstract
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans. We hope the techniques have accommodated most of the requests from glycoproteomics researchers.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
37
|
Takeshita M, Kuno A, Suzuki K, Matsuda A, Shimazaki H, Nakagawa T, Otomo Y, Kabe Y, Suematsu M, Narimatsu H, Takeuchi T. Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis. Arthritis Res Ther 2016; 18:112. [PMID: 27209430 PMCID: PMC4875599 DOI: 10.1186/s13075-016-1013-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/04/2016] [Indexed: 12/29/2022] Open
Abstract
Background Nearly all secreted proteins are glycosylated, and serum glycoproteins that exhibit disease-associated glycosylation changes have potential to be biomarkers. In rheumatoid arthritis (RA), C-reactive protein (CRP), and matrix metalloproteinase-3 (MMP-3) are widely used as serologic biomarkers, but they lack sufficient specificity or precision. We performed comparative glycosylation profiling of MMP-3 using a recently developed antibody-overlay lectin microarray technology that allows semicomprehensive and quantitative analysis of specific protein glycosylation to develop an RA-specific disease activity biomarker. Methods Serum was taken from patients with RA (n = 24) whose disease activity was scored using composite measures, and MMP-3 was immunoprecipitated and subjected to lectin microarray analysis. A disease activity index (DAI) based on lectin signal was developed and validated using another cohort (n = 60). Synovial fluid MMP-3 in patients with RA and patients with osteoarthritis (OA) was also analyzed. Results Intense signals were observed on a sialic acid-binding lectin (Agrocybe cylindracea galectin [ACG]) and O-glycan-binding lectins (Jacalin, Agaricus bisporus agglutinin [ABA], and Amaranthus caudatus agglutinin [ACA]) by applying subnanogram levels of serum MMP-3. ACG, ABA, and ACA revealed differences in MMP-3 quantity, and Jacalin revealed differences in MMP-3 quality. The resultant index, ACG/Jacalin, correlated well with disease activity. Further validation using another cohort confirmed that this index correlated well with several DAIs and their components, and reflected DAI changes following RA treatment, with correlations greater than those for MMP-3 and CRP. Furthermore, MMP-3, which generated a high ACG/Jacalin score, accumulated in synovial fluid of patients with RA but not in that of patients with OA. Sialidase digestion revealed that the difference in quality was derived from O-glycan α-2,6-sialylation. Conclusions This is the first report of a glycoprotein biomarker using glycan change at a local lesion to assess disease activity in autoimmune diseases. Differences in the degree of serum MMP-3 α-2,6-sialylation may be a useful index for estimating disease activity.
Collapse
Affiliation(s)
- Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atsushi Kuno
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.,Center for Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atsushi Matsuda
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.,Center for Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroko Shimazaki
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Tomomi Nakagawa
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Otomo
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
38
|
Syed P, Gidwani K, Kekki H, Leivo J, Pettersson K, Lamminmäki U. Role of lectin microarrays in cancer diagnosis. Proteomics 2016; 16:1257-65. [PMID: 26841254 DOI: 10.1002/pmic.201500404] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
The majority of cell differentiation associated tumor markers reported to date are either glycoproteins or glycolipids. Despite there being a large number of glycoproteins reported as candidate markers for various cancers, only a handful are approved by the US Food and Drug Administration. Lectins, which bind to the glycan part of the glycoproteins, can be exploited to identify aberrant glycosylation patterns, which in turn would help in enhancing the specificity of cancer diagnosis. Although conventional techniques such as HPLC and MS have been instrumental in performing the glycomic analyses, these techniques lack multiplexity. Lectin microarrays have proved to be useful in studying multiple lectin-glycan interactions in a single experiment and, with the advances made in the field, hold a promise of enabling glycomic profiling of cancers in a fast and efficient manner.
Collapse
Affiliation(s)
- Parvez Syed
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Kamlesh Gidwani
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Henna Kekki
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Janne Leivo
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Kim Pettersson
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| |
Collapse
|
39
|
Dan X, Liu W, Ng TB. Development and Applications of Lectins as Biological Tools in Biomedical Research. Med Res Rev 2015; 36:221-47. [PMID: 26290041 DOI: 10.1002/med.21363] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023]
Abstract
As a new and burgeoning area following genomics and proteomics, glycomics has become a hot issue due to its pivotal roles in many physiological and pathological processes. Glycans are much more complicated than genes or proteins since glycans are highly branched and dynamic. Antibodies and lectins are the two major molecular tools applied for glycan profiling. Though the study of antibodies and lectins started at almost the same time in 1880s, lectins gained much less attention than the antibodies until recent decades when the importance and difficulties of glycomics were realized. The present review summarizes the discovery history of lectins and their biological functions with a special emphasis on their various applications as biological tools. Both older techniques that had been developed in the last century and new technologies developed in recent years, especially lectin microarrays and lectin-based biosensors, are included in this account.
Collapse
Affiliation(s)
- Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenlong Liu
- Department of Orthopaedics & Traumatology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|